当前位置:文档之家› A Compact 0.1–14-GHz Ultra-Wideband Low-Noise Amplifier in 0.13um CMOS

A Compact 0.1–14-GHz Ultra-Wideband Low-Noise Amplifier in 0.13um CMOS

A Compact 0.1–14-GHz Ultra-Wideband Low-Noise Amplifier in 0.13um CMOS
A Compact 0.1–14-GHz Ultra-Wideband Low-Noise Amplifier in 0.13um CMOS

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 58, NO. 10, OCTOBER 2010
2575
A Compact 0.1–14-GHz Ultra-Wideband Low-Noise Ampli?er in 0.13-m CMOS
Po-Yu Chang and Shawn S. H. Hsu, Member, IEEE
Abstract—A compact ultra-wideband low-noise ampli?er (LNA) with a 12.4-dB maximum gain, a 2.7-dB minimum noise ?gure (NF), and a bandwidth over 0.1–14 GHz is realized in a 0.13- m CMOS technology. The circuit is basically an inductorless con?guration using the resistive-feedback and current-reuse techniques for wideband and high-gain characteristics. It was found that a small inductor of only 0.4 nH can greatly improve the circuit performance, which enhances the bandwidth by 23%, and reduces the NF by 0.94 dB (at 10.6 GHz), while only consuming an additional area of 80 80 m2 . The LNA only occupies a core area of 0.031 mm2 , and consumes 14.4 mW from a 1.8-V supply. Index Terms—CMOS, current reuse, inductorless, low-noise ampli?er (LNA), resistive feedback, ultra-wideband (UWB).
I. INTRODUCTION N RECENT years, for the demand of short-range (within 10 m) and high data-rate (up to 480 Mb/s) wireless communications, the standard of ultra-wideband (UWB) was set up by the Federal Communications Commission (FCC) in 2002. The FCC authorized the unlicensed 7.5-GHz band (3.1–10.6 GHz) for UWB applications. Motivated by implementing the transceivers with low cost and a high integration level, CMOS technology becomes the most attractive candidate. Owing to the rapid progress of CMOS technology, many studies of CMOS RF integrated circuits (RFICs) for UWB applications were published in succession with good results [1]–[6]. In an UWB receiver, the low-noise ampli?er (LNA) with a wideband operation capability is critical to the overall receiver performance. The bandwidth of the LNA is ultimately limited by the parasitic capacitances of the devices. Two techniques for extending the bandwidth are commonly used to design UWB LNAs in CMOS technology, namely, the inductive peaking techniques [1]–[3] and the distributed ampli?er (DA) topology [5]. LNAs based on the two techniques were both reported with adequate bandwidth for UWB applications. However, one drawback is that the design usually employs many spiral inductors, which occupy a large chip area.
I
Recently, inductorless design for wideband LNAs in CMOS technology attracts much attention because of the considerably reduced chip area. Various approaches were proposed for wideband LNA design without using any inductors [7]–[12]. The noise-canceling technique was adopted [7]–[9], which sensed the dominant noise source and canceled it by an auxiliary out-ofphase forward path to lower the noise ?gure (NF). However, the phase error becomes dif?cult to predict, and the noise cancellation is not as effective at high frequencies. The resistive-feedback technique was also reported [10]–[12]. With a large enough input transconductance, the resistive-feedback LNA can achieve several gigahertz of bandwidth, over 10-dB gain, and less than 3-dB NF, but usually under a large bias current [10] or with a more advanced technology [12] needed. To lower the power consumption, the current-reuse technique is employed to enhance the input transconductance [11]. In this study, a compact UWB LNA in 0.13- m CMOS technology is proposed. Based on the concept of inductorless design, the ampli?er includes a resistive-feedback con?guration and a current-reuse input stage. One small inductor of only 0.4 nH is employed at the most critical node, namely, the gate of the input stage of the LNA to enhance the bandwidth and lower the NF simultaneously. Compared with the circuit without the inductor, the bandwidth is increased by 23% and the NF is reduced by 0.94 dB (at 10.6 GHz) with an additional area of only 80 80 m . The proposed LNA achieves a wide enough bandwidth to cover the whole 3.1–10.6-GHz frequency range, a 12.4-dB maximum gain, and a 2.7-dB minimum NF with a 0.031 mm core area under a 14.4-mW power consumption. This paper is organized as follows. Section II analyzes the design techniques in this study including resistive feedback and gate inductive peaking. Section III discusses the ampli?er design in detail. Section IV presents the measured results. Finally, Section V concludes this study. II. TECHNIQUES OF UWB LNA DESIGN A. Resistive Feedback
Manuscript received January 21, 2010; revised June 17, 2010; accepted June 17, 2010. Date of publication August 30, 2010; date of current version October 13, 2010. This work was supported in part by National Tsing Hua University (NTHU)–Taiwan Semiconductor Manufacturing Company (TSMC) under a Joint-Development Project and by the National Science Council (NSC) under Contract NSC 96-2221-E-007-168-MY2, Contract NSC 96-2752-E-007-002PAE, and Contract 97-2221-E-007-107-MY3. The authors are with the Department of Electrical Engineering and Institute of Electronics Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (e-mail: g9561574@https://www.doczj.com/doc/d63167977.html,.tw; shhsu@https://www.doczj.com/doc/d63167977.html,.tw). Color versions of one or more of the ?gures in this paper are available online at https://www.doczj.com/doc/d63167977.html,. Digital Object Identi?er 10.1109/TMTT.2010.2063832
Feedback is a common technique to design wideband ampli?ers. Shown in Fig. 1 is the common-source ampli?er with a resistive feedback. In this con?guration, the NF and input matching are generally a tradeoff [7], [12]. The tradeoff can be alleviated with a voltage buffer inserted in the feedback path, as shown in Fig. 2(a). Theoretically, the NF in this topology can be of the transistor lowered by increasing the transconductance [7], [12], and the matching condition can be maintained by deand the load appropriately. signing the feedback resistor A source follower is commonly used to implement the voltage
0018-9480/$26.00 ? 2010 IEEE

2576
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 58, NO. 10, OCTOBER 2010
Fig. 3. (a) Common-source ampli?er with a gate inductor. (b) Small-signal model of (a). Fig. 1. Common-source ampli?er with resistive feedback.
Equation (2) shows that this ampli?er can be approximated as a single-pole system. The input impedance can also be calculated as
(3)
Fig. 2. Resistive-feedback ampli?ers with: (a) an ideal voltage buffer and (b) a source follower buffer in the feedback path.
buffer, as indicated in Fig. 2(b). The voltage gain of the ampli?er in Fig. 2(b) can be derived as (1), shown at the bottom of is the transconductance of , is that this page, where for the buffer stage , and represents the equivalent input , and capacitance of the following stage. If and are with similar values, can be simpli?ed as
For wideband applications, the low-frequency input impedance is designed to be ( in most cases) for input matching. As can be seen from (3), the frequency response of contains one zero and two poles. If the parasitic capacitances are small, the poles and zero will locate at high frequencies, and thus a wideband matching is possible. However, good input matching near the 3-dB frequency is not easy to be achieved in practical design [10], [11]. B. Inductive Peaking Fig. 3(a) shows a common-source stage with a gate inductor , and Fig. 3(b) is the corresponding small-signal model. The voltage signal at the gate can be expressed as (4)
(2)
(1)

CHANG AND HSU: COMPACT 0.1–14-GHz UWB LNA IN 0.13- m CMOS
2577
Fig. 4. Resistive-feedback ampli?er with a gate inductor connected to the input stage.
Fig. 5. Circuit schematic of the proposed compact UWB LNA.
Therefore, the output current induced by
is (5)
From (5), we obtain the equivalent transconductance of this con?guration (6) Equation (6) indicates that increases with frequency when the operation is below the resonance of and . The inputreferred noise sources can be expressed as (7) and (8) where is the Boltzmann’s constant, is the absolute temperature, is the noise bandwidth, and is the thermal excess noise factor, which is 2/3 in a saturated long channel device [13]. Note that increases as the channel length scales down. Equation (7) indicates that decreases with frequency, while is not considered. Obtained it is independent of frequency if is identical to that without . As a result, the total from (8), input-referred noise can be suppressed at high frequencies with the gate inductor in a common-source topology.
Fig. 6. Simulated: (a) S , (b) S , and (c) NF with different L .
C. Resistive-Feedback LNA With Gate-Inductor Peaking Fig. 4 shows the resistive-feedback design through a source follower with the gate-inductor peaking [14]. The voltage gain in (2) with the equivalent can be calculated by replacing transconductance , as obtained in (6). Therefore,
(9)

2578
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 58, NO. 10, OCTOBER 2010
Fig. 8. Simulated inductance and Q of the gate inductor L .
Fig. 9. Chip micrograph of the proposed LNA.
Fig. 7. Simulated: (a) S , (b) S , and (c) NF with different L .
Since decreases with frequency, the gain reduction due to the pole can be compensated, and thus the bandand NF are width is enhanced. The analytical equations of rather complicated, do not provide intuitive guidance, and are not shown here. For the following analysis, Agilent Technologies’ Advanced Design System (ADS) is employed to provide quantitative explanation and also observe the tradeoffs between different design considerations such as NF, gain, and circuit stability. In practical design, the input impedance for wideband and of . For high matching is mainly determined by gain and low noise design, it is required to have a large input is preferred. However, a transconductance, and thus a large large is associated with large parasitic capacitances, which can degrade the matching and gain characteristics at high frequencies. For example, with a total channel width of 200 m
of 100 mA/V (under a drain (0.13- m NMOS) has a large of 300 fF. Note current of 10 mA), but also with a large that the effective gate–source capacitance would be even larger is too if considering the Miller effect. On the contrary, if small (associated with a small ), a large enough transconducis needed to have a suittance cannot be obtained, and a large able resonant frequency for bandwidth enhancement. It can be estimated that a relatively large peaking inductor of 0.8 nH based on the circuit topology in Fig. 4 is needed for a 60- m for the desired UWB applications. The size selection of plays a critical role in this con?guration and more discussion will be carried out with the proposed topology. For noise considerations, the main noise contributor is the . Since an ideal feedback network has ?rst-stage transistor no impact on the circuit noise performance [15], it is expected that the NF has a similar trend with that of the gate peaking design shown in Fig. 3(a), i.e., the inductor can suppress the high-frequency noise, as will be illustrated in Section III. III. DESIGN OF COMPACT UWB LNA A. Circuit Topology Fig. 5 shows the circuit schematic of the proposed compact UWB LNA, which includes a cascode ampli?er with a current-reuse input stage, a source follower as the feedback buffer, a feedback resistor, a gate peaking inductor, and another

CHANG AND HSU: COMPACT 0.1–14-GHz UWB LNA IN 0.13- m CMOS
2579
Fig. 11. Measured NF.
Fig. 10. Measured S -parameters. (a) S
and S . (b) S
and S . Fig. 12. Measured IIP3 at 6 GHz.
source follower for the output buffer. The cascode ampli?er , , and . The two includes three transistors, i.e., (NMOS) and (PMOS) are common-source transistors arranged as a current-reuse topology, and the transistor functions as the common-gate stage of the cascode topology. In the current-reuse design, the overall transconductance is the sum of both transistors. The enhanced transconductance allows high-gain performance under low power consumption. Note is only part of the current of , and that the bias current of is reduced, leading to increased output the voltage drop of headroom. In this con?guration, the input transconductance stage ( and ) ?rst converts the input voltage to a current signal, to the load as the output signal. which then ?ows through The ampli?ed signal is also fed back to the input through the (source follower) and the feedback resistor feedback buffer . As described in Section II, is resonated with the gate and . As a result, the voltage signal at capacitances of , and thus the equivalent transconductance, the gate of both increase rapidly when the operation approaches the resonant frequency. and are critThe transistor size and bias condition of ical for achieving high gain and low noise in this design. For the is more important than since input transconductance, is an NMOS and also with a larger bias current than that of . The total width of transistor is chosen as 96 m to and have suf?cient transconductance and low noise. Both
contribute to the gate capacitance of the input stage, and thus affect the resonant frequency for bandwidth extension. With the can not only enhance current-reuse design, the transistor the transconductance, but also provide the ?exibility to optimize contributes the input equivalent capacitance. The transistor additional capacitance allowing a small gate peaking inductor while maintaining an appropriate resonant frequency for bandtransistor selected for this design has width extension. The a width of 64 m. B. Design of Gate Inductor The peaking inductor is determined by considering the resonant frequency with the combined input capacitance conand . The input capacitances of and tributed of can be extracted from the foundry provided device model to estimate the required value of . With a desired bandwidth up resonant frequency should be higher than to 10.6 GHz, the can be esthis frequency to ensure stable circuit operation. timated to be in the order of 0.3 0.4 nH to create a resonant 16 GHz. Fig. 6 shows the simulated frequency at about 14 , and NF versus frequency with different . Note that the results shown here are based on electromagnetic (EM) simulated spiral inductors for more precise prediction. The 3-dB circuit bandwidth is enhanced from 11.5 GHz (without any in23 with a gate inductor of 0.4 nH. ductor) to 14.2 GHz An improved input matching can also be obtained. Moreover,

2580
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 58, NO. 10, OCTOBER 2010
TABLE I PERFORMANCE SUMMARY AND COMPARISON WITH PRIOR ARTS
the NF is reduced by 0.94 dB at 10.6 GHz. For the proposed resistive-feedback ampli?er peaking with a gate inductor, the gain and NF tradeoff can be clearly observed in Fig. 6. As the gate inductance increases, the gain and bandwidth can both be effectively improved. However, a large gate inductor can lead to overpeaking of gain, and hence, circuit instability. As suggested by simulation, the circuit becomes unstable when the gate inductor exceeds 1 nH. It is worth pointing out that the gate inductor peaking is more effective compared with a drain peaking design in the proposed topology. As discussed in Section III-A, a well-designed current-reuse stage only needs a small gate inductor for effective peaking. In addition, since the drain peaking connects the inductor at the load, its impact on the input-referred noise is relatively small. Fig. 7 illustrates this point by simulation. The core circuit is identical to that as shown in Fig. 5, except the is connected in series with the load . peaking inductor Compared with the results in Fig. 6(a), a signi?cantly larger inductance is required for similar bandwidth enhancement, as shown in Fig. 7(a). More importantly, the gate peaking is much more effective in suppressing the high-frequency noise, which can be clearly seen from the difference between Figs. 6(c) and 7(c). Fig. 8 presents the inductance and as a function of frequency for the gate peaking inductor in our design. The top metal (whose thickness is 3.4 m) is used for the inductor, which only occupies an area of 80 80 m . The inductor is 0.4 nH value is 17.8 at in the frequency range of interest and the 10 GHz. IV. MEASUREMENT RESULTS The proposed UWB LNA was fabricated in a standard 0.13- m CMOS process. Fig. 9 shows the chip micrograph. 0.63 mm and the core cirThe overall chip area is 0.58 0.22 mm 0.031 mm . The LNA cuit area is only 0.14 consumes 14.4 mW from a 1.8-V supply. The -parameters measured from 0.1 to 14 GHz by on-wafer coplanar probing are shown in Fig. 10 together with the simulation results. Within 3.1–10.6 GHz, the measured small-signal gain
achieves a maximum value of 12.4 dB at 7.5 GHz, and has a minimum value of 11.1 dB at 9.8 GHz. In this frequency range, is less than 14 dB, the the measured output return loss is less then 7.3 dB, and the measured input return loss is less than 38.9 dB. The simulation measured isolation in general agrees well with the measured results. The relatively can be attributed to the source follower large discrepancy in used for output matching. In measurements, it is dif?cult to have the actual voltage applied to the circuit exactly the same with that used in simulation. Since the output impedance of the source follower is sensitive to the bias current controlled by (see Fig. 5), a small variation of could cause an obvious , which can be veri?ed by simulation. The difference in stability factor calculated from the measured -parameters is greater than 1 suggesting unconditional stability of the circuit. Note that the 3-dB bandwidth of the gain exceeds the measured frequency range (the gain varies from 9.7 to 12.4 dB within 0.1–14 GHz). Fig. 11 shows both the simulated and measured NF from 3 to 14 GHz with a minimum of 2.7 dB at 7.4 GHz and a maximum of 3.7 dB at 9.6 GHz (within the 3.1–10.6-GHz range). Fig. 12 shows the measured input third-order intermodulation (IIP3) at 6 GHz with a two-tone separation of 5 MHz. An IIP3 of 3.8 dB is obtained by extrapolation. Since this study emphasizes a wideband LNA realized in a compact area, the ?gure-of-merit (FOM) proposed in [17] is adopted here, which takes the core chip area into consideration GHz Core Area mm
mW
(10) where is de?ned as the mean of the minimum and maximum values. Table I summaries the performance of the proposed LNA. The comparison with the prior arts based on 0.13- m CMOS technology is also listed. For the FOM calculation, the 3-dB bandwidth is considered, while the NF is the average value within the range of 3.1–10.6 GHz. If this frequency range cannot be covered [9], the NF within the 3-dB bandwidth is employed to calculate the FOM.

CHANG AND HSU: COMPACT 0.1–14-GHz UWB LNA IN 0.13- m CMOS
2581
V. CONCLUSION A compact UWB LNA with a core area of only 0.031 mm was demonstrated in a standard 0.13- m CMOS technology. Based on the inductorless design considerations, the resistivefeedback and current-reuse techniques were employed. A small inductor of 0.4 nH was added at the gate of the input stage to effectively extend the bandwidth and suppress the increase of the NF at high frequencies. The ampli?er achieved a bandwidth more than 13.9 GHz, a minimum NF of 2.7 dB, and a maximum gain of 12.4 dB. The proposed ampli?er presented an FOM among the best compared with other published UWB LNAs in 0.13- m CMOS technology. ACKNOWLEDGMENT The authors would like to thank the Chip Implementation Center (CIC), Hsinchu, Taiwan, and the Taiwan Semiconductor Manufacturing Company (TSMC), Hsinchu, Taiwan, for chip fabrication and measurement. REFERENCES
[1] A. Bevilacqua and A. M. Niknejad, “An ultrawideband CMOS lownoise ampli?er for 3.1–10.6-GHz wireless receivers,” IEEE J. SolidState Circuits, vol. 39, no. 12, pp. 2259–2268, Dec. 2004. [2] Y.-J. Lin, S. S. H. Hsu, J.-D. Jin, and C. Y. Chan, “A 3.1–10.6 GHz ultra-wideband CMOS low noise ampli?er with current-reuse technique,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 232–234, Mar. 2007. [3] C.-F. Liao and S.-I. Liu, “A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 329–339, Feb. 2007. [4] M. T. Reiha and J. R. Long, “A 1.2 V reactive-feedback 3.1–10.6 GHz low-noise ampli?er in 0.13-m CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1023–1033, May 2007. [5] Y.-J. Wang and A. Hajimiri, “A compact low-noise weighted distributed ampli?er in CMOS,” IEEE Int. Solid-State Circuits Conf. Tech. Dig., pp. 220–221, 2009. [6] J.-H. Lee, C.-C. Chen, H.-Y. Yang, and Y.-S. Lin, “A 2.5-dB NF 3.1–10.6-GHz CMOS UWB LNA with small group-delay-variation,” in Proc. IEEE RFIC Symp., 2008, pp. 501–504. [7] F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Wide-band CMOS low-noise ampli?er exploiting thermal noise canceling,” IEEE J. SolidState Circuits, vol. 39, no. 2, pp. 275–282, Feb. 2004. [8] S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts, and B. Nauta, “An inductorless wideband balun-LNA in 65 nm CMOS with balanced output,” in Proc. 33rd Eur. Solid-State Circuits Conf., Munich, Germany, Sep. 2007, pp. 364–367. [9] Q. Li and Y. P. Zhang, “A 1.5-V 2–9.6-GHz inductorless low-noise ampli?er in 0.13-m CMOS,” IEEE Trans. Microw. Theory Tech, vol. 55, no. 10, pp. 2015–2023, Oct. 2007. [10] J.-H. C. Zhan and S. Taylor, “A 5 GHz resistive-feedback CMOS LNA for low-cost multi-standard application,” IEEE Int. Solid-State Circuits Conf. Tech. Dig., pp. 200–201, 2006.
[11] B. G. Perumana, J.-H. C. Zhan, S. S. Taylor, B. R. Carlton, and J. Laskar, “Resistive-feedback CMOS low-noise ampli?ers for multiband applications,” IEEE Trans. Microw. Theory Tech, vol. 56, no. 5, pp. 1218–1225, May 2008. [12] J. Borremans, P. Wambacq, C. Soens, Y. Rolain, and M. Kuijk, “Low-area active-feedback low-noise ampli?er design in scaled digital CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2422–2433, Nov. 2008. [13] D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise ampli?er,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745–759, May 1997. [14] T. Chang, J. Chen, L. A. Rigge, and J. Lin, “ESD-protected wideband CMOS LNAs using modi?ed resistive feedback techniques with chip-on-board packaging,” IEEE Trans. Microw. Theory Tech, vol. 56, no. 5, pp. 1817–1826, Aug. 2008. [15] P. R. Gray, P. Hurst, S. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th ed. New York: Wiley, 2001. [16] H. Zhang, X. Fan, and E. S. Sinencio, “A low-power linearized ultrawideband LNA design technique,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 320–330, Feb. 2009. [17] H.-K. Chen, D.-C. Chang, Y.-Z. Juang, and S.-S. Lu, “A compact wideband CMOS low-noise ampli?er using shunt resistive-feedback and series inductive-peaking techniques,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 616–618, Aug. 2007. Po-Yu Chang was born in Changhua, Taiwan, in 1983. He received the B.S. degrees in engineering and system science and electrical engineering (double major) and M.S. degree in electrical engineering from National Tsing Hua University, Hsinchu, Taiwan, in 2006 and 2009, respectively. He is currently serving as a Corporal in the R.O.C. Army. His research included CMOS RF and analog integrated circuits design.
Shawn S. H. Hsu (M’04) was born in Tainan, Taiwan. He received the B.S. degree from National Tsing Hua University, Hsinchu, Taiwan, in 1992, and the M.S. degree in electrical engineering and computer science and Ph.D. degree from The University of Michigan at Ann Arbor, in 1997 and 2003, respectively. In 1997, he joined the III–V Integrated Devices and Circuits Group, The University of Michigan at Ann Arbor, as a Research Assistant. He is currently an Associate Professor with the Institute of Electronics Engineering, National Tsing Hua University. His current research interests include the design of monolithic microwave integrated circuits (MMICs) and RFICs using Si/III–V-based devices for low-noise, high-linearity, and high-ef?ciency system-on-chip (SOC) applications. He is also involved with the design and modeling of high-frequency transistors and interconnects. Prof. Hsu has served as a Technical Program Committee member of the SSDM (2008-present) and A-SSCC (2008-present). He was the recipient of the Junior Faculty Research Award of National Tsing Hua University in 2007 and the Outstanding Young Electrical Engineer Award of the Chinese Institute of Electrical Engineering in 2009.

中国姓氏英文翻译大全S-Z

A: 艾--Ai 安--Ann/An 敖--Ao B: 巴--Pa 白--Pai 包/鲍--Paul/Pao 班--Pan 贝--Pei 毕--Pih 卞--Bein 卜/薄--Po/Pu 步--Poo 百里--Pai-li C: 蔡/柴--Tsia/Choi/Tsai 曹/晁/巢--Chao/Chiao/Tsao 岑--Cheng 崔--Tsui 查--Cha 常--Chiong 车--Che 陈--Chen/Chan/Tan 成/程--Cheng 池--Chi 褚/楚--Chu 淳于--Chwen-yu D: 戴/代--Day/Tai 邓--Teng/Tang/Tung 狄--Ti 刁--Tiao 丁--Ting/T 董/东--Tung/Tong 窦--Tou 杜--To/Du/Too 段--Tuan 端木--Duan-mu 东郭--Tung-kuo 东方--Tung-fang E: F:

范/樊--Fan/Van 房/方--Fang 费--Fei 冯/凤/封--Fung/Fong 符/傅--Fu/Foo G: 盖--Kai 甘--Kan 高/郜--Gao/Kao 葛--Keh 耿--Keng 弓/宫/龚/恭--Kung 勾--Kou 古/谷/顾--Ku/Koo 桂--Kwei 管/关--Kuan/Kwan 郭/国--Kwok/Kuo 公孙--Kung-sun 公羊--Kung-yang 公冶--Kung-yeh 谷梁--Ku-liang H: 海--Hay 韩--Hon/Han 杭--Hang 郝--Hoa/Howe 何/贺--Ho 桓--Won 侯--Hou 洪--Hung 胡/扈--Hu/Hoo 花/华--Hua 宦--Huan 黄--Wong/Hwang 霍--Huo 皇甫--Hwang-fu 呼延--Hu-yen I: J: 纪/翼/季/吉/嵇/汲/籍/姬--Chi 居--Chu 贾--Chia 翦/简--Jen/Jane/Chieh 蒋/姜/江/--Chiang/Kwong 焦--Chiao 金/靳--Jin/King 景/荆--King/Ching

图像处理中值滤波器中英文对照外文翻译文献

中英文资料对照外文翻译 一、英文原文 A NEW CONTENT BASED MEDIAN FILTER ABSTRACT In this paper the hardware implementation of a contentbased median filter suitabl e for real-time impulse noise suppression is presented. The function of the proposed ci rcuitry is adaptive; it detects the existence of impulse noise in an image neighborhood and applies the median filter operator only when necessary. In this way, the blurring o f the imagein process is avoided and the integrity of edge and detail information is pre served. The proposed digital hardware structure is capable of processing gray-scale im ages of 8-bit resolution and is fully pipelined, whereas parallel processing is used to m inimize computational time. The architecturepresented was implemented in FPGA an d it can be used in industrial imaging applications, where fast processing is of the utm ost importance. The typical system clock frequency is 55 MHz. 1. INTRODUCTION Two applications of great importance in the area of image processing are noise filtering and image enhancement [1].These tasks are an essential part of any image pro cessor,whether the final image is utilized for visual interpretation or for automatic an alysis. The aim of noise filtering is to eliminate noise and its effects on the original im age, while corrupting the image as little as possible. To this end, nonlinear techniques (like the median and, in general, order statistics filters) have been found to provide mo re satisfactory results in comparison to linear methods. Impulse noise exists in many p ractical applications and can be generated by various sources, including a number of man made phenomena, such as unprotected switches, industrial machines and car ign ition systems. Images are often corrupted by impulse noise due to a noisy sensor or ch annel transmission errors. The most common method used for impulse noise suppressi on n forgray-scale and color images is the median filter (MF) [2].The basic drawback o f the application of the MF is the blurringof the image in process. In the general case,t he filter is applied uniformly across an image, modifying pixels that arenot contamina ted by noise. In this way, the effective elimination of impulse noise is often at the exp ense of an overalldegradation of the image and blurred or distorted features[3].In this paper an intelligent hardware structure of a content based median filter (CBMF) suita ble for impulse noise suppression is presented. The function of the proposed circuit is to detect the existence of noise in the image window and apply the corresponding MF

中国姓氏英语翻译大全

中国姓氏英语翻译大全 A: 艾--Ai 安--Ann/An 敖--Ao B: 巴--Pa 白--Pai 包/鲍--Paul/Pao 班--Pan 贝--Pei 毕--Pih 卞--Bein 卜/薄--Po/Pu 步--Poo 百里--Pai-li C: 蔡/柴--Tsia/Choi/Tsai 曹/晁/巢--Chao/Chiao/Tsao 岑--Cheng 崔--Tsui 查--Cha

常--Chiong 车--Che 陈--Chen/Chan/Tan 成/程--Cheng 池--Chi 褚/楚--Chu 淳于--Chwen-yu D: 戴/代--Day/Tai 邓--Teng/Tang/Tung 狄--Ti 刁--Tiao 丁--Ting/T 董/东--Tung/Tong 窦--Tou 杜--To/Du/Too 段--Tuan 端木--Duan-mu 东郭--Tung-kuo 东方--Tung-fang E: F:

范/樊--Fan/Van 房/方--Fang 费--Fei 冯/凤/封--Fung/Fong 符/傅--Fu/Foo G: 盖--Kai 甘--Kan 高/郜--Gao/Kao 葛--Keh 耿--Keng 弓/宫/龚/恭--Kung 勾--Kou 古/谷/顾--Ku/Koo 桂--Kwei 管/关--Kuan/Kwan 郭/国--Kwok/Kuo 公孙--Kung-sun 公羊--Kung-yang 公冶--Kung-yeh 谷梁--Ku-liang H:

韩--Hon/Han 杭--Hang 郝--Hoa/Howe 何/贺--Ho 桓--Won 侯--Hou 洪--Hung 胡/扈--Hu/Hoo 花/华--Hua 宦--Huan 黄--Wong/Hwang 霍--Huo 皇甫--Hwang-fu 呼延--Hu-yen I: J: 纪/翼/季/吉/嵇/汲/籍/姬--Chi 居--Chu 贾--Chia 翦/简--Jen/Jane/Chieh 蒋/姜/江/--Chiang/Kwong

图像处理外文翻译 (2)

附录一英文原文 Illustrator software and Photoshop software difference Photoshop and Illustrator is by Adobe product of our company, but as everyone more familiar Photoshop software, set scanning images, editing modification, image production, advertising creative, image input and output in one of the image processing software, favored by the vast number of graphic design personnel and computer art lovers alike. Photoshop expertise in image processing, and not graphics creation. Its application field, also very extensive, images, graphics, text, video, publishing various aspects have involved. Look from the function, Photoshop can be divided into image editing, image synthesis, school tonal color and special effects production parts. Image editing is image processing based on the image, can do all kinds of transform such as amplifier, reducing, rotation, lean, mirror, clairvoyant, etc. Also can copy, remove stain, repair damaged image, to modify etc. This in wedding photography, portrait processing production is very useful, and remove the part of the portrait, not satisfied with beautification processing, get let a person very satisfactory results. Image synthesis is will a few image through layer operation, tools application of intact, transmit definite synthesis of meaning images, which is a sure way of fine arts design. Photoshop provide drawing tools let foreign image and creative good fusion, the synthesis of possible make the image is perfect. School colour in photoshop with power is one of the functions of deep, the image can be quickly on the color rendition, color slants adjustment and correction, also can be in different colors to switch to meet in different areas such as web image design, printing and multimedia application. Special effects production in photoshop mainly by filter, passage of comprehensive application tools and finish. Including image effects of creative and special effects words such as paintings, making relief, gypsum paintings, drawings, etc commonly used traditional arts skills can be completed by photoshop effects. And all sorts of effects of production are

库卡工业机器人运动指令入门知识学员必备)

库卡工业机器人运动指令的入门知识问?学完了KUKA机器人的运动指令后,可以了解到哪些? 答(1)通过对机器人几种基本运动指令的学习,能够熟练掌握机器人各种轨迹运动的相关编程操作 (2)通过学习PTP运动指令的添加方法,能够掌握机器人的简单编程 机器人的运动方式: 机器人在程序控制下的运动要求编制一个运动指令,有不同的运动方式供运动指令的编辑使用,通过制定的运动方式和运动指令,机器人才会知道如何进行运动,机器人的运动方式有以下几种: (1)按轴坐标的运动(PTP:Point-toPoint,即点到点) (2)沿轨迹的运动:LIN直线运动和CIRC圆周运动 (3)样条运动:SPLINE运动 点到点运动 PTP运动是机器人沿最快的轨道将TCP从起始点引至目标点,这个移动路线不一定是直线,因为机器人轴进行回转运动,所以曲线轨道比直线轨道运动更快。此轨迹无法精确预知,所以在调试及试运行时,应该在阻挡物体附近降低速度来测试机器人的移动特性。线性运动

线性运动是机器人沿一条直线以定义的速度将TCP引至目标点。在线性移动过程中,机器人转轴之间进行配合,是工具或工件参照点沿着一条通往目标点的直线移动,在这个过程中,工具本身的取向按照程序设定的取向变化。 圆周运动 圆周运动是机器人沿圆形轨道以定义的速度将TCP移动至目标点。圆形轨道是通过起点、辅助点和目标点定义的,起始点是上一条运动指令以精确定位方式抵达的目标点,辅助点是圆周所经历的中间点。在机器人移动过程中,工具尖端取向的变化顺应与持续的移动轨迹。 样条运动 样条运动是一种尤其适用于复杂曲线轨迹的运动方式,这种轨迹原则上也可以通过LIN 运动和CIRC运动生成,但是相比下样条运动更具有优势。 创建以优化节拍时间的运动(轴运动) 1?PTP运动 PTP运动方式是时间最快,也是最优化的移动方式。在KPL程序中,机器人的第一个指令必须是PTP或SPTP,因为机器人控制系统仅在PTP或SPTP运动时才会考虑编程设置的状态和转角方向值,以便定义一个唯一的起始位置。 2?轨迹逼近 为了加速运动过程,控制器可以CONT标示的运动指令进行轨迹逼近,轨迹逼近意味着将不精确到达点坐标,只是逼近点坐标,事先便离开精确保持轮廓的轨迹。

【优质文档】技术总监任命书-word范文 (6页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 技术总监任命书 篇一:总监任命书 总监理工程师任命通知书 GD220201□0□1 项目监理机构印章使用授权书 GD220202□0□1 项目监理机构设置通知书 GD220203□0□1 注:本页面可增加页数。 注:本页面可增加页数。 篇二:任命书范本 .具体格式可以根据公司的具体情况自行制定。 2.但是,任命书必须包含以下内容:任命者、被任命者、任命期限(起止日期)、任命职务、任命日期、任命授权者的签名、任命单位的公章。 3.只要具备了以上内容,格式不拘。 4.例如:经董事会研究决定,兹任命赵三先生为 **公司财务总监职务,任职期限自 201X 年2月10日至201X年 2月9日。 **公司(公章)法定代表人签字 201X年 2 月 8日 人事任命书 为适应新形势下公司经营发展需要,经公司管理层会议决议,决定对以下同志进行新的人事任命,现予以公布:

任命_______同志为事业部总经理,主持事业部的日常工作; 任命_______同志为事业部副总经理,负债协助总经理完整任务。 任命_______同志为人事部总经理,主持人事部的日常工作; 任命_______同志为人力资源部经理,主持该部门的日常工作; 以上任命决定自发布之日起即开始执行。 总经理: (印章) 年月日 任命书 鉴于xx在x公司公司表现突出,通过公司xx考核……兹任命XX人xx年xx月xx日到xx年xx月xx日为xx公司xx部门xx职务。从xx时候起开始执行。 任命单位:公章 时间:x年x月x日 ×××有限公司 任命书 为健全管理架构,增强管理职能,完善管理制度,经考察研究,兹任命以下人员为本公司各职能部门经理,自×年×月×日起执行(有关其各自职权范围及所辖部门的具体职责划分另附): 1.任命××× 为总经理办公室副主任; 2.任命××× 为财务部副经理; 3.任命××× 为人事部经理; 4.任命××× 为技术部经理; 5.任命××× 为企划部经理; 6.总经理××× 兼任营销部经理; 7.副总经理××× 兼任生产部经理;

双语:中国姓氏英文翻译对照大合集

[ ]

步Poo 百里Pai-li C: 蔡/柴Tsia/Choi/Tsai 曹/晁/巢Chao/Chiao/Tsao 岑Cheng 崔Tsui 查Cha 常Chiong 车Che 陈Chen/Chan/Tan 成/程Cheng 池Chi 褚/楚Chu 淳于Chwen-yu

D: 戴/代Day/Tai 邓Teng/Tang/Tung 狄Ti 刁Tiao 丁Ting/T 董/东Tung/Tong 窦Tou 杜To/Du/Too 段Tuan 端木Duan-mu 东郭Tung-kuo 东方Tung-fang F: 范/樊Fan/Van

房/方Fang 费Fei 冯/凤/封Fung/Fong 符/傅Fu/Foo G: 盖Kai 甘Kan 高/郜Gao/Kao 葛Keh 耿Keng 弓/宫/龚/恭Kung 勾Kou 古/谷/顾Ku/Koo 桂Kwei 管/关Kuan/Kwan

郭/国Kwok/Kuo 公孙Kung-sun 公羊Kung-yang 公冶Kung-yeh 谷梁Ku-liang H: 海Hay 韩Hon/Han 杭Hang 郝Hoa/Howe 何/贺Ho 桓Won 侯Hou 洪Hung 胡/扈Hu/Hoo

花/华Hua 宦Huan 黄Wong/Hwang 霍Huo 皇甫Hwang-fu 呼延Hu-yen J: 纪/翼/季/吉/嵇/汲/籍/姬Chi 居Chu 贾Chia 翦/简Jen/Jane/Chieh 蒋/姜/江/ Chiang/Kwong 焦Chiao 金/靳Jin/King 景/荆King/Ching

图像处理中常用英文词解释

Algebraic operation 代数运算一种图像处理运算,包括两幅图像对应像素的和、差、积、商。 Aliasing 走样(混叠)当图像像素间距和图像细节相比太大时产生的一种人工痕迹。Arc 弧图的一部分;表示一曲线一段的相连的像素集合。 Binary image 二值图像只有两级灰度的数字图像(通常为0和1,黑和白) Blur 模糊由于散焦、低通滤波、摄像机运动等引起的图像清晰度的下降。 Border 边框一副图像的首、末行或列。 Boundary chain code 边界链码定义一个物体边界的方向序列。 Boundary pixel 边界像素至少和一个背景像素相邻接的内部像素(比较:外部像素、内部像素) Boundary tracking 边界跟踪一种图像分割技术,通过沿弧从一个像素顺序探索到下一个像素将弧检测出。 Brightness 亮度和图像一个点相关的值,表示从该点的物体发射或放射的光的量。 Change detection 变化检测通过相减等操作将两幅匹准图像的像素加以比较从而检测出其中物体差别的技术。 Class 类见模或类 Closed curve 封闭曲线一条首尾点处于同一位置的曲线。 Cluster 聚类、集群在空间(如在特征空间)中位置接近的点的集合。 Cluster analysis 聚类分析在空间中对聚类的检测,度量和描述。 Concave 凹的物体是凹的是指至少存在两个物体内部的点,其连线不能完全包含在物体内部(反义词为凸) Connected 连通的 Contour encoding 轮廓编码对具有均匀灰度的区域,只将其边界进行编码的一种图像压缩技术。 Contrast 对比度物体平均亮度(或灰度)与其周围背景的差别程度 Contrast stretch 对比度扩展一种线性的灰度变换 Convex 凸的物体是凸的是指连接物体内部任意两点的直线均落在物体内部。Convolution 卷积一种将两个函数组合成第三个函数的运算,卷积刻画了线性移不变系统的运算。 Corrvolution kernel 卷积核1,用于数字图像卷积滤波的二维数字阵列,2,与图像或信号卷积的函数。 Curve 曲线1,空间的一条连续路径,2 表示一路径的像素集合(见弧、封闭曲线)。 Deblurring 去模糊1一种降低图像模糊,锐化图像细节的运算。2 消除或降低图像的模糊,通常是图像复原或重构的一个步骤。 Decision rule 决策规则在模式识别中,用以将图像中物体赋以一定量的规则或算法,这种赋值是以对物体特征度量为基础的。 Digital image 数字图像 1 表示景物图像的整数阵列,2 一个二维或更高维的采样并量化的函数,它由相同维数的连续图像产生,3 在矩形(或其他)网络上采样一连续函数,并才采样点上将值量化后的阵列。 Digital image processing 数字图像处理对图像的数字化处理;由计算机对图片信息进

库卡工业机器人运动指令入门知识 学员必备

库卡工业机器人运动指令的入门知识 问?学完了的运动指令后,可以了解到哪些? 答(1)通过对机器人几种基本运动指令的学习,能够熟练掌握机器人各种轨迹运动的相关编程操作 (2)通过学习PTP运动指令的添加方法,能够掌握机器人的简单编程 机器人的运动方式: 机器人在程序控制下的运动要求编制一个运动指令,有不同的运动方式供运动指令的编辑使用,通过制定的运动方式和运动指令,机器人才会知道如何进行运动,机器人的运动方式有以下几种: (1)按轴坐标的运动(PTP:Point-toPoint,即点到点) (2)沿轨迹的运动:LIN直线运动和CIRC圆周运动 (3)样条运动:SPLINE运动 点到点运动

PTP运动是机器人沿最快的轨道将TCP从起始点引至目标点,这个移动路线不一定是直线,因为机器人轴进行回转运动,所以曲线轨道比直线轨道运动更快。此轨迹无法精确预知,所以在调试及试运行时,应该在阻挡物体附近降低速度来测试机器人的移动特性。 线性运动

线性运动是机器人沿一条直线以定义的速度将TCP引至目标点。在线性移动过程中,机器人转轴之间进行配合,是工具或工件参照点沿着一条通往目标点的直线移动,在这个过程中,工具本身的取向按照程序设定的取向变化。 圆周运动 圆周运动是机器人沿圆形轨道以定义的速度将TCP移动至目标点。圆形轨道是通过起点、辅助点和目标点定义的,起始点是上一条运动指令以精确定位方式抵达的目标点,辅助点是圆周所经历的中间点。在机器人移动过程中,工具尖端取向的变化顺应与持续的移动轨迹。 样条运动

样条运动是一种尤其适用于复杂曲线轨迹的运动方式,这种轨迹原则上也可以通过LIN运动和CIRC运动生成,但是相比下样条运动更具有优势。 创建以优化节拍时间的运动(轴运动) 1?PTP运动 PTP运动方式是时间最快,也是最优化的移动方式。在KPL程序中,机器人的第一个指令必须是PTP或SPTP,因为机器人控制系统仅在PTP或SPTP运动时才会考虑编程设置的状态和转角方向值,以便定义一个唯一的起始位置。 2?轨迹逼近 为了加速运动过程,控制器可以CONT标示的运动指令进行轨迹逼近,轨迹逼近意味着将不精确到达点坐标,只是逼近点坐标,事先便离开精确保持轮廓的轨迹。 PTP运动的轨迹逼近是不可预见的,相比较点的精确暂停,轨迹逼近具有如下的优势: (1)由于这些点之间不再需要制动和加速,所以运动系统受到的磨损减少。(2)节拍时间得以优化,程序可以更快的运行。 创建PTP运动的操作步骤 (1)创建PTP运动的前提条件是机器人的运动方式已经设置为T1运行方式,并且已经选定机器人程序。

营销总监任命书

营销总监任命书 营销总监任命书如何写??以下是小编收集的关于《营销总监任命书》的范文,仅供参考! 谭荣生 先生 兹任命您为本公司 营销事业部销售总监 直邮广告公司营销事业部 销售总监 ,是公司营销部门的关键岗位,对实现公司销售业绩目标、销 售团队的建设和管理负有重要责任,为此您应该清楚以下内容: 一、营销管理 1、清楚了解、积极传播并确保部门每位成员也清楚了解公司的企业文化及发展理念 2、参与制定公司年度营销计划。 3、清楚了解,并致力于达成公司销售目标及本销售团

队每个月的销售目标 4、清楚了解每位小组成员的每个客户情况及客户跟踪、业务进展情况。 5、将工作目标传达给部门每个成员,并掌握团队每组、每人、每日、每周、每月的目标达成情况,。 6、督促并主持部门早会、 每日总结会对各组销售工作及客户进行分析, 并提出具体的跟踪策略和计划。 7、对自己的工作及每个成员的工作及时总结,于每月2日前,向营销事业部总经理递交部门上月工作总结。 8、传达并督促执行公司的各项管理制度,保证公司营销政策及策略、促销措施的坚决执行。 二、团队管理 1、工作纪律及考勤,并每月对销售人员工作进行考核和评价,完成绩效考核,提交财务部。 2、培训部门成员产品知识,销售技巧及其他有关之工作知识和必备技能。并制定切实可行的部门培训计划(包含在每月工作总结中)。

3、有义务帮助成员,使部门新成员迅速了解公司销售政策及运作程序,并监督执行。 4、清楚理解公司有关员工管理条例及向员工解释有关公司行政、业务、提成奖励及各项福利制度。 5、关心部门成员的生活,保持团队的工作激情。 三、客户及销售管理 1、指导部门成员从事销售工作。 2、有义务帮助每位成员制定客户开发及跟进计划,合同洽谈及跟进执行,回收应收款。 3、帮助团队成员有效处理客户售后服务及投诉。 4、建立顾客与公司良好关系,维护公司良好的形象和声誉。 5、负责公司促销方案的解释和执行; 为完成以上工作职责,您可以行使: 1、销售人员的招聘,调动,纪律处分,离职,晋升等的建议权。 2、按公司规定行使处罚权(如开会迟到、不按时按规定提交作业报表等)

中国姓氏英语翻译大全

中国姓氏英语翻译大全 A: 艾--Ai 安--Ann/An 敖--Ao B: 巴--Pa 白--Pai 包/鲍--Paul/Pao 班--Pan 贝--Pei 毕--Pih 卞--Bein 卜/薄--Po/Pu 步--Poo 百里--Pai-li C: 蔡/柴--Tsia/Choi/Tsai 曹/晁/巢--Chao/Chiao/Tsao 岑--Cheng 崔--Tsui 查--Cha 常--Chiong 车--Che 陈--Chen/Chan/Tan 成/程--Cheng 池--Chi 褚/楚--Chu 淳于--Chwen-yu D: 戴/代--Day/Tai 邓--Teng/Tang/Tung 狄--Ti 刁--Tiao 丁--Ting/T 董/东--Tung/Tong 窦--Tou 杜--To/Du/Too 段--Tuan 端木--Duan-mu 东郭--Tung-kuo 东方--Tung-fang E: F: 范/樊--Fan/Van 房/方--Fang 费--Fei 冯/凤/封--Fung/Fong 符/傅--Fu/Foo G: 盖--Kai 甘--Kan 高/郜--Gao/Kao 葛--Keh 耿--Keng 弓/宫/龚/恭--Kung 勾--Kou 古/谷/顾--Ku/Koo 桂--Kwei 管/关--Kuan/Kwan 郭/国--Kwok/Kuo 公孙--Kung-sun 公羊--Kung-yang 公冶--Kung-yeh 谷梁--Ku-liang H: 海--Hay 韩--Hon/Han 杭--Hang 郝--Hoa/Howe 何/贺--Ho 桓--Won 侯--Hou 洪--Hung 胡/扈--Hu/Hoo 花/华--Hua 宦--Huan 黄--Wong/Hwang 霍--Huo 皇甫--Hwang-fu 呼延--Hu-yen I: J: 纪/翼/季/吉/嵇/汲/籍/姬--Chi

项目总监任命书

EAY3全新A规10.6寸拆装屏 项目总监任命书 编号:BL20140723-A 签订地点:深圳市 甲方:深圳市高通捷实业有限公司 地址:深圳市前海深港合作区前海湾1号A栋201室 邮箱: 1372080116@https://www.doczj.com/doc/d63167977.html, 乙方: 常用地址: 身份证号: 鉴于甲方为专业的商业服务公司,为客户或者合作伙伴提供商业模式设计,投融资,代理销售和代理采购等综合性的商业服务;乙方在光电领域有丰富的经验。甲方任命乙方为甲方BL20140723-A项目总监。 一、BL20140723-A项目标的:EAY3全新10.6寸拆装屏的产品整合与销售。 二、项目保证金:乙方向甲方支付人民币元整,作为项目保证金。 三、项目分红和亏损责任:乙方在甲方协助下,在甲方的公司框架内,负责项目团队的组建和日常的 管理营运,代表项目团队享有项目净利润 %的分配权,并在亏损时,承担 %项目亏损责任,向公司交纳相应比例的补偿金。 四、净利润的计算: 1、净利润=销售收入-采购成本-平台费用-资金成本-销售费用-税金 2、销售收入:以实际收到的客户回款为准。 3、采购成本:以实际支付的采购货款为准。 4、平台费用:0.3%*销售收入 5、资金成本:0.7%/30*采购成本*天数 6、销售费用(如有请打“√”,或在“其他”后面标注): 运费差旅费接待费 客户奖励金过节礼品费用产品说明书 办公费用销售人员工资销售人员提成 其他: 7、税金:依国家法规实际缴纳为准。 五、诚信条款:乙方不得以任何形式从项目关联方收取回扣或者佣金。 六、保密条款:未经甲方事前书面同意,乙方不得将项目资料泄露或交付予任何第三人。 七、违约责任:乙方违反诚信条款和保密条款的,乙方应赔偿甲方所受相应损失与所失相应利益,且甲方可随时解除乙方职务。 甲方(签章):深圳市高通捷实业有限公司乙方(签章): 代表人:

图像处理英文翻译

数字图像处理英文翻译 (Matlab帮助信息简介) xxxxxxxxx xxx Introduction MATLAB is a high-level technical computing language and interactive environment for algorithm development, data visualization, data analysis, and numeric computation. Using the MATLAB product, you can solve technical computing problems faster than with traditional programming languages, such as C, C++, and Fortran. You can use MATLAB in a wide range of applications, including signal and image processing, communications, control design, test and measurement, financial modeling and analysis, and computational biology. Add-on toolboxes (collections of special-purpose MATLAB functions, available separately) extend the MATLAB environment to solve particular classes of problems in these application areas. The MATLAB system consists of these main parts: Desktop Tools and Development Environment This part of MATLAB is the set of tools and facilities that help you use and become more productive with MATLAB functions and files. Many of these tools are graphical user interfaces. It includes: the

中国姓氏英文翻译大全

中国姓氏英文翻译大全 A: 艾--Ai 安--Ann/An 敖--Ao B: 巴--Pa 白--Pai 包/鲍--Paul/Pao 班--Pan 贝--Pei 毕--Pih 卞--Bein 卜/薄--Po/Pu 步--Poo 百里--Pai-li C: 蔡/柴--Tsia/Choi/Tsai 曹/晁/巢--Chao/Chiao/Tsao 岑--Cheng 崔--Tsui 查--Cha 常--Chiong 车--Che 陈--Chen/Chan/Tan 成/程--Cheng 池--Chi 褚/楚--Chu 淳于--Chwen-yu D: 戴/代--Day/Tai 邓--Teng/Tang/Tung 狄--Ti 刁--Tiao 丁 --Ting/T 董/东--Tung/Tong 窦--Tou 杜--To/Du/Too 段--Tuan 端木--Duan-mu 东郭--Tung-kuo 东方--Tung-fang E: F: 范/樊--Fan/Van 房/方--Fang 费--Fei 冯/凤/封--Fung/Fong 符/傅 --Fu/Foo G: 盖--Kai 甘--Kan 高/郜--Gao/Kao 葛--Keh 耿--Keng 弓/宫/龚/恭--Kung 勾--Kou 古/谷/顾--Ku/Koo 桂--Kwei 管/关--Kuan/Kwan 郭/国--Kwok/Kuo 公孙--Kung-sun 公羊 --Kung-yang 公冶--Kung-yeh 谷梁--Ku-liang H: 海--Hay 韩--Hon/Han 杭--Hang 郝--Hoa/Howe 何/贺--Ho 桓--Won 侯--Hou 洪--Hung 胡/扈--Hu/Hoo 花/华--Hua 宦--Huan 黄--Wong/Hwang 霍--Huo 皇甫--Hwang-fu 呼延--Hu-yen I: J: 纪/翼/季/吉/嵇/汲/籍/姬--Chi 居--Chu 贾--Chia 翦/简 --Jen/Jane/Chieh 蒋/姜/江/--Chiang/Kwong 焦--Chiao 金/靳--Jin/King 景/荆 --King/Ching 讦--Gan K: 阚--Kan 康--Kang 柯--Kor/Ko 孔--Kong/Kung 寇--Ker 蒯--Kuai 匡--Kuang L: 赖--Lai 蓝--Lan 郎--Long 劳--Lao 乐--Loh 雷--Rae/Ray/Lei 冷--Leng 黎/郦/利/李--Lee/Li/Lai/Li 连--Lien 廖--Liu/Liao 梁--Leung/Liang 林/蔺--Lim/Lin

(完整版)KUKA简单操作说明书

KUKA简单操作说明书 一、KUKA控制面板介绍 1、示教背面 在示教盒的背面有三个白色和一个绿色的按钮。三个白色按钮是使能开关(伺服上电),用在T1和T2模式下。不按或者按死此开关,伺服下电,机器人不能动作;按在中间档时,伺服上电,机器人可以运动。绿色按钮是启动按钮。 Space Mouse为空间鼠标又称6D鼠标。 2、示教盒正面

急停按钮: 这个按钮用于紧急情况时停止机器人。一旦这个按钮被按下,机器人的伺服电下,机器人立即停止。 需要运动机器人时,首先要解除急停状态,旋转此按钮可以抬起它并解除急停状态,然后按功能键“确认(Ackn.)”,确认掉急停的报警信息才能运动机器人。 伺服上电: 这个按钮给机器人伺服上电。此按钮必须在没有急停报警、安全门关闭、机器人处于自动模式(本地自动、外部自动)的情况下才有用。 伺服下电: 这个按钮给机器人伺服上电。

模式选择开关: T1模式:手动运行机器人或机器人程序。在手动运行机器人或机器人程序时,最大速度都为250mm/s。 T2模式:手动运行机器人或机器人程序。在手动运行机器人时,最大速度为250mm/s。在手动运行机器人程序时,最大速度为程序中设定的速度。 本地自动:通过示教盒上的启动按钮可以使程序自动运行。 外部自动:必须通过外部给启动信号才能自动执行程序。 退出键: 可以退出状态窗口、菜单等。 窗口转换键: 可以在程序窗口、状态窗口、信息窗口之间进行焦点转换。当某窗口背景呈蓝色时,表示此窗口被选中,可以对这个窗口进行操作,屏幕下方的功能菜单也相应改变。 暂停键: 暂停正在运行的程序。按“向前运行”或“向后运行”重新启动程序。 向前运行键: 向前运行程序。在T1和T2模式,抬起此键程序停止运行,机器人停止。 向后运行键: 向后运行程序。仅在T1和T2模式时有用。 回车键: 确认输入或确认指令示教完成。 箭头键: 移动光标。

总监代表任命书(2014版)

总监代表任命书(2014版) 广州市财贸建设开发监理有限公司 GUANG ZHOU SHI CAI MAO JIAN SHE KAI FA JIAN LI LTD. 广州市荔湾路133号四至七楼电话:(总机) 81033189 81034957 传 真:81035818 总监理工程师代表任命书(附件) 任命监理工程师担任工程项目总监代表。担任本工程项目安全生产的直接责任人,担任消防安全的直接责任人,总监不在场时负责该工程项目监理部分工作。主要职责如下: 1、协助总监确定项目监理机构人员的分工和岗位职责,负责管理项目监理机构。 2、协助总监组织编制项目监理规划、项目监理实施细则;制定项目监理部安全生产工作计划,制定安全生产目标任务和重要措施;定期组织召开项目监理部安全生产工作会议;负责落实上级有关安全生产法规、制度和规定。 3、根据工程进展及监理工作情况向总监提出建议调配监理人员,检查监理人员的工作,对不称职的人员向总监提出建议进行调换。 4、组织召开监理例会。 5、组织审核总承包施工单位和分包单位的资格、安全生产许可证、三类人员、特种作业人员资格证书、平安卡办理、安全生产保证体系、安全生产(消防)责任制、各项规章制度、安全(消防)监管机构建立、人员配备、应急救援预案、消防演练、安全(消防)防护、文明施工措施费用使用计划等情况。

6、组织审核施工单位提交的施工组织设计、开工报告、复工申请、技术方案、进度计划等;审查施工单位编制的施工组织设计中的安全技术措施和危险性较大的分部分项工程安全专项施工方案是否符合工程建设强制性标准要求,对危险性较大分部分项工程按规定组织验收。 7、组织检查施工单位现场质量、安全生产管理体系的建立及运行情况。 、组织监理人员参加定期和专项工地安全检查、定期巡视检查危险性较大工程作业情况;督促施工单位建8 立重大危险源的登记、公示与监控。 9、协助总监组织审核施工单位的付款申请和审核竣工结算。 10、组织审查和处理工程变更。 11、协助总监调解建设单位与施工单位的合同争议,处理工程索赔。 12、协助总监组织验收分部工程,组织审查单位工程质量检验资料。 13、协助总监审查施工单位的竣工申请,参与工程竣工预验收,协助总监组织编写工程质量评估报告,参与工程竣工验收。 14、协助总监参与或配合工程质量安全事故的调查和处理。 15、定期检查监理日志,组织编写并签发监理月报、监理工作总结,组织整理监理文件资料。 广州市财贸建设开发监理有限公司(章) 项目总监理工程师(签名): (本人已完全清楚及明了上述《总监代表任命书》所列的责任及工作内容,并保证在工程项目监理过程中贯彻执行。) 项目总监工程师代表(签名): 年月日

相关主题
文本预览
相关文档 最新文档