当前位置:文档之家› 航空发动机结构练习题库(一)

航空发动机结构练习题库(一)

航空发动机结构练习题库(一)
航空发动机结构练习题库(一)

1.航空发动机研制和发展面临的特点不包括下列哪项()。

A.技术难度大

B.研制周期长

C.费用高

D.费用低

正确答案:D

试题解析:发动机研制开发耗费昂贵。

2.航空发动机设计要求包括()。

A.推重比低

B.耗油率高

C.维修性好

D.可操纵性差

正确答案:C

试题解析:航空发动机设计要求其推重比高、耗油率低、可操纵性好、维修性好。

3.下列哪种航空发动机不属于燃气涡轮发动机()。

A.活塞发动机

B.涡喷发动机

C.涡扇发动机

D.涡桨发动机

正确答案:A

试题解析:活塞发动机不属于燃气涡轮发动机,二者结构、原理不同。

4.燃气涡轮发动机的核心机由压气机、燃烧室和()组成。

A.进气道

B.涡轮

C.尾喷管

D.起落架

正确答案:B

试题解析:压气机、燃烧室和涡轮并称为核心机。

5.活塞发动机工作行程不包括()。

A.进气行程

B.压缩行程

C.膨胀行程

D.往返行程

正确答案:D

试题解析: 活塞发动机四个工作行程:进气、压缩、膨胀、排气。

6.燃气涡轮发动机的主要参数不包括下列哪项()。

A.推力

B.推重比

C.耗油率

D.造价

正确答案:D

试题解析:造价不是发动机性能参数。

7.对于现代涡扇发动机,常用()代表发动机推力。

A.低压涡轮出口总压与低压压气机进口总压之比

B.高压涡轮出口总压与压气机进口总压之比

C.高压涡轮出口总压与低压涡轮出口总压之比

D.低压涡轮出口总压与低压涡轮进口总压之比

正确答案:A

试题解析:低压涡轮出口总压与低压压气机进口总压之比用来表示涡扇发动机推力。

8.发动机的推进效率是()。

A.单位时间发动机产生的机械能与单位时间发动机燃油完全燃烧时放出的热量之比。

B.发动机的推力与动能之比。

C.发动机推进功率与单位时间流过发动机空气的动能增量之比。

D.推进功率与单位时间发动机加热量之比。

正确答案:C

试题解析:发动机的推进效率是发动机推进功率与单位时间流过发动机空气的动能增量之比。

9.航空燃气涡轮发动机是将()。

A.动能转变为热能的装置

B.热能转变为机械能的装置

C.动能转变为机械能的装置

D.势能转变为热能的装置

正确答案:B

试题解析:航空燃气涡轮发动机是将热能转变为机械能的装置。

10.航空燃气涡轮喷气发动机经济性的指标是()。

A.单位推力

B.燃油消耗率

C.涡轮前燃气总温

D.喷气速度

正确答案:B

试题解析:燃油消耗率是航空燃气涡轮喷气发动机经济性的指标。

11.气流马赫数()时,为超音速流动。

A.小于1

B.大于0

C.大于1

D.不等于1

正确答案:C

试题解析:气流马赫数大于1时,为超音速流动。

12.燃气涡轮喷气发动机产生推力的依据是()。

A.牛顿第二定律和牛顿第三定律

B.热力学第一定律和热力学第二定律

C.牛顿第一定律和付立叶定律

D.道尔顿定律和玻尔兹曼定律

正确答案:A

试题解析:燃气涡轮喷气发动机产生推力的依据是牛顿第二定律和牛顿第三定律。

13.燃气涡轮喷气发动机出口处的静温一定()大气温度。

A.低于

B.等于

C.高于

D.等于标准

正确答案:C

试题解析:燃气涡轮喷气发动机出口处的静温一定高于大气温度。

14.燃气涡轮喷气发动机的推力与流过发动机的空气流量之比称为()。

A.压力比

B.推重比

C.流量比

D.单位推力

正确答案:D

试题解析:燃气涡轮喷气发动机的推力与流过发动机的空气流量之比称为单位推力。

15.燃气涡轮喷气发动机的推重比()。

A.大于1

B.等于1

C.小于1

D.等于0.9

正确答案:A

试题解析:燃气涡轮喷气发动机的推重比大于1。

16.推进功率等于( )。

A.单位时间发动机产生的可用动能

B.单位时间发动机加热量

C.推力乘以飞行速度

D.单位时间发动机产生的机械能

正确答案:C

试题解析:推进功率等于推力乘以飞行速度。

17.涡轮喷气发动机的热效率是( )。

A.单位时间发动机产生的机械能与单位时间发动机燃油完全燃烧时放出的热量之比。

B.发动机的推力与动能之比。

C.发动机完成的推进功与可用动能之比。

D.推进功率与单位时间发动机燃油完全燃烧时放出的热量之比。

正确答案:C

试题解析:涡轮喷气发动机的热效率是发动机完成的推进功与可用动能之比。

18.涡轮喷气发动机的总效率等于发动机的热效率与推进效率相()。

A.乘

B.除

C.加

D.减

正确答案:A

试题解析:涡轮喷气发动机的总效率等于发动机的热效率与推进效率相乘。

19.涡轮喷气发动机的总效率是()。

A.单位时间发动机产生的机械能与单位时间发动机燃油完全燃烧时放出的热量之比。

B.发动机的推力与动能之比。

C.发动机完成的推进功与可用动能之比。

D.推进功率与单位时间发动机燃油完全燃烧时放出的热量之比。

正确答案:D

试题解析:涡轮喷气发动机的总效率是推进功率与单位时间发动机燃油完全燃烧时放出的热量之比。

20.影响燃气涡轮喷气发动机实际热效率的因素有()。

A.涡轮前燃气总温;发动机的增压比;压气机效率和发动机的重量

B.涡轮前燃气总温;发动机的增压比;压气机效率和涡轮效率

C.发动机的增压比;发动机的重量和长度

D.涡轮前燃气总温;发动机的重量和最大横截面积

正确答案:B

试题解析:涡轮前燃气总温、发动机的增压比、压气机效率和涡轮效率是影响燃气涡轮喷气发动机实际热效率的因素。

21.影响燃气涡轮喷气发动机推力的因素有()。

A.发动机的重量

B.低热值

C.进气流量

D.喷气方向

正确答案:C

试题解析:进气流量影响燃气涡轮喷气发动机推力。

22.影响涡轮喷气发动机进气密度的因素是()。

A.飞行路线

B.增压比

C.涡轮和压气机效率

D.飞行高度和外界温度

正确答案:D

试题解析:飞行高度和外界温度影响涡轮喷气发动机进气密度。

23.影响涡喷发动机燃油消耗率的因素有()。

A.推重比

B.压气机级数

C.涡轮的级数

D.燃烧室出口与进口总温之差

正确答案:D

试题解析:燃烧室出口与进口总温之差影响涡喷发动机燃油消耗率。

24.影响涡扇发动机推力的因素有()。

A.空气流量,单位推力和涵道比

B.油气比,单位推力和涵道比

C.压气机的级数和涡轮的级数

D.冲压比,流量函数和总压恢复系数

正确答案:A

试题解析:空气流量,单位推力和涵道比影响涡扇发动机推力。

25.在()发动机中排气流的速度和压力是影响所产生推力的主要因素。

A.涡轮喷气

B.涡轮螺旋桨

C.涡轮喷气和涡轮轴

D.涡轮轴

正确答案:A

试题解析:在涡喷发动机中排气流的速度和压力是影响所产生推力的主要因素。

26.WP5航空发动机属于()发动机。

A.第一代

B.第二代

C.第三代

D.第四代

正确答案:A

试题解析:WP5是我国早期第一代航空发动机。

27.航空动力装置组成不包括()。

A.航空发动机

B.燃油系统

C.滑油系统

D.起落架系统

正确答案:D

试题解析:起落架属于飞机结构不属于发动机系统组成部分。

28.我国歼8飞机的发动机属于()燃气涡轮发动机。

A.活塞

B.涡喷

C.涡扇

D.涡桨

正确答案:B

试题解析:歼8战机发动机为WP7,属于涡喷发动机。

29.我国歼轰7“飞豹”战斗机的发动机属于()燃气涡轮发动机。

A.活塞

B.涡喷

C.涡扇

D.涡桨

正确答案:C

试题解析:歼轰7战机发动机为涡扇9发动机。

30.美国F-16战机的发动机属于()燃气涡轮发动机。

A.活塞

B.涡喷

C.涡扇

D.涡桨

正确答案:C

试题解析:F-16发动机为F-100-PW-200涡扇发动机。

31.我国“直—10”直升机的发动机属于()燃气涡轮发动机。

A.涡轴

B.涡喷

C.涡扇

D.涡桨

正确答案:A

试题解析:目前直升机发动机基本采用涡轴发动机代替活塞发动机。

32.“安-70”运输机的发动机属于()燃气涡轮发动机。

A.桨扇

B.涡喷

C.涡扇

D.涡桨

正确答案:A

试题解析:安-70发动机采用桨扇发动机。

33.我国歼6战斗机装备的航空发动机是()型号。

A.WP5

B.WP6

C.WP8

D.WS9

正确答案:B

试题解析:WP6是装备在歼6战斗机上的航空发动机。

34.我国歼7战斗机装备的航空发动机是()型号。

A.WP5

B.WP6

C.WP7

D.WP8

正确答案:C

试题解析: WP7是装备在歼7战斗机上的航空发动机。

35.美国F-22飞机装备的F-119发动机属于()发动机。

A.涡扇

B.涡喷

C.涡桨

D.涡轴

正确答案:A

试题解析: F-119属于小涵道比加力涡扇发动机。

36.目前,涡扇发动机广泛应用于军、民航空领域,那么其涡扇发动机各自特点是()。

A.军用发动机涵道比大,民用发动机涵道比大

B.军用发动机涵道比小,民用发动机涵道比大

C.军用发动机涵道比大,民用发动机涵道比小

D.军用发动机涵道比小,民用发动机涵道比小

正确答案:B

试题解析: 军用发动机涵道比小,推重比高;民用发动机涵道比大,效率高,噪音低。

37.航空发动机中()用来提高进入发动机空气压力的。

A.进气道

B.压气机

C.燃烧室

D.尾喷管

正确答案:B

试题解析:压气机作用是提高进入发动机气体压力,供给发动机工作时所需压缩空气。

38.压气机按进气类型分为()、离心式和混合式三种类型。

A.轴流式

B.径向式

航空发动机原理与构造复习题

一、选择题 1.燃气涡轮发动机的核心机包括 C 。 A.压气机、燃烧室和加力燃室B.燃烧室、涡轮和加力燃室 C.压气机、燃烧室和涡轮D.燃烧室、加力燃室和喷管 2.在0~9截面划分法中,压气机出口截面是 B 。 A.1—1截面B.3—3截面C.4—4截面D.6—6截面 3.在0~9截面划分法中,燃烧室出口截面是。 C A.1—1截面B.3—3截面C.4—4截面D.6—6截面 4.发动机正常工作时,燃气涡轮发动机的涡轮是_____B____旋转的。 A.压气机带动B.燃气推动 C.电动机带动D.燃气涡轮起动机带动 5.气流在轴流式压气机基元级工作叶轮内流动,其_____C____。 A.相对速度增加,压力下降B.绝对速度增加,压力增加 C.相对速度降低,压力增加D.绝对速度下降,压力增加 6.气流在轴流式压气机基元级整流环内流动,其____C_____。 A.相对速度增加,压力下降B.绝对速度增加,压力增加 C.相对速度降低,压力增加D.绝对速度下降,压力增加 7.气流流过轴流式压气机,其____C_____。 A.压力下降,温度增加B.压力下降,温度下降 C.压力增加,温度上升D.压力增加,温度下降 8.轴流式压气机基元级工作叶轮叶片通道和整流环叶片通道的形状是____C_____。A.工作叶轮叶片通道是扩散形的,整流环叶片通道是收敛形的 B.工作叶轮叶片通道是收敛形的,整流环叶片通道是扩散形的 C.工作叶轮叶片通道是扩散形的,整流环叶片通道是扩散形的 D.工作叶轮叶片通道是收敛形的,整流环叶片通道是收敛形的 9.轴流式压气机基元级工作叶轮和整流环的安装顺序和转动情况是_____B____。A.工作叶轮在前,不转动;整流环在后,转动 B.工作叶轮在前,转动;整流环在后,不转动 C.整流环在前,不转动;工作叶轮在后,转动 D.整流环在前,转动;工作叶轮在后,不转动 10.轴流式压气机基元级工作叶轮和整流环的安装顺序和转动情况是_____B____。A.工作叶轮在前,不转动;整流环在后,转动 B.工作叶轮在前,转动;整流环在后,不转动 C.整流环在前,不转动;工作叶轮在后,转动 D.整流环在前,转动;工作叶轮在后,不转动 11.多级轴流式压气机由前向后,____A_____。 A.叶片长度逐渐减小,叶片数量逐渐增多 B.叶片长度逐渐减小,叶片数量逐渐减小 C.叶片长度逐渐增大,叶片数量逐渐增多 D.叶片长度逐渐增大,叶片数量逐渐减小 12.涡轮由导向器和工作叶轮等组成,它们的排列顺序和旋转情况是___A_____。A.导向器在前,不转动;工作叶轮在后,转动 B.导向器在前,转动;工作叶轮在后,不转动

航空发动机构造及强度复习题

航空发动机构造及强度复习 一、基本概念 1. 转子叶片的弯矩补偿 2. 转子的自位作用 3. 动不平衡与动不平衡度 4. 静不平衡与静不平衡度 5. 挠轴转子与刚轴转子 6. 转子叶片的静频与动频 7. 转子的临界转速8. 转子的同步正涡动与同步反涡动 9. 转子的同步正进动与同步反进动10. 持久条件疲劳极限 11. 尾流激振12. 恰当半径 13. 陀螺力矩14. 压气机叶片的安全系数 15. 轮盘的破裂转速16. 应力比 17. 动刚度18. 动波 19. 低循环疲劳20. 轮盘的局部安全系数与总安全系数 二、基本问题 1.航空燃气涡轮发动机有哪几种基本类型? 2.航空发动机工作叶片受到哪些负荷? 3.风扇叶片叶尖凸台的作用是什么? 4.航空燃气涡轮发动机中,两种基本类型发动机的优缺点有哪些? 5.列举整流叶片与机匣联接的三种基本方法。 6.压气机转子设计应遵循哪些基本原则? 7.压气机防喘在结构设计方面有哪些措施? 8.压气机转子有哪三种结构形式?各有何优缺点? 9.发动机转子轴向力减荷有哪三项措施? 10.叶片颤振的必要条件是什么?说明颤振与共振的区别。 11.疲劳破坏有哪些基本特征? 12.燕尾形榫头与枞树形榫头有哪些主要特点? 13.说明疲劳损伤的理论要点。 14.轮盘有几种振动形式,各举例画出一个振型图。 15.航空发动机燃烧室由哪些基本构件组成? 16.排除叶片共振故障应从哪几个方面考虑?举例说明各方面的具体措施。 17.什么是等温度盘,为什么采用等温度盘,其温度条件是什么? 18.涡轮相比的结构特点是什么? 19.涡轮部件冷却的目的及对冷却气的要求是什么?在涡轮部件上采用的冷却、散热、 隔热措施有哪些?

航空发动机结构分析思考题答案

《航空发动机结构分析》 课后思考题答案 第一章概论 1.航空燃气涡轮发动机有哪些基本类型?指出它们的共同点、区别和应用。 答: 2.涡喷、涡扇、军用涡扇分别是在何年代问世的? 答:涡喷二十世纪三十年代(1937年WU;1937年HeS3B); 涡扇 1960~1962 军用涡扇 1966~1967 3.简述涡轮风扇发动机的基本类型。 答:不带加力,带加力,分排,混排,高涵道比,低涵道比。 4.什么是涵道比?涡扇发动机如何按涵道比分类? 答:(一)B/T,外涵与内涵空气流量比; (二)高涵道比涡扇(GE90),低涵道比涡扇(Al-37fn) 5.按前后次序写出带加力的燃气涡轮发动机的主要部件。 答:压气机、燃烧室、涡轮、加力燃烧室、喷管。 6.从发动机结构剖面图上,可以得到哪些结构信息? 答: a)发动机类型 b)轴数 c)压气机级数 d)燃烧室类型 e)支点位置 f)支点类型 第二章典型发动机 1.根据总增压比、推重比、涡轮前燃气温度、耗油率、涵道比等重要性能指标,指出各代涡喷、涡扇、军用涡扇发动机的性能指 标。 答:涡喷表2.1 涡扇表2.3 军用涡扇表2.2 2.al-31f发动机的主要结构特点是什么?在该机上采用了哪些先进技术? 答:AL31-F结构特点:全钛进气机匣,23个导流叶片;钛合金风扇,高压压气机,转子级间电子束焊接;高压压气机三级可调静

子叶片九级环形燕尾榫头的工作叶片;环形燃烧室有28个双路离心式喷嘴,两个点火器,采用半导体电嘴;高压涡轮叶片不带冠,榫头处有减振器,低压涡轮叶片带冠;涡轮冷却系统采用了设置在外涵道中的空气-空气换热器,可使冷却空气降温125-210*c;加力燃烧室采用射流式点火方式,单晶体的涡轮工作叶片为此提供了强度保障;收敛-扩张型喷管由亚声速、超声速调节片及蜜蜂片各16式组成;排气方式为内、外涵道混合排气。 3.ALF502发动机是什么类型的发动机?它有哪些有点? 答:ALF502,涡轮风扇。优点: ●单元体设计,易维修 ●长寿命、低成本 ●B/T高耗油率低 ●噪声小,排气中NOx量低于规定 第三章压气机 1.航空燃气涡轮发动机中,两种基本类型压气机的优缺点有哪些? 答:(一)轴流压气机增压比高、效率高单位面积空气质量流量大,迎风阻力小,但是单级压比小,结构复杂; (二)离心式压气机结构简单、工作可靠、稳定工作范围较宽、单级压比高;但是迎风面积大,难于获得更高的总增压比。 2.轴流式压气机转子结构的三种基本类型是什么?指出各种转子结构的优缺点。 答 3.在盘鼓式转子中,恰当半径是什么?在什么情况下是盘加强鼓? 答:(一)某一中间半径处,两者自由变形相等联成一体后相互没有约束,即无力的作用,这个半径称为恰当半径;(二)当轮盘的自由变形大于鼓筒的自由变形;实际变形处于两者自由变形之间,具体的数值视两者受力大小而定,对轮盘来说,变形减少了,周向应力也减小了;至于鼓筒来说,变形增大了,周向应力增大了。 4.对压气机转子结构设计的基本要求是什么? 答:基本要求:在保证尺寸小、重量轻、结构简单、工艺性好的前提下,转子零、组件及其连接处应保证可靠的承受载荷和传力,具有良好的定心和平衡性、足够的刚性。 5.转子级间联结方法有哪些 答:转子间:1>不可拆卸,2>可拆卸,3>部分不可拆部分可拆的混合式。 6.转子结构的传扭方法有几种?答: a)不可拆卸:例,wp7靠径向销钉和配合摩擦力传递扭矩; b)可拆卸:例,D30ky端面圆弧齿传扭; c)混合式:al31f占全了;cfm56精制短螺栓。 7.如何区分盘鼓式转子和加强的盘式转子? 答:P40 图3.6 _c\d 8.工作叶片主要由哪两部分组成 答:叶身、榫头(有些有凸台) 9.风扇叶片叶身凸台的作用是什么? 答:减振凸台,通过摩擦减少振动,避免发生危险的共振或颤振。 10.叶片的榫头有哪几种基本形式?压气机常用哪一种?答: a)销钉式榫头; b)枞树型榫头;

航空发动机强度复习题(参考答案)

航空发动机构造及强度复习题(参考答案) 一、 基本概念 1. 转子叶片的弯矩补偿 适当地设计叶片各截面重心的连线,即改变离心力弯矩,使其与气体力弯矩方向相反,互相抵消,使合成弯矩适当减小,甚至为零,称为弯矩补偿。 2. 罩量 通常将叶片各截面的重心相对于z 轴作适当的偏移,以达到弯矩补偿的目的,这个偏移量称为罩量。 3. 轮盘的局部安全系数与总安全系数 局部安全系数是在轮盘工作温度与工作时数下材料的持久强度极限t T σ,与计算轮盘应力中最大周向应力或径向应力之比值。0.2~5.1/max ≥=σσt T K 总安全系数是由轮盘在工作条件下达到破裂或变形达到不允许的程度时的转速c n ,与工作的最大转速m ax n 之比值。max /n n K c d = 4. 轮盘的破裂转速 随着转速的提高,轮盘负荷不断增加,在高应力区首先产生塑性变形并逐渐扩大, 使应力趋于均匀,直至整个轮盘都产生塑性变形,并导致轮盘破裂,此时对应的转速称为破裂转速。 5. 转子叶片的静频与动频 静止着的叶片的自振频率称为静频; 旋转着的叶片的自振频率称为动频;由于离心力的作用,叶片弯曲刚度增加,自振频率较静频高。 6. 尾流激振 气流通过发动机内流道时,在内部障碍物后(如燃烧室后)造成气流周向不均匀,从而对后面转子叶片形成激振。 7. 转子的自位作用 转子在超临界状态下工作时,其挠度与偏心距是反向的,即轮盘质心位于轴挠曲线的内侧,不平衡离心力相应减小,使轴挠度急剧减小,并逐渐趋于偏心距e ,称为“自位”作用。

8. 静不平衡与静不平衡度 由不平衡力引起的不平衡称为静不平衡;静不平衡度是指静不平衡的程度,用质量与偏心矩的乘积me 表示,常用单位为cm g ?。 9. 动不平衡与动不平衡度 由不平衡力矩引起的不平衡称为动不平衡;动不平衡度是指动不平衡的程度,用me 表示,常用单位是cm g ?。 10. 动平衡 动平衡就是把转子放在动平衡机床上进行旋转,通过在指定位置上添加配重,以消除不平衡力矩。 11. 挠性转子与刚性转子 轴的刚性相对于支承的刚度很小的转子系统称为挠性转子;转子的刚性相对于支承的刚性很大的转子称为刚性转子。 12. 转子的临界转速 转子在转速增加到某些特定转速时,转子的挠度会明显增大,当转速超过该转速时,挠度又明显减小,这种特定的转速称为转子的临界转速,是转子的固有特性。 13. 涡动 转轴既要绕其本身轴线旋转,同时,该轴又带动着轮盘绕两轴承中心的连线旋转,这种复合运动的总称为涡动。 14. 自转与公转(进动) 轮盘绕轴旋转称为自转;挠曲的轴线绕轴承连线旋转称为公转或进动。 15. 转子的同步正涡动与同步反涡动 自转角速度与进动角速度大小与转向均相同的涡动称为同步正涡动;自转角速度与进动角速度大小相等,但转向相反的涡动称为同步反涡动; 16. 转子的协调正进动与协调反进动 自转角速度与进动角速度大小与转向均相同的涡动称为同步正涡动,对应的进动称为协调正进动;自转角速度与进动角速度大小相等,但转向相反的涡动称为同步反涡动,对应的进动称为协调反进动。 17. 持久条件疲劳极限 规定一个足够的循环次数L N ,以确定L N 下的“持久疲劳极限”,称为“持久条件疲劳极限”。

航空基础知识

航空基础知识系列之一:飞机的分类 飞机的分类 由于飞机构造的复杂性,飞机的分类依据也是五花八门,我们可以按飞机的速度来划分,也可以按结构和外形来划分,还可以按照飞机的性能年代来划分,但最为常用的分类法为以下两种: 按飞机的用途分类: 飞机按用途可以分为军用机和民用机两大类。军用机是指用于各个军事领域的飞机,而民用机则是泛指一切非军事用途的飞机(如旅客机、货机、农业机、运动机、救护机以及试验研究机等)。军用机的传统分类大致如下: 歼击机:又称战斗机,第二次世界大战以前称驱逐机。其主要用途是与敌方歼击机进行空战,夺取制空权,还可以拦截敌方的轰炸机、强击机和巡航导弹。 强击机:又称攻击机,其主要用途是从低空和超低空对地面(水面)目标(如防御工事、地面雷达、炮兵阵地、坦克舰船等)进行攻

击,直接支援地面部队作战。 轰炸机:是指从空中对敌方前线阵地、海上目标以及敌后的战略目标进行轰炸的军用飞机。按其任务可分为战术轰炸机和战略轰炸机两种。 侦察机:是专门进行空中侦察,搜集敌方军事情报的军用飞机。按任务也可以分为战术侦察机和战略侦察机。 运输机:是指专门执行运输任务的军用飞机。 预警机:是指专门用于空中预警的飞机。 其它军用飞机:包括电子干扰机、反潜机、教练机、空中加油机、舰载飞机等等。 当然,随着航空技术的不断发展和飞机性能的不断完善,军用飞机的用途分类界限越来越模糊,一种飞机完全可能同时执行两种以上的军事任务,如美国的117战斗轰炸机,既可以实施对地攻击,又可以进行轰炸,还有一定的空中格斗能力。 按飞机的构造分类:

由于飞机构造复杂,因此按构造的分类就显得种类繁多。比如我们可以按机翼的数量可以将飞机分为单翼机、双翼机和多翼机;也可以按机翼的形状分为平直翼飞机、后掠翼飞机和三角翼飞机;我们还可以按飞机的发动机类别分为螺旋桨式和喷气式两种。 航空基础知识系列之二:飞机的结构 飞机的结构 飞机作为使用最广泛、最具有代表性的航空器,其主要组成部分有以下五部分: 推进系统:包括动力装置(发动机及其附属设备)以及燃料。其主要功能是产生推动飞机前进的推力(或拉力); 操纵系统:其主要功能是形成与传递操纵指令,控制飞机的方向舵及其它机构,使飞机按预定航线飞行;

航空发动机强度与振动

航空发动机强度与振动课程设计报告 题目及要求 题目基于 ANSYS 的叶片强度与振动分析 1.叶片模型 研究对象为压气机叶片,叶片所用材料为 TC4 钛合 金,相关参数如下: 材料密度:4400kg/m3弹性模量:1.09*1011Pa 泊松比: 0.34 屈服应力:820Mpa 叶片模型如图 1 所示。把叶片简化为根部固装的等截

面悬臂梁。叶型由叶背和叶盆两条曲线组成,可由每条曲 线上 4 个点通过 spline(样条曲线)功能生成,各点位置 如图 2 所示,其坐标如表 1 所示。 注:叶片尾缘过薄,可以对尾缘进行修改,设置一定的圆角 2.叶片的静力分析 (1)叶片在转速为 1500rad/s 下的静力分析。 要求:得到 von Mises 等效应力分布图,对叶片应力分布进行分析说明。并计算叶片的安全系数,进行强度校核。 3.叶片的振动分析 (1)叶片静频计算与分析 要求:给出 1 到 6 阶的叶片振型图,并说明其对应振动类型。

(2)叶片动频计算与分析 要求:列表给出叶片在转速为 500rad/s,1000rad/s,1500rad/s, 2000rad/s 下的动频值。 (3)共振分析 要求:根据前面的计算结果,做出叶片共振图(或称 Campbell 图),找出叶片的共振点及共振转速。因为叶片一弯、二弯、一扭振动比较危险,故只对这些情况进行共振分析。 3. 按要求撰写课程设计报告 说明:网格划分必须保证结果具有一定精度。各输出结果图形必须用ANSYS 的图片输出功能,不允许截图,即图片背景不能为黑色。 课程设计报告 基于 ANSYS 的叶片强度与振动分析1. ANSYS 有限元分析的一般步骤 (1)前处理 前处理的目的是建立一个符合实际情况的结构有限元模型。在Preprocessor 处理器中进行。包括:分析环境设置(指定分析工作名称、分析标题)、定义单元类型、定义实常数、定义材料属性(如线弹性材料的弹性模量、泊松比、密度)、建立几何模型(一般用自底向上建模:先定义关键点,由这些点连成线,由线组成面,再由线形

航空发动机结构设计中可装配性案例分析

航空发动机结构设计中可装配性案例分析 摘要:航空发动机零部件数目繁多,结构复杂,精度及性能要求高,型号规格相似,在生命周期内需要多次装配、分解及维修,且为手工装配,工作量大,错装、漏装现象容易发生。因此,对于航空发动机这种高度复杂的产品,除了应当完善严格的工艺规划、装配操作与流程管理外,更应当在设计初期对产品的可装配性进行分析,总体上提高产品质量和可靠性,降低成本,缩短发动机的开发和制造周期。 关键词:航空;发动机;结构设计;可装配性;案例 1分组设计 在航空发动机压气机转子设计中,后几级叶片通常采用环形燕尾榫头固定,即在轮缘上车出 1 个环形燕尾槽安装叶片,使加工简单,装配方便。考虑到叶片在工作中受热膨胀以及为了有利于安装分解,叶片榫头与鼓筒榫槽设计为间隙配合,为防止工作状态叶片甩开后,缘板出现周向碰摩或较大串动,静态装配时要求叶片周向总间隙 M 在合理范围内。 叶片首次装配或更换新叶片后,通常会出现总间隙M 小于规定要求的情况,操作者会将最后 1 个叶片(不带锁紧槽的叶片)暂时不装,将安装的叶片手动排除活动间隙后,用卡尺测量空缺位置的缘板间隙,比对最后 1 个安装叶片的缘板宽度,计算二者差值,即为装配工序留 给加工修磨工序的修磨值,通过修磨值确定对 1 片或多片叶片进行修磨。目前设计要求为:如果装配后不能满足总间隙 M 的要求,允许修磨叶片缘板的 2 个周向侧面,但每边叶片修磨量有上限要求。有时会发生叶片修磨过量,导致叶片修磨后仍无法满足要求,需要更换叶片进行重新修磨,造成叶片的损坏或浪费。 2非均布设计 在某型发动机设计中,4 支点轴承外环安装在高压涡轮后轴颈内,轴向用 4 支点轴承螺母紧固,采用锁紧环防松方法。锁紧环安装在轴承螺母径向安装槽内,通过锁紧环上的定位销插入高压涡轮后轴颈和轴承螺母周向同一个卡槽内防松。其中,高压涡轮后轴颈后端面和轴承螺母后端周向均布 12 个卡槽。要求轴承螺母拧紧至一定的力矩(1193~1342N m)后,用锁紧环锁紧。在实际装配中,在规定的力矩范围内,高压涡轮后轴颈后端面和轴承螺母后端的卡槽只有 1 次机 会重合,或者 12 个槽全部对上,或者 1 个也对不上,旋转角度需为360°÷12÷1=30°,每次都需采用修磨螺母端面的方法解决,既损坏机件连接性能,又耗费人力物力。而在 CFM56 系列发动机类似设计中,高压涡轮后轴颈后端面周向均布 12 个卡槽,而轴承螺母后端面周向均 布 11 个卡槽,螺母旋转 1 周,有 11 次机会可以对正锁紧,旋转角度只需为 360°÷12÷11=2.73°,这样可使力矩范围更窄,也能 1 次对正成功。 3防错设计

(完整版)航空发动机试验测试技术

航空发动机试验测试技术 航空发动机是当代最精密的机械产品之一,由于航空发动机涉及气动、热工、结构与 强度、控制、测试、计算机、制造技术和材料等多种学科,一台发动机内有十几个部件和 系统以及数以万计的零件,其应力、温度、转速、压力、振动、间隙等工作条件远比飞机 其它分系统复杂和苛刻,而且对性能、重量、适用性、可靠性、耐久性和环境特性又有很 高的要求,因此发动机的研制过程是一个设计、制造、试验、修改设计的多次迭代性过程。在有良好技术储备的基础上,研制一种新的发动机尚要做一万小时的整机试验和十万小时 的部件及系统试验,需要庞大而精密的试验设备。试验测试技术是发展先进航空发动机的 关键技术之一,试验测试结果既是验证和修改发动机设计的重要依据,也是评价发动机部 件和整机性能的重要判定条件。因此“航空发动机是试出来的”已成为行业共识。 从航空发动机各组成部分的试验来分类,可分为部件试验和全台发动机的整机试验, 一般也将全台发动机的试验称为试车。部件试验主要有:进气道试验、压气机试验、平面 叶栅试验、燃烧室试验、涡轮试验、加力燃烧室试验、尾喷管试验、附件试验以及零、组 件的强度、振动试验等。整机试验有:整机地面试验、高空模拟试验、环境试验和飞行试 验等。下面详细介绍几种试验。 1进气道试验 研究飞行器进气道性能的风洞试验。一般先进行小缩比尺寸模型的风洞试验,主 要是验证和修改初步设计的进气道静特性。然后还需在较大的风洞上进行l/6或l/5的 缩尺模型试验,以便验证进气道全部设计要求。进气道与发动机是共同工作的,在不同状 态下都要求进气道与发动机的流量匹配和流场匹配,相容性要好。实现相容目前主要依靠 进气道与发动机联合试验。 2,压气机试验 对压气机性能进行的试验。压气机性能试验主要是在不同的转速下,测取压气机特性 参数(空气流量、增压比、效率和喘振点等),以便验证设计、计算是否正确、合理,找出 不足之处,便于修改、完善设计。压气机试验可分为: (1)压气机模型试验:用满足几何相似的缩小或放大的压气机模型件,在压气机试验台上按任务要求进行的试验。 (2)全尺寸压气机试验:用全尺寸的压气机试验件在压气机试验台上测取压气机特性,确定稳定工作边界,研究流动损失及检查压气机调节系统可靠性等所进行的试验。 (3)在发动机上进行的全尺寸压气机试验:在发动机上试验压气机,主要包括部件间的匹配和进行一些特种试验,如侧风试验、叶片应力测量试验和压气机防喘系统试验等。 3,燃烧室试验 在专门的燃烧室试验设备上,模拟发动机燃烧室的进口气流条件(压力、温度、流量) 所进行的各种试验。主要试验内容有:燃烧效率、流体阻力、稳定工作范围、加速性、出 口温度分布、火焰筒壁温与寿命、喷嘴积炭、排气污染、点火范围等。 由于燃烧室中发生的物理化学过程十分复杂,目前还没有一套精确的设计计算方法。因此,燃烧室的研制和发展主要靠大量试验来完成。根据试验目的,在不同试验器上,采 用不同的模拟准则,进行多次反复试验并进行修改调整,以满足设计要求,因此燃烧室试 验对新机研制或改进改型是必不可少的关键性试验。

航空基础知识

航空基础知识系列之一:飞机得分类 飞机得分类 由于飞机构造得复杂性,飞机得分类依据也就是五花八门,我们可以按飞机得速度来划分,也可以按结构与外形来划分,还可以按照飞机得性能年代来划分,但最为常用得分类法为以下两种: 按飞机得用途分类: 飞机按用途可以分为军用机与民用机两大类。军用机就是指用于各个军事领域得飞机,而民用机则就是泛指一切非军事用途得飞机(如旅客机、货机、农业机、运动机、救护机以及试验研究机等)。军用机得传统分类大致如下: 歼击机:又称战斗机,第二次世界大战以前称驱逐机。其主要用途就是与敌方歼击机进行空战,夺取制空权,还可以拦截敌方得轰炸机、强击机与巡航导弹。 强击机:又称攻击机,其主要用途就是从低空与超低空对地面(水面)目标(如防御工事、地面雷达、炮兵阵地、坦克舰船等)进行攻击,直接支援地面部队作战。 轰炸机:就是指从空中对敌方前线阵地、海上目标以及敌后得战略目标进行轰炸得军用飞机。按其任务可分为战术轰炸机与战略轰炸机两种。 侦察机:就是专门进行空中侦察,搜集敌方军事情报得军用飞机。按任务也可以分为战术侦察机与战略侦察机。 运输机:就是指专门执行运输任务得军用飞机。 预警机:就是指专门用于空中预警得飞机。 其它军用飞机:包括电子干扰机、反潜机、教练机、空中加油机、舰载飞机等等。 当然,随着航空技术得不断发展与飞机性能得不断完善,军用飞机得用途分类界限越来越模糊,一种飞机完全可能同时执行两种以上得军事任务,如美国得F-117战斗轰炸机,既可以实施对地攻击,又可以进行轰炸,还有一定得空中格斗能力。 按飞机得构造分类: 由于飞机构造复杂,因此按构造得分类就显得种类繁多。比如我们可以按机翼得数量可以将飞机分为单翼机、双翼机与多翼机;也可以按机翼得形状分为平直翼飞机、后掠翼飞机与三角翼飞机;我们还可以按飞机得发动机类别分为螺旋桨式与喷气式两种。 航空基础知识系列之二:飞机得结构 飞机得结构 飞机作为使用最广泛、最具有代表性得航空器,其主要组成部分有以下五部分: 推进系统:包括动力装置(发动机及其附属设备)以及燃料。其主要功能就是产生推动飞机前进得推力(或拉力); 操纵系统:其主要功能就是形成与传递操纵指令,控制飞机得方向舵及其它机构,使飞机按预定航线飞行; 机体:我们所瞧见得飞机整个外部都属于机体部分,包括机翼、机身及尾翼等。机翼用来产生升力;同时机翼与机身中可以装载燃油以及各种机载设备,并将其它系统或装置连接成一个整体,形成一个飞行稳定、易于操纵得气动外形; 起落装置:包括飞机得起落架与相关得收放系统,其主要功能就是飞机在地面停放、滑行以及飞机得起飞降落时支撑整个飞机,同时还能吸收飞机着陆与滑行时得撞击能量并操纵滑行方向。 机载设备:就是指飞机所载有得各种附属设备,包括飞行仪表、导航通讯设备、环境控制、生命保障、能源供给等设备以及武器与火控系统(对军用飞机而言)或客舱生活服务设施(对民用飞机而言)。 从飞机得外面瞧,我们只能瞧见机体与起落装置这两部分。下面我们着重来瞧一瞧机体得结

先进航空发动机关键制造技术研究

ARTICLES 学术论文 引言 航空发动机的设计、材料与制造技术对于航空工业的发展起着关键性的作用,先进的航空动力是体现一个国家科技水平、军事实力和综合国力的重要标志之一。随着航空科技的迅速发展,面对不断提高的国防建设要求,航空发动机必须满足超高速、高空、长航时、超远航程的新一代飞机的需求。 近年来,航空工业发达国家都在研制高性能航空发动机上投入了大量的资金和人力,实施一系列技术开发和验证计划,如“先进战术战斗机发动机计划(ATFE )”、“综合高性能涡轮发动机技术(IHPTET )计划”及后续的VAATE 计划、英法合作军用发动机技术计划(AMET )等。在这些计划的支持下,美国的F119、欧洲的 EJ200、法国的M88和俄罗斯的AL-41F 等推重比10 一级发动机陆续问世。 为了提高发动机的可靠性和推力,先进高性能发动机采用了大量新材料,且结构越来越复杂,加工精度要求越来越高,对制造工艺提出了更高的要求。而且,在新一代航空发动机性能的提高中,制造技术与材料的贡献率为 50%~70%,在发动机减重方面,制造技术和材料的贡献率占70%~80%,这也充分表明先进的材料和工艺是航空发动机实现减重、增效、改善性能的关键。 1 航空发动机的材料、结构及工艺特点 在提高发动机可靠性和维护性的同时,为了提高发动机的推力和推重比,航空发动机普遍采用轻量化、整体化结构,如整体叶盘、叶环结构。钛合金、镍基高温合金,以及比强度高、比模量大、抗疲劳性能好的树脂基复合材 先进航空发动机关键制造技术研究 黄维,黄春峰,王永明,陈建民 (中国燃气涡轮研究院,四川 江油 621703) Key manufacturing technology research of advanced aero-engine HUANG Wei ,HUANG Chun-feng ,WANG Yong-ming ,CHEN Jian-min (China Gas Turbine Establishment ,Jiangyou 621703,China ) Abstract :This paper describes the features of aero-engine material ,structure and technology ,and then ,development status and trend of key manufacturing technology for advanced aero-engine was analyzed. Finally ,the development of advanced aero-engine manufacturing technology in China is introduced and some proposals are put forward. Key Words : aero-engine ,manufacturing ,summarization 作者简介: 黄维(1982—),男,四川仁寿人,中国燃气涡轮研究院助理工程师,主要从事工艺技术研究。E-mail :huangwei611@https://www.doczj.com/doc/d29892162.html,

飞机发动机的控制和维护

飞机发动机的控制和维护 发表时间:2018-07-23T16:33:43.407Z 来源:《知识-力量》2018年8月上作者:田乐杜壮[导读] 伴随科技的不断创新,将来的航空领域必然会迎来巨大的进步。而且在这个领域中也存在较大的研究价值,对于飞机而言,发动机是必不可少的,它会在经济与环保方面被不断改善,一直沿着时代发展的轨道正常进行。(中国飞行试验研究院,陕西阎良 710089) 摘要:伴随科技的不断创新,将来的航空领域必然会迎来巨大的进步。而且在这个领域中也存在较大的研究价值,对于飞机而言,发动机是必不可少的,它会在经济与环保方面被不断改善,一直沿着时代发展的轨道正常进行。本文浅析飞机发动机的控制和维护。关键词:飞机;发动机;控制和维护 引言 发动机因为工作环境通常为高温高压,而且持续时间一般较长,其设计难度与要求是其它任何领域都无法比拟的,其发动机设计至出厂的锁消耗的时间要比飞机整体的研制长的多,而且只有发动机正常运转才能确保飞机的正常航行,因此飞机发动机是必不可少的。所以,在飞机发动机的研究领域投入足够的精力可以为航空领域的发展奠定良好的基础,而且具有重大的现实意义。 1航空涡轮发动机控制和维护 1.1控制调节 1.1.1点火启动 下面我们以涡轮风扇式发动机为例,民航飞机常用的CFM56发动机,在辅助动力装置或地面电、气源准备好的情况下,驾驶舱完成一系列发动机启动操作流程后,指令传送至发动机控制组件ECU,它会通过HMU控制燃油系统打开供油通道。与此同时,高压引气由引气管路传到起动机,带动起动机转动。高压引气再由发动机的附件齿轮箱和传输齿轮箱带动发动机的N2转子,并且开始加速。当发动机的N2转子转速达到16%时,再由ECU控制两个点火盒,选择其中一个通电点火。转速达到22%时,燃烧室周围的一圈燃油喷嘴开始喷油,燃烧室开始工作,发动机转速继续增加,这个过程中ECU会监控所有的参数,如果发现不正常的地方例如涡轮排气总温EGT超温等现象,ECU会自动做出选择,中断发动机起动。转速增加到50%时,起动过程结束,ECU控制起动引气管路关闭,起动机和发动机脱开。然后发动机转速会继续增加,一直到59%转速,发动机就可以稳定工作在慢车位。 1.1.2供油调速 EEC(ECU)与HMU(FMU)接口使用力矩马达或电磁活门。力矩马达依照所收到的输入信号来调节挡板活门开度,之后通过改变计量活门一个油腔或上下两个油腔的油压来调控计量活门的开度。大多数FMU采用压力活门保持计量活门前后压差恒定,通过改变计量活门流通的面积改变供油量。 1.2维护方法 1. 2.1内部维护 在不破坏、不分解发动机本体结构所进行的内部检查和维护工作被称为内部维护,其中一项重要的目视检查方法就是孔探。其维护周期分为定期维护和非定期维护,定期维护一般是指当发动机运转小时数达到厂家规定时限,为了防止其内部部件或结构出现损伤所进行的预防性检查维护。非定期维护是指发动机在运转时,由于出现了故障且被FADEC系统内相关组件进行了监控、记录和上传给飞机主系统并予以警示。在此情况下,根据故障信息判断所进行的内部检查维护工作。如下图。 1.2.2外部维护 外部维护主要包括定期维护和非定期维护,其周期等同于内部维护时检查的周期。其非定期维护也是基于FADEC系统相关组件对发动机运行时故障的记录,判断相关故障后所进行的维护。 2活塞螺旋桨发动机控制和维护 2.1控制调节 2.1.1点火启动 需要人工手动扳动螺旋桨,是最老式的活塞式螺旋桨发动机,后期的活塞式发动机逐渐配备了电瓶或启动马达可以电启动,类似于汽车发动机启动方法。采用以上启动方法的原因在于螺旋桨飞机的发动机采用活塞式发动机,在做功冲程前必须有一个压缩过程,这一过程需要消耗功。当启动过后这一需要的功就可以由其自身提供了,但启动时必须要对其做功。 2.1.2供油调速 在油门全开或是进气压力稳定的情况下,发动机油消耗量和功率会随着转速的改变而发生变化,其存在的关系叫做转速特性。将定距螺旋桨装置在发动机上,发动机油消耗量和功率与转速之间关系叫做螺旋桨特性。借助对油门杆进行操作可以改变转速。在发动机转速保持不变的情况下,发动机功率、耗油量与飞行高度之间的关系叫做高度特性。 2.2维护方法

航空发动机构造

航空发动机构造 课堂测试-1 1.航空发动机的研究和发展工作具有那些特点? 技术难度大;周期长;费用高 2.简述航空燃气涡轮发动机的作用。 是现代飞机与直升机的主要动力(少数轻型、小型飞机和直升机采用航空活塞式发动机),为飞机提供推进力,为直升机提供转动旋翼的功率。 3.航空燃气涡轮发动机包括哪几类?民航发动机主要采用哪种? 涡喷、涡桨、涡扇、涡轴、桨扇、齿扇等;涡扇。 4.高涵道比民用涡扇发动机的涵道比范围是多少? 5-12 课堂测试-2 1.发动机吊舱包括(进气道)、(整流罩)和(尾喷管)等。 2.对于民用飞机来说,动力装置的安装位置应该考虑到以下几点: 不影响进气道的效率;排气远离机身;容易接近,便于维护 3.在现代民用飞机上,发动机在飞机上的安装布局常见的有(翼下安装)、(翼下吊装和垂直尾翼安装)和(机身尾部安装)。 4.发动机安装节分两种:(主安装节)与(辅助安装节)。前者传递轴向力、径向力、扭矩,后者传递径向力、扭矩。一般主安装节装于(温度较低,靠近转子止推轴承处的压气机或风扇机匣上)上,辅助安装节装于(涡轮或喷管的外壳上)上。 5.涡轮喷气发动机的进气道可分为(亚音速)进气道和(超音速)进气道两大类。我国民航主要使用亚音速飞机,其发动机的进气道大多采用(亚音速)进气道。 6.通常在涡轮喷气和涡轮风扇发动机上采用(热空气)防冰的方式,在涡轮螺旋桨发动机上采用(电加热)防冰,或是两种结合的方式。 7.对于涡轮螺旋桨发动机来说,需要防冰的部位有(进气道)、(桨叶)和(进气锥)。 8.为了对吊舱进行通风冷却,一般把吊舱分成不同区域,各区之间靠(防火墙)隔开,以阻挡火焰的传播。9.发动机防火系统包括(火情探测)、(火情警告)和(灭火)三部分。 课堂测试-3 1.现代涡轮喷气发动机由(进气道)、(压气机)、(燃烧室)、(涡轮)、(尾喷管)五大部件和附件传动装置 与附属系统所组成。 2.发动机工作时,在所有的零部件上都作用着各种负荷。根据这些负荷的性质可以分为(气动)、(质量) 和(温度)三种。 3.航空燃气涡轮发动机主轴承均采用(滚动)轴承,其中(滚棒轴承)仅承受径向载荷,(滚珠轴承)可承 受径向载荷与轴向载荷。 4.转子上的止推支点除承受转子的(轴向)负荷、(径向)负荷外,还决定了转子相对于机匣的(轴向)位 置。因此每个转子有(一)个止推支点,一般置于温度较(低)的地方。 5.压气机转子轴和涡轮转子轴由(联轴器)连接形成发动机转子,分为(柔性联轴器)和(刚性联轴器)。 其中(柔性联轴器)允许涡轮转子相对压气机转子轴线有一定的偏斜角。 6.结合图3.9,简述发动机的减荷措施有哪些?这些措施是否会减少发动机推力? 减荷措施:

(完整版)航空发动机结构练习题库(一)

1.航空发动机研制和发展面临的特点不包括下列哪项()。 A.技术难度大 B.研制周期长 C.费用高 D.费用低 正确答案:D 试题解析:发动机研制开发耗费昂贵。 2.航空发动机设计要求包括()。 A.推重比低 B.耗油率高 C.维修性好 D.可操纵性差 正确答案:C 试题解析:航空发动机设计要求其推重比高、耗油率低、可操纵性好、维修性好。 3.下列哪种航空发动机不属于燃气涡轮发动机()。 A.活塞发动机 B.涡喷发动机 C.涡扇发动机 D.涡桨发动机 正确答案:A 试题解析:活塞发动机不属于燃气涡轮发动机,二者结构、原理不同。 4.燃气涡轮发动机的核心机由压气机、燃烧室和()组成。 A.进气道 B.涡轮 C.尾喷管 D.起落架 正确答案:B 试题解析:压气机、燃烧室和涡轮并称为核心机。 5.活塞发动机工作行程不包括()。 A.进气行程 B.压缩行程 C.膨胀行程 D.往返行程 正确答案:D 试题解析: 活塞发动机四个工作行程:进气、压缩、膨胀、排气。 6.燃气涡轮发动机的主要参数不包括下列哪项()。 A.推力 B.推重比 C.耗油率 D.造价 正确答案:D 试题解析:造价不是发动机性能参数。 7.对于现代涡扇发动机,常用()代表发动机推力。 A.低压涡轮出口总压与低压压气机进口总压之比

B.高压涡轮出口总压与压气机进口总压之比 C.高压涡轮出口总压与低压涡轮出口总压之比 D.低压涡轮出口总压与低压涡轮进口总压之比 正确答案:A 试题解析:低压涡轮出口总压与低压压气机进口总压之比用来表示涡扇发动机推力。 8.发动机的推进效率是()。 A.单位时间发动机产生的机械能与单位时间内发动机燃油完全燃烧时放出的热量之比。 B.发动机的推力与动能之比。 C.发动机推进功率与单位时间流过发动机空气的动能增量之比。 D.推进功率与单位时间内发动机加热量之比。 正确答案:C 试题解析:发动机的推进效率是发动机推进功率与单位时间流过发动机空气的动能增量之比。 9.航空燃气涡轮发动机是将()。 A.动能转变为热能的装置 B.热能转变为机械能的装置 C.动能转变为机械能的装置 D.势能转变为热能的装置 正确答案:B 试题解析:航空燃气涡轮发动机是将热能转变为机械能的装置。 10.航空燃气涡轮喷气发动机经济性的指标是()。 A.单位推力 B.燃油消耗率 C.涡轮前燃气总温 D.喷气速度 正确答案:B 试题解析:燃油消耗率是航空燃气涡轮喷气发动机经济性的指标。 11.气流马赫数()时,为超音速流动。 A.小于1 B.大于0 C.大于1 D.不等于1 正确答案:C 试题解析:气流马赫数大于1时,为超音速流动。 12.燃气涡轮喷气发动机产生推力的依据是()。 A.牛顿第二定律和牛顿第三定律 B.热力学第一定律和热力学第二定律 C.牛顿第一定律和付立叶定律 D.道尔顿定律和玻尔兹曼定律 正确答案:A 试题解析:燃气涡轮喷气发动机产生推力的依据是牛顿第二定律和牛顿第三定律。 13.燃气涡轮喷气发动机出口处的静温一定()大气温度。 A.低于 B.等于 C.高于

航空发动机结构强度设计 大作业

航空发动机结构强度设计 大作业 王延荣主编 北京航空航天大学能源与动力工程学院 2013.3

2 1 某级涡轮转子的转速为4700r/min ,共有68片转子叶片,叶片材料GH33的密度ρ为8.2 ×103 kg/m 3,气流参数沿叶高均布,平均半径处叶栅进、出口的气流参数,叶片各截面的重心位置(X , Y , Z ),截面面积A ,主惯性矩I ξ,I η以及ξ轴与x 轴的夹角α,弯曲应力最大的A , B , C 三点的坐标ξA , ηA , ξB , ηB , ξC , ηc 列于下表,试求叶片各截面上的离心拉伸应力、气动力弯矩、离心力弯矩、合成弯矩及A ,B ,C 三点的弯曲应力和总应力。 截 面 0 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ X , cm 0.53 0.41 0.41 0.40 0.24 0.12 Y , cm -0.41 -0.38 -0.30 -0.19 -0.11 -0.02 Z , cm 62.8 59.1 56.0 53.0 49.4 45.8 A , cm 2 1.80 2.32 3.12 4.10 5.48 7.05 I ξ, cm 4 0.242 0.304 0.484 0.939 1.802 I η, cm 4 6.694 9.332 12.52 17.57 23.74 ξA , cm -2.685 -2.847 -2.938 -2.889 -2.894 ηA , cm 0.797 0.951 1.094 1.232 1.319 ξB , cm -0.084 -0.205 -0.303 -0.219 -0.302 ηB , cm -0.481 -0.521 -0.655 -0.749 -1.015 ξC , cm 3.728 3.909 4.060 4.366 4.597 ηC , cm 0.773 0.824 0.840 1.130 1.305 α 31o 40’ 27o 49’ 25o 19’ 22o 5’30’’ 16o 57’ 12o 43’ c 1am c 1um ρ1m p 1m c 2am c 2um ρ2m p 2m 297m/s -410m/s 0.894kg/m 3 0.222MPa 313m/s 38m/s 0.75 kg/m 3 0.178MPa 2 某一涡轮盘转速12500r/min,盘材料密度8.0×103kg/m 3 , 泊松比0.3,轮缘径向应力140MPa,盘厚度h 、弹性模量E、线涨系数α及温度t 沿半径的分布列于下表,试用等厚圆环法计算其应力分布。 截面, n 半径r , cm 盘厚h , cm E, GPa t , ℃ α,10-6/℃平均半径 平均厚度 0 0.0 4.86 162 165 16.5 1 5.0 3.90 16 2 165 16.5 2.5 4.38 2 10.0 2.97 157 250 17.1 7.5 3.435 3 14.0 2.2 4 148 360 18.2 12.0 2.60 5 4 15.0 1.8 6 140 400 19.0 14.5 2.05 5 15.8 1.60 13 7 430 19.4 15.4 1.73 6 16.6 1.80 134 460 19.7 16.2 1.70 7 17.4 2.30 130 500 20.3 17.0 2.05 3 某转子叶片根部固定,其材料密度2850kg/m 3,弹性模量71.54GPa ,叶片长0.1m ,各截面 位置、面积、惯性矩列于下表,试求其前3阶固有静频。 截面号i 0 1 2 3 4 5 6 7 8 9 10 x , m 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 A , 10-4m 2 1.70 1.46 1.26 1.09 0.96 0.86 0.77 0.73 0.70 0.68 0.68 I , 10-8m 4 0.02790.0212 0.0157 0.01080.00840.00610.00450.00370.0032 0.0030 0.0030

航空发动机强度复习总结

1转子叶片强度计算的目的是为了保证所设计的转子叶片能可靠工作,又使其尽可能轻。 2转子叶片受到的载荷:叶片自身质量产生的离心力;气流的横向气体力(弯曲应力和扭转应力);热负荷;振动负荷。 3简化假设和坐标系:将其看做根部完全固装的悬臂梁;叶片仅承受自身质量离心力和横向气体力,只计算拉伸应力和弯曲应力;扭转中心(刚心),气体压力中心与中心三者重合,离心力与气体力均作用于重心。 4计算点的选择:发动机设计点(H=0,V=0,n=n max );低空低温高速飞行状态(最大气体力状态H=0,V=V max ,n=n max ,t=233K );高空低速飞行状态(最小气体力状态H=H max ,V =V min ,n =n max ,t =t H ) 5推导气动力:(ρ2m c 2am t 2m ×1)c 2am ? ρ1m c 1am t 1m ×1 c 1am =2πQ Z m ρ2m c 2am 2? ρ1m c 1am 2 ; p 1m ?p 2m t m ×1=2πZ m Q p 1m ?p 2m ;p xm =2πZ m Q ρ1m c 1am 2?ρ2m c 2am 2)+ (p 1m ?p 2m ;p ym =2πZ m Q (ρ1m c 1am c 1um ?ρ2m c 2am c 2um ) 6离心力弯矩:若转子叶片各截面重心的连线不与Z 轴重合,则叶片旋转时产生的离心力将引起离心力弯矩.离心力平行于Z 轴所以对Z 轴没有矩,离心力必须垂直于转轴在X 轴方向的分力必然为0. 7罩量:通常将叶片各截面的重心相对于Z 轴作适当的偏移,以达到弯矩补偿的目的,这个偏移量称为罩量。 8罩量调整:合理地选择叶片各截面重心的罩量,使之既保证叶片在发动机经常工作的状态具有较低的应力,又照顾到在其它各种工作状态下的应力都不太大。在一般情况下,仅以根部截面作为调整对象。 9压气机与涡轮叶片所受气动力方向相反,重心连线偏斜方向总是与叶片所受的气体力的方向一致。 10以离心力弯矩补偿气体力弯矩时,还必须注意到这两个弯矩随工作状态的变化.往往取最大气体力弯矩和最小气体力弯矩的平均值作为离心力弯矩补偿的目标。 11弯曲应力:通过截面重心,有一对惯性主轴η、ξ,对η轴的惯性矩最小,对ξ轴的惯性矩最大。在距离η轴最远的A 、B 、C 三点在仅有作用时,弯曲应力最大。 12压气机叶片n s =?s ?总,max 一般n s =2.0~3.5 ;涡轮叶片n T =?T s ?总,max (一般n T =1.5~2.5) 13影响叶片强度:扭转应力(两个扭转力矩方向常常相反,所以可忽略);热应力(热端部件影响,热冲击反复产生致热疲劳);扭向(扭向愈大,对叶片截面上离心拉伸应力分布不均匀的影 响愈大);蠕变(采用叶片材料的蠕变极限?a /T t 作为许用应力,安全系数 n T =?a T t ?总,max (一般n T =1.5~2.5);;叶片弯曲变形(由于变形产生的附加弯矩,将使离心力弯 矩对气体力弯矩的补偿效果更好);叶冠(增大应力项);其它因素(不同的叶根形状将使叶片上的离心拉伸应力产生明显的分布不均现象) 20轮盘的破损形式:1,在轮盘外缘榫头部分断裂;2,轮盘外缘的径向裂纹,尤其在固定叶片的销孔处;3,由于材料内部缺陷(例如松孔或夹杂)导致盘中心断裂;4,由于轮盘在高温下工作,容易引起蠕变(甚至局部颈缩),使盘外径增大,最后导致轮盘破裂。 21轮盘强度计算主要考虑负荷:1安装在轮盘外缘上的叶片质量离心力以及轮盘本身的离心力;2沿盘半径方向受热不均引起的热负荷。其他负荷:1由叶片传来的气动力,以及轮盘前后端面上的气体压力;2机动飞行时产生的陀螺力矩;3叶片及盘振动时产生的动负荷;4盘与轴或盘与盘连接处的装配应力,或在某种工作状态下,由于变形不协调而产生的附加应力。 22轮盘强度计算的假设:1轴对称假设;2平面应力假设;3弹性假设。 23轮盘强度计算基本公式方程:平衡方程、几何方程、物理方程。计算方法:力法、位移法。 24轮盘的应力有三部分组成:1,由应力、位移、温度的边界条件决定的,它们通过常数K1和K2来表示;2,轮盘以角速度ω旋转引起的离心应力;3,由于温度影响引起的热应力。 25等厚圆环法的基本思路:1,将剖面形状复杂的轮盘沿半径方向划分成有限个段,每段构成一个等厚圆环,相互套接在一起,虽然整个轮盘的温度分布沿径向是不均匀的,但对于每

相关主题
文本预览
相关文档 最新文档