当前位置:文档之家› 基于InSAR技术矿区地表形变的监测

基于InSAR技术矿区地表形变的监测

基于InSAR技术矿区地表形变的监测
基于InSAR技术矿区地表形变的监测

 第17卷第2期2008年6月

淮海工学院学报(自然科学版)

Journal of Huaihai Institute of Technology(Nat ural Science Edition)

Vol.17 No.2

J une2008

文章编号:167226685(2008)022*******

基于InSAR技术矿区地表形变的监测3

焦明连1,蒋廷臣1,2

(1.淮海工学院测绘工程学院,江苏连云港 222001;2.武汉大学卫星导航定位技术研究中心,湖北武汉 430079)

摘 要:合成孔径雷达干涉测量(interferometric synt hetic apertt ure radar,简称InSA R)因具有全天候、连续获取信息和高空间分辨率的特点而被广泛应用于地学、海洋、资源探测及灾害监测等众多领域。在介绍InSA R技术获取地表形变信息基本原理的基础上,重点讨论InSAR技术在矿区地表形变监测中的的几个关键技术问题,包括SA R图像的获取和选择、SA R影像配准算法、水平地形效应的消除、相位解缠和数字高程模型的提取等,并结合国内外应用实例展望了发展前景。

关键词:合成孔径雷达;矿区;地表形变;监测

中图分类号:P225 文献标识码:A

Monitoring the Deform ation of Mining Areas B ased on InSAR

J IAO Ming2lian1,J IAN G Ting2chen1,2

(1.School of G eodesy&G eomatics Engineering,Huaihai Institute of Technology,Lianyungang222001,China;

2.GPS Engineering Research Center,Wuhan University,Wuhan430079,China)

Abstract:Interferomet ric synt hetic apertt radar(InSA R)is widely used in geo sciences,marine geodesy,resource exploiting,calamity monitoring for it s all weat her and242hour continuous sur2 veying capability high spatial resolution.On t he basis of a brief explanation to t he p rinciple of InSAR,we focus on t he key techniques in monitoring t he deformation of mining areas,including SAR image acquisitio n and selection,SAR Image regist ration algorit hm,t he elimination of t he Effect of Flat Ground,p hase unwrapping and t he ext raction of digital elevation model.Moreo2 ver,we predict it s develop mental tendency wit h examples of InSAR home and abroad p rovided.

K ey w ords:InSA R;mining area;deformation;monitoring

0 引言

开采地下矿产资源会引起地表沉降,这种沉降有时达到每年几个dm[1],极大地破坏了土地资源和矿区环境。为了最大限度地提高土地资源的有效利用和控制环境的过度影响,需要建立更加详细的矿区地表形变预测系统。常规的监测方法是采用精密水准测量或重复光电测距三角高程测量,这些方法在我国的矿区已沿用几十年,为沉陷监测及环境治理作出了贡献。GPS技术的引入,充分发挥了高精度,易于自动化监测、自动化数据采集与处理的优势。但GPS监测网只能得到离散点位数据,很难满足高空间分辨率形变监测的要求。近几年,世界上一些发达国家开展应用合成孔径雷达干涉测量(In2 SA R)技术进行矿区地表形变的研究,取得了一定的成果。例如,1995年MARCO VAN der KOOI J等人选取1992—1996年间6个重复观测像对,用ERS 数据对美国加利福尼亚Belridge油气田进行沉陷监

3收稿日期:2008203203;修订日期:2008204221

基金项目:江苏省测绘科研项目(J SCH KY200708)

作者简介:焦明连(1963-),男,河南商丘人,淮海工学院测绘工程学院副教授,主要从事地理空间信息和测绘教育研究,(E2mail)hgkjx @https://www.doczj.com/doc/d42886139.html,。

测,该油气田年均下沉30~40cm,与常规方法对比,差分获得的沉陷区吻合相当好,最大高程误差小于5mm[2]。波兰学者PERS KI利用InSA R技术对Upper Silasia开采下沉盆地进行了系统研究,也获得较高的精度。沉陷监测的实践表明,InSA R技术具有大面积、连续、快速的优势,可以达到cm级的分辨率[3],完全满足精度要求,是今后矿区地表形变监测发展的趋势。

1 InSAR技术获取地表形变信息的基本原理

InSAR技术是根据复雷达图像的相位数据来提取目标三维空间信息的,其基本思想是:利用两副天线同时成像或一副天线相隔一定时间重复成像,获取同一区域的复雷达图像对,由于两副天线与地面某一目标之间的距离不等,使得在复雷达图像对同名像点之间产生相位差,形成干涉图,干涉纹图中的相位值即为两次成像的相位差测量值,根据两次成像相位差与地面目标的三维空间位置之间存在的几何关系,利用飞行轨道的参数,即可测定地面目标的三维坐标[4],它可以用来提供大范围的高精度数字高程模型(D EM),并用于探测地表形变。差分干涉(differential InSA R,简称D2InSA R)技术是利用同一地区的两幅干涉图像对其进行差分处理,从而获取地表微量形变的测量技术。第一幅干涉图仅包含因地形起伏引起的干涉相位,第二幅干涉图不仅包含因地形起伏引起的干涉相位,而且还包含因地表位移引起的干涉相位。为了获得形变信息,将两幅干涉图进行差分去除地形的影响,它可以有效地去掉地形、轨道基线距离等因素对相位的影响,使探测的信号更加清晰,精度更高。为了克服传统雷达干涉技术时间和空间失相关问题,提高其在地表形变监测方面的精度,近期引入了一种称为永久散射体(PS)的方法,即选取一定时期内表现稳定干涉行为的孤立点(PS点),如人工建筑、岩石等,这些PS 点往往小于分辨单元,而且散射特性比较稳定,受时间和空间去相关的影响小。在这些离散稀疏的PS 点上可以获得可靠的相位信息,进而反演出精确的地表形变和D EM信息[5]。

2 应用InSAR技术监测矿区地表形变的方法和关键技术

211 SAR图像的获取和选择

目前,利用InSAR技术监测地表形变的研究多集中在自然地层变化或地下水开采方面,这种地表形变与矿产资源开采引起的变形机理不同,前者一般是较大区域缓慢的平稳沉降,后者一般是在相对较小的工作面上形成塌陷盆地,并促使较大区域内地表复杂变化。因此,监测矿区地表形变的SA R图像要求具有很高的质量(数据充足和近连续性)。由差分干涉合成孔径雷达处理流程可见,干涉相位质量是影响监测精度的关键因素。覆盖同一区域的合成孔径雷达图像相位信号相关性很低,干涉图像质量就很差,甚至处理失败。目前,提高相位相关性的方法主要有选择合理的时间间隔、基线长度以及进行滤波处理。所以,选择合理的合成孔径雷达数据对整个监测过程十分重要。SIR2C/X2SA R数据是由美国和平号航天飞机飞行获得的(分别于1981年、1984年和1991年飞行3次),由于数据量小,又缺少连续性,所以不适合用于矿区地表形变的监测。自欧洲空间局1991年第一颗雷达遥感卫星ERS21/ 2发射上天以来,陆续有许多国家的雷达遥感卫星上天,其中有俄罗斯的AL MAZ21(1991)卫星、日本的J ERS21(1992)、加拿大的RADARSA T(1995),以欧洲空间局ERS21/2的数据质量最为稳定。这些卫星发射以来,雷达资料覆盖全球[5],一般这些资料保存在其地面接收站档案库中。目前运行的星载SA R系统指标参数如表1所示。

表1 目前运行的星载SAR系统指标参数

T able1 P arameters of current SAR systems

卫星发射国家发射年份卫星高度/km分辨率/m扫描宽度/km重复周期/d ERS21欧洲空间局1991782~785301021535

AL MAZ21俄罗斯199130015~304510个月J ERS21日本1992568187544 ERS22欧洲空间局1995782~785301021535 RADARSA T21加拿大1995793~8219~2550~50024 ENVISA T21欧洲空间局2002799153050~1003517

 第2期焦明连等:基于InSAR技术矿区地表形变的监测

212 SAR 复数影像配准算法

SAR 复数影像的配准就是计算参考影像(主影

像)到待配准影像(从影像)的影像坐标映射关系,再利用这个关系对待配准影像实行坐标变换、影像插值和重采样。干涉测量要求影像配准精度必须达到子像元级,通常分两个阶段对SA R 复数影像进行配准,即粗配准和精配准。粗配准可利用卫星轨道参数或人工选取少量特征点计算待配准影像相对参考影像在方位向和距离向的偏移量,这是一个较粗略的值,一般可达到像元级精度,目的是为影像精确配准中的同名像素搜索提供初值。

SAR 复数影像精配准首先对参考影像和待配准影像进行采样,并在参考影像上确定均匀分布的N 个控制特征点,以控制特征点为中心选取一定大小的匹配窗口。再根据粗配准的影像偏移量,在待配准影像上相应位置选取比匹配窗口大的搜索窗口,如图1所示。图中粗虚线框为匹配窗口,实心小方框表示特征点,格网表示像素插值。在搜索窗口内按一定顺序逐像元移动匹配窗口,计算两匹配窗口的匹配指标值。根据不同的配准指标,选取搜索窗口内的最佳匹配指标值点作为待配准影像上的配准点,得到同名点像素在各自影像中的坐标对。按上述方法,可以对N 个特征点搜索出N 个坐标对。使用多项式如三阶模型来描述两影像像素坐标的映射关系,基于N 个坐标对观测量和最小二乘算法,可以求解出多项式模型参数,这样便完成了影像对的坐标变换关系的建立。最后利用这个关系式对待配准影像进行坐标变换和重采样处理,至此完成配准操作。在两幅复图像精确配准后可以生成两幅重要的图件:复相干图和干涉纹图

图1 影像精配准示意图

Fig.1 Precise co 2registration of im ages

目前已有多种算法应用于SAR 复数影像配准,主要包括相干系数法、最大频谱法、相位差影像平均

波动函数法和最小二乘法等,这些算法的实现步骤

基本相同,只是在匹配窗口中计算的匹配指标、计算方法及选取配准点的标准不同[6]。基于点特征图像配准方法,实现了图像配准的更高精度和快速度,该方法的基本思想是:在参考影像上自动提取密集的

特征点作为配准的控制点(regist ration control point ,简称RCP ),通过严格的图像匹配算法获得同

名点对,然后由这些同名点对构成密集的三角网,在对应的三角网中,进行逐个小面元的微分纠正,从而实现影像快速精确配准。213 平地效应的消除及相位解缠

去平地效应。在InSAR 测量中,影响干涉质量的因素有很多,大气因素是最主要的因素之一,其中包括电离层和对流层的影响。在地学监测方面,平地效应是主要的干扰因素。平地效应是高度不变的平地在干涉条纹图中所表现出来的随距离向和方位向的变化而呈周期性变化的现象。因此,在相位解缠之前必须进行平地效应的消除。常用的消除方法有轨道参数几何法和距离向频谱检测法。

相位解缠。由干涉得出的相位是以2π为模的不足一个周期内的相位差,它包含了2n

π的模糊度,为了计算准确的地形高程,必须在相位测量值加

上2n

π的相位周期,求解出真实相位差值,这种求解2

π模糊度的技术称之为相位解缠,它类似于GPS 中π的整周模糊度问题。相位解缠结果的好坏直接影响InSA R 最终的D EM 的质量。相位解缠主要分为两大类[5]:一类是基于识别残差点的枝切法,另一类是基于最小二乘法。枝切法通过识别残差点,设置正确的枝切线阻止积分路径穿过,选择合适的积分路径,隔绝噪声,阻止相位误差的全程传递。最小二乘解缠是全局的一种优化,它利用最小二乘法逼近已知水平方向和垂直方向的相位差来进行相位估计。

214 数字高程模型的提取

相位解缠后就可以根据相位值计算每个像元上的高程数值,此时的高程值只是一个相应于参照影像每一点处的地面高程值集合,还不能称为数字高程模型,其主要原因是卫星飞行轨道所形成的平面

通常与地球赤道平面有90°的夹角,所获得的数字高程集是基于主影像的坐标系,影像的走向对于我国是东北—西南方向。影像粗校正首先就是要解决数据集合所反映的地面地物与实际地面坐标所反映的走向一致问题,即要进行坐标转换,才能得到数字高程模型。

2

7淮海工学院学报(自然科学版)2008年6月

3 InSAR技术在矿区地表形变监测中的应用实例

目前,世界上一些发达国家(如德国、澳大利亚、美国等)已经运用InSAR技术监测矿区地表形变、自然灾害和其他资源开采引起的相关地表变化,并取得了一定成果。1996年德国人利用角反射器和InSA R技术监测德国图林根州的铀矿开采导致的地面沉降[7],结果显示可以监测mm级垂直方向的形变。GALLOWA Y和HO FFMANN J研究了California地区Antelope Valley山谷由于抽取地下热水资源发电而导致的地面沉降,并且研究了其含水层的周期性变化与地面沉降的关系[7],由于该地区地热资源丰富,植被稀少,图像相关性好,研究表明InSA R技术能以mm级的精度监测该地区每年周期性的沉降。HASSEN和U SA I S等人则分析了荷兰Groningen地区的地面变形,并且结合GPS 观测和雷达气象数据校正InSAR图[8]。澳大利亚新南威尔士大学的RIZOS利用InSA R技术监测澳大利亚煤矿开采引起的沉降,并结合GPS数据和GIS软件将其监测结果应用于企业的日常管理和预报分析[9]。由此可见,应用InSAR技术进行矿区地表形变监测已经取得了一定成果,并且是今后矿区地表形变监测发展的趋势。

我国作为一个矿产资源大国,由矿产资源开采引起的大量地表形变,威胁着其他环境和财产的安全。我国学者和科研人员从20世纪90年代开始进行InSA R技术及其在形变监测方面的理论研究,虽然取得了一些成果,但在应用方面基本上空缺。因此,应加快我国合成孔径雷达应用研究的步伐,缩短我国在合成孔径雷达应用领域与世界的差距。

4 结论与展望

InSAR技术是新发展起来的观测地表形变的有效技术,与惯用测量技术(如水准测量和GPS测量等)相比,它的优势在于:主动式遥感,全天候成像;对地物几何形状、地球表面粗糙度敏感,对土壤和植物冠体具有一定的穿透能力;空间分辨率高,覆盖范围大,可以获得某一地区连续的地表形变信息,在生成地面数字高程模型和探测地表形变方面具有广阔的应用前景。特别是地下矿产资源的开采引起的地表变形区域多为农业和草原用地,建筑物相对较少,cm级的变形监测精度完全可以满足监测要求,并且,从监测数据中可以提取景观参数,能为景观生态治理、矿区环境和矿区土地复垦服务。但In2 SA R技术用于矿区地表监测的缺点是对于大气参数的变化、卫星轨道参数的误差和地表覆盖的变化非常敏感[10],干涉像对之间空间基线和时间基线的挑选也受到一定限制,虽然数据覆盖范围大,但每一个点位变化量的精确程度不如传统测量得到的成果。目前解决的途径是用GPS连续观测站获得有关的大气参数,校正InSA R数据中对流层延迟和电离层延迟的影响,以GPS的定位结果作为InSA R 数据约束条件来消除卫星轨道误差的影响。这样可以大大改善InSA R数据质量,为建筑物密集或精度要求较高的矿区地表形变监测提供更广阔的前景。

参考文献:

[1] 张拴宏,纪占胜.合成孔径雷达干涉测量(InSAR)在地

面形变监测中的应用[J].中国地质灾害与防治学报,

2004,15(1):1122117,128.

[2] 马超,单新建.星载合成孔径雷达差分干涉测量(D2In2

SAR)技术在形变监测中的应用概述[J].中国地震,

2004,20(4):4102418.

[3] 吴涛,王超,张红.DInSAR技术的最新进展[J].遥感

信息,2007(1):84289.

[4] 何敏,何秀凤.合成孔径雷达干涉测量技术及其在形变

灾害监测中的应用[J].水电自动化与大坝监测,2005,

29(2):45248.

[5] 胡红兵,胡光道.InSAR技术在滑坡研究中的运用进展

[J].资源环境与工程,2007,21(5):5692574.

[6] 罗小军,刘国祥,黄丁发,等.几种卫星合成孔径雷达影

像配准算法的比较研究[J].测绘科学,2006,31(1):

19221.

[7] 李德仁,周月琴,马洪超.卫星雷达干涉测量原理与应

用[J].测绘科学,2000,25(1):9212.

[8] 单新建,马瑾,王长林,等.利用差分干涉雷达测量技术

(D2InSAR)提取同震形变场[J].地震学报,2002,24

(4):4132420.

[9] 成英燕,贾有良,党亚民,等.用InSAR技术进行形变

监测的研究[J].测绘科学,2006,31(3):56258.

[10] 范青松,汤翠莲,陈于,等.GPS与InSAR技术在滑坡

监测中的应用研究[J].测绘科学,2006,31(5):602

62.

(责任编辑:褚金红)

37

 第2期焦明连等:基于InSAR技术矿区地表形变的监测

建设工程建筑变形测量监测方案

精品文档 。 - 1 -欢迎下载 1、工程概况 拟建工程位于**市**区胜利和公园路交汇处东北侧,西邻度假村,南面和东面邻动物园。场地内原有建筑物已拆除,南侧偏西残留一小山丘,四周均已形成3~7m 高的较陡人工边坡。基坑开挖前将高出基坑顶面设计标高的土坡、山丘进行平整,后进行开挖。工程基坑底面标高分为34.00m 、33.50m 、31.20m ,基坑顶面标高为43.00m 至35.50m 。本工程采用放坡支护方案,基坑安全等级为三级。 地上为2~16层建筑,地下室1层,地下室埋深5.5m 。本工程主体结构采用天然地基下的扩展基础,局部采用高强混凝土预应力PHC 管桩基础。建筑主体分为:A 组团办公楼;B 组团餐厅;C 、D 、E 组团公寓;F 组团图书馆。 2、执行的标准和技术依据 ①《工程测量规范》(GB50026—2007); ②《国家一、二等水准测量规范》(GB12897—2006); ③《建筑变形测量规范》(JGJ8—2007); ④《建筑基坑工程监测技术规程》(GB50497-2009) ⑤《建筑基坑支护技术规程》(JGJ120-2012) ⑥《**市基坑支护技术规范》(SJG05-2011) ⑦委托人及设计单位有关技术要求; **建筑设计研究院的基坑支护图纸,基坑监测要求。 **建筑设计研究院的建筑物沉降观测监测要求。 ⑧《测绘产品检查验收规定》(CH1002—95);

**建设工程建筑变形监测监测方案 3、监测实施方案 3.1、监测流程 本工程监测工作按以下流程进行。

精品文档 。 - 3 -欢迎下载 3.2、实施方案 3.2.1、监测点位埋设 本工程的基坑监测部分共需埋沉降观测基准点3个,位移观测基准点3个,基坑顶沉降、位移监测点29个,建筑主体沉降监测点149个(办公楼沉降监测点42个、餐厅沉降监测点14个、公寓组团一沉降监测点24个、员公寓组团二沉降监测点24个、公寓组团三沉降监测点24个、图书馆沉降监测点12个、室外连廊沉降监测点3个、地下室沉降监测点6个)。 3.2.2、监测频率与周期 在工程施工过程中,按以下频率进行监测。 (1)基坑部分 ①基坑开挖前,各监测点采集稳定的初始值,且不少于2次; ②在基坑开挖过程中,监测频率为3天/次,结构施工为7天/次;基坑填至±0.00后停止监测。 ③当变形超过有关标准或场地条件变化较大时,进行加密监测,观测时间间隔现场定; ④当有危险事故征兆时,进行连续监测。 (2)建筑主体部分 ①观测工作从基础施工完成后即开始监测,建筑物每升高2层观测一次; ②结构封顶后每月观测一次; ③工程全部竣工后第一年每三个月观测一次; ④第二年每半年观测一次,以后每年一次,直到沉降变形稳定为止。 3.2.3、信息反馈 在工程的监测过程中,监测数据报送的的及时性是发挥监测工作作用的一个重要因素,包括监测快报、周报、月报等。

基坑变形监测技术方案设计

基坑变形监测技术方案 一、工程概况 本工程由一幢门字形酒店、六幢不同高度公寓和整体地下车库组成,总占地面积约30000m 2,总建筑面积约23 万m 2,地下建筑面积约8.7 万m 2。 本工程基坑总面积约29300m 2,东西向长约300~400m,南北方向长约40~110m。基坑总延长线为785m,地下室为三层,基坑开挖深度为-18.2m、-18.7m,管线分布复杂。基坑北侧紧邻海河,南侧是车流量较大的公路,海河水位的变化及张自忠路面动荷载的干扰都将是某基坑监测的难点。基坑监测等级为一级,监测手段众多,监测内容、监测工作量及监测难度均较大。 二、依据及原则 1. 《建筑变形测量规程》(JGJ/T8-97) 2. 《工程测量规范》(GB50026-93) 3. 《建筑基坑支护技术规程》JGJ120-99 4. 《国家一、二等水准测量规范》(GB12897-93) 5. 《天津市建筑地基基础设计规范》(TBJ1-88) 依据规范和天津市建设主管部门对建筑物基坑施工相关文件的要求,以及基坑设计的相关要求;为确保建筑物地下基坑施工及周边环境的安全性和可靠性,使在基坑开挖和施工期间的变形得到有效控制,保证其不对基坑自身及周边环境造成破坏性的影响,用科学的数据指导基坑信息化施工,保证施工安全。

三、基坑监测项目 为了及时收集、反馈和分析周围环境要素在施工中的变形信息,实现信息化施工并确保施工安全,综合本工程周边环境状况及围护结构和支护体系的特点,遵照设计的相关要求,本工程共进行如下几项基坑监测工作: 1、周边环境监测 A、地下管线变形监测; B、基坑外道路变形监测; C、基坑外地下潜水水位监测; D、基坑外承压水水位监测; E、基坑外土体水平位移(测斜)监测; F、基坑外土体表面变形监测; G、海河堤岸变形(沉降、变形)监测; 2、围护结构监测 A、围护桩桩体水平位移(测斜)监测; B、围护桩桩顶变形(沉降、位移)监测; C、围护桩内、外侧水土压力监测; D、围护桩的竖向钢筋应力监测; 3、支撑体系和立柱监测 A、支撑轴力监测; B、钢格构柱及立柱角钢应力监测; C、立柱位移和沉降监测;

基坑水平位移监测报告

基坑变形 监测报告 工程名称:

建设项目 一期基坑工程基坑变形监测报告现场监测人员: jjjjjj 二OO九年三月十八日 j

目录 一、工程概况 (4) 二、监测依据 (4) 三、监测项目与点位布置 (4) 5 5 5 6 8 9 17 25 26 5、测斜曲线图 (52) 6、侧向变形累计最大位移点位移~时间关系曲线图 (61) 7、地下水水位测试结果汇总表 (62) 8、总部经济区水位随时间变化图 (73)

9、监测点位平面布置图 (74) 一、工程概况 位于开创大道西南侧、揽月路以西一带,地处科学城中心区东部,西面毗邻初具规模的综合研发孵化中心,总建筑面积约34万平方米。该项目基坑安全等级为二级,按设计及规范要求并结合本项目的具体情况,本项目设置如下监测项目: 5、科学城总部经济区工程基坑支护监测点布置图。 三、监测项目与点位布置 1、基坑支护结构水平位移观测: 按设计要求,共布设31个监测点,编号为W1~W31,详见观基坑监测点布置图。

2、支护结构及土体侧向变形监测: 按设计要求,共布设27个监测点,编号为K1~K27,其中K2、K10、K15和K22为土体侧向变形监测点,详见基坑监测点布置图。 3、地下水位监测: 按设计要求,共布设19个监测点,编号为SW1~SW19,详见基坑监测点布置图。 3、地下水位监测采用钢尺水位计测得地下水位与管顶的距离,根据管顶高程即可计算地下水位的高程。将到开挖过程中地下水位与基坑开挖前地下水位高程进行比较,得到开挖过程中基坑周边地下水位的变化情况。 五、允许值及报警值 根据基坑支护设计要求,并结合工程实践经验,对该工程监测项目提出以下警戒

工程变形监测

工程变形监测 最小二乘法广泛应用于测量平差。最小二乘配置包括了平差、滤波和推估。附有限制条件的条件平差模型被称为概括平差模型,它是各种经典的和现代平差模型的统一模型。测量误差理论主要表现在对模型误差的研究上,主要包括:平差中函数模型误差、随机模型误差的鉴别或诊断;模型误差对参数估计的影响,对参数和残差统计性质的影响;病态方程与控制网及其观测方案设计的关系。由于变形监测网参考点稳定性检验的需要,导致了自由网平差和拟稳平差的出现和发展。观测值粗差的研究促进了控制网可靠性理论,以及变形监测网变形和观测值粗差的可区分性理论的研究和发展。针对观测值存在粗差的客观实际,出现了稳健估计(或称抗差估计);针对法方程系数阵存在病态的可能,发展了有偏估计。与最小二乘估计相区别,稳健估计和有偏估计称为非最小二乘估计。 巴尔达的数据探测法对观测值中只存在一个粗差时有效,稳健估计法具有抵抗多个粗差影响的优点。建立改正数向量与观测值真误差向量之间的函数关系,可对多个粗差同时进行定位和定值,这种方法已在通用平差软件包中得到算法实现和应用。 方差和协方差分量估计实质上是精化平差的随机模型,过去一直仅停留在理论的研究上。实际中,要求对多种观测量进行综合处理,因此,方差分量估计已成为测量平差的必备内容了。目前,通用平差软件包中已增加了该功能,但还需要在测量规范中明确提出来。 需要指出的是:许多测量作业单位喜欢采用附合导线进行逐级加密,主要依据目前规范中有关一、二、三级导线和图根导线的规定。无疑附合导线具有许多优点,但由于多余观测少,发现和抵抗粗差的能力较弱,不宜滥用。建立一个区域的控制,首级网点采用GPS测量,下面

水库大坝表面变形自动化监测新技术

水库大坝表面变形自动化监测新技术 徐忠阳 (索佳公司北京代表处,北京 100004) 一、引言 有关资料标明,我国河川年径流量总量约2780Gm3,水能资源十分丰富,其中理论蕴藏量为676GW,可开发为378GW,为世界第一位。为了充分利用这些水利和水能资源,新中国刚成立时,政府就十分注意兴修水利,造福人类,到目前已建水库堤坝约8.7万座,其中绝大部分(约8万座)建于20世纪50~70年代。但是,由于历史原因,有相当部分水库堤坝未按基本程序办事,是靠群众运动建造的,因此存在工程质量差、安全隐患多的问题。经过几十年的运行,已经到了病险高发期。 水利工程即可以造福人类,如管理不善也会给社会带来惨重灾难和巨大的经济损失。历史上因水库溃坝给下游造成的毁灭性灾难并不鲜见。因此加强水库大坝的安全管理必不可少,其中大坝变形监测就是大坝安全管理的重要内容之一。 二、目前水库大坝变形监测的主要技术手段 目前,在大坝安全监测技术规范中,主要有《土石坝安全监测技术规范》和《混泥土坝安全监测技术规范》。 1、土石坝安全监测技术简介 在《土石坝安全监测技术规范》中,把大坝的变形监测内容分为:表面变形、内部变形、裂缝及接缝、混泥土面板变形及岸坡位移。 大坝表面变形监测主要分为竖向位移监测和水平位移监测。 (1)竖向位移监测的方法主要是精密水准法,或连通管(静力水准)法; (2)水平位移又分为横向(垂直坝轴线)位移和纵向(平行于坝轴线)位移。 a. 横向位移的监测方法主要是视准线法(活动标法、小角法、大气激光准直法等);有必要且有条件时,可用三角网前方交会法观测增设工作基点(或位移测点)的横向水平位移。 b. 纵向水平位移观测,一般用因钢尺测量,或用普通钢尺加改正系数,有条件时可用光电测距仪测量。 (3)混泥土面板变形及岸坡位移监测的技术方法与大坝表面变形监测基本相同。 2、混泥土坝安全监测技术简介 《混泥土坝安全监测技术规范》规定:变形监测项目主要有坝体变形、裂缝、接缝以及坝基变形、滑坡体及高边坡的位移等。 (1)坝体、坝基、滑坡体及高边坡的水平位移监测 a. 重力坝或支墩坝坝体和坝基水平位移一般采用引张线法、真空激光准直法和垂线法监测。对于短坝,条件有利时也可用视准线法或大气激光准直法。

变形监测实习总结

变形监测测量实习总结 变形监测就是利用专用的仪器和方法对变形体的变形现象进行持续观测、对变形体变形形态进行分析和变形体变形的发展态势进行预测等的各项工作。其任务是确定在各种荷载和外力作用下,变形体的形状、大小、及位置变化的空间状态和时间特征。在精密工程测量中,最具代表性的变形体有大坝、桥梁、高层建筑物、边坡、隧道和地铁等。 变形监测工作的意义主要表现在两个方面:首先是掌握各种工程建筑物的稳定性,为安全运行诊断提供必要的信息,以便及时发现问题并采取措施;其次是科学上的意义,包括根本的理解变形的机理,提高工程设计的理论,进行反馈设计以及建立有效的变形预报模型。 我们本次变形监测共进行了三项内容:位移观测、倾斜观测和沉降观测。 《变形监测》是工程测量专业重要的课程内容之一,按照培养目标和教学大纲的要求,我们进行了为期一周的课程实习。旨在通过本次课程实习来加深对变形监测的的基础理论、测量原理及方法的理解和掌握程度,切实提高我们的实践技能,初步掌握位移监测、倾斜监测和沉降监测的基本方法,熟练使用作业各工序的仪器设备及作业过程等。

对于本次实习,老师和同学们都非常的重视,在第一天的实习动员会上,李老师就本次实习的意义、实习中的注意事项等方面做了明确的阐述,同时,也就本次实习内容和实习步骤做了详细的说明,并给同学们准备了相关的规范和资料,使同学们能够更好的完成本次实习任务。在其后的实习过程中,同学们实习目的明确、积极主动、不怕吃苦、勇于承担重担,在老师的指导下,顺利的完成了大坝位移监测、土木系实训楼倾斜监测和八号实验楼沉降监测等实习内容。通过本次实习,不仅使我们的理论知识得到巩固、操作能力得到加强,同时也使我们运用所学知识的解决实际问题的能力得到了提高。 对于大坝的位移监测,我们首先在面板堆石坝模型的坝体上选择了三个观测点,然后在其旁边的坚固水泥地上定了两个钢钉作为观测点,通过多次量距后,我们选择了假设坐标作为本次观测的已知数据,对坝体上的三个观测点进行了三天的前方交会法位移监测,并采用全圆观测法每次观测各六个测回,期间严格按照规范的相关要求,力求数据的精确、实用。经观测,大坝的位移量极小,非常稳固,可以安心使用。 对于土木系实训大楼的倾斜监测,我们选择了大楼的东南角,并在其南边和东边各1.5倍楼高的地方选择了坚固地面上的钢钉作为观测点,采用的是垂直投影的观测方

变形监测技术与应用

1.什么是变形? .什么是变形监测?变形监测的目的是什么?变形监测的意义? 变形监测的主要内容有哪些? 答:变形是物体在外来因素作用下产生的形状和尺寸的改变。 变形监测是对被监测的对象或物体进行测量以确定其空间位置及内部形态随时间的变化特征。 目的:1、分析和评价建筑物的安全状态。2、验证设计参数。3、反馈设计施工质量。4、研究正常的变形规律和预报变形的方法。 意义:1、对于机械技术设备:则保证设备安全、可靠、高效地运行:为改善产品质量和新产品的设计提供技术数据。 2、对于滑坡:通过监测其随时间的的变化过程:可进一步研究引起滑坡的成因:预报大的滑坡灾害。 3、通过对矿山由于矿藏开挖引起的实际变形的观测:可以控制开挖量和加固等方法:避免危险性变形的发生:同时可以改进变形预报模型。 4、在地壳构造运动监测方面:主要是大地测量学的任务。但对于近期地壳垂直和水平运动等地球动力学现象、粒子加速器、铁路工程也具有重要的工程意义。 内容:现场巡视、环境量监测、位移监测、渗流监测、应力、应变监测、周边监测。 2.变形监测技术的发展趋势。 答:由于变形监测的特殊要求:一般不允许监测系统中断监测:就要求监测系统能精确、安全、可靠长期而又实时地采集数据:而传统的设备难以满足要求:因此:科研人员在现有自动化监测技术的基础上:有针对性的研发精度高、稳定性好自动化监测仪器和设备。这方面成果有:自动化监测技术、光纤传感检测技术、CT技术的应用、GPS 在变形监测中应用、激光技术的应用、测量机器人技术、渗流热监测技术、安全监控专家系统 3. 变形监测工作有何特点:常用变形监测技术方法有哪些? 答:特点:1、周期性重复观测2、精度要求高3、多种观测技术的综合运用4、监测网着重于研究点位的变化。 测量技术:1、常规大地测量方法。如:三角测量、交会测量、水准测量。2、专门的测量方法。如:视准线、引张线测量方法。3、自动化监测方法。4、摄影测量方法。5、GPS等新技术的应用。 4. GPS用于变形测量有何优点? 答:速度快、全天候观测、测点间无需通视、自动化程度高:能进行同步变形监测:并实现了数据采集、传输、处理、分析、显示、存储等:测量精度可达到亚毫米级。6.变形观测中观测精度是如何确定的? 变形观测中确定观测周期的原则: 答:如果观测的目的是为了使变形值不超过某一允许的数值而确保建筑物的安全:则其观测的中误差应小于允许变形值的十分之一~二十分之一:如果观测的目的是为了研究其变形的过程:则其中误差应比这个数小得多。当存在多个变形监测精度要求时:应根据其最高精度选择相应的精度等级:当要求精度低于规范最低精度要求时:宜采用规范中规定的最低精度。变形监测的周期应以能系统反映所测变形的变化过程且不遗漏其变化时刻为原则:根据单位时间内变形量的大小及外界影响因素确定。 7.为什么要对变形监测资料进行检核?检核的方法有哪些? 答:资料分析工作必须以准确可靠的的监测资料为基础:在计算分析之前:必须对实测资料进行校核检验:对监测系统和原始资料进行考证。这样才能得到正确的分析成果:发挥监测资料应有的作用。 校核方法:任意观测元素:如高差、方向值、偏离值。倾斜值等/:在野外观测中均具有本身的观测校核方法:可参考有关的规范要求。进一步校核是在室内所进行的工作:具体有:1、校核各项原始记录检查各次变形值的计算是否有误。可通过不同方法的验算、不同人员的重复计算来消除监测资料中可能带有的错误。2、原始资料的统计分析。可采用统计方法进行粗差检验。3、原始实测值的逻辑分析。根据监测点的内在物理意义来分析原始实测值的可靠性。 8.如何用一元线性回归分析法对变形资料进行检核? 答:1、利用式求得变量y和x的相关系数:查阅相关系数的临界值表:判断y和x线性相关是否密切。2、利用式na+[x]b-[y]=0[x]a+[xx]b-[xy]=0 (n:观测值的个数、[]:求和计算:求回归方程=a+bx的回归系数a,b,建立回归方程。3、在回归直线两侧根据2s画两条平行线:检查新的变形值是否出现在这两条直线所夹的区间内:当观测值超出这一区间时:应作专门分析。 9.变形观测资料整理的主要内容包括哪些?成果表达的形式有哪些? 答:内容:1、收集资料:如工程或观测对象的资料、考证资料、观测资料及有关文件等。2、审核资料:如检查收集的资料是否齐全:审查数据是否有误或精度是否符合要求:对间接资料进行转换计算:对各种需要修正的资料进行计算修正:审查平时分析的结论性意见是否合理等。3、填表和绘图:将审核过的数据资料分类填入成果统计表:绘制各种过程线、相关线、等值线图等:按一定顺序进行编排。 4、编写整理成果说明:如工程或其他观测对象情况、观测工作情况、观测成果说明等。 成果:文字、表格、图形:也可采用现代科技如多媒体技术、仿真技术、虚拟现实技术进行表达。变形监测、分析、预报的技术报告和总结是最重要的成果。 13.工程建筑物变形的原因是什么?工程建筑物变形监测的内容及意义是什么? 答:原因:建筑的自重、使用中的动载荷、振动或风力因素引起的附加载荷、地下水位的升降、地质勘探不充分、设计错误、施工质量差、施工方法不当等。 内容:1、垂直位移监测2、水平位移监测3、倾斜观测4、裂缝观测5、挠度观测6、摆动和转动观测 意义:1、掌握建筑物的稳定性:为安全运行诊断提供必要的信息:以便及时发现问题并采取措施。2、理解变形的

基坑监测总结报告

目录 一、工程概况 二、监测目的 三、监测内容 四、监测依据 五、监测方法 六、监控报警 七、信息反馈八、 九、监测项目数据汇总表及时程变化曲线 十、监测结论及建议 附: 一、基坑监测平面布置图 二、基坑监测项目数据汇总表 三、监测项目时程变化曲线 监测总结报告一、工程概况

1、工程名称:正弘空港花园项目6#地块基坑变形监测项目。 2、工程地点:郑州航空港区郑港四街与郑港三路交叉口。 3、基坑工程周边环境 3.1、四周较为空旷 为保证基坑开挖期间基坑侧壁的安全和基础施工的正常进行,按照相关规范要求需采用基坑变形监测措施,确保基坑在施工期间能够掌握及时的数据变化量,有效的信息化施工,有异常变化前期能够及时预报并立即采取补救措施。 根据甲方提供的《基坑支护、降水设计总说明》做以参考,基坑开挖深度平均为-10.3米《JGJ120-99和GB50202-2002》的规定,基坑的安生等级为二级.结合基坑支护设计,考虑基坑开挖中对周边建筑物会产生一定影响,因此在基坑开挖中必须对基坑的安全实施基坑侧壁的位移和沉降变化等安全检测。 二、监测目的 为动态设计和信息化施工及时提供反馈信息,测定基坑及周边建筑物从当前状态起至变形稳定期间的绝对变化量,对基坑进行健康监测,对意外变形做出及时预报,确保施工和使用中的安仝。 根据中华人民共和国行业标准《建筑变形测量援程》JGJ8-2007及《建筑基坑工程监测技术规范》(GB50497-2009)的相关

规定和要求:测点的布置应以能全面反映建筑物地基变形特征,并结合地质情况及建筑结构特点确定。结合本工程实际,在对工程地基勘察报告及支护降水设计方案分析参考。对建筑结构体系的稳定性、可靠性、安全性进行预测预报,为确保基坑及周围环境的安全。 三、监测内容 1、主楼基坑围护顶部竖向位移及水平位移监测(暂定38点)以现场实际布设为准; 2、基坑巡视;’ 四、监测依据 (1)参考基坑支护设计图纸以及《岩土工程勘察报告》 l、《建筑变形测量规程》(JGJ 8-2007); 2、《建筑基坑支护技术规程》(JGJ 120-99); 3、《建筑基坑工程监测技术规范》( GB50497-2009); 4、《建筑地基基础设计规范》(GB 5007-2002); 5、《建筑地基基础工程施工质量验收规范》( GB 50202-2002) 五、监测方法 沉降监测分为控制网和标示点监测两部分。控制观测内容包括水准基点设置和水准基点间的高程闭合观测;标志点监测包括周期性

桥梁工程变形监测的方案.doc

桥梁工程变形监测方案 一、概述 大型桥梁,如斜拉桥、悬索桥自20 世纪 90 年代初期以来在我国如雨后春笋般的发展。这种桥梁的结构特点是跨度大、塔柱高 , 主跨段具有柔性特性。在这类桥梁的施工测量中, 人们已针对动态 施工测量作了一些研究并取得了一些经验。在竣工通车运营期间, 如何针对它们的柔性结构与动态 特性进行监测也是人们十分关心的另一问题。尽管目前有些桥梁已建立了了解结构内部物理量的变 化的“桥梁健康系统”, 它对于了解桥梁结构内力的变化、分析变形原因无疑有着十分重要的作用。 然而 , 要真正达到桥梁安全监测之目的, 了解桥梁的变化情况, 还必须及时测定它们几何量的变化及 大小。因此 , 在建立“桥梁健康系统”的同时,研究采用大地测量原理和各种专用的工程测量仪器和 方法建立大跨度桥梁的监测系统也是十分必要的。 二、变形监测内容 根据我国最新颁发的“公路技术养护规范”中的有关规定和要求, 以及大跨度桥梁塔柱高、跨 度大和主跨梁段为柔性梁的特点, 桥梁工程变形监观测的主要内容包括: 1)桥梁墩台沉陷观测、桥面线形与挠度观测、主梁横向水平位移观测、高塔柱摆动观测; 2)为了进行上述各项目的测量 , 还必须建立相应的水平位移基准网与沉陷基准网观测。 三、系统布置 1)桥墩沉陷与桥面线形观测点的布置 桥墩 ( 台) 沉陷观测点一般布置在与墩( 台 ) 顶面对应的桥面上;桥面线形与挠度观测点布置在主 梁上。对于大跨度的斜拉段, 线形观测点还与斜拉索锚固着力点位置对应;桥面水平位移观测点与 桥轴线一侧的桥面沉陷和线形观测点共点。 2)塔柱摆动观测点布置 塔柱摆动观测点布置在主塔上塔柱的顶部、上横梁顶面以上约m的上塔柱侧壁上, 每柱设 2 点。 3)水平位移监测基准点布置 水平位移观测基准网应结合桥梁两岸地形地质条件和其他建筑物分布、水平位移观测点的布置 与观测方法 , 以及基准网的观测方法等因素确定, 一般分两级布设, 基准网布设在岸上稳定的地方并 埋设深埋钻孔桩标志;在桥面用桥墩水平位移观测点作为工作基点, 用它们测定桥面观测点的水平 位移。 4)垂直位移监测基准网布置 为了便于观测和使用方便, 一般将岸上的平面基准网点纳入垂直位移基准网中, 同时还应在较稳定的地方增加深埋水准点作为水准基点, 它们是大桥垂直位移监测的基准;为统一两岸的高程系

沉降观测报告(模板)

沉降观测报告模板 一.工程概况: 简述工程规模,结构形式,地基,高度,建筑面积,抗震烈度,抗震设防等级,设计的沉降观测要求,观测点建立时间,观测周期,观测等级等。 二. 沉降观测采用的规范及标准 1.《建筑变形测量规程》JGJ/T8-97; 2.《国家一、二等水准测量规范》GB/12897-2006; 3《建筑地基基础设计规范》(GB 50007-2002) 4.《建筑工程资料管理规程》 5《工程测量规范》GB/50026-2007 6《建筑变形测量规程》GB/8-2007 7.本工程《技术设计书》; 三. 沉降观测依据及要求 依据工程设计图纸要求及沉降观测施工规范、规程做观测详细说明。 四. 观测目的及要求: 沉降观测的主要目的:是监测建筑物(构筑物)在施工期间以及后续各个阶段的沉降状态和工作情况,并为建设单位、设计单位和施工单位提供准确可靠的建筑物动态沉降数据,以便在发生不正常现象时,使各方能及时分析原因,采取措施,防止事故发生,

确保工程质量安全。 建筑沉降观测能测定建筑及地基的沉降量、沉降差及沉降速率,并根据需要计算基础倾斜、局部倾斜等数据。 五. 基准点和沉降观测点的设置 1基准点是沉降观测起始数据的基本控制点,为保证观测值的高可靠性,在施工区附近(变形区外)埋设沉降观测水准基点,所埋基准点根据《建筑变形测量规范》JGJ/T8-2007中的规定进行建立。基准点的个数,可根据工程规模的大小合理布设。本建筑共埋设4个基准点,高程系统采用假定高程BM1=m,也可采用施工区域内国家高程系统,高程值为甲方提供绝对高程值。基准点的建立必须用高精度水准仪引测,经过闭合、平差计算而来,并定期检验基准点的稳定性。至提交报告时基准点稳定可靠,符合规范要求。 2依据《建筑变形测量规范》JGJ/T 8-2007中的规定,沉降观测点的布置以能全面反映建筑物地基变形特征并结合地质情况及建筑物结构特点进行,变形观测点均设在建筑主要受力位置。点位设置的高度应有利于观测,且不影响施工的原则,并有利于长期保存。变形观测点均设在建筑主要受力点上。每个建筑物或构筑物在施工平面图上,都合理设置沉降观测点

现代变形监测重点内容与思考题答案

第1章变形监测概述 一、什么是工程建筑物的变形?对工程建筑物进行变形监测的意义何在? 工程建筑物的变形:由于各种相关因素的影响,工程建筑物及精密设备都有可能随时间的推移发生沉降、位移、挠曲、倾斜及裂缝等现象,这些现象统称为变形。 变形监测:利用专门的仪器和设备测定建(构)筑物及其地基在建(构)筑物荷载和外力作用下随时间而变形的测量工作。 内部变形监测内容主要有工程建筑物的内部应力、温度变化的测量,动力特性及其加速度的测定等; 外部变形监测又称变形观测,其主要内容有建(构)筑物的沉降观测、位移观测、倾斜观测、裂缝观测、挠度观测等。 意义:通过变形监测,可以检查各种工程建筑物及其地质构造的稳定性,及时发现问题,确保工程质量和使用安全; 更好地了解建(构)筑物变形的机理,验证有关工程设计的理论和地壳运动的假说,建立正确的变形预报理论和方法; 以及对某种工程的新结构、新材料和新工艺的性能作出科学的客观评价。 二、工程建筑物产生变形的主要原因,及变形的分类? 原因:(1) 自然条件及其变化:建筑物地基的工程地质、水文地质、大气温度的变化,以及相邻建筑物的影响等。 (2) 与建筑物本身相联系的原因:如建筑物本身的荷重、建筑物的结构、形式以及动荷载的作用、工艺设备的重量等。 (3) 由于勘测、设计、施工以及运营管理方面的工作缺陷,还会引起建筑物产生额外变形。 分类:(1)按变形性质可以分为周期性变形和瞬时变形(2)按变形状态则可分为静态变形和动态变形 三、变形监测的主要任务和目的? 任务:是周期性地对拟定的观测点进行重复观测,求得其在两个观测周期间的变化量;或采用自动遥测记录仪监测建(构)筑物的瞬时变形。 目的:(1)监测——以保证建(构)筑物的安全为目的,通过变形观测取得的资料,可以监视工程建筑物的变形的空间状态和时间特性;在发生不正常现象时,可以及时分析原因,采取措施,防止事故发生,以保证建(构)筑物的安全。(变形的几何分析) (2)科研——以积累资料、优化设计为目的,通过施工和运营期间对建筑物的观测,分析研究其资料,可以验证设计理论,所采用的各项参数与施工措施是否合理,为以后改进设计与施工方法提供依据。(变形的物理解释) 四、高层建筑的主要变形特点? (1)基础较深,需进行基坑回弹测量(2)沉降量较大,需进行沉降观测(3)楼体高力矩大,需进行倾斜观测(4)风荷载大,需进行风振测量(5)墙体温差大,需进行日照变形观测 五、制约变形监测质量的主要因素有哪些? (1)观测点的布置;(2)观测的精度与频率;(3)观测所进行的时间。 六、确定变形监测精度的目的和原则? 变形监测的精度,取决于建筑物预计的允许变形值的大小和进行观测的目的。如何根据允许变形值来确定观测的精度,因其与观测条件和待测建(构)筑物的类型以及观测的目的相关。 七、确定变形监测的频率主要由哪些因素决定?应遵循什么原则? (一)因素:观测的频率取决于变形值的大小和变形速度,同时与观测目的也有关系。(二)原则: 1.变形监测的频率应以既能系统地反映所测变形的变化过程,又不遗漏其变化的时刻为原则,根据单位时间内变形量的大小及外界因素的影响来确定。

变形监测技术要求

针对目前变形监测项目应符合以下规范要求 基坑开挖对临近轻轨高架结构的影响主要集中在以下方面:一是坑外土体的位移;二是既有高架桥与基坑相对位置的关系;三是轻轨高架上下部的结构关系;四是轻轨高架的结构基础和埋深情况。五是轻轨高架自身的结构自重和轻轨高架中动载荷的控制与变化情况等。基坑周边轻轨高架在基坑开挖中的变形情况是复杂的,变形的原因是多元的,变形的效果是动态的。在实践工程中,基坑开挖将要造成土体的不均匀沉降和水平方向的位移,不仅要做好岩土工程计算,制定可行性基坑开挖方案,同时还要做好变形监测工作,防止各种因素对轻轨高架桥产生的影响。对于建筑基坑施工对周边轻轨高架的变形影响,高程和平面控制可参考规范二级要求。 变形监测应设置平面和高程基准点,要求设置在变形区域以外,位置稳定、易于长期保存的地方,并应定期复测。复测周期应视基准点所在位置的情况而定,在建筑基坑施工过程中宜1~2月复测一次,点位稳定后宜每季度或每半年复测一次。 1、沉降观测的高程基准点不应少于3个,应与工作基点形成闭合环或附合线路。高程基准点和工作基点布设应避开交通干道主路、地下管线、仓库堆栈、水源地、河岸、松软填土、滑坡地段、机器震动区以及其他可能使标石、标志易遭腐蚀或破坏的地方,其点位与邻近建筑的距离应大于建筑基础最大宽度的2倍。当使用静力水准测量方法测量沉降时,用于联测观测点的工作基点宜与沉降观测点设在同一高程面上,偏差不应超过±1cm。不能满足这一要求时,应设置上下高程不同但位置垂直对应的辅助

点传递高程。实际工作中采用精度不低于1mm级水准仪配合铟瓦尺或条码尺进行水准测量,观测方式其中高程控制测量、工作基点联测及首次观测值应采用往返测或单程双测站法,其他各次沉降观测点可采用单程观测或单程双测站法。起始点高程宜采用测区原有高程系统。较小规模的监测项目可假定高程系统,较大规模的项目宜与国家水准网联测。二级水准视线长度应≤50m,前后视距差≤2.0m,前后视距差累积≤3.0m,视线高度(下丝)≥0.3m。用数字水准仪观测时最短视线长度不宜小于3m,最低水平视线高度不应低于0.6m。限差要求往返较差及附合或环线闭合差≤1.0√n(mm),单程双测站所测高差较差≤0.7√n(mm),检测已测段高差之差≤1.5√n(mm)。n为测站数。用于运营阶段的结构、轨道和道床的垂直沉降监测点高程中误差±0.5mm,相邻监测点高程中误差±0.3mm。同一项目在不同周期进行变形监测应采用相同的观测路线和观测方法,使用相同的仪器和设备,并应固定观测人员。首次观测应独立观测2次取平均值作为初始值。监测频率可按照设计要求结合基坑施工进度进行拟定,当发生较大沉降时可加密监测频率;连续一个月沉降趋势趋于稳定状态(无沉降差,纯属仪器误差)的情况下,可要求减少监测频率。在项目开始前和结束后应对使用的水准仪、水准标尺进行检验,二级水准观测仪器i角不得大于15”。水准仪i角的测定办法,如图所示:

天津市加强建筑工程变形观测控制的规定

天津市加强建筑工程变形观测控制的规定 建质安管〖1999〗529号 各局(集团总公司),各区、县建委及有关单位: 为确保我市建筑工程主体结构,使在施工和使用期间沉降变形得到有效控制,提高建筑工程的整体质量水平。结合我市的实际情况,制订了《天津市加强建筑工程变形观测控制的规定》。现发给你们,望严格遵照执行。本规定自一九九九年七月一日起,在我市执行。 第一条为加强建筑工程主体结构在施工及使用期间沉降变化的监控,规范监控行为和程序,准确反映建筑工程沉降及重要结构变形情况,确保我市建筑工程质量得到有效的控制,特制定本规定。 第二条凡现行的有关建筑标准规范及《天津市多层砖砌体住宅建筑沉降裂缝控制设计与施工若干暂行规定》中规定必须进行结构变形控制及沉降观测的建设工程均在本规定的范围之内。 第三条凡需进行变形观测控制的工程,其勘察单位必须在岩土勘探报告中提出相关意见与建议;设计单位必须在施工图中提出观测控制的要求和说明。 第四条凡需进行变形控制的工程,建设单位必须在工程开工前委托沉降观测单位签订观测合同,并由观测单位制定出观测方案后,方可报请开工。 沉降观测单位指有沉降变形观测资质并与地基基础处理、主体结构施工无关的具有相应资质的检测单位。 第五条建筑工程沉降变形观测应充分了解工程项目的技术要求,进行现场踏勘并应及时收集、分析和利用原有的合格资料,制定经济合理的技术观测方案。 第六条沉降变形观测应执行国家行业标准《建筑变形测量规程》(JGJ/T8-97),及其它规范规定的方法,能满足《建筑变形测量规程》规定要求的亦可采用。 第七条测量仪器和设备工具,必须经天津市技术监督局认定的计量单位检测合格,方能投入使用,且应随时检查测量仪器精度变化。 第八条沉降变形观测点的布设要均匀合理,必须能全面查明建筑工程项目的基础沉降和其他变形要求。观测点必须牢固稳定,能长期保存,要保证其具有良好的通视条件。 凡新建与原有建筑连接的工程和砖混结构住宅工程,设计单位必须在设计图纸上标明允许沉降量。 第九条

变形监测实验报告完整版

编号:TQC/K485变形监测实验报告完整版 Daily description of the work content, achievements, and shortcomings, and finally put forward reasonable suggestions or new direction of efforts, so that the overall process does not deviate from the direction, continue to move towards the established goal. 【适用信息传递/研究经验/相互监督/自我提升等场景】 编写:________________________ 审核:________________________ 时间:________________________ 部门:________________________

变形监测实验报告完整版 下载说明:本报告资料适合用于日常描述工作内容,取得的成绩,以及不足,最后提出合理化的建议或者新的努力方向,使整体流程的进度信息实现快速共享,并使整体过程不偏离方向,继续朝既定的目标前行。可直接应用日常文档制作,也可以根据实际需要对其进行修改。 1、实验要求: 应用全站仪对科技楼楼顶避雷针进行变形观测 2.实验过程: 首先认真理解前方交会原理,然后利用GPS做静态控制得出控制点坐标,将全站仪架在其中一个控制点A上,另一个控制点B架上反射棱镜,将全站仪望远镜瞄准反射棱镜定向,然后置零,转动照准部对准避雷针顶端C,记录角度,然后盘右观测,一站观测两个测回,得出夹角α将全

变形监测的若干新技术

变形监测的若干新技术 秦滔 摘要:主要介绍了光纤监测技术、卫星合成孔径雷达差分干涉测量技术及GPS 伪卫星组合定位技术在变形监测中的应用,同时分析了使用这些新技术的优势和应用前景。 关键词:变形监测 GPS伪卫星组合定位 光纤监测合成孔径雷达差分干涉测量 Abstract:Mainly introduce the fiber-optic monitoring technology, D-InSAR and integration of GPS and Pseudolite positioning technology in the application of deformation monitoring, and analysis of the use of the advantages of these new technologies and applications. Keywords: deformation monitoring integration of GPS and Pseudolite positioning fiber-optic monitoring D-InSAR 1 引言 我国的变形监测工作起步于20世纪50年代,经过半个世纪的发展,形成了完成的理论体系和技术方法。尤其近20年来,许多大型工程开工建设,各种先进的仪器设备飞速发展,变形监测工作也取得了很大的进步。 早期的变形监测,主要采用精密的光学测量仪器进行观测,例如精密水准测量、经纬仪、垂线及视准线等。随着电子仪器的发展,应变计、无应力计、测缝计、钢筋计、测压计、渗压计等广泛应用于变形监测中。另外,用于监测环境量的电子温度计、水位计等也开始使用。电子计算机的广泛应用和发展,促使变形监测工作提高效率,走向自动化、智能化之路,尤其是全站仪、GPS等先进仪器出现,计算机技术不断发展,数据处理技术不断优化,变形监测工作走上了数据采集、传输、存储、处理自动化的道路。 近年来,变形监测工作中又出现了若干新的技术方法,这些新技术拥有广阔的应用前景,本文主要介绍以光纤传感器为基础的光纤监测技术、以卫星合成孔径雷达为基础的差分干涉测量技术(D-InSAR)及以GPS伪卫星组合定位技术在变形监测中的应用。 2 光纤监测技术 光纤技术是一种集光学、电子学为一体的新兴技术,其核心技术是光纤传感

变形监测实习报告

变形监测实习报告 变形监测实习报告_20xx301610245_王宏达 变形监测实习报告 王宏达20xx301610245 一、各监测点本期沉降量 1第1次0第2次1.2第3次0.5第4次0.3第5次-1.4第6次0.3第7次-0.3第8次-0.6第9次0.6第10次-0.9第11次-0.3第12次-0.3第13次-0.5第14次 -0.3 23003.2 4.4 -1.2-2.90 0 -1.8-0.40.8 0.5 -0.9-1.30.9 0.9 -1.4-0.71.3 0.7 -0.4-0.2-0.8-0.4-0.5-0.40.1 -0.3 45003.26-3-3.40-1.30.7 -0.2 -0.10.1-0.4-10.8 1.3 -0.3-0.80 0.5

-0.5-0.6-1.9-1.80.40.70.2 3.7 67000.50.5-0.10.41.60.2 -0.4-1.1-0.7-1 0.7-0.6-0.31.2 0.3-0.3-0.90.1 -0.9-0.4-0.9-1.31.40.5 -0.6 -3.1801.10.10.4 0-0.6 -0.40.5 -1.20.8 -0.6-0.90 -3.8 二、各期的平均累积沉降量 第1次第2次第3次第4次第5次第6次第7次第8次第9次第10次第11 101.20.50.3-1.40.3-0.3-0.60.6-0.9-0.3 20304050 600.5-0.11.6-0.4-0.70.7-0.30.3-0.9-0.9 7080 平均02.5125-1.20.15-0.575-0.0875-0.5250.5875-0.4750.2-0.487 3.24.4-1.20-1.8 -2.90-0.4 3.26-30 -3.4-1.3 0.51.10.40.10.20.4-1.1-1-0.6 0-0.6-0.4 0.7-0.2-0.1-0.4 0.1-1 0.80.5-0.9

试谈工程建筑的变形监测

Unit19 DeformationMonitoring of Engineering Structure(工程建筑【Engineering Structure或者工程结构】的变形观测) Overview(概述【Overview纵览、总的看法】) Deformation refersto thechanges of a deformable body (naturalor man-madeobjects)undergoes inits shapes, dimensionandposition inspace and timedomain.(变形指一个形变体【deformable body】(自然或人工物体)在空间和时间范围【domain领域、范围】在形状、尺度和位置上经受【undergo经受、收到】的变化)【变形指一个形变体在空间和时间上经受的形状、尺度和位置的变化】 Due tofactors such as changes of ground waterlevel, tidalphenomena,tectonic phenomena, etc, engineering structures (such as dams, bridges,high rise buildings, etc.) are subject todeformation.(由于【Dueto】诸如地下水位变化、潮汐现象、地壳构造【tectonic构造的、地壳构造的】现象等等的因素【factor】,工程建筑物(如大坝、桥梁、高层建筑等等)受到变形【deformati on】影响【subject受……影响】) Deformation of engineering structuresis often measured in order to ensure that the structure is exhibiting asafedeformationbehavior.(工程建筑物的变形经常观测以保证建筑呈现【exhibit展现】安全变形行为)【工程建筑物的变形经常观测以保证建筑物的变形在安全范围内】

边坡挡墙变形监测新技术研究

边坡挡墙变形监测新技术研究 2 摘要:三维激光扫描技术的出现,为边坡挡墙变形监测提供了新的监测手段,本文选用在测量领域中使用较广的脉冲式扫描仪,以监测某立交桥的边坡挡墙变形为实例,进行了点云数据采集。根据边坡挡墙变形监测的特点及数据处理的要求,使用机带软件RIEGLVZ-1000进行了点云数据预处理之后,再引入第三方点云处理软件GeomagicStudio和GeomagicQualify,进行了数据处理及变形分析。通过研究,提出了基于三维激光扫描技术的边坡挡墙变形监测新方法。 关键词:三维激光扫描;挡墙;变形监测;点云数据 Abstract: The emergence of three - dimensional laser scanning technology provides a new means to monitor deformation of slope and retaining wall. The paper uses the pulsed scanner which is widely used in measurement, we scan a slope and retaining wall of a bridge which is taking as an example and collect the point cloud data. According to the characteristics and requirements of the slope and retaining wall data processing, we use the RIEGL VZ - 1000 which comes with the machine to finish point cloud data preprocessing, use the third - party point cloud processing software Geomagic Studio and Geomagic Qualify to process data and analysis deformation. After the research, we presented a new method to monitor deformation of slope and retaining wall based on 3D laser scanning technology. Key words:3D laser scanning; slope and retaining wall; deformation monitoring; point cloud data 引言 我国是世界上自然灾害频发的国家之一,而滑坡灾害在我国的自然灾害中占

相关主题
文本预览
相关文档 最新文档