当前位置:文档之家› 示波器基础系列之十七—— 增强分辨率(ERES)

示波器基础系列之十七—— 增强分辨率(ERES)

示波器基础系列之十七—— 增强分辨率(ERES)

示波器基础系列之十七——增强分辨率(ERES)

数字示波器中提供的采样率,特别是在长波形捕获时间的示波器中,通常

要远远高于被分析的信号频谱实际要求的采样率。这种过采样可以作为一种优势,对数字化信号滤波,以提高显示的曲线的有效分辨率,或去掉不想要的噪声。I. 增强分辨率

增强分辨率函数应用有限脉冲响应(FIR)滤波器,其与使用简单的平均滤波器平滑信号类似,但带宽效率更高,拥有更好的带通特点。在平均连续曲线具有

重要意义。对于信号拥有单次特点(信号不能重复,或不能设置稳定触发)而不能使用平均函数时,可以使用这一函数。

a. 增强分辨率的优势

增强分辨率(ERES)滤波改善了仪器具有两个特点:

1. 在任何情况下,每个滤波器使用固定数量都会改善分辨率(即区分相距很近的电压电平的能力)。不管信号是否有噪声,是单次信号还是重复信号,这都可以有效提高分辨率。

2. 可以改善信噪比(SNR),具体取决于原始信号中的噪声形式,因为增强分辨率滤波会降低信号带宽,进而滤除部分噪声。

b.力科示波器中的增强分辨率

力科DSO 实现了一套线性相位有限脉冲响应(FIR)滤波器,这些滤波器是为

提供快速计算、完美的阶跃响应、及以0.5 位步长在0.5-3 位之间改善分辨率、同时使带宽下降最小而优化的。每个0.5 位步长对应两倍的带宽下降,可以简

便地控制带宽/分辨率之间的矛盾。下表是这些示波器中提供的六种滤波器的参数。

使用的滤波器是低通滤波器,因此在具体情况下SNR 的实际提高程度取决

数字示波器基础知识

数字示波器基础知识 耦合 耦合控制机构决定输入信号从示波器前面板上的BNC输入端通到该通道垂直偏转系统其它部分的方式。耦合控制可以有两种设置方式,即DC耦合和AC耦合。 DC耦合方式为信号提供直接的连接通路。因此信号提供直接的连接通路。因此信号的所有分量(AC 和:DC)都会影响示波器的波形显示。 AC耦合方式则在BDC端和衰减器之间串联一个电容。这样,信号的DC分量就被阻断,而信号的低频AC分量也将受阻或大为衰减。示波器的低频截止频率就是示波器显示的信号幅度仅为其直实幅度为71%时的信号频率。示波器的低频截止频率主要决定于其输入耦合电容的数值。 和耦合控制机构有关的另一个功能是输入接地功能。这时,输入信号和衰减器断开并将衰减器输入端连至示波器的地电平。当选择接地时,在屏幕上将会看到一条位于0V电平的直线。这时可以使用位置控制机构来调节这个参考电平或扫描基线的位置。 输入阻抗 多数示波器的输入阻抗为1MΩ和大约25pF相关联。这足以满足多数应用场合的要求,因为它对多数电路的负载效应极小。 有些信号来自50Ω输出阻抗的源。为了准确的测量这些信号并避免发生失真,必须对这些信号进行正确的传送和端接。这时应当使用50Ω特性阻抗的电缆并用50Ω的负载进行端接。某些示波器,如PM3094和PM3394A,内部装有一个50Ω的负载,提供一种用户可选择的功能。为避免误操作,选择此功能时需经再次确认。由于同样的理由,50Ω输入阻抗功能不能和某些探头配合使用。 相加和反向 简单的把两个信号相加起来似乎没有什么实际意义。然百,把两个有关信号之一反向,再将二者相加,实际上就实现了两个信号的相减。这对于消除共模干扰(即交流声),或者进行差分测量都是非常有用的。 从一个系统的输出信号中减去输入信号,再进行适当的比例变换,就可以测出被测系统引起的失真。 由于很多电子系统本身就具有反向的特性,这样只要把示波器的两个输入信号相加就能实现我们所期望的信号相减。 带宽

示波器基础使用说明和功能详细讲解

示波器基础使用说明和功能详细讲解 2009/7/30/10:56 来源:慧聪教育网 【慧聪教育网】示波器基础使用说明和功能 说明和功能 我们可以把示波器简单地看成是具有图形显示的电压表。 普通的电压表是在其度盘上移动的指针或者数字显示来给出信号电压的测 量读数。而示波器则与共不同。示波器具有屏幕,它能在屏幕上以图形的方式显示信号电压随时间的变化,即波形。 示波器和电压表之间的主要区别是: 1.电压表可以给出祥测信号的数值,这通常是有效值即RMS值。但是电压表不能给出有关信号形状的信息。有的电压表也能测量信号的峰值电压和频率。然而,示波器则能以图形的方式显示信号随时间变化的历史情况。 2.电压表通常只能对一个信号进行测量,而示波器则能同时显示两个或多个信号。 显示系统 示波器的显示器件是阴极射线管,缩写为CRT,见图1。阴极射线管的基础是一个能产生电子的系统,称为电子枪。电子枪向屏幕发射电子。电子枪发射的电子经聚焦形成电子束,并打在屏幕中心的一点上。屏幕的内表面涂有荧光物质,这样电子束打中的点就发出光来。 图1阴极射线管图 电子在从电子枪到屏幕的途中要经过偏转系统。在偏转系统上施加电压就可以使光点在屏幕上移动。偏转系统由水平(X)偏转板和垂直(Y)偏转板组成。这种偏转方式称为静电偏转。 在屏幕的内表面用刻划或腐蚀的方法作出许多水平和垂直的直线形成网络,称为标尺。标尺通常在垂直方向有8个,水平方向有10个,每个格为1cm。有的标尺线又进一步分成小格,并且还有标明0%和100%的特别线。这些特别的线和标明10%和90%的标尺配合使用以进行上升时间的测量。我们后面会讨论这个问题。 如上所述,受到电子轰击后,CRT上的荧光物质就会发光。当电子束移开后,荧光物质在一个短的时间内还会继续发光。这个时间称为余辉时间。余辉时间的长短随荧光物质的不同而变化。最常用的荧光物质是P31,其余辉时间小于一毫

Android手机分辨率基础知识(DPI_DIP计算)

比如:计算WVGA(800*480)分辨率,3.7英寸的密度DPI

图1 Diagonal pixel 表示对角线的像素值(=),DPI=933/3.7=252 3.手机屏幕的分类 3.1根据手机屏幕密度(DPI)或屏幕尺寸大小分为以下3类,如图2所示 图2 3. 2手机屏幕分类和像素密度的对应关系如表1所示:

图3 从以上的屏幕尺寸分布情况上看,其实手机只要考虑3-4.5寸之间密度为1和1.5的手机4 UI设计 从开发角度讲,应用程序会根据3类A ndroid手机屏幕提供3套UI布局文件,但是相应界面图标也需要提供3套,如表2所示

需要根据物理尺寸的大小准备5套布局,layout(放一些通用布局xml文件,比如界面中顶部和底部的布局,不会随着屏幕大小变化,类似windos窗口的title bar),layout- small(屏幕尺寸小于3英寸左右的布局),layout-normal(屏幕尺寸小于4.5英寸左右),layout-large(4英寸-7英寸之间),layout-xlarge(7-10英寸之间) 2)图片资源方面 需要根据dpi值准备5套图片资源,drawable,drawalbe-ldpi,drawable-mdpi,drawable-hdpi,drawable-xhdpi Android有个自动匹配机制去选择对应的布局和图片资源 分享到:?上一篇:分享摩托罗拉milestone手机升级到Android 2.2的过程 ?下一篇:基于feng streaming server 搭建Android直播测试平台 查看评论 7楼pc0de 2011-12-16 17:11发表[回复] 谢谢分享啊 6楼yang_hui198**** ****-11-19 16:44发表[回复] 很强大!!!很喜欢!!! 3楼noICE1 2011-08-16 14:59发表[回复]

数据通信基本知识

数据通信基本知识 -------------------------------------------------------------------------- 所有计算机之间之间通过计算机网络的通信都涉及由传输介质传输某种形式的数据编码信号。传输介质在计算机、计算机网络设备间起互连和通信作用,为数据信号提供从一个节点传送到另一个节点的物理通路。计算机与计算机网络中采用的传输介质可分为有线和无线传输介质两大类。 一、有线传输介质(Wired Transmission Media) 有线传输介质在数据传输中只作为传输介质,而非信号载体。计算机网络中流行使用的有线传输介质(Wired Transmission Media)为:铜线和玻璃纤维。 1. 铜线 铜线(Copper Wire)由于具有较低的电阻率、价廉和容易安装等优点因而成为最早用于计算机网络中的传输介质,它以介质中传输的电流作为数据信号的载体。为了尽可能减小铜线所传输信号之间的相互干涉(Interference),我们使用两种基本的铜线类型:双绞线和同轴电缆。 (1)双绞线 双绞线(Twisted Pair)是把两条互相绝缘的铜导线纽绞起来组成一条通信线路,它既可减小流过电流所辐射的能量,也可防止来自其他通信线路上信号的干涉。双绞线分屏蔽和无屏蔽两种,其形状结构如图1.1所示。双绞线的线路损耗较大,传输速率低,但价格便宜,容易安装,常用于对通信速率要求不高的网络连接中。 (2)同轴电缆 同轴电缆(Coaxial Cable)由一对同轴导线组成。同轴电缆频带宽,损耗小,具有比双绞线更强的抗干扰能力和更好的传输性能。按特性阻抗值不同,同轴电缆可分为基带(用于传输单路信号)和宽带(用于同时传输多路信号)两种。同轴电缆是目前LAN局域网与有线电视网中普遍采用的比较理想的传输介质。 2.玻璃纤维 目前,在计算机网络中十分流行使用易弯曲的石英玻璃纤维来作为传输介质,它以介质中传输的光波(光脉冲信号)作为信息载体,因此我们又将之称为光导纤维,简称光纤(Optical Fiber)或光缆(Optical Cable)。 光缆由能传导光波的石英玻璃纤维(纤芯),外加包层(硅橡胶)和保护层构成。在光缆一头的发射器使用LED光发射二极管(Light Emitting Diode)或激光(Laser)来发射光脉冲,在光缆另一头的接收器使用光敏半导体管探测光脉冲。 模拟数据通信与数字数据通信 一、通信信道与信道容量(Communication Channel & Channel Capacity) 通信信道(Communication Channel)是数据传输的通路,在计算机网络中信道分为物理信道和逻辑信道。物理信道指用于传输数据信号的物理通路,它由传输介质与有关通信设备组成;逻辑信道指在物理信道的基础上,发送与接收数据信号的双方通过中间结点所实现的逻?quot;联系",由此为传输数据信号形成的逻辑通路。逻辑信道可以是有连接的,也可以是无连接的。物理信道还可根据传输介质的不同而分为有线信道和

机器视觉检测的基础知识[大全]

机器视觉检测的基础知识~相机 容来源网络,由“机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在机械展. 相机都有哪些种类?我们常说的CCD就是相机么?除了2D平面相机,是否还有其他种类的相机,原理又是什么?下面这篇文章给您一一道来。 一,相机就是CCD么? 通常,我们把所有相机都叫作CCD,CCD已经成了相机的代名词。正在使用被叫做CCD的很可能就是CMOS。其实CCD和CMOS都称为感光元件,都是将光学图像转换为电子信号的半导体元件。他们在检测光时都采用光电二极管,但是在信号的读取和制造方法上存在不同。两者的区别如下: 二,像素。 所谓像素,是指图像的最小构成单位。电脑中的图像,是通过像素(或者称为PIXEL)这一规则排列的点的集合进行表现的。每一个点都拥有色调和阶调等色彩信息,由此就可以描绘出彩色的图像。 ▼例如:液晶显示器上会显示「分辨率:1280×1024」等。这表示横向的像素数为1280,纵向的像素数为1024。这样的显示器的像素总数即为1280×1024=1,310,720。由于像素数越多,则越可以表现出图像的细节,因此也可以说「清晰度更高」。

三,像素直径。 所谓像素直径,是指每个CCD元件的大小,通常使用μm作为单位。严谨的说,这个大小中包含了受光元件与信号传送通路。(=像素间距,即某个像素的中心到邻近一个像素的中心的距离。)。也就是说,像素直径与像素间距的值是一样的。如果像素直径较小,则图像将通过较小的像素进行描绘,因此可以获得更加精细的图像。可以通过像素直径和有效像素数,求出CCD元件的受光部的大小。 假设某个 CCD 元件的条件如下所示: ·有效像素数…768 × 484 ·像素直径…8.4 μm× 9.8μm 则受光部的大小为 ·横向768 × 8.4μm= 6.4512 mm ·纵向484 × 9.8μm= 4.7432 mm 四,CCD的大小。 ▼CCD感光元件的大小,一般分为采用英寸单位表示和采用APS-C大小等规格表示这2种方式。采用英寸表示时,该尺寸并不是拍摄的实际尺寸,而是相当于摄像管的对角长度。例如,1/2英寸的CCD表示「拥有相当于1/2英寸的摄像管的拍摄围」。为什么如此计算呢,这是由于当初制造CCD的目的就是用来代替电视机录像机的摄像管的。当时,由于想要继续使用镜头等光学用品的需求比较强烈,由此就诞生了这种奇怪的规格。主要的英寸规格的尺寸如下表所示。

通信原理基础知识整理

通信常识:波特率、数据传输速率与带宽的相互关系 【带宽W】 带宽,又叫频宽,是数据的传输能力,指单位时间能够传输的比特数。高带宽意味着高能力。数字设备中带宽用bps(b/s)表示,即每秒最高可以传输的位数。模拟设备中带宽用Hz表示,即每秒传送的信号周期数。通常描述带宽时省略单位,如10M实质是10M b/s。带宽计算公式为:带宽=时钟频率*总线位数/8。电子学上的带宽则指电路可以保持稳定工作的频率围。 【数据传输速率Rb】 数据传输速率,又称比特率,指每秒钟实际传输的比特数,是信息传输速率(传信率)的度量。单位为“比特每秒(bps)”。其计算公式为S=1/T。T为传输1比特数据所花的时间。 【波特率RB】 波特率,又称调制速率、传符号率(符号又称单位码元),指单位时间载波参数变化的次数,可以以波形每秒的振荡数来衡量,是信号传输速率的度量。单位为“波特每秒(Bps)”,不同的调制方法可以在一个码元上负载多个比特信息,所以它与比特率是不同的概念。 【码元速率和信息速率的关系】 码元速率和信息速率的关系式为:Rb=RB*log2 N。其中,N为进制数。对于二进制的信号,码元速率和信息速率在数值上是相等的。 【奈奎斯特定律】 奈奎斯特定律描述了无噪声信道的极限速率与信道带宽的关系。 1924年,奈奎斯特(Nyquist)推导出理想低通信道下的最高码元传输速率公式:理想低通信道下的最高RB = 2W Baud。其中,W为理想低通信道的带宽,单位是赫兹(Hz),即每赫兹带宽的理想低通信道的最高码元传输速率是每秒2个码元。对于理想带通信道的最高码元传输速率则是:理想带通信道的最高RB= W Baud,即每赫兹带宽的理想带通信道的最高码元传输速率是每秒1个码元。 符号率与信道带宽的确切关系为: RB=W(1+α)。 其中,1/1+α为频道利用率,α为低通滤波器的滚降系数,α取值为0时,频带利用率最高,但此时因波形“拖尾”而易造成码间干扰。它的取值一般不小于0.15,以调解频带利用率和波形“拖尾”之间的矛盾。 奈奎斯特定律描述的是无噪声信道的最大数据传输速率(或码元速率)与信道带宽之间的关系。 【香农定理】 香农定理是在研究信号经过一段距离后如何衰减以及一个给定信号能加载多少数据后得到了一个著名的公式,它描述有限带宽、有随机热噪声信道的最大数据传输速率(或码元速率)与信道带宽、信噪比(信号噪声功率比)之间的关系,以比特每秒(bps)的形式给出一个链路速度的上限。

PS基础知识及原理

PHOTOSHOP(ps)基础知识及原理 培训目的 如今电脑技术飞速发展,Photoshop即将成为PPT、Word、excel之后必备技能之一,为有兴趣的同事提供学习的机会,增强有关Photoshop方面技能,使大家在日后的工作学习中更得心应手地应用相关技能。 一、PS的基本知识 1、像素: 图像是由像素组成,像素就是一个单位矩形的颜色块,是图像的基本单位。 每个像素都有不同的颜色值,单位面积内的像素越多,图片越清晰,反之,则越模糊。2、分辨率: 分辨率是指单位长度上像素的多少,像素越多,图像越清晰。 PS中,普通显示器的分辨率为72像素/英寸 大型灯箱图像分辨率为≥30像素/英寸 网页图像的分辨率为72像素/英寸或96像素/英寸 报纸图像的分辨率为160像素/英寸 普通彩版印刷品为300像素/英寸 精美彩版印刷品为350像素/英寸 户外墙体广告在30像素/英寸以下 3、位图:

位图的大小和质量取决图片像素的多少,单位面积内像素越多则越清晰,当位图放大的一定限度时,会发现是由很多的小方格组成,上图所示 4、矢量图 矢量图也称为向量图,它由点线面等元素组成,记录的为形状,线条粗细,以及色彩等,简单的说也就是在任何分辨率里面,对矢量图进行任意的缩放,不会影响他的光滑度和清晰度。矢量图主要适应于:文字设计、图案设计、版式设计、标志标识设计、工艺美术设计以及计算机辅助设计(CAD工业制图)。 矢量软件:AutoCAD(CAD)、Coreldraw(CDR)、Illustrator(AI)、Freehand(不会,没用过) 5、常用的图片存储格式 PSD:是ps专用的位图格式,可以保存图层,通道,路径等信息 BMP:全程Bitmap,是windows操作系统中的标准图片格式,因不采用任何的压缩方式,

信号源基础知识

信号源基础知识

信号源基础知识 1、认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器。 谈及模拟式函数信号源,结构图如下: 这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正

弦波整型电路产生正弦波,同时经由比较器的比较产生方波。 而三角波是如何产生的,公式如下: 换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是

信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路: 1、频率(周期)不变,脉宽改变,其方法如下: 改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性,但其最主要的缺点是占空比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下:

示波器基础(一)——示波器基础知识之一

示波器基础(一)——示波器基础知识之一1.1 说明和功能 我们可以把示波器简单地看成是具有图形显示的电压表。 普通的电压表是在其度盘上移动的指针或者数字显示来给出信号电压的测量读数。而示波器则与共不同。示波器具有屏幕,它能在屏幕上以图形的方式显示信号电压随时间的变化,即波形。 示波器和电压表之间的主要区别是: 1.电压表可以给出祥测信号的数值,这通常是有效值即RMS值。但是电压表不能给出有关信号形状的信息。有的电压表也能测量信号的峰值电压和频率。然而,示波器则能以图形的方式显示信号随时间变化的历史情况。 2.电压表通常只能对一个信号进行测量,而示波器则能同时显示两个或多个信号。 显示系统 示波器的显示器件是阴极射线管,缩写为CRT,见图1。阴极射线管的基础是一个能产生电子的系统,称为电子枪。电子枪向屏幕发射电子。电子枪发射的电子经聚焦形成电子束,并打在屏幕中心的一点上。屏幕的内表面涂有荧光物质,这样电子束打中的点就发出光来。

图1 阴极射线管图 电子在从电子枪到屏幕的途中要经过偏转系统。在偏转系统上施加电压就可以使光点在屏幕上移动。偏转系统由水平(X)偏转板和垂直(Y)偏转板组成。这种偏转方式称为静电偏转。 在屏幕的内表面用刻划或腐蚀的方法作出许多水平和垂直的直线形成网络,称为标尺。标尺通常在垂直方向有8个,水平方向有10个,每个格为1cm。有的标尺线又进一步分成小格,并且还有标明0%和100%的特别线。这些特别的线和标明10%和90%的标尺配合使用以进行上升时间的测量。我们后面会讨论这个问题。 如上所述,受到电子轰击后,CRT上的荧光物质就会发光。当电子束移开后,荧光物质在一个短的时间内还会继续发光。这个时间称为余辉时间。余辉时间的长短随荧光物质的不同而变化。最常用的荧光物质是P31,其余辉时间小于一毫秒(ms).而荧光物质P7的余辉时间则较长,约为300ms,这对于观察较慢的信号非常有用。P31材料发射绿光,而P7材料发光的颜色为黄绿色。 将输入信号加到Y轴偏转板上,而示波器自己使电子束沿X轴方向扫描。这样就使得光点在屏幕上描绘出输入信号的波形。这样扫出的信号波形称为波形轨迹。 影响屏幕的控制机构有:

数据通信基本知识03794

数据通信基本知识 所有计算机之间之间通过计算机网络的通信都涉及由传输介质传输某种形式的数据编码信号。传输介质在计算机、计算机网络设备间起互连和通信作用,为数据信号提供从一个节点传送到另一个节点的物理通路。计算机与计算机网络中采用的传输介质可分为有线和无线传输介质两大类。 一、有线传输介质(Wired Transmission Media) 有线传输介质在数据传输中只作为传输介质,而非信号载体。计算机网络中流行使用的有线传输介质(Wired Transmission Media) 为:铜线和玻璃纤维。 1. 铜线 铜线(Copper Wire)由于具有较低的电阻率、价廉和容易安装等优点因而成为最早用于计算机网络中的传输介质,它以介质中传输的电流作为数据信号的载体。为了尽可能减小铜线所传输信号之间的相互干涉(Interference) ,我们使用两种基本的铜线类型:双绞线和同轴电缆。 (1) 双绞线 双绞线(Twisted Pair) 是把两条互相绝缘的铜导线纽绞起来组成一条通信线路,它既可减小流过电流所辐射的能量,也可防止来自其他通信线路上信号的干涉。双绞线分屏蔽和无屏蔽两种,其形状结构如图 1.1 所示。双绞线的线路损耗较大,传输速率低,但价格便宜,容易安装,常用于对通信速率要求不高的网络连接中。 (2) 同轴电缆 同轴电缆(Coaxial Cable) 由一对同轴导线组成。同轴电缆频带宽,损耗小,具有比双绞线更强的抗干扰能力和更好的传输性能。按特性阻抗值不同,同轴电缆可分为基带(用于传输单路信号)和宽带(用于同时传输多路信号)两种。同轴电缆是目前LAN局域网与有线电视网中普遍采用的比较理想的传输介质。 2. 玻璃纤维目前,在计算机网络中十分流行使用易弯曲的石英玻璃纤维来作为传输介质,它以介质中传输的光波(光脉冲信号)作为信息载体,因此我们又将之称为光导纤维, 简称光纤(Optical Fiber) 或光缆(Optical Cable) 。 光缆由能传导光波的石英玻璃纤维(纤芯),外加包层(硅橡胶)和保护层构成。在光缆一头的发射器使用LED光发射二极管(Light Emitting Diode) 或激光(Laser)来发射光脉冲,在光缆另一头的接收器使用光敏半导体管探测光脉冲。 模拟数据通信与数字数据通信 一、通信信道与信道容量(Communication Channel & Channel Capacity) 通信信道(Communication Channel) 是数据传输的通路,在计算机网络中信道分为物理信道和逻辑信道。物理信道指用于传输数据信号的物理通路,它由传输介质与有关通信设备组成;逻辑信道指在物理信道的基础上,发送与接收数据信号的双方通过中间结点所实现的逻?quot; 联系",由此为传输数据信号形成的逻辑通路。逻辑信道可以是有连接的,也可以是无连接的。物理信道还可根据传输介质的不同而分为有线信道和 无线信道,也可按传输数据类型的不同分为数字信道和模拟信道。信道容量(Channel

示波器基本使用方法

示波器基本使用方法文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

示波器基本使用方法 荧光屏 荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。 示波管和电源系统 1.电源(Power) 示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。 2.辉度(Intensity) 旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。一般不应太亮,以保护荧光屏。 3.聚焦(Focus) 聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。 4.标尺亮度(Illuminance)

此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。 2.3 垂直偏转因数和水平偏转因数 1.垂直偏转因数选择(VOLTS/DIV)和微调 在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。 踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从 5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。 每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是0.2V/DIV。 在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。

像素尺寸分辨率等基础知识

一、数据对比( ps , A4纸,分辨率不同:300、150、72) 像素大小:24.9M 像素大小: 6.22M 像素大小: 1.43M 宽度:2480像素宽度:1240像素宽度:595 像素 高度:3508像素高度:1754像素高度:842 像素 文档大小:文档大小:文档大小: 宽度:21cm 宽度:21 厘米宽度:20.99 厘米高度:29.7cm 高度:29.7 厘米高度:29.7 厘米 分辨率: 300 像素/英寸分辨率:150 像素/英寸分辨率:72 像素/英寸 118.11 像素/厘米 59.055 像素/厘米 28.346 像素/厘米 1英寸=2.54厘米 文档宽度*分辨率=像素宽度 文档高度*分辨率=像素高度 三角形面积:底*高/2 长方形面积:长*宽 勾股定理:勾3股4弦5 a2+b2=c2 二、像素和厘米的换算: 1,它俩换算时,还要考虑一点就是dpi,72dpi和300dpi下厘米和像素值转换系数是不 同的 我一般用比较笨的办法,就是用PS或FW,新建时选好dpi,再直接填上我想要的厘米数,这时PS或FW就会直接显示出对应的像素值了

2,像素和厘米之间的换算是需要知道图片的分辨率的 通常设计网页的时候,图片的分辨率一般都是用72dpi的,即72像素/英寸, 由于1英寸= 2.54厘米, 以在设计网页的时候,一般1厘米约为28像素。 72/2.54 = 28 3,像素与厘米没有换算关系,如果只是设计网页,无需用到厘米单位, 厘米只在打印图像做海报时候才用到,它反映的是打印效果, 一厘米里有多少像素,像素值越高,图像越细腻 4.追问 就是我感觉设计网页时,用像素很抽象,我无法知道我设计的组件到底是多高、多宽。 所以我想知道它和我熟知的长度单位有何关系。或者说两个怎么样能长度一样。 5.回答 像素不抽象呀,你设计的组件多高多宽就可以用像素这个单位来表达呀, 你先了解一下像素是什么含义吧, 像素就是组成图像的每一个带颜色的点,详细请参考百度百科, 我们一般显示屏是1024*768,就是横着数有1024个像素点,竖着数有768个像素点, 你设计网页的图像比显示屏小得多。 像素单位只有打印出来才能体现出长度,之间有一个换算关系就是楼上所说的dpi,dpi表示的是单位长度上像素点的个数, 比如,你想一个像素打印在1cm上,这样打印出来就是一个个的1cm*1cm正方形颜色块,如果,你想一个像素打印在1mm上,这样每平方毫米则是一个像素 三、各种换算 1尺=10寸 1寸=0.1尺 1尺=10寸 1米=3尺 1尺=0.33333333333333米 1米=3尺=30寸

分辨率知识

分辨率与图像质量密切相关,是用以衡量图像细节表现力的一个重要技术参数。其应用范围十分广泛,在扫描仪等数字化设备中都以分辨率作为衡量设备捕捉、显示或输出图像数据的能力。但由于所处环境不同,其含义也不尽相同。因此,正确认识扫描仪分辨率及其相互关系,不论在对硬件设备的了解程度方面还是在对图像的应用处理方面都非常重要。 一、分辩率的表示方法与含义 在使用扫描仪、打印机、数字相机、显示器等数字设备或进行图像的数字化处理时,经常会接触到ppi,dpi和spi这3个常用表示方法。 ppi(pixels perinch):即每英寸的像素数。像素是组成数字图像的基本单位,如果将一幅数字图像进行多级放大,可以发现它是由一个一个带颜色的“小区域”构成的。这些“小区域”就是像素。这种描述方法主要用来描述图像分辨率。 例如在显示器上经常可以看到诸如1024X768ppi和800X600ppi等分辨率的设置,实际上这是屏幕的显示分辨率。另外,现在的扫描仪等数字化输入设备也常用以描述所获取信息的密度,即输入分辨率。 dpi(dotsperinch):即每英寸的点数。严格地说,点实际上是指打印机在打印文字和图像时所表征图像打印输出效果的色点。表示打印机分辨率的这个数越大,表明图像输出的色点就越小,所输出的图像就越精细。打印机色点的大小只同打印机的硬件工艺有关,而与要输出图像的分辨率无关。不过,在描述扫描仪分辨率时经常会使用此术语表示。 spi:即每英寸的采样点数。实际上这个术语是扫描仪专用的,这是因为扫描仪在扫描图像时,不显示像素,也不使用点,它将源图像看成是由大量网格组成的,扫描时,从每一个网格中取出一个点,这个点就称为取样点,这些取样点的信息转换成计算机能够识别的形式后,再以像素的形式在显示器屏幕上显示或以点的形式通过打印机打印出来。 通常,这3个概念非常容易混淆,dpi中的色点指的是硬件设备最小的显示单元:而像素则既可以是一个点,也可以是多个点的集合。由于扫描仪在扫描图像时,每一个采样点都是和所形成图像的每一个像素相对应的,因此扫描时设定的dpi值与扫描形成图像的ppi 值通常是等效的,此时两者可以暂划等号。但大多数情况下,两者之间还是存在一定的区别。例如分辨率为1ppi的图像,在300dpi的打印机上打印输出,此时图像的每一个像素,在打印时都对应了300x300点。同样,在显示方面,若显示器的分辨率为80dpi描述,即每英寸对应80个光点,在640x480dpi显示分辨率下1像素与1光点相对应,但如果将显示模式调整为320x200dpi,则在显示一幅320x200dpi的图像时,一个像素则对应4个光点。 二、分辨率的常用术语 由于分辨率这个概念不仅仅使用在扫描作业中,而是被广泛应用于整个数字影像领域,因此其内涵和表示方法不是单一的、固定的,在一定范围内容易引起混淆,所以有人说很难对它下定义。但无论如何,在确定最佳分辨率之前,弄清有关的技术术语是很重要的。 常常听到的有关分辨率的术语有光学分辨率、插值分辨率、图像分辨率、显示器分辨率、

信号源基础知识

信号源基础知识 1、认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器。 谈及模拟式函数信号源,结构图如下: 这是通用模拟式函数信号发生器的结构,[是以三角波产生电路为基础经二极管所构成的正弦波整型电路产生正弦波,同时经由比较器的比较产生方波]。 而三角波是如何产生的,公式如下: 换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路:

1、频率(周期)不变,脉宽改变,其方法如下: [改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性],但其最主要的缺点是占空 比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下: 将方波产生电路比较器的参考幅度予以固定(正、负可利用电路予以切换),改变充放电斜率,即可达成。 这种方式的设计一般使用者的反应是“难调”,这是大缺点,但它可以产生10%以下的占空比却是在采样时的必备条件。 以上的两种占空比调整电路设计思路,各有优缺点,当然连带的也影响到是否能产生“像样的”锯齿波。 接下来PA(功率放大器)的设计。首先是利用运算放大器(OP) ,再利用推拉式(push-pull)放大器(注意交越失真Cross-distortion 的预防)将信号送到衰减网路,这部分牵涉到信号源输出信号的指标,包含信噪比、方波上升时间及信号源的频率响应,好的信号源当然是正弦波信噪比高、方波上升时间快、三角波线性度要好、同时伏频特性也要好,(也即频率上升,信号不能衰减或不能减太大),这部分电路较为复杂,尤其在高频时除利用电容作频率补偿外,也牵涉到PC板的布线方式,一不小心,极易引起振荡,想设计这部分电路,除原有的模拟理论基础外尚需具备实际的经验,“Try Error”的耐心是不可缺少的。 PA信号出来后,经过π型的电阻式衰减网路,分别衰减10倍(20dB)或100倍(40dB),此时一部基本的函数波形发生器即已完成。(注意:选用π型衰减网络而不是分压电路是要让输出阻抗保持一定)。 一台功能较强的函数波形发生器,还有扫频、VCG、TTL、 TRIG、 GATE及频率计等功能,其设计方式在此也顺便一提: 1. 扫频:一般分成线性(Lin)及对数(Log)扫频; 2. VCG:即一般的FM,输入一音频信号,即可与信号源本身的信号产生频率调制; 上述两项设计方式,第1项要先产生锯齿波及对数波信号,并与第2项的输入信号经过多路器(Multiplexer)选择,然后再经过电压对电流转换电路,同步地去加到图二中的I1、I2上; 但注意这样的TTL信号须再经过缓冲门(buffer)后才能输出,以增加扇出数(Fan Out),通常有时还并联几个buffer。而TTL INV 则只要加个NOT Gate即可;

南邮801通信原理基础知识99题及对应答案--平界

南邮801通信原理基础知识99题 1、数字通信系统的有效性主要性能指标是______或______;可靠性主要性能指标是______或______。 2、信源编码可提高通信系统的______;信道编码可提高通信系统的______。 3、一离散信源输出二进制符号,在______条件下,每个二进制符号携带的1比特信息量;在______条件下,每个二进制符号携带的信息量大于1比特。 4、消息所含的信息量与该信息的________有关,当错误概率任意小时,信道的_______称为信道容量。 5、香农公式标明______和______指标是一对矛盾。 6、在t 秒内传输M 个N 进制的码元,其信息传输速率为______;码元传输速率为______。 7、某随机信号)(t m 的平均功率为0P ,则信号)(2 t m A 的平均功率 ______。 8、使用香农公式时,要求信号的概率分布为______,信道噪声为______。 9、窄带平稳高斯随机过程的同相分量与正交分量统计特性______,且都属于 ______信号,它的同相分量和正交分量的分布是_______,均值为______,包络一维分布服从______分布,相位服从______分布,如果再加上正弦波后包络一维分布服从______莱斯分布______。 10、设某随机信号的自相关函数为)( R ,______为平均功率,______为直流功率,______为交流功率。 11、某信道带宽为3kHz ,输出信噪比为63,则相互独立且等概率的十六进制数据无误码传输的最高传码率为______。 12、随参信道的三个特点是:______、______和______。 13、由电缆、光纤、卫星中继等传输煤质构成的信道是______信道,由电离层反射、对流层散射等传输煤质构成的信道是______信道。 14、经过随参信道传输,单频正弦信号波形幅度发生______变化,单频正弦信号频谱发生______变化。 15、窄带信号通过随参信道多径传输后,其信号包络服从______分布,称之为______型衰落。

示波器基础

示波器基础——测量和练习 1 如何进行测量 在本书的前两章中我们 介绍了示波器上可以用来影 响信号波形显示的各种控制 机构。在这一章里我们将要讲 座重要的波形参数,并且还将 介绍如何使用示波器来测量 这些参数。 示波器可以测量两个基 本的量,即电压和时间。从这 两个量出发,用手工的方法使 用光标或者用自动的方法进行所有其它波形参数的测量。 在进行测量时,了解自己的示波器的能力是很重要的。不要试图在一个20MHz的示波器上观察一个1 0MHz的方波,因为在这种情况下不可能看到方波的真实形状,10MHz的方波中包含有10MHz的正弦波基波,以及30MHz、50MHz、70MHz等的谐波。在10MHz的示波器上,也有可能看到30MHz谐波的部分效果(虽然其幅度不正确),但是下一个谐波分量的频率是示波器带宽的2.5倍!所以这时您在示波器上看到的波形将更象一个正弦波而不象方波(见图50)。 对于上升时间的测量来说,情况也是这样。如果您使用一台上升时间比被测信号的上升时间快10倍的示波器来进行测量,那么示波器本身的上升时间对测量的影响将几乎可以忽略。然而如果示波器的被测信号的上升时间相同,那么引起的测量误差可高达41%。 若干标准波形 三种最常见的波形是正弦波、三角波和方波(见图51)。这些波形在任何函数发生器上都可以找到,并且在实际工作中也常常遇到。

正弦波包含单一的频率分量;而方波和三角波则由很多不同的相关正弦谐波组成。方波由基波的奇次 谐波构成,三角波由基波的偶次谐波构成。 这些波形在时间上和幅度上都是对称的。 这些波形还有其变形形式,这通常是波 形发生对称变化的结果。这样一来,三角波 变成了锯齿波(从其开头而得名),而方波 变成了矩形波。 波形的一个完整的周波叫作一个周期。 一个周期就是从一个周波的某一点到下一个周波相应点所需要的时间(见图52)。 频率是在一秒钟之内所发生的波形的周波数。 所以如果我们用1秒除以一个周期所需的时间就得到了用Hz表示的频率。 例如,周期=1ms则 频率=1/10×10-3=1000Hz=1KHz 重复发生的波形称为重复性波形或周期性波形。这是最容易测量的波形。 对重复性波形或周期性波形最常测量的另一个参数是波形的幅度。幅度是一个波形上从最高点到最低之间的电压。这又称之为峰(一)峰值幅度或Vp-p(见图52)。

示波器基础知识

示波器基础知识 示波器是一种图形显示设备,它描绘电信号的波形曲线。这一简单的波形能够说明信号的许多特性:信号的时间和电压值、振荡信号的频率、信号所代表电路中“变化部分”信号的特定部分相对于其它部分的发生频率、是否存在故障部件使信号产生失真、信号的直流成份(DC)和交流成份(AC)、信号的噪声值和噪声随时间变化的情况、比较多个波形信号等。 1、示波器的发展过程 初期主要为模拟示波器 廿世纪四十年代是电子示波器兴起的时代,雷达和电视的开发需要性能良好的波形观察工具,泰克成功开发带宽10MHz的同步示波器,这是近代示波器的基础。五十年代半导体和电子计算机的问世,促进电子示波器的带宽达到10 0MHz。六十年代美国、日本、英国、法国在电子示波器开发方面各有不同的贡献,出现带宽6GHz的取样示波器、带宽4GHz的行波示波管、1GHz的存储示波管;便携式、插件式示波器成为系列产品。七十年代模拟式电子示波器达到高峰,行谱系列非常完整,带宽1GHz的多功能插件式示波器标志着当时科学技术的高水平,为测试数字电路又增添逻辑示波器和数字波形记录器。模拟示波器从此没有更大的进展,开始让位于数字示波器,英国和法国甚至退出示波器市场,技术以美国领先,中低档产品由日本生产。 模拟示波器要提高带宽,需要示波管、垂直放大和水平扫描全面推进。数字示波器要改善带宽只需要提高前端的A/D转换器的性能,对示波管和扫描电路没有特殊要求。加上数字示波管能充分利用记忆、存储和处理,以及多种触发和预前触发能力。廿世纪八十年代数字示波器异军突起,成果累累,大有全面取代模拟示波器之势,模拟示波器逐渐从前台退到后台。

但是在发展初期模拟示波器的某些特点,却是数字示波器所不具备的: ○操作简单:全部操作都在面板上可以找到,波形反应及时,数字示波器往往要较长处理时间。 ○垂直分辨率高:连续而且无限级,数字示波器分辨率一般只有8位至1 0位。 ○数据更新快:每秒捕捉几十万个波形,数字示波器每秒捕捉几十个波形。 ○实时带宽和实时显示:连续波形与单次波形的带宽相同,数字示波器的带宽与取样率密切相关,取样率不高时需借助内插计算,容易出现混淆波形。 简而言之,模拟示波器为工程技术人员提供眼见为实的波形,在规定的带宽内可非常放心进行测试。人类五官中眼睛视觉神经十分灵敏,屏幕波形瞬间反映至大脑作出判断,细微变化都可感知。因此,刚开始模拟示波器深受使用者的欢迎。 中期数字示波器独领风骚 八十年代的数字示波器处在转型阶段,还有不少地方要改进,美国的TEK 公司和HP公司都对数字示波器的发展作出贡献。它们后来停产模拟示波器,并且只生产性能好的数字示波器。进入九十年代,数字示波器除了提高带宽到1G Hz以上,更重要的是它的全面性能超越模拟示波器。出现所谓数字示波器模拟化的现象,换句话说,尽量吸收模拟示波器的优点,使数字示波器更好用。 数字示波器首先在取样率上提高,从最初取样率等于两倍带宽,提高至五倍甚至十倍,相应对正弦波取样引入的失真也从100%降低至3%甚至1%。带宽1 GHz的取样率就是5GHz/s,甚至10GHz/s。 其次,提高数字示波器的更新率,达到模拟示波器相同水平,最高可达每秒40万个波形,使观察偶发信号和捕捉毛刺脉冲的能力大为增强。

相关主题
文本预览
相关文档 最新文档