当前位置:文档之家› 转向器的结构型式选择与设计计算

转向器的结构型式选择与设计计算

转向器的结构型式选择与设计计算
转向器的结构型式选择与设计计算

5.2转向器的结构型式选择及其设计计算

根据所采用的转向传动副的不同,转向器的结构型式有多种。常见的有齿轮齿条式、

循环球式、球面蜗杆滚轮式、蜗杆指销式等。

对转向其结构形式的选择,主要是根据汽车的类型、前轴负荷、使用条件等来决定,

并要考虑其效率特性、角传动比变化特性等对使用条件的适应性以及转向器的其他性能、寿

命、制造工艺等。中、小型轿车以及前轴负荷小于1.2t 的客车、货车,多采用齿轮齿条式

转向器。球面蜗杆滚轮式转向器曾广泛用在轻型和中型汽车上,例如:当前轴轴荷不大于

2.5t 且无动力转向和不大于4t 带动力转向的汽车均可选用这种结构型式。循环球式转向器

则是当前广泛使用的一种结构,高级轿车和轻型及以上的客车、货车均多采用。轿车、客车

多行驶于好路面上,可以选用正效率高、可逆程度大些的转向器。矿山、工地用汽车和越野

汽车,经常在坏路或在无路地带行驶,推荐选用极限可逆式转向器,但当系统中装有液力式

动力转向或在转向横拉杆上装有减振器时,则可采用正、逆效率均高的转向器,因为路面的

冲击可由液体或减振器吸收,转向盘不会产生“打手”现象。

关于转向器角传动比对使用条件的适应性问题,也是选择转向器时应考虑的一个方面。

对于前轴负荷不大的或装有动力转向的汽车来说,转向的轻便性不成问题,而主要应考虑汽

车高速直线行驶的稳定性和减小转向盘的总圈数以提高汽车的转向灵敏性。因为高速行驶

时,很小的前轮转角也会导致产生较大的横向加速度使轮胎发生侧滑。这时应选用转向盘处

于中间位置时角传动比较大而左、右两端角传动比较小的转向器。对于前轴负荷较大且未装

动力转向的汽车来说,为了避免“转向沉重”,则应选择具有两端的角传动比较大、中间较

小的角传动比变化特性的转向器。

下面分别介绍几种常见的转向器。

5.2.1循环球式转向器

循环球式转向器又有两种结构型式,即常见的循环球-齿条齿扇式和另一种即循环球-

曲柄销式。它们各有两个传动副,前者为:螺杆、钢球和螺母传动副以及落幕上的齿条和摇

臂轴上的齿扇传动副;后者为螺杆、钢球和螺母传动副以及螺母上的销座与摇臂轴的锥销或

球销传动副。两种结构的调整间隙方法均是利用调整螺栓移动摇臂轴来进行调整。

循环球式转向器的传动效率高、工作平稳、可靠,螺杆及螺母上的螺旋槽经渗碳、淬

火及磨削加工,耐磨性好、寿命长。齿扇与齿条啮合间隙的调整方便易行,这种结构与液力

式动力转向液压装置的匹配布置也极为方便。

5.2.1.1循环球式转向器的角传动比w i

由循环球式转向器的结构关系可知:当转向盘转动?角时,转向螺母及其齿条的移动

量应为

t s )360/(?= (5-21)

式中t ——螺杆或螺母的螺距。

这时,齿扇转过β角。设齿扇的啮合半径w r ,则β角所对应的啮合圆弧长应等于s ,

s r w =?πβ2)360/( (5-22)

由以上两式可求得循环球式转向器的角传动比w i 为

t

r i w w ?==πβ?2 (5-23) 5.2.1.2螺杆-钢球-螺母传动副

螺杆-钢球-螺母传动副与通常的螺杆一螺母一传动副的区别在于前者是经过滚动的

钢球将力由螺杆传至螺母,变滑动摩擦为滚动摩擦。螺杆和螺母上的相互对应的螺旋槽构成

钢球的螺旋滚道。转向时转向盘经转向轴转动螺杆,使钢球沿螺母上的滚道循环地滚动。为

了形成螺母上的循环轨道,在螺母上与其齿条相反的一侧表面(通常为上表面)需钻孔与螺母

的螺旋滚道打通以形成一个环路滚道的两个导孔,并分别插入钢球导管的两端导管。钢球导

管是由钢板冲压成具有半圆截面的滚道,然后对接成导管,并经氰化处理使之耐磨。插入螺

母螺旋滚道两个导孔的钢球的两个导管的中心线应与螺母螺旋滚道的中心线相切。螺杆与螺

母的螺旋滚道为单头(单螺旋线)的,且具有不变的螺距,通常螺距t 约在8~ 13mm 范围内

可按式(5—23)初选,螺旋线导程角0α约为6o~ 11o。转向盘与转向器左置时转向螺杆

为左旋,右置时为右旋。钢球直径b d 约为6~9mm 。一般应参考同类型汽车的转向器选取钢

球直径b d ,并应使之符合国家标准。钢球直径尺寸差应不超过b d 510128-?。显然,大直

径的钢球其承载能力亦大,但也使转向器的尺寸增大。钢球的数量n 也影响承载能力,增多

钢球使承载能力增大,但也使钢球的流动性变差,从而要降低传动效率。经验表明在每个环

路中n 以不大于60为好。

钢球数目(不包括钢球导管中的)可由下式确定:

b

b d W d d W d n 000cos παπ≈= (5-24) 式中0d ——钢球中心距,(见图5—2);

W ——一个环路中的钢球工作圈数,为了使载荷在各钢球间分布均匀,一般W =1.5~

2.5,当转向器的钢球工作圈数需大于2.5时,则应采用两个独立的环路;

b d ——钢球直径;

0α——螺线导程角。

钢球中心距0d 是指钢球滚动时其中心所在的圆柱表面的横截面的圆的直径。它是一个

基本尺寸参数,将影响循环球转向器的结构尺寸及强度。设计时可参考同类车进行初选,经

强度验算后再进行修正。显然,在保证强度的前提下应尽量取小些。在已知螺线导程角0α和

螺距t 的情况下,0d 亦可由下式求得:

0tan απt d = (5-25) 式中t ——螺杆与螺母滚道的螺距;

0α——螺线导程角。

螺杆螺旋滚道的内径1d ,外径d ,以及螺母的尺寸 1D ,D (见图5—2),在确定钢球

中心距0d 后即可由下式确定:

图5—2 螺杆与螺母的螺旋滚道截面

(a) 四点接触的滚道截面;(b)两点接触的滚道截面

(b) B 、D ——钢球与滚道的接触点;0d ——钢球中心距;c r ——滚道截面的圆弧半径。

??

?

????-=-+=+=--=h D D x r d D h d d x r d d c c 2)(22)(2101101 (5-26) 式中0d ——钢球中心距;

c r ——螺杆与螺母的滚道截面的圆弧半径,(见图5-2);

x ——滚道截面圆弧中心相对于钢球中心线的偏移距(见图5-2);

θsin 2??? ?

?-=b c d r x (5-27) b d ——钢球直径;

θ——钢球与滚道的接触角,通常取θ=45o;

h ——滚道截面的深度,(见图5-2),可取

h =(0.30~0.35)b d (5-28)

D 应大于d ,一般也可取D =d +(0.05h ~0.10)b d 。

滚道截面有四点接触式、两点接触式(见图5-2)和椭圆滚道截面等。四点接触式滚

道截面由四段圆弧组成,螺杆和螺母的滚道截面各为两段圆弧。四点接触滚道截面可获得最

小的轴向间隙,以避免轴向定位的不稳定,受载后基本上可消除轴向位移,但滚道与钢球间

仍应有间隙以贮存磨屑、减小磨损。虽然其制造工艺较复杂,但仍得到广泛应用。两点接触

式滚道截面由两段圆弧组成,其螺杆和螺母滚道均为单圆弧,形状简单。当螺杆受有轴向载

荷时,螺杆与螺母间产生轴向相对位移使轴向定位不稳定,增加了转向盘的自由行程,这对

装动力转向的转向系特别不利,因为它降低了分配阀的灵敏度,从而影响转向性能。椭圆滚

道的螺杆部分为椭圆截面、螺母部分为圆弧截面。钢球以三点与滚道接触,被精确地定位于

滚道中心,轴向定位精确,但加工较复杂。

螺杆滚道应倒角以避免尖角划伤钢球。

接触角θ是指钢球与螺杆滚道接触点的正压力方向与螺杆滚道法面轴线间的夹 (见

图)。增大"将使径向力增大而轴向力减小;反之则相反。通常θ多取45o,以使径向力与

轴向力的分配均匀。

螺距t 和螺旋线导程角0α:前者影响转向器的角传动比(见式(5—23));后者影响动效

率(见式(5—6)、式(5—7))。选择时应满足角传动比的要求和保证有较高的正效率而反行程

时不发生自锁现象。

工作钢球的总圈数∑W :决定于接触强度。总圈数增多钢球亦增多,则可降低接触应力、

提高承载能力。一般有2.5、3和5圈的,当∑W >2.5时则应采用两个独立的环路。

螺杆和螺母一般采用20CrMnTi 、22CrMnMo 、20CrNi 3A 钢制造,表面渗碳,渗碳层深度

为0.8~1.2mm ,重型汽车和前轴负荷大的汽车的转向器,渗碳层深度可达1.05~1.45mm 。

淬火后表面硬度为HRC58~64。

螺杆—钢球—螺母传动副的高可靠性、长寿命、小的摩擦损失以及达到实际上的无隙配

合(螺杆的轴向间隙不应大于0.002~0.003mm),是通过对滚道的高精度加工,使滚道表面

具有高光洁度,采用标准的高精度的钢球(可用二、三级精度的),并对螺杆、钢球及螺母的

尺寸进行选配来达到的。

5.2.1.3齿条、齿扇传动副

齿扇通常有5个齿,它与摇臂轴为一体。齿扇的齿厚沿齿长方向是变化的,这样即可

通过轴向移动摇臂轴来调节齿扇与齿条的啮合间隙。由于转向器经常处于中间位置工作,因

此齿扇与齿条的中间齿磨损最厉害。为了消除中间齿磨损后产生的间隙而又不致在转弯时使

两端齿卡住,则应增大两端齿啮合时的齿侧间隙。这种必要的齿侧间隙的改变可通过使齿扇

各齿具有不同的齿厚来达到。即齿扇由中间齿向两端齿的齿厚是逐渐减小的。为此可在齿扇

的切齿过程中使毛坯绕工艺中心1O 转动,如图5-3所示,1O 相对于摇臂轴的中心O 有距

离为n 的偏心。这样加工的齿扇在齿条的啮合中由中间齿转向两端的齿时,齿侧间隙s ?也

逐渐加大,s ?可表达为

]cos cos [tan 2tan 22222n r n n r r s w w -+±-=?=?ββαα (5-29)

式中r ?——径向间隙;

α——啮合角;

r——齿扇的分度圆半径;

w

β——摇臂轴的转角。

图5-3 为获得变化的齿侧间隙齿扇的加工原理和计算简图

图5-4 用于选择偏心n的线图

当α,w r确定后,根据上式可绘制如图5—4所示的线图,用于选择适当的n值,以便

?能够适应消除中间齿最大磨损量所形成的使齿条、齿扇传动副两端齿啮合时,齿侧间隙s

间隙的需要。

?的改变也可以用改变齿条各齿槽宽而不改变齿条、齿扇传动副各对啮合齿齿侧间隙s

齿扇各轮齿齿厚的办法来实现。一般是将齿条(一般有4个齿)两侧的齿槽宽制成比中间齿槽大0.20~0.30mm即可。

齿扇的齿厚沿齿宽方向变化,故称为变厚齿扇。其齿形外观与普通的直齿圆锥齿轮相似。用滚刀加工变厚齿扇的切齿进给运动是滚刀相对工件作垂向进给的同时,还以一定的比例作径向进给,两者合成为斜向进给。这样即可得到变厚齿扇。变厚齿扇的齿顶及齿根的轮廓面为圆锥面,其分度圆上的齿厚是成比例变化的,形成变厚齿扇,如图5—5所示。

图5-5变厚齿扇的截面

在该图中若0-0截面原始齿形的变位系数ξ=0,则位于其两侧的截面I—I和Ⅱ一Ⅱ分别具有ξ>0和车ξ<0,即截面I—I的齿轮为正变位齿轮,而截面Ⅱ一Ⅱ的齿轮为负变

位齿轮。即变厚齿扇在其整个齿宽方向上是由无穷多的原始齿形变位系数逐渐变化的圆柱齿轮所形成。因为在与0一0平行的不同截面中,其模数m不变、齿数亦同,故其分度圆及基圆亦不变,即为分度圆柱和基圆柱。其不同截面位置上的渐开线齿形,均为在同一基圆柱上展开的渐开线,仅仅是其轮齿的渐开线齿形离基圆的位置不同而已,故应将其归人圆柱齿轮范畴,而不应归于直齿圆锥齿轮范围,虽然它们从外观上更相似,因为直齿圆锥齿轮轮齿的渐开线齿形的形成基准是基锥。

变厚齿扇齿形参数的计算

图5-6变厚齿扇的齿型计算用图

通常取齿扇宽度的中间位置作基准截面,如图5—6所示的截面A —A 。由该截面至大端

(截面B -B)时,各截面处的变位系数ξ均取正,向小端(截面C —C)时,变位系数ξ由正变

为零(截面O —O)再变为负值。设截面O —O 至截面A -A 的距离为0a ,则

νξtan /0m a A = (5-30)

式中A ξ——在截面A -A 处的原始齿形变位系数;

m ——模数;

ν——切削角。

由式(5-30)可知:当齿扇的模数m 及切削角ν选定后,各截面处的变位系数ξ取决

于该截面与基准截面的间的距离a (见图5-6)。

变厚齿扇基准截面(截面A —A )处的齿形计算可按表5-3进行,计算前应将先选定的

参数也列在该表中。其中齿扇模数m 是根据前桥负荷及汽车的装载质量的不同参考表5-1

选取;法向压力角0α一般为20°~30°;切削角ν常见的有6°301和7°301两种;齿

顶高系数1x 一般取0.8或1.0;整圆齿数z 一般在12~18范围内选取;齿扇宽度F 一般在

22~28mm 范围内选取。

表5-1各类汽车循环球转向器的齿扇模数

表5-2变厚齿扇(A-A)处的齿形参数选择与计算(mm)

说明:基准截面见图5-6的截面A—A,为齿扇宽度的中间位置处的截面。

最大变位系数截面即截面B—B(见图5-6),应对该截面的齿形作齿顶变尖的核算,如表5-3所示。

表5-3最大变位系数截面(截面B-B)齿顶变尖核算

说明:一般容许的齿顶圆弧齿厚的最小值为:

(0.25~0.30)m 当m=3~4时

(0.20~0.25)m 当m=4~6时

(0.10~0.20)m 当m=7~8时

表5-4给出了循环球式转向器的一些参数,供设计时参考。

5.2.1.4循环球式转向器零件的强度计算

为了进行强度计算,首先要确定其计算载荷。式(5—13)曾给出了汽车在于而粗糙的硬

路面上作原地转向时转向轮的转向阻力矩,利用它可求得转向摇臂上的力矩(见式(5—18))

和在转向盘上的切向力(见式(5-19)),它们均可作为转向系的最大计算载荷。但对前轴符

合大的重型载货汽车,用式(5-18)或(5-19)计算出来的力,往往会超过司机在体力上的

可能。这时在计算转向器和动力转向的动力缸以前的零件时,可取司机作用在转向盘轮缘上

的最大瞬时力,此力可取为700N 。

确定计算载荷后,即可计算转向系零件的强度。

(1)钢球与滚道间的接触应力j σ

322)12(c

b j r d NE K -=σ≤][j σ (5-31) 式中K ——系数,根据A /B 查表16—5求得,其中A /B 用下式计算:

)(2/)2(/b c b c d d r d r d B A +-= (5-32)

d ——螺杆外径,见图16—10;

c r ——螺杆与螺母滚道截面的圆弧半径,见图5—2;

b d ——钢球直径;

E ——材料弹性模量,5

101.2?MPa ;

N ——每个钢球与螺杆滚道之间的正压力; θ

αcos sin 0?=nl R F N h (5-33) h F ——转向盘圆周力;

R ——转向盘轮缘半径;

0α——螺杆螺线导程角;

θ——钢球与滚道间的接触角;

n ——参与工作的钢球数;

l ——钢球接触点至螺杆中心线之距离。

表16—5 系数K 与A /B 的关系 mm

当钢球与滚道的接触表面的硬度为HRC58~64时,许用接触应力][j σ可取为3000~

3500MPa 。

为了满足式(5—31)所表达的接触强度的要求,钢球的工作总圈数应达到

b

b n n W ∑∑= (5-34) 式中b n ——一圆滚道中的钢球数;

00cos sin απαb b b d d d t n == (5-35) t ——螺距;

0d —-钢球中心距(见图5-2)

0α——螺线导程角;

b d ——钢球直径;

∑b n ——需要的工作钢球总数;

b ∑b n ≥)cos cos /(0θαλN F o

c (5-36)

oc F ——作用在齿条与齿扇的齿上的力;

w

oc r T F = (5-37) T ——转向摇臂轴上的力矩,见式(5—18);

w r ——齿扇的啮合半径;

λ——考虑轴向力在各钢球间不均匀分配的系数,λ=0.8~0.9;

N ——钢球与螺杆滚道之间的正压力,见式(5—33);

θ——钢球与滚道间的接触角,见图5—2。

当由式(16—34)算得的钢球工作总圈数∑W >2.5时,则应采用圈数及钢球数相同的两

个独立的环路,以使载荷能较均匀地分布于各钢球并保持较高的传动效率。但钢球总数 (包

括在钢球导管中的)不应超过60个。否则应加大钢球直径并重新计算。

径向间隙?(见图5—1)不应大于0.02~0.03mm 。亦可用下式计算:

)2(11d d D b +-=? (5-38)

轴向间隙可用下式计算: ?-=)2(0b c d r C (5-39)

(1)螺杆在弯扭联合作用下的强度计算

螺杆处于复杂的应力状态,在其危险断面上作用着弯矩和转矩,其弯矩M 及转矩T 分别为:

4/)tan (αl F e F M oc oc +?= (5-40)

)tan()2/('00k oc d F T ρα+==)]sin (arctan tan[)2/(00θαb oc d f d F + (5-41) 式中oc F ——由式(16—37)决定的力,见图5—2;

e ——齿条、齿扇啮合节点至螺杆中心的距离;

l ——螺杆两支承轴承间的距离;

α ——啮合角;

0d ——钢球中心距;

0α——螺线导程角;

'k ρ——换算摩擦角;

f ——滚动摩擦系数,f =0.008~0.010;

θ——钢球与滚道的接触角。

这时,螺杆的当量应力为

22)/(4)]/()/[(T oc B W T A F W M ++=σ≤][σ (5-42)

式中A ,B W ,T W ——螺杆按其内径1d 计算的横截面积、弯曲截面系数和扭转截面系数。

][σ——许用应力,][σ≤3/s σ

s σ——螺杆材料的屈服极限。

(3)转向摇臂轴直径的确定

转向摇臂轴的直径可根据转向阻力矩r T 及材料的扭转强度极限0τ由下式确定:

30

16τπ

r

kT d = 式中k ——安全系数,根据使用条件可取2.5~3.5;

r T ——转向阻力矩,见式(5-13);

0τ——扭转强度极限。

转向摇臂轴一般采用20CrMnTi 、22CrMnMo 或20CrNi 3A 钢制造,表面渗碳,渗碳层深为0.8~1.2mm ,重型汽车和前轴负荷大的汽车,则为1.05~1.45mm 。淬火后表面硬度为HRC58—63。

转向器壳体采用球墨铸铁QT400—18或可锻铸铁KTH350—10,KTH370—12制造。

5.2.2齿轮齿条式转向器

齿轮齿条式转向器的传动副为齿轮与齿条,其结构简单、布置方便,制造容易,但转向传动比较小,(一般不大于15),且齿条沿其长度方向磨损不均匀,故仅广泛用于微型汽车和轿车上。转向传动副的主动件是一斜齿圆柱小齿轮,它和装在外壳中的从动件——齿条相啮合,外壳固定在车身或车架上。齿条利用两个球接头直接和两根分开的左、右横拉杆相联。横拉杆再经球接头与梯形臂相接。为了转向轻便,主动小齿轮的直径应尽量小。通常,这类转向器的齿轮模数多在2~3mm 范围内,压力角为20°,主动小齿轮有5~8个齿,螺旋角为9°~15°。根据小齿轮螺旋角和齿条倾斜角的大小和方向的不同,可以构成不同的传动方案。

图5—7齿轮齿条式转向器传动副的布置方案

当左旋小齿轮与右倾齿条相啮合且齿轮螺旋角1β与齿条倾斜角2β相等时,则轴交角θ=0°,如图5-7(a)所示;若1β>2β,则21ββθ-=,如图5-7(b)所示;若1β<2β,

则21ββθ-=为负值,表示在齿条轴线的另一侧,如图5-7(c)所示;当左旋小齿轮与左倾齿条或右旋小齿轮与右倾齿条相啮合时,则不管这些角度的大小如何,其轴交角均为21ββθ+=,如图5-7(d)所示。应根据整车布置的需要并考虑转向系的传动比及效率等来选择这些角度的大小和方向。

齿轮齿条式转向系的角传动比 θ

cos 0r L i w = (5-44) 式中L ——梯形臂长度,mm ;

r 一—主动小齿轮的节圆半径,mm ;

θ——齿轮与齿条的轴交角,见图5-7,θ多在0°~30°范围内选择。

齿轮齿条式转向器的正效率+η可达70%~80%。

齿轮齿条式转向器的主动小齿轮可采用低碳合金钢如20MnCr5、20MnCr4或 15CrNi6(德国标准DIN 17210)制造并经渗碳淬火;齿条可采用中碳钢或中碳合金钢如45号钢或41Cr4钢(德国标准DIN 17200)制造并经高频淬火,表面硬度均应在HRC 56以上。壳体常用铝合金压铸。

国内外沥青路面设计方法分析

第5期(总第118期) ■综合论述 国内外沥青路面设计方法分析 姚连军1,李丽2 (1.重庆市交通规划勘察设计院,重庆401121;2.重庆交通大学,重庆400074) 摘要基于国内外沥青路面现有设计体系,介绍了经验法、力学-经验法、基于性能设计法三大类别,并针对其代表性的设计方法的特点进行了评析;结合我国沥青路面结构设计体系,指出我国设计体系中存在的设计指标、路面材料设计参数、交通荷载等方面存在缺陷,并提出相应的建议。 关键词道路工程;沥青路面;设计方法;设计指标 Abstract:Based on current design of asphalt pavement both home and abroad,the paper has made introduction to three means of design,namely empirical method,stress empirical method and property-centered method.Moreover,it has made comments on certain representative features of designs.Taking structure design of asphalt pavement in China into account,the paper presents some demerits in design target,parameter of pavement materials,traffic capacity and the like and finally proposes solutions to such problems. Keywords:highway engineering,asphalt pavement,means of design,design target 沥青路面是在柔性基层、半刚性基层上,铺筑一定厚度的沥青混合料作面层的路面结构。沥青路面设计的任务是根据使用要求及气候、水文、土质等自然条件,密切结合当地实践经验,设计经济合理的路面结构使之能起到承受交通荷载和环境因素的作用,在预定的使用期限内满足各级公路相应的承载能力、耐久性、舒适性和安全性的要求。以沥青路面为主的柔性路面设计理论与方法研究已有近百年的历史,其发展历程经历了经验法和力学-经验法、基于性能的设计方法等类型。 1国外沥青路面设计方法 1.1经验法 经验法主要通过对试验路或使用道路的实验观测,建立路面结构(结构层组合、厚度和材料性质)、荷载(轴载大小和作用次数)和路面性能三者间的经验关系。最为著名的经验设计方法有CBR法和AASHTO法。 CBR法[1~2]以CBR值作为路基土和路面材料(主要是粒料)的性质指标。通过对已损坏或使用良好的路面的调查和CBR测定,建立起路基土CBR轮载~路面结构层厚度(以粒料层总厚度表征)三者间的经验关系。利用此关系曲线,可以按设计轮载和路基土CBR值确定所需的路面层总厚度。路面各结构层次的厚度,按各层材料的CBR值进行当量厚度换算。不同轮载的作用按等弯沉的原则换算为设计轮载的当量作用。此方法设计过程简单,概念明确,适用于重载、低等级的路面设计;但CBR值仅是一种经验性的指标,并不是材料承载力的直接度量指标,它与弹性变形量的关系很小。而路基土应工作在弹性范围内的应力状态下,因而,路面结构设计对路基土的抗剪强度并无直接兴趣,更关心的是路基土的回弹性质(回弹模量)及其在重复荷载作用下的塑性应变。 AASHTO法[3~4]是在AASHO试验路的基础上建立的,整理试验路的试验观测数据,得到的路面结构-轴载-使用性能三者间的经验关系式。AASHTO方法提出了现时服务能力指数(PSI)的概念,以反映路面的服务质量。不同轴载的作用,按等效损坏(PSI)的原则进行转换。路面使用性能指标PSI,主要受平整度的影响,与裂缝、车辙、修补等损坏的关系很小。因此,这是一项反映路面功能性能的指标,而不是表征路面结构性损坏的指标。此外,这个方法源于一条试验路的数据,仅反映一种路基土和一种环境条件,推广应用于其它地区或国家时便存在着很大的局限性。但AASHO试验路的测定数据得到了良好的整理和保存,为许多力学-经验法的设计指标和参数验证提供了丰富的依据[5]。AASHO法提出了轴载换算的概念和公式,考虑了结构的可靠度和排水条件的影响,这些思想对后来世界各国的设计思想产生了很大的影响。1.2力学-经验法 力学-经验法利用在力学反应量与路面性能(各种损坏模式)之间建立的性能模型,按设计要求设计路面结构。从20世纪60年代初开始,各国科技人员致力于研制和实施沥青路面的力学-经验设计法,著名的有AI法和Shel1法。 Shell法[6]是由英、荷壳牌石油公司研究所研究、发展和完善起来的。在该设计方法中,混合料的粘弹性性质以其劲度模量体现,其值取决于沥青含量、沥青劲度和沥青混合料的空隙率。路基模量受应力影响,路基动态模量可以通过现场的动态弯沉试验在道路实际湿度条件和荷载条件下测定,也可在室内通过三轴仪测定。此方法中交通荷载以标准双轮轴载次数为代表,设计年限内的累计轴次即为设计寿命。临界荷位的应力应变由计算机程序BISAR计算。Shell设计法考虑了控制疲劳开裂的沥青层底面的容许水平拉应变ε fat 和控 制永久变形的路基顶面的容许竖向压应变ε z 两项主要设计标准和水泥稳定类材料底面的弯拉应力和路表面的永久变 3 ··

路面结构设计计算示例

课程名称: 学生: 学生学号: 专业班级: 指导教师: 年月日

路面结构设计计算 1 试验数据处理 1.1 路基干湿状态和回弹模量 1.1.1 路基干湿状态 路基土为粘性土,地下水位距路床顶面高度0.98m~1.85m。查路基临界高度参考值表可知IV5区H1=1.7~1.9m,H2=1.3~1.4m,H3=0.9~1.0m,本路段路基处于过湿~中湿状态。 1.1.2 土基回弹模量 1) 承载板试验 表1.1 承载板试验数据 承载板压力(MPa) 回弹变形 (0.01mm) 拟合后的回弹变形 (0.01mm) 0.02 20 10 0.04 35 25 0.06 50 41 0.08 65 57 0.10 80 72 0.15 119 剔除 0.20 169 剔除 0.25 220 剔除 计算路基回弹模量时,只采用回弹变形小于1mm的数据,明显偏离拟合直线的点可剔除。拟合过程如图所示:

路基回弹模量: 210101 1000 (1)4 n i i n i i p D E l πμ===-=∑∑ 2)贝克曼梁弯沉试验 表1.2 弯沉试验数据 测点 回弹弯沉(0.01mm ) 1 155 2 182 3 170 4 174 5 157 6 200 7 147 8 173 9 172 10 207 11 209 12 210 13 172 14 170 根据试验数据: l = ∑ll l = 155+?+170 14 =178.43

15.85(0.01mm)S = =s = √∑(ll ?l )2l ?1 =20.56(0.01mm) 式中:l ——回弹弯沉的平均值(0.01mm ); S ——回弹弯沉测定值的标准差(0.01mm ); l i ——各测点的回弹弯沉值(0.01mm ); n ——测点总数。 根据规要求,剔除超出(2~3)l S ±的测试数据,重新计算弯沉有效数据的平均值和标准差。计算代表弯沉值: 1174.79 1.64515.85200.86(0.01mm)a l l Z S - =+=+?=l 1=l +l l l =178.43+ 1.645×20.56=21 2.25 Z a 为保证率系数,高速公路、一级公路取2.0,二、三级公路取1.645,四级公路取1.5。 土基的回弹模量: 220201220.70106.5 (1)(10.35)0.71246.3(MPa)200.860.01 p E l δμα??= -=?-?=? 1.2 二灰土回弹模量和强度 1. 2.1 抗压回弹模量 二灰土抗压回弹模量为:735MPa 。 1.2.2 f50mm×50mm试件劈裂试验 表1.3 二灰土试件劈裂试验数据 f50mm×50mm试件劈裂试验 最大荷载(N ) 2t P Dh σπ= (kPa ) 处理结果 有效数据平均值t σ(kPa ) 250.57 有效数据样本标准差S (kPa ) 12.07 变异系数C v (%) 4.82 变异系数应小于6%,否则可在剔除偏差较大的数据后,重新计算平均值和标准差。设计

沥青路面结构计算书

新建路面设计 1. 项目概况与交通荷载参数 该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取 70.0%。根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表 A.2.6-2得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。 2. 初拟路面结构方案 初拟路面结构如表4所示。 表4. 初拟路面结构 路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。 3. 路面结构验算 3.1 沥青混合料层永久变形验算 根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。可靠度系数为1.04。 根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-8.23,d2=0.77。把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量(Rai)。各计算结果汇总于表5中。 各层永久变形累加得到沥青混合料层总永久变形量Ra=19.2(mm),根据表3.0.6-1,沥青层容许永久变形为20.0(mm),拟定的路面结构满足要求。

matlab选择结构程序设计答案讲解学习

m a t l a b选择结构程序 设计答案

实验三选择结构程序设计 一、实验目的 1、掌握建立和执行M文件的方法。 2、掌握利用if语句实现选择结构的方法。 3、掌握利用switch语句实现多分支选择结构的方法。 4、掌握try语句的使用。 二、实验内容 1、求分段函数的值。用if语句实现,分别输出x=-5.0,3.0,1.0,2.0,2.5,3.0,5.0时 的y值。 ①x=input('please input the value of x'); if x<0&x~=-3 y=x*x+x-6; elseif x>=0&x<5&x~=2&x~=3 y=x*x-5*x+6; else y=x*x-x-1; end y ②please input the value of x-5.0 y = 14 >> aaaaa please input the value of x-3.0

y = 11 >> aaaaa please input the value of x1.0 y = 2 >> aaaaa please input the value of x2.0 y = 1 >> aaaaa please input the value of x2.5 y = -0.2500 >> aaaaa please input the value of x3.0 y =

5 >> aaaaa please input the value of x5.0 y = 19 2、输入一个百分制成绩,要求输出成绩等级A、B、C、D、E。其中90分 ~100分为A,80分~89分为B,70分~79分为C,60~69分为D,60分以下为E。要求: (1)分别用if语句和switch语句实现。 (2)输入百分制成绩后要判断该成绩的合理性,对不合理性的成绩应输出出错信息。 If语句 ①s=input('please input the score:'); if s>=90&s<=100 rank='A'; elseif s>=80&s<=89 rank='B'; elseif s>=70&s<=79 rank='C'; elseif s>=60&s<=69 rank='D'; elseif s>0&s<=59 rank='E';

路面结构设计计算书

公路路面结构设计计算示例 、刚性路面设计 交通组成表 1 )轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ①轴载换算: 双轴一双轮组时,按式 i 1.07 10 5 p °型;三轴一双轮组时,按式 N s i N i P i 16 100 式中:N s ——100KN 的单轴一双轮组标准轴载的作用次数; R —单轴一单轮、单轴一双轮组、双轴一双轮组或三轴一双轮组轴型 i 级轴载的总重KN ; N i —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i —轴一轮型系数,单轴一双轮组时, i =1 ;单轴一单轮时,按式 3 2.22 10 P 0.43 计算; 8 0.22 2.24 10 R 计算

N i1 NA 注:轴载小于40KN 的轴载作用不计。 ②计算累计当量轴次 根据表设计规范,一级公路的设计基准期为 30年,安全等级为二级,轮迹横向分布系数 g r 0.08,则 , :t 30 N N s (1 g r ) 1 365 834.389 (1 0.08) g r 4 4 量在100 10 ~ 2000 10中,故属重型交通。 2) 初拟路面结构横断面 由表3.0.1,相应于安全等级二级的变异水平为低 ~中。根据一级公路、重交通等级和低级变异水平等 级,查表 初拟普通混凝土面层厚度为 24cm ,基层采用水泥碎石,厚 20cm ;底基层采用石灰土,厚 20cm 。 普通混凝土板的平面尺寸为宽 3.75m ,长5.0m 。横缝为设传力杆的假缝。 式中:E t ――基层顶面的当量回弹模量,; E 0——路床顶面的回弹模量, E x ――基层和底基层或垫层的当量回弹模量, E 1,E 2 ――基层和底基层或垫层的回弹模量, h x ――基层和底基层或垫层的当量厚度, 1 365 0.2 6900125362 其交通 0.08 查表的土基回弹模量 设计弯拉强度:f cm 结构层如下: E 。 35.0MP a ,水泥碎石 E 1 1500MP a ,石灰土 E ? 550 MP a 5.0MP a E c 3.1 104 MP a 水泥混凝土 24cm E = . x .g'-iF 水泥碎石20cm E :=150OMP Q 石灰土 20cm E =53C MPa E x h 2 D x h ; E z h ; h x 12 3 1500 0.2 12 4.700(MN ( 12D ( W E t 12 6.22 0.202 1500 0.202 550 2 2 1025MP a 0.202 0.202 m 0)2 ( 1 4 3 550 0.2 (0.2 12 m) ( 1025 0.380m 1 )1 E 2h 2 0.2) 4 2 ( 1500 0.2 550 0.2 1 )1 1.51(牙) E 。 0.45 6.22 1 1.51 (^) 0.45 35 4.165 E x 、0.55 1 1.44( ) 1 E E 1 ah E ( -) 4.165 0.38635 1.44 (些)0.55 35 0.786 1025 丄 ( )3 212276MP a 35 按式() s tc 计算基层顶面当量回弹模量如下: h 12 E 1 h ;E 2 2 3) 确定基层 E , E

(完整word版)沥青路面结构设计

第四章 路面结构设计 1.1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24.5米,全长5km ,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13.8℃,无霜期178天,最高月均温27.2℃(7月),最低月均温-3.2℃(1月),年平均降水量685毫米。道路沿线土质路基稠度 c ω=1.3;因此该路基 处于干燥状态,根据公路自然区划可知济南绕城高速处于5 Ⅱ区,根据【JTG D50-2006】《公路沥青路面设计规范》中表5.1.4-1可确定工程所在地土基回弹模量设计值为46MPa 。 (3)交通资料

1.2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN 为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 ○ 1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN 的各级轴载Pi 的作用次数Ni 按下式换算成标准轴载P 的当量作用次数N 的计算公式为: 35 .4121∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算的车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型的各级轴载(kN ); C1——被换算车型的各级轴载系数,当其间距大于3m 时,按单独的一个 轴计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+1.2(m-1); C2——被换算车型的各级轴载轮组系数,单轮组为6.4,双轮组为1.0, 四轮组为0.38。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N = 4709.00(次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2C '——轮组系数,单轮组为18.5,双轮组为1.0,四轮组为0.09。 注:轴载小于50KN 的特轻轴重对结构的影响可以忽略不计,所以不纳入当 量换算。 沥青路面营运第一年双向日平均当量轴次:

(全过程精细讲解)路面结构设计及计算

路面结构设计及计算 7.1 轴载分析 路面设计以双轴组单轴载100KN 作为标准轴载 a.以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次。 (1)轴载换算 轴载换算采用如下的计算公式:35 .421? ? ? ??=P P N C C N i i (7.1) 式中: N —标准轴载当量轴次,次/日 i n —被换算车辆的各级轴载作用次数,次/日 P —标准轴载,KN i p —被换算车辆的各级轴载,KN K —被换算车辆的类型数 1c —轴载系数,)1(2.111-+=m c ,m 是轴数。当轴间距离大于3m 时,按单独的一个轴载计算;当轴间距离小于3m 时,应考虑轴数系数。 2c :轮组系数,单轮组为6.4,双轮组为1,四轮组为0.38。

轴载换算结果如表所示: 注:轴载小于25KN 的轴载作用不计。 (2)累计当量轴数计算 根据设计规,一级公路沥青路面的设计年限为15年,四车道的车道系数η取0.40,γ =4.2 %,累计当量轴次: ][γ η γ13651)1(N N t e ??-+= [] 次)(.5484490042 .040 .0327.184********.0115 =???-+= (7.2) 验算半刚性基层层底拉应力的累计当量轴次 b.轴载换算 验算半刚性基底层底拉应力公式为 8 1 ' 2' 1' ) (∑==k i i i P p n c c N (7.3) 式中:'1c 为轴数系数,)1(21' 1-+=m c '2c 为轮组系数,单轮组为1.85,双轮组为1,四轮组为0.09。 计算结果如下表所示: 表7.3

注:轴载小于50KN 的轴载作用不计。 [] γ η γ'13651)1(N N t e ??-+= ? [] 次3397845% 042.040 .0313.13473651%) 042.01(15 =???-+= 7.2 结构组合与材料选取 由上面的计算得到设计年限一个行车道上的累计标准轴次约为700万次左右,根据规推荐结构,路面结构层采用沥青混凝土(15cm )、基层采用石灰粉煤灰碎石(厚度待定)、底基层采用石灰土(30cm )。 规规定高速公路一级公路的面层由二至三层组成,查规,采用三层沥青面层,表面层采用细粒式密级配沥青混凝土(厚4cm ),中间层采用中粒式密级配沥青混凝土(厚5cm ),下面层采用粗粒式密级配沥青混凝土(厚6cm )。 7.3 各层材料的抗压模量与劈裂强度 查有关资料的表格得各层材料抗压模量(20℃)与劈裂强度

路面设计原理与方法

路面设计原理与方法 1.柔性路面,刚性路面定义,结构特性,二者在设计理论与方法上有何主要区别 在柔性基层上铺筑沥青面层或用有一定塑性的细粒土稳定各种集料的中、低级路面结构,因具有较大的塑性变形能力而称这类结构为柔性路面。它的总体结构刚度较小,刚性路面采用波特兰水泥混凝土建造,用水泥混凝土作面层或基层的路面结构。它的分析采用板体理论,不用层状理论。板体理论是层状理论的简化模型。它假设混凝土板是中等厚度的平板,其截面在弯曲前和弯曲后均保持平面形状。如果车轮荷载作用在板中,无论是板体理论,还是层状理论均可采用,两者将得到几乎相同的弯拉应力和应变。如果车轮荷载作用在板边,假定离板边距离小于0.61m(2ft),只能用板体理论分析刚性路面。层状理论之所以适用于柔性路面而不适合于刚性路面,是因为水泥混凝土的刚性比HMA大得多,荷载分布的范围很大。而且刚性路面有接缝存在,这也使得层状理论不能适用。 刚性路面和柔性路面不同,刚性路面可以直接铺设在压实的土基上,或者铺设在加铺的粒料或稳定材料层上。 柔性路面设计以层状理论为基础,假设各层在水平方向是无限的,且是连续的。刚性路面由于板的刚度大和存在接缝,设计基础采用板体理论。如果荷载作用在板中,层状理论同样也能用于刚性路面设计中。 2.机场道面、道路路面各有什么特点。二者在功能和构造方面有什么主要区别?各自的设计原理与方法有什么相同点和不同点 机场道面的功能性能包括平整度、抗滑性能(对于跑道和快滑道)、纵横坡和排水性能等。 道面使用要求:具有足够的结构强度 ?表面具有足够的抗滑能力 ?表面具有良好的平整度 ?面层或表层无碎屑 机场道面是指在民用航空运输机场飞行区范围内供飞机运行使用的铺筑在跑道、滑行道、站坪、停机坪上的结构物。由于飞机运行方式对安全使用的要求高、飞机荷载重量和轮胎接地压力大于车辆荷载等原因,机场道面一般采用热拌热铺沥青混凝土。最多采用的热拌沥青混凝土结构是连续式密级配沥青混凝土,也有少数OGFC,SMA的应用也较为广泛。由于机场沥青混凝土道面所要求具备的强度条件、耐久性、抗滑性能等,在道路路面工程中所采用的沥青表处、沥青贯入碎石等面层结构不适用于机场道面。机场沥青混凝土道面中面层和底面层一般采用密级配沥青混凝土。沥青碎石结构可用于机场沥青混凝土道面底面层。 由于飞机的荷载和轮胎压力比公路车辆的荷载和轮胎压力大很多,因此机场道面通常比公路路面厚一些,而且需要较好的面层材料。无论是公路路面,还是机场道面,任何力学设计方法对荷载和轮胎压力的作用均可自动予以考虑。然而,采用力学法应注意以下不同的地方: (1)、机场道面的荷载重复作用次数通常小于公路路面的荷载重复作用次数。对于机场道面,由于飞机的左右偏离,一组机轮通过若干次只认为是重复作用一次;而对于公路路面,一个车轴通过一次即认为是重复作用一次。实际上公路荷载并不是作用在同一位置,这个情况在破坏极限中用增加荷载容许重复次数加以考虑。对柔性路面的疲劳引入一个修正系数,而对刚性路面的疲劳引入一个当量损伤率。 (2)、公路路面设计采用移动荷载,以荷载作用时间作为输入量描述其粘弹性特性,以荷载重复作用下的回弹模量作为输入量描述其弹性特性。机场道面设计在跑道中部采用移动荷载,在跑道端部采用静荷载,因此,跑道端部的道面厚度大于中部的厚度。

选择结构程序设计

第四章择路而行---选择结构程序设计 第一节路口诀择----条件语句 一、教学目标 1、掌握选择结构程序中常用的Qbasic语句。 2、掌握选择结构程序设计方法。 3、能利用选择结构程序设计解决简单的实际问题。 二、教学重点: 1.选择结构的语句及功能 2.选择结构中程序设计方法。 三、教学方法:讲授法,对比法,分组讨论法。 四、教学时间:2课时 五、教学教程: (一)引入新课:前面我们学习了顺序结构程序设计,利用顺序结构只能设计一些较简单的程序,如果要处理复杂的问题,就需要采用另外两种基本结构:选择结构和循环结构。选择结构,是一种常用的主要基本结构,是计算机科学用来描述自然界和社会生活中分支现象的重要手段。其特性是:无论分支多寡,必择其一;纵然分支众多,仅选其一。 (二)讲述新课 l 单行条件选择语句IF 1、单行结构条件语句IF…THEN…ELSE 格式:IF <条件> THEN <语句1> [ELSE <语句2>] 功能:最简单的条件选择语句,用来进行条件判断,使语句有条件的执行。 说明: 1)当<条件>为真(非零数)时,则执行<语句1>。 2)ELSE语句可以省略。 3)当<条件>为假(零)时,而且语句中有ELSE语句则执行<语句2>。 4)IF、THEN、ELSE必须在同一行上。 2、示例A、输入x的值,计算y的值。 REM 程序名为:eg1.bas INPUT “请输入x的值:”,x IF x>=0 THEN Y=1+X ELSE Y=1-2*X PRINT "Y=";Y END 例:求一元二次方程Ax2+Bx+C=0(A<>0)的实数根。 分析:写写出程序的流程图,参考流程图来写程序。 程序清单如下: INPUT A,B,C D=B*B-4*A*C IF D<0 THEN then X1=(-B+SQR(D))/(2*A) X2=(-B-SQR(D))/(2*A) PRINT “X1=”;X1, “X2=”;X2 ELSE PRINT “此方程无实根” END

程序的选择结构教学设计

程序的选择结构 教案编写教师:付虹杨 实际授课教师: ___________________ 实际授课日期:

Then End if Else The n Then Else Else End if 教学过程教师活动学生活动设计意图格式2:又叫块If I f 条件Then Else 2> End I 语句组1> 语句组说明: 新课讲授 (1)条件可以是算术表达式、关系表达式或逻辑表达式等。表达式都会 得到两种可能:非真即假,True或False。 (2)格式2中的if与end if 必须成对出现,缺一不可。 (3)在书写时,格式1中的<语句组>可以有多条语句,如 果有多条语句则必须写在一行,而且语句之间用冒号“:” 分隔开。格式2中的<语句组>中的多条语句,则需分行书写。 (4)将If、Else和End If 语句左对齐,而<语句组1>和<语 句组2>向右缩进若干空格,以使程序结构更加清楚,便 于阅读和查错。 4、条件语句的执行过程 当条件成立时,执行Then后面的语句组1, 否则执行语句组2 选择结构的流程图如下所示: 5、下面我们共同运用选择结构来解决问题:例1、选择题 将鼠标价钱大竞猜的程序补充完整。 Dim a As Si ngle a=I nputBox(“请输入您猜的价钱”) ____ a=20_Print"猜对了"__Print “猜错了” 学生边看课 件,边听教师 讲解选择结构 的基本格式。 注意事项,及 程序的执行过 程。 学生运用选择 结构将鼠标价 钱大竞猜程序 补充完整。 进一步理解 选择结构的 用法、格式、 功能。 让学生熟练 掌握双分支 选择结构的 两种基本格 式及相互转 换。

实验四-答案--选择结构程序设计讲课讲稿

实验四-答案--选择结构程序设计

实验四选择结构程序设计答案 实验时间:年月日【实验步骤】 一、程序调试练习 1、写出下列程序的运行结果: (1)ex4_1.c #include void main() { char ch; printf("input a character:"); ch=getchar(); if(ch>='A' && ch<='Z') ch=ch+32; printf("%c\n",ch); } 具体要求: ①从键盘上输入a,分析程序运行的结果。 ②从键盘上输入A,分析程序运行的结果。 ③从键盘上输入5,分析程序运行的结果。 程序运行结果: ①a ②a ③5 (2)ex4_2.c #include void main() { int x,y,z; printf("input x,y,z"); scanf("%d,%d,%d",&x,&y,&z); if(x

①从键盘上给x、y、z分别输入2,-1,2,分析程序运行的结果。 ②从键盘上给x、y、z分别输入3,5,2,分析程序运行的结果。 ③从键盘上给x、y、z分别输入-5,-3,2,分析程序运行的结果。 程序运行结果: ①z=2 ②z=3 ③z=0 (3)ex4_3.c #include main() { int x=1,a=0,b=0; switch(x) { case 0:b++; case 1:a++; case 2:a++;b++; } printf("a=%d,b=%d\n",a,b); } 程序运行结果: a=2,b=1 (4)ex4_4.c #include void main() { int x=1,y=0,a=0,b=0; switch(x) { case 1: switch(y) { case 0: a++; break; case 1: b++; break; } case 2: a++; b++; break; case 3: a++; b++;

路面结构设计计算书

公路路面结构设计计算示例 一、刚性路面设计 交通组成表 1)轴载分析 路面设计双轮组单轴载100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: 16 1100∑=? ?? ??=n i i i i s P N N δ 式中 :s N ——100KN 的单轴—双轮组标准轴载的作用次数; i P —单轴—单轮、单轴—双轮组、双轴—双轮组或三轴—双轮组轴型i 级轴载的总重KN ; i N —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i δ—轴—轮型系数,单轴—双轮组时, i δ=1;单轴—单轮时,按式43.03 1022.2-?=i i P δ计算; 双轴—双轮组时,按式22.051007.1--?=i i P δ;三轴—双轮组时,按式22.08 1024.2--?=i i P δ计算。 轴载换算结果如表所示

太脱拉138 前轴 51.40 43.0340.511022.2-?? 150 1.453 后轴 2?80.00 22.051601007.1--?? 150 0.969 吉尔130 后轴 59.50 1 240 0.059 尼桑CK10G 后轴 76.00 1 1800 2.230 16 1 )( P P N N i i i n i δ∑== 834.389 注:轴载小于40KN 的轴载作用不计。 ② 计算累计当量轴次 根据表设计规范,一级公路的设计基准期为30年,安全等级为二级,轮迹横向分布系数η是0.17~0.22 取0.2,08.0=r g ,则 [][] 362.69001252.036508 .01)08.01(389.8343651)1(30=??-+?=?-+=ηr t r s e g g N N 其交通 量在4 4102000~10100??中,故属重型交通。 2)初拟路面结构横断面 由表3.0.1,相应于安全等级二级的变异水平为低~中。根据一级公路、重交通等级和低级变异水平等级,查表4.4.6 初拟普通混凝土面层厚度为24cm ,基层采用水泥碎石,厚20cm ;底基层采用石灰土,厚20cm 。普通混凝土板的平面尺寸为宽3.75m ,长5.0m 。横缝为设传力杆的假缝。 3)确定基层顶面当量回弹模量tc s E E , 查表的土基回弹模量a MP E 0.350=,水泥碎石a MP E 15001=,石灰土a MP E 5502= 设计弯拉强度:a cm MP f 0.5=, a c MP E 4101.3?= 结构层如下: 水泥混凝土24cm 水泥碎石20cm 石灰土20cm × 按式(B.1.5)计算基层顶面当量回弹模量如下: a x MP h h E h E h E 102520.020.0550 20.0150020.02 222222122 2121=+?+?=++= 1 2 211221322311)11(4)(1212-++++=h E h E h h h E h E D x 1233)2 .05501 2.015001(4)2.02.0(122.0550122.01500-?+?++?+?= )(700.4m MN -= m E D h x x x 380.0)1025 7.412()12(3 1 31=?== 165.4)351025(51.1122.6)( 51.1122.645.045.00=?????? ?-?=?? ????-?=--E E a x

沥青路面结构设计方法的简介

沥青路面结构设计方法的简介 摘要:针对沥青路面结构设计方法进行调研,重点对AASHTO沥青路面设计法、壳牌( SHELL)设计法和我国沥青路面结构设计法进行深入分析.对沥青路面结构设计方法的形成及发展、各沥青路面设计方法 的特点进行评述、 关键词:沥青路面:结构设计:AASHTO:路面力学模型 1 引言 沥青路而设计方法随着路而技术、交通状况及人们对路而破坏状态认识的变化而不断发展,经历了古典理论法、经验设计法和理论分析法三个阶段。 2沥青路面设计方法的形成及发展 从1901年美国麻省道路委员会第八次年会上提出的第一个路而设计方法的公式,至1940年的Goldbeck公式,沥青路而设计法均属于古典理论法,其特点是以土基顶而的应力大小为依据设计路而厚度。随着路而结构形式、施工技术水平、以及路而力学理论和计算手段的发展,古典理论法逐渐被淘汰。经验法和理论分析法是目前常用的路而设计方法。 经验法是建立在大量实际道路和试验路调查基础上的设计方法,典型的有AASHTO沥青路而设计法、CBR设计法等。经验法通过路而调查提出路而破坏标准、设计指标以及交通作用与设计指标的关系,以此为基础进行厚度计算。经验法建立在实践的基础上,因此在路而设计因素变化不大的情况下,经验法的设计结果比较容易接近实际要求。但是,由于经验法设计曲线或设计公式是由一定时期的路而调查得到的,随着路而结构、材料、施工养护以及交通情况的变化,其对以后路而设计的适用性往往受到限制,需要根据各种影响因素的变化不断修订,但由于其参数、指标有很大的主观性,理论基础模糊,修订工作比较困难。 随着路而力学和计算技术的发展逐渐产生了理论分析法。理论分析法典型的有壳牌(SHELL)法、美国地沥青协会(TAI)法等,我国沥青路而设计法也属于理论法的范畴。当然,沥青路而设计中任何理论分析法都不是纯理论的,都必须与路而调查、室内试验结论相结合,包含有经验法的部分成果。理论分析法的特征是通过路而力学模型计算结构层厚度,其优点是理论基础清晰,便于修订更新,缺点是路而模型对实际路而的大量简化会引起一些误差,而误差的修正系数与经验法的指标一样,是比较模糊的,带有一定的经验性。同经验法一样,理论分析法也要随着路而实践的发展而修订。 近年来,随着人们对路而破坏特性认识的深入,逐渐产生了长寿命路而的设计思想。长寿命路而的设计思路是:保证路而足够的整体强度,把病害限制在路而表层,通过定期(10 -20年)的表而修复,防比表而病害影响路而结构安全,保证路而在相当长的设计年限内不发生结构性损坏(40年以上)。以下针对国内外主流的沥青路而设计方法做介绍。 3美国AASHT093沥青路面设 计方法

C语言选择结构程序设计编程题.doc

实验2 选择结构程序设计 一.实验目的: 1.掌握选择控制语句的使用方法; 2.了解C程序语句的执行过程。 二.实验内容: 1.编写程序:输入一个整数,判断该数的奇偶性。(输出相应的标志even-偶数odd-奇数,请记住这两个单词)。 2.从键盘输入的正整数,判断是否能被5和7同时整除,若是,则输出Yes;否则输出No。 3.输入一个字符,如果是大写字母改变为小写字母;如果是小写字母,则把它变为大写字母;若是其它字符则不变。 4.编写程序,对于给定的一个百分比制成绩,输出相应的五分制成绩。设:90分以上为‘A’,80~89分为‘B’,70~79分为‘C’,60~69分为‘D’,60分以下为’E’(用if…else…与switch 语句两种方法实现)。 5. 企业发放的奖金根据利润提成。利润(i)低于或等于10万元时,奖金可提成10%;利润高于10万元,低于20万元时,低于10万元的部分按10%提成,高于10万元的部分,可提成7.5%;20万元到40万元之间时,高于20万元的部分,可提5%;40万元到60万元之间时,高于40万元的部分,可提成3%;60万元到100万元之间时,高于60万元的部分,可提成1.5%;高于100万元时,超过100万元的部分按1%提成,从键盘输入当月利润i,求发放奖金总数。 6. 输入某年某月某日,判断这一天是这一年的第几天。 7. 输入一个字符,请判断是字母、数字还是特殊字符。 8. 身高预测: 男性成人身高=(父亲身高+母亲身高)*0.54cm 女性成人身高=(父亲身高*0.923+母亲身高)/2cm 如果喜爱体育锻炼,那么身高可增加2%;如果有良好的饮食习惯,可增加身高1.5%。键盘输入性别、父母身高、是否爱好体育锻炼、是否有良好的饮食习惯,利用给定身高预测方法对你的身高进行预测。 9. 要求用switch语句编程设计一个简单的计算器程序。要求根据用户从键盘输入的表达式。 操作数1 运算符op 操作数2 计算表达式的值。指定的算术运算符为加(+)、减(-)、乘(*)、除(/)。 在此基础上,增加如下要求: (1)如果要求程序能进行浮点数运算,程序应该如何修改?如何比较实型变量和常数0是否相等? (2)如果要求输入的算术表达式中的操作数和运算符之间可以加入任意多个空格符,那么程序如何修改? (3)如果要求连续多次算术运算,每次运算结束后,程序都给出提示: Do you want to continue(Y/N y/n)? 如果用户输入Y或y时,程序继续进行其它算术运算,否则程序才退出运行状态。那么程序如何进行修改?

选择结构程序设计练习题

选择结构程序设计练习题 1.逻辑运算符两侧运算对象的数据类型( ) A.只能是0和1 B.只能是0或非0正数 C.只能是整型或字符型数据 D.可以是任何类型的数据 2.下列运算符中优先级最高的是( ) A.< B.+ C.&& D.!= 3.能正确表示“当x的取值在[1,10]和[200,210]范围内为真,否则为假"的表达式是( ) A.(x>=1)&&(x<=10)&&(x>=200)&&(x<=210) B.(x>=1)||(x<=10)||(x>=200)||(x<=210) C.(x>=1)&&(x<=10)||(x>=200)&&(x<=210) D.(x>=1)||(x<=10)&&(x>=200)||(x<=210)

4.表示图中坐标轴上阴影部分的正确表达式是( ) A.(x<=a)&&(x>=b)&&(x<=c) B.(x<=a)||(b<=x<=c) C.(x<=a)||(x>=b)&&(x<=c) D.(x<=a)&&(b<=x<=c 5.判断char型量ch是否为大写字母的正确表达式是() A.‘A’<=ch<=‘Z’ B.(ch>=‘A’)&(ch<=‘Z’) C.(ch>=‘A’)&&(ch<=‘Z’) D.(‘A’<=ch)AND(‘Z’>=ch) 6.设x,y,z都是int型变量,且x=3,y=4,z=5,则下面表达式中值为0的是 () A.‘x’&&‘y’ B.x<=y C.x||y+z&&!y D.!(x

7.已知x=43,ch=‘A’,y=0;则表达式(x>=y&&ch<‘B’&&!y)的值是() A.0 B.语法错误 C.1 D.“假” 8.若希望当A的值为奇数时,表达式的值为“真”,A的值为偶数时,表达式的值为“假”,则以下不能满足要求的表达式是() A.A%2==1 B.!(A%2==0) C.!(A%2) D.A%2 9.设有:int a=1,b=2,c=3,d=4,m=2,n=2;执行(m=a>b)&&(n=c>d)后的值为() A.1 B.2 C.3 D.4 10.下列运算符中优先级最低的是( )优先级最高的是( ) A.? B.&& C.+ D.!=

沥青路面结构厚度计算

沥青路面结构厚度计算 路等级 : 一级公路新建路面的层数 :5 标准轴载 : BZZ-100 路面设计弯沉值 : 24、9 (0、01mm) 路面设计层层位 :4 设计层最小厚度 :150 (mm)层位结构层材料名称厚度20℃平均抗压标准差15℃平均抗压标准差容许应力 (mm) 模量(MPa) (MPa) 模量(MPa) (MPa) (MPa) 1 细粒式沥青混凝土401400 02000 0 、47 2 中粒式沥青混凝土601200 01800 0 、34 3 粗粒式沥青混凝土801000 01200 0 、27 4 水泥稳定碎石 ?1500 03600 0 、25 5 石灰土250550 01500 0 、1 6 新建路基36 按设计弯沉值计算设计层厚度 : LD= 24、9 (0、01mm) H(4 )=200 mm LS= 26、3 (0、01mm) H(4 )=250 mm LS= 23、4 (0、01mm)

H(4 )=224 mm(仅考虑弯沉) 按容许拉应力计算设计层厚度 : H(4 )=224 mm(第1 层底面拉应力计算满足要求) H(4 )=224 mm(第2 层底面拉应力计算满足要求) H(4 )=224 mm(第3 层底面拉应力计算满足要求) H(4 )=224 mm(第4 层底面拉应力计算满足要求) H(4 )=274 mm σ(5 )= 、101 MPa H(4 )=324 mm σ(5 )= 、087 MPa H(4 )=277 mm(第5 层底面拉应力计算满足要求) 路面设计层厚度 : H(4 )=224 mm(仅考虑弯沉) H(4 )=277 mm(同时考虑弯沉和拉应力) 验算路面防冻厚度 : 路面最小防冻厚度500 mm 验算结果表明 ,路面总厚度满足防冻要求、通过对设计层厚度取整, 最后得到路面结构设计结果如下:-------------------------------------- 细粒式沥青混凝土40 mm-------------------------------------- 中粒式沥青混凝土60 mm-------------------------------------- 粗粒式沥青混凝土80 mm-------------------------------------- 水泥稳定碎石280 mm-------------------------------------- 石灰土250 mm-------------------------------------- 新建路基

相关主题
文本预览
相关文档 最新文档