当前位置:文档之家› 光色散的原理及应用

光色散的原理及应用

光色散的原理及应用
光色散的原理及应用

光色散的原理及应用

一、光色散的唯象解释

历史上,对于光色散现象的研究和观察早已有之,唐代诗人孔颖达在《礼记·注疏》中道,“雄谓明盛者,雌谓闇微者。虹是阴阳交会之气,纯阴纯阳则虹不见。若云薄漏日,日照雨滴则虹生”。这是诗人对彩虹形成的一种观察认知,也是对光色散的一种归纳认知,揭示了虹的光学成因。1666年初,英国物理学家牛顿做了一个棱镜实验,发现太阳光经过色散效应之后,形成了颜色排列依次为红、橙、黄、绿、蓝、靛、紫的光谱(spectrum)现象,为现代的光学色散研究拉开了序幕。

在光学中,由两种或两种以上的单色光组成的光(由两种或两种以上的频率组成的光),称为复色光,不能再分解的光(只有一种频率),称为单色光。而将复色光分解成单色光的过程,叫光的色散。对同一种介质,光的频率越高,介质对这种光的折射率就越大。当白光通过三棱镜时,棱镜对紫光的折射率最大,光通过棱镜后,紫光的偏折程度最大,红光偏折程度最小。这样,三棱镜将不同频率的光分开,就产生了光的色散。

图1 光的棱镜色散现象

色散可以利用三棱镜或光栅等作为“色散系统”的仪器来实现。将颜色按一定顺序排列形成光谱。光谱是复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色光按波长(或频率)大小而依次排列的图案,全称为光学频谱。光谱

中最大的一部分可见光谱是电磁波谱中人眼可见的一部分,在这个波长范围内的电磁辐射被称作可见光。光谱并没有包含人类大脑视觉所能区别的所有颜色,譬如褐色和粉红色。法国数学家柯西发现折射率和光波长的关系,可以用一个级数表示:

24()b

c n a λλλ=++(1)

其中a ,b ,c 是三个柯西色散系数,因不同的物质而不同。只须测定三个不同的波长下的折射率n(λ),代入柯西色散公式中可得到三个联立方程式,解这组联立方程式就可以得到这物质的三个柯西色散系数。

二、 光色散的物理解释

频散效应为诸多光学媒介和结构所有的重要物理性质。由于介质中的光速是频率的函数,不同频率的光波以不同的相速传播;如此,两个不同频率的光波序列经长时间后必将相互散开。光波信号多以波群形式存在,其中包含诸多频率相近的谐波成份,波形上往往呈包络调制型的波包脉冲。频散使得波包传播速度(群速度)—异于相速度,或慢或快。

群速度和相速度是导波理论中的重要概念,也是导波的主要参数。群速度(C g )是指脉冲波的包络上具有某种特性(如幅值最大)的点的传播速度,它是波群的能量传播速度。通俗的说,群速度是关于一族频率相近的波的传播速度。而相速度(C p )是波上相位固定的一点传播方向的传播速度。值得注意的是,导波以其群速度向前传播。在绝大多数情况下,群速度几乎等于光能传播的速度。因此,有必要区分相速度和群速度。

图2 复色光波的传播形式

相速度是指波的相位在空间中传递的速度,换句话说,波的任一频率成分所具有的相位即以此速度传递。光波的相速度即单一频率的正弦光波波的等相面在介质中传播的速度v=c/n ,c 为自由空间中的光速,n 为介质对该频率电磁波的折

射指数。可以挑选波的任一特定相位来观察(例如波峰),则此处会以相速度前行。相速度可借由波的频率f 与波长λ,或者是角频率ω与波矢量k 的关系式表示。假设一列理想的单色平面波方程为,

0cos()A A t Kx ω=-(2)

其中上式2f ω

π=和2f ωπ=都是不随t 和x 改变的量。因此为满足相位相等

条件,即 t Kx const ω-=

微分后有,0dt Kdx ω-=,即有相速度

p dx v dt k

ω==(3) 可见,相速度是严格单色光所特有的一种速度,严格的单色光在空间延续和时间延续都是无穷无尽的余弦或正弦波,但这种波是理想的极限情况。

群速度是指许多不同频率的正弦波的合成信号在介质中传播的速度,即合成脉冲波的包络上具有某种特性(如幅值最大)的点的传播速度。不同频率正弦波的振幅和相位不同,在色散介质中,相速不同,故在不同的空间位置上的合成信号形状会发生变化,群速是一个代表能量的传播速度。

考虑两列频率相近、振幅相等的平面简谐波,其波动方程是

111222cos()

cos()

y A t K x y A t K x ωω=-??=-?(4) 则其合成波函数为,

121122cos()cos()y y A t k x A t k x ωω+=-+-

121212122cos()cos()2222

k k k k A t x t x ωωωω--++=-?- 002cos()cos()A t k x t kx ωω=-?-(5)

其中,0ω为122ωω-,ω为122

ωω+,当两列频率相近的简谐相互叠加时,

即0ω非常小,12122cos()22

k k A t x ωω---低频项可看成振幅调制项,其复合波的包络面振幅以非常微小的变化作周期性运动,1212cos()22k k t x ωω++-高频可看

成复合后子波的振动频率,这种振幅调频周期可以看成一个空间拍。

为了得到复合波的群速度,可以追踪包络线上某一点(如波峰)的平移变化,即有00t k x const ω-=

微分后得到,000dt k dx ω-=,即有群速度

012012p dx v dt k k k k ωωωω-?=

===-? 由于12ωω-非常小,因此d k dk

ωω?=?,即群速度可表示 ()p p g p d v k dv d v v k dk dk dk ω=

==+(6) 对于无色散波,有0p

dv dk =,相速度等于群速度;对于介质色散波,有

0p

dv dk ≠,相速度小于群速度。对于上式,因为2/K πλ=,所以22dk d πλλ

=-,所以得到, 22p p p dv dv dv d dk d dk dk

λλλπ==-(7) 最终得到,p g

p dv v v d λλ=-,因为/p v c n =,因此得到相速度与群速度

的关系, 2(1)g p c c dn dn v v n n d n d λλλλ

=+=+(8) 则可以看出,相速度色散是色散的一阶效应,而群速度色散是色散的二阶效应。其色散关系为

① 若0dn d λ

<,即g p v v <,发生正常色散,得到正向分布光谱; ② 若0dn d λ

>,即g p v v >,发生反常色散,得到反向分布光谱; ③ 若0dn d λ=,即g p v v =,发生反常色散,无法得到单色光谱。

Lord Rayleigh 曾说过:“群速度的概念常用下面这个例子说明,即当一族波列到达一个静止水面时,波群的速度比它所包含的每一个子波的速度都要小;这些子波仿佛通过波群前进,当达到其内部极限时而消失。”此外,通过试验的方法也可以得到群速度C g 和相速度C p ,如图3,波形a 为弹性波在传播一定距离时得到的一个导波波形。波形b 为传播距离加大了l ?后得到的一个导波波形。

图3 群速度和相速度计算

三、 光色散的能量解释

相速度乃简谐光波相位传播的速度。其频率ω、波数k 的简谐光波光压为,

()j t kx P p e ωα-=(9) 其相位角为()x t kx t c ??ωω=-=-,位相传播速度为C k

?ω=。为了追踪位相的一致性,则有1t 和2t 时刻, 1212()()x x t t c c ??

?ωω=-=- 由此得出,2121

x x C t t ?-=-。可见,公式(9)定义的C ?正是等值相位的传播速度。相速度与媒质光速是两个概念。媒质光速0C (speed of sound )是媒质的光学特征量,由媒质的性质确定。通常情形(如自由空间)下,相速度C ?

等于媒

质的光速0C 。但在受限空间中,相速度不一定等于光速0C 。例如,对于光管的高次(m,n)模式,其相位是

()()(,),(x x mn mn t x t k x k ?ω=-= (10)

式中,k 是波数(k=ω/0C ),kmn 是第(m,n )模式的简正波数,而()

x mn k 是该模式沿轴向传播的波数。因此,该模式的相速度

0()x mn C C k ?ω

==>(11) 可见,高次模式的相速度C ?不但大于(不等于)光速0C ,而且是频率ω的函数,具有频散效应。

群速度则与此不同,它与一组频率略微不同的光波群有关。由于频率相近,波群呈现为幅度调制的包络型振荡光脉冲。譬如,振幅相等、频率分别为1ω和2ω、波数分别为k 1和k 2的两列平面简谐光压波可表为,

1122()()12,j t k x j t k x P p e P p e ωωαα

--== (12) 其相速度分别为111C k ω=、222C k ω=,叠加合成光压为

001122()()()12()2()j t k x j t k x j t k x P P P p e

e p t kx e ωωωααω---=+=+=?-? 光压的幅度相速度与群速度呈调制的包络形状,其传播速度当为,

1212p v k k k ωωω-?==?-

下图一是p 的时空波形,其中设定两个波的频率和波数皆相近(ω1≈ω2,k 1≈k 2)。对于无频散的媒质,12C C C ?==,故g C C ?=。但如果媒质是频散的,C 1 ≠ C 2,因此,cg ≠ cφ,即波包的传播速度cg 不等于相速度cφ。此波包传播速度cg 即群速度。由于群速度C g <

为了不失一般性,设波幅()P αω在频率空间具有高斯分布的形式,

2

1

()()

2

P

α

ωω

ω

ω

-

??

=-

??

?

??

(13)式中0P、0ω和ω

?皆常数。此ω

?(非前ω

?)衡量频带宽度,0ω是此频带的中心频率。可见,这些波以中心频率0ω的成份幅度最大。假定所有的频率成份皆存在,则总的光压P是所有频率成份的线性叠加

,

2

2

1

()exp()

2

1

(,)exp()exp()

2

A z z

x

p x t j t d

c

?

ω

ωω

ωω

ω

+∞

-∞

??

=-??

??

??

??

-

??

=-?-

??

??

?

????

??

?

假如相速度C?是与频率无关的函数,则上述积分结果可变为,

2

000

1()()()

()

2

(,)e e e

x x

j t j t

c c

p x t d

??

ωωωωω

ωω

+∞----

-

?

-∞

=??

?

2

00

1

()()()

()

2

e e

x x

j t j t

c c d

??

ωω

ωωω

ωω

+∞-

---

-

?

-∞

=?

?

2

1

()()()

2

e e

x x

j t j t

c c d

??

ω

ω

Ω

+∞

--+Ω-

?

-∞

?

()

e()

x

j t

c x

A t

c

?

ω

?

-

=-(14)式中A=|P|是光压波的振幅,其积分结果为,

2

1

()exp()

2

A z z

ω

??

=-??

??

??(15) 这就是幅度调制型包络波,振荡频率0ω,时间宽度约ω

?,空间宽度约C?/ω

?。整个波形以相速度C?行进,相位是波幅包络轨在相对于波包的运动坐标系中,波形是静止的。

多数情形下群速度

g

C恰好等于能量传递的速度。以光波导为例说明,通过公式(11)求得光管高次(m,n)模式的群速度,

)g C C k C ω==(16) 它小于自由空间光速0C ,也小于该模式的相速度C ?。以下设坐标(,)x y 位于横截面上,而z 沿管轴方向。在管道中,(m,n )简正模式mn φ满足二维拉普拉斯方程,

2220,mn mn mn x y k ?Φ+?Φ=?=?+?(17)

式中Δ是两维拉氏算符,mn k 是属于该模式的简正波数。在刚性边界条件下,可以证明这些模式是正交的。对应模式mn Φ的光压mn P 和质点速度mn V 分为

2

,jk mn mn mn mn P A e ε-=Φ

2,,0011()z mn jk mn mn mn mn mn k C V P A e jk jk k

ερ-⊥=-?=-?Φ+Φ 其中,mn A 是(m ,n )模式的振幅,,z mn k 是波矢的轴向z

分量,,z mn k =。轴向光能密度mn E 是体光能密度对横截面S 的积分:

222002200001()()42mn mn mn mn mn s s A E C V P dxdy dxdy C C ρρρ??=-+=Φ??????

其中最后等式应用了mn Φ满足的二维拉普拉斯方程,及其满足的刚性管壁边界条件。任意横截面上的光功率mn W 为光强沿横截面的积分。经类似的推导,得出,

2,2001Re ()22z mn mn mn mn mn mn s s k A W P V dS dxdy C k ρ??=?=Φ????????(18)

比较两式知,mn mn g W E C =,即g C 是高次(m,n )模式光能的传播速度。显然,不同简正模式,群速度g C 亦不同。

四、光散射的简单应用

物相分析:不同物质(原子、分子和原子团等)对光的吸收和散射能力不同,因此,我们可以根据物质的光谱来鉴别物质及确定它的化学组成和相对含量。

照片成像:光学镜头可以成像,在焦点平面上的胶片,根据影像的明暗、色调不同,胶片上的溴化银(溴化银的化学性质遇光分解)感光量也不同,形成的银离子密度也不同,强光处,密度大,弱光处密度低。这就是底片与被摄体相反的原因。这些银离子潜影经化学药液的反应,就在胶片的片基上得到银颗粒组成的不同密度的影像,称底片。照相纸制成照片的原理也与胶片相同,胶片透过光线密度不同,相纸感光量也不同,经冲洗,最终得到照片。彩色的是有三层感光层和滤光层,分别感光红、蓝、黄色光,冲洗是各层与各层相对应的染料反应,形成彩色的影像负片,再经原理相同的扩印,得到彩色照片。

光纤波导:光纤中的色散较为复杂。在光纤中传输的光信号的不同频率成份或不同的模式分量以不同的速度传播,到达一定距离后必然产生信号失真,这种现象称为光纤的色散或弥散。光纤的色散主要有材料色散、波导色散、偏振模色散和模间色散四种。其中,模间色散是多模光纤所特有的。色散限制了光纤的带宽—距离乘积值。色散越大,光纤中的带宽—距离乘积越小,在传输距离一定时,带宽就越小,带宽的大小决定传输信息容量的大小。

参考文献

[1] 谢敬辉, 廖宁放, 曹良才. 傅里叶光学与现代光学基础[M]. 北京理工大学出

版社, 2007.

[2] F.A.Jenkins, H.E.While. 物理光学基础[M]. 商务印书馆, 1953.

[3] 杨其, 李光宪, 雷彩红. 光散射技术在聚合物结晶研究中的应用[J]. 高分子

材料科学与工程, 2002, 18(5):45-49.

光的色散知识点(试题复习)

光的色散1.色散:白光分解成多种色光的现象。 2.光的色散现象:一束太阳光通过三棱镜,被分解成七种色光的现象叫光的色散,这七种色光从上至下依次排列为红、橙、黄、绿、蓝、靛、紫(如图甲所示)。同理,被分解后的色光也可以混合在一起成为白光(如图乙所示)。 光的三原色及色光的混合 1.色光的三原色:红、绿、蓝三种色光是光的三原色。 2.色光的混合:红、绿、蓝三种色光中,任何一种色光都不能由另外两种色光合成。但红、绿、蓝三种色光却能够合成出自然界绝大多数色光来,只要适当调配它们之间的比例即可。色光的合成在科学技术中普遍应用,彩色电视机就是一例。它的荧光屏上出现的彩色画面,是由红、绿、蓝三原色色点组成的。显像管内电子枪射出的三个电子束,它们分别射到屏上显不出红、绿、蓝色的荧光点上,通过分别控制三个电子束的强度,可以改变三色荧光点的亮度。由于这些色点很小又靠得很近,人眼无法分辨开来,看到的是三个色点的复合.即合成的颜色。 如图所示,适当的红光和绿光能合成黄光;适当的绿光和蓝光能合成青光;适当的蓝光和红光能合成品红色的光;而适当的红、绿、蓝三色光能合成白光。因此红、绿、蓝三种色光被称为色光的“三原色。”

物体的颜色:在光照到物体上时,一部分光被物体反射,一部分光被物体吸收,不同物体,对不同颜色的光反射、吸收和透过的情况不同,因此呈现不同的色彩。 光的色散现象得出的两个结论: 第一,白光不是单色的,而是由各种单色光组成的复色光;第二,不同的单色光通过棱镜时偏折的程度是不同的,红光的偏折程度最小,紫光的偏折程度最大。 色光的混合:不能简单地认为色光的混合是光的色散的逆过程。例如:红光和绿光能混合成黄光,但黄光仍为单色光,它通过三棱镜时并不能分散成红光和绿光。 物体的颜色: 由它所反射或透射的光的颜色所决定。 1.透明物体的颜色由通过它的色光决定在光的色散实验中,如果在白屏前放置一块红色玻璃,则白屏上的其他颜色的光消失,只能留下红色,说明其他色光都被红玻璃吸收了,只能让红光通过,如图所示。如果放置一块蓝玻璃,则白屏上呈现蓝色。 2.不透明物体的颜色由它反射的色光决定在光的色散实验中,如果把一张红纸贴在白屏上,则在红纸上看不到彩色光带,只有被红光照射的地方是亮的,其他地方是暗的;如果把绿纸

大学基础物理学课后习题答案_含思考题(1)

大学基础物理课后答案 主编:习岗高等教育出版社

第一章 思考题: <1-4> 解:在上液面下取A 点,设该点压强为A p ,在下液面内取B 点,设该点压强为B p 。对上液面应用拉普拉斯公式,得 A A R p p γ20= - 对下液面使用拉普拉斯公式,得 B B 02R p p γ= - 又因为 gh p p ρ+=A B 将三式联立求解可得 ??? ? ??-= B A 112R R g h ργ <1-5> 答:根据对毛细现象的物理分析可知,由于水的表面张力系数与温度有关,毛细水上升的高度会随着温度的变化而变化,温度越低,毛细水上升的高度越高。在白天,由于日照的原因,土壤表面的温度较高,土壤表面的水分一方面蒸发加快,另一方面土壤颗粒之间的毛细水会因温度升高而下降,这两方面的原因使土壤表层变得干燥。相反,在夜间,土壤表面的温度较低,而土壤深层的温度变化不大,使得土壤颗粒间的毛细水上升;另一方面,空气中的水汽也会因为温度下降而凝结,从而使得清晨时土壤表层变得较为湿润。 <1-6> 答:连续性原理是根据质量守恒原理推出的,连续性原理要求流体的流动是定常流动,并且不可压缩。伯努利方程是根据功能原理推出的,它的使用条件是不考虑流体的黏滞性和可压缩性,同时,还要求流动是定常流动。如果流体具有黏滞性,伯努利方程不能使用,需要加以修正。 <1-8> 答:泊肃叶公式适用于圆形管道中的定常流动,并且流体具有黏滞性。斯托克斯公式适用于球形物体在黏滞流体中运动速度不太大的情况。 练习题: <1-6> 解:设以水坝底部作为高度起点,水坝任一点至底部的距离为h 。在h 基础上取微元d h ,与之对应的水坝侧面面积元d S (图中阴影面积)应为坡长d m 与坝长l 的乘积。 练习题1-6用图 d h d F

八年级物理上册 第二章光的色散学案人教新课标版

八年级物理上册第二章光的色散学案人教新课 标版 第二章第五节光的色散学习目标(1)了解色散现象和原因。。(2)知道色光的三原色跟颜料的三原色是不同的。(3)知道物体的颜色成因。学习过程 一、自主学习:阅读课本51-53页回答下列问题 1、色散: 。色散现象说明。 2、物体的颜色:透明物体的颜色是由决定的。通过色光,呈现绿色;不透明的物体的颜色是由它决定的。反射红光,呈现色。 3、色光的三原色: 4、颜料的三原色。 二、合作探究:黑色花为什么很少见?我们生活在姹紫嫣红、色彩缤纷的花的世界中,但是我们看到的黑色花却很少。植物学家对4千多种花的颜色进行了统计,发现只有8种黑色花,而且还不是纯正的黑色,只是偏紫色而已。为什么会出现这种现象呢?原来花的颜色与太阳光及花瓣反射、吸收光有光,太阳光由7种色光组成。光的颜色不同,其热效应也不同。有色不透明物体反射与他相同的光,吸收与它颜色不相同的光,黑色物体吸

收各种颜色的光。花瓣比较柔嫩,为了生存,避免受高温伤害,它们吸收热效应较弱的光,而反射热效应较强的光。这就是我们看到红、橙、黄色花多,而蓝、紫色花少的原因。若吸收7种色光,受高温伤害就更大,花也更难生存,所以黑花很少。(1)红花反射什么颜色的光,吸收什么颜色的光?(2)材料中提到“光颜色不同,热效应也不同”,请你比较红色光与蓝色光的热效应强弱。(3)材料中没有提到白花,请你推断白花反射、吸收色光的情况。当堂训练: 1、雨后的天空,有时会出现美丽的彩虹,关于“彩虹”下列说法错误的是() A、是光的折射现象 B、是光的色散现象 C、是光的反射现象 D、是由于空气中悬浮有大量的小水珠而形成的 2、商场里的花布的图案是有无数种的颜色拼排而成,各种颜色均是由三种原颜料调和而成,这三种原颜料的颜色是() A、红橙黄 B、红绿蓝 C、黄红蓝 D、红白蓝

八年级物理《光的色散》教案

五、光的色散 一、教学目标 1、了解色散现象; 2、知道色光的三原色和颜料三原色; 3、明白透明物体和不透明物体的颜色的决定因素。 二、教学重点、难点 重点:光的色散、色光的复合。 难点:1、能用色光的混合和颜料的混合知识解释五光十色的世界; 2、物体所显示的颜色的决定因素的理解及应用。 三、教学过程 创设问题情境,引入新课: 雨过天晴,在天空可能出现美丽的彩虹,十分壮丽;大家在小时候用肥皂水吹过肥皂泡泡,在阳光下,那些泡泡是不是多彩而漂亮呢?同学们知道这是为什么吗?学习了今天这节课后,大家就会明白了。 以前人们一直认为白色是最单纯的颜色,白光是单色光不能分解,那么是否是单色光呢?1666年,英国的物理学家、数学家牛顿用玻璃三棱镜观察白光,解答了这一问题。 下面我们也一起来探讨下. [演示1]介绍三棱镜,然后照下图甲那样,让一束光穿过狭缝射在三棱镜上,让学生观察在白屏上能看到什么现象(屏离棱镜不要太远). 光的色散 [演示2]照上图乙那样,把另一个相同的三棱镜按相反的方向放在前一个三棱镜旁边(两个棱镜要靠得近些),让学生观察在白屏上又能看到什么? 实验现象: (1)在演示1中,学生可以看到白光通过棱镜后,不但改变了方向,而且在白屏上形成一条彩色的光带,彩色光带上的颜色从一端到另一端依次是红、橙、黄、绿、蓝、靛、紫. (2)在演示2中,学生可以看到彩色光带将重新会聚成白光. 引导学生分析实验现象,启发学生把感性认识理性化.师生共同活动得出以下结论: (1)用三棱镜可使太阳光发生色散,形成光谱. (2)白光不是单色的,而是由各种色光混合 ......而成的.

2.色光的三原色 提出问题,引起学生兴趣:彩色电视机里的各种颜色是怎样产生的呢? 解释如果用放大镜观察彩色电视屏幕,屏幕上将会出现彩条.彩条有红、绿、蓝三种。为什么是这三种呢?原来人们发现,用红、绿、蓝三种色光,不同比例混合的话,就可以产生各种颜色的光。 所以:(1)红、绿、蓝叫做色光的三原色. (2)利用这三种色光可以混合出不同的色彩来. 【比较】光的混合与颜料的混合 色光的三原色为红、绿、蓝,而颜料的三原色为品红、黄、蓝.色光的混合与颜料的混合规律是否相同呢?分析得: ①颜料的三原色与色光的原色不同 颜料的三原色为品红、黄、青,而色光的三原色为红、绿、蓝. ②它们混合的原理不同 颜料的混合原理是:两种颜料混合色是它们都能反射的色光,其余的色光都被这两种颜料吸收掉了.色光的混合原理是:两种色光混合后使眼睛感觉到了另一种颜色. 【介绍】大自然界中色彩种类很多,不同的色彩给人的美是感受和联想是不同的,见到红、黄、橙暖色,会想到什么?火或太阳;见到蓝、紫、绿等冷色,又会想到什么?水或草地。 冷暖的对比与协调能产生美妙生动的色感。 3.物体的颜色 透明物体的颜色由通过 ..它的色光决定; 不透明物体的颜色是由它反射 ..的色光决定的。 [练习]在没有任何其他光照的情况下,舞台追光灯发出的绿光照在穿白上衣、红裙子的演员身上,观众看到她( D) A.全身呈绿色 B.上衣呈绿色,裙子不变色 C.上衣呈绿色,裙子呈紫色 D.上衣呈绿色,裙子呈黑色 4.回顾总结 5.作业布置

光镊原理

1.1光镊技术简介 光镊是以激光的力学效应为基础的一种物理工具,是利用强会聚的光场与微粒相互作用时形成的光学势阱来俘获粒子的【4】。1969年,A. Ashkin等首次实现了激光驱动微米粒子的实验。此后他又发现微粒会在横向被吸入光束(微粒的折射率大于周围介质的折射率)。在对这两种现象研究的基础上,Ashkin提出了利用光压操纵微粒的思想,并用两束相向照射的激光,首次实现了对水溶液中玻璃小球的捕获,建立了第一套利用光压操纵微粒的工具。1986年,A. Ashkin等人又发现,单独一束强聚焦的激光束就足以形成三维稳定的光学势阱,可以吸引微粒并把它局限在焦点附近,于是第一台光镊装置就诞生了【5,6】。也因此,光镊的正式名称为“单光束梯度力势阱” (single-beam optical gradient force trap)。 由于使用光镊来捕获操纵样品具有非接触性、无机械损伤等优点,这使得光镊在生物学领域表现出了突出的优势。这些年来,随着研究的深入和技术的不断完善,光镊在生物学的应用对象由细胞和细胞器逐步扩展到了大分子和单分子等。目前,光镊常被用来研究生物过程中的细胞和分子的运动过程【7-10】,也常被用来测量生物过程中的一些力学特征【11-14】。 1.2光镊的原理与特点 众所周知,光具有能量和动量,但是在实际应用中人们经常利用了光的能量,却很少利用光的动量。究其原因,这主要是因为在生活中我们接触到的自然光和照明光等的力学效应都很小,无法引起人们可以直接感受到或观察到的宏观效应。而科学家们利用激光所具有的高亮度和优良的方向性,使得光的力学效应在显微镜下显现了出来,在这里我们要介绍的光镊技术正是以这种光的力学效应为基础发展起来的。 1.2.1光压与单光束梯度力光阱 光与物质相互作用的过程中既有能量的传递,也有动量的传递,动量的传递常常表现为压力,简称光压。1987年,麦克斯韦根据电磁波理论论证了光压的存在,并推导出了光压力的计算公式。1901年,俄国人П.Н.列别捷夫用悬在细丝下的悬体实现了光压的实验测量【15】。此后,美国物理学家尼克尔、霍尔也

初中物理学习资料:中考物理必须知道的150句话!易错点整理,建议收藏

初中物理学习资料:中考物理必须知道的 150句话!易错点整理 中考物理必须知道的150句话,物理老师教学经验整理,很多同学最容易错的知识点总结,建议为孩子收藏! 力学: 1.物质由分子组成,分子间有空隙,分子间存在相互作用的引力和斥力2.刻度尺读数需要读到分度值下一位 3.误差不是错误,误差不可避免,错误可以避免 4.使用刻度尺测量时可以采用多次测量取平均值的方法减小误差 5.量筒不但可以测量液体的体积,还可以用“排水法”测量固体的体积6.利用天平测量质量时应“左物右码” 7.同种物质的密度还和状态有关(水和冰同种物质,状态不同,密度不同)8.物质的运动和静止是相对参照物而言的 9.相对于参照物,物体的位置改变了,即物体运动了 10.参照物的选取是任意的,被研究的物体不能选作参照物 11.平均速度表示一段时间或路程内物体运动快慢程度

而瞬时速度表示某一位置或某一时间点物体运动快慢程度 12.水的密度:ρ水=1.0×103kg/m3=1 g/ cm3 13.一切发声的物体都在振动,声音的传播需要介质 14.通常情况下,声音在固体中传播最快,其次是液体,气体 15.乐音和噪声没有严格的界限,与地点、时间、环境及人的心情都有关系16.乐音三要素:①音调(声音的高低)②响度(声音的大小)③音色(辨别不同的发声体) 17.防治噪声三个环节:①声源处②传输路径中③人耳处 18.超声波的速度比电磁波的速度慢得多(声速和光速) 19.力的作用是相互的,施力物体同时也是受力物体 20.力的作用效果有两个:①使物体发生形变②使物体的运动状态发生改变 21.判断物体运动状态是否改变的两种方法:①速度的大小和方向其中一个改变,或都改变,运动状态改变②如果物体不是处于静止或匀速直线运动状态,运动状态改变 22.力的三要素:力的大小、方向、作用点 23.力的示意图是简单的画法(不用分段) 24.弹簧测力计是根据拉力越大,弹簧的形变量就越大这一原理制成的。

光的色散、物体的颜色、物体对光的反射

光的色散 1.色散:白光分解成多种色光的现象。 2.光的色散现象:一束太阳光通过三棱镜,被分解成七种色光的现象叫光的色散,这七种色光从上至下依次排列为红、橙、黄、绿、蓝、靛、紫(如图甲所示)。同理,被分解后的色光也可以混合在一起成为白光(如图乙所示)。 光的三原色及色光的混合 1.色光的三原色:红、绿、蓝三种色光是光的三原色。 2.色光的混合:红、绿、蓝三种色光中,任何一种色光都不能由另外两种色光合成。但红、绿、蓝三种色光却能够合成出自然界绝大多数色光来,只要适当调配它们之间的比例即可。 色光的合成在科学技术中普遍应用,彩色电视机就是一例。它的荧光屏上出现的彩色画面,是由红、绿、蓝三原色色点组成的。显像管内电子枪射出的三个电子束,它们分别射到屏上显不出红、绿、蓝色的荧光点上,通过分别控制三个电子束的强度,可以改变三色荧光点的亮度。由于这些色点很小又靠得很近,人眼无法分辨开来,看到的是三个色点的复合.即合成的颜色。 如图所示,适当的红光和绿光能合成黄光;适当的绿光和蓝光能合成青光;适当的蓝光和红光能合成品红色的光;而适当的红、绿、蓝三色光能合成白光。因此红、绿、蓝三种色光被称为色光的“三原色。” 物体的颜色:

在光照到物体上时,一部分光被物体反射,一部分光被物体吸收,不同物体,对不同颜色的光反射、吸收和透过的情况不同,因此呈现不同的色彩。 ?光的色散现象得出的两个结论: 第一,白光不是单色的,而是由各种单色光组成的复色光;第二,不同的单色光通过棱镜时偏折的程度是不同的,红光的偏折程度最小,紫光的偏折程度最大。 色光的混合: 不能简单地认为色光的混合是光的色散的逆过程。例如:红光和绿光能混合成黄光,但黄光仍为单色光,它通过三棱镜时并不能分散成红光和绿光。 物体的颜色: 由它所反射或透射的光的颜色所决定。 1.透明物体的颜色由通过它的色光决定在光的色散实验中,如果在白屏前放置一块红色玻璃,则白屏上的其他颜色的光消失,只能留下红色,说明其他色光都被红玻璃吸收了,只能让红光通过,如图所示。如果放置一块蓝玻璃,则白屏上呈现蓝色。 2.不透明物体的颜色由它反射的色光决定在光的色散实验中,如果把一张红纸贴在白屏上,则在红纸上看不到彩色光带,只有被红光照射的地方是亮的,其他地方是暗的;如果把绿纸贴在白屏上,则只有绿光照射的地方是亮的,其他地方是暗的,如图所示。 规律总结:如果物体是不透明的,黑色的物体会吸收所有色光,白色物体会反射所有色光,其他颜色的物体只反射与它颜色相同的光。如红光照蓝裙子,蓝裙子只反射蓝光,红光被吸收,没有光进入我们的眼睛,感觉它呈黑色。 ?实验法研究透明物体和不透明物体的颜色: 1.透明物体的颜色是由它透过的色光决定的。 2.不透明物体的颜色南它反射的色光决定。 3.如果在屏上贴一张黑纸,不论由什么颜色的光照射,其均为黑,这表明黑色物体吸收各种颜色的光;如果在屏上贴一张白纸,在白纸上能看到各种色光,表明白色物体反射各种色光,即红光照射到白纸上呈红色,黄光照射到白纸上呈黄色等。 ?颜料的三原色、颜料的混合: 1.颜料的三原色:颜料的三原色是红、黄、蓝,这三种颜料按一定比例混合,能调出各种不同的颜色。

八年级物理上册第5节《光的色散》教案

第5节 光的色散 教学目标: 1、知识与技能领域: (1)初步了解光的色散现象,知道光谱、单色光、复色光、三原色光等概念; (2)初步了解物体的颜色是由什么决定的,解释简单的有关物体的颜色现象。 2、能力与方法领域: (1)了解实验是研究物理问题的重要方法,培养学生初步的观察分析、实验能 力,渗透通过实验总结物理规律的方法; (2)通过小组实验、观察、讨论活动,能归纳决定的物体的颜色主要规律; (3)学生能根据实验目的、步骤和要求,使用给定的实验器材,完成较简单的 实验任务;会写简单的实验报告。 3、情感、态度与价值领域: (1)通过主动参与学习活动,初步形成对自然现象的好奇心、对物理学习的兴 趣和亲和感; (2)养成主动关注周围世界,乐于思考和想象的学习习惯; (3)形成乐于交流、善于合作的团队意识。 ·教学重点:光的色散现象 教学难点:物体的颜色 教学准备: 演示实验仪器:较强的手电筒, 三棱镜,屏幕; 小组实验仪器:白的、黑的、红的、绿的、蓝的颜色纸,白的、黑的、红的、 绿的、蓝的透明玻璃纸,三个光比较强的手电筒,实验报告纸。(4人/组) 教学流程: 设计思路: 这节内容与生活联系非常紧密,取自上海教育出版社出版的8年级实验教材。 《光的色散》是在学习了光的传播、光的反射和折射的基础进行学习的,教学内容为:光的色散、颜色。本节教材的教学意图是将物理知识融于观察实验中 ,但由于本节内容是属于知道级的教学内容,只安排了一教时,故在教学中,教师通过演示光的色 情景引入 演示、观察、归纳 演示、引导、归纳 实演、讨论、交流 演示、交流、授课 光的色散 单、复色光 光的三原色 物体的颜色 归纳小结 巩固反馈 课后巩固拓展

物理化学知识点(全)

第二章 热力学第一定律 内容摘要 ?热力学第一定律表述 ?热力学第一定律在简单变化中的应用 ?热力学第一定律在相变化中的应用 ?热力学第一定律在化学变化中的应用 一、热力学第一定律表述 U Q W ?=+ d U Q W δδ=+ 适用条件:封闭系统的任何热力学过程 说明:1、amb W p dV W '=-+? 2、U 是状态函数,是广度量 W 、Q 是途径函数 二、热力学第一定律在简单变化中的应用----常用公式及基础公式 2、基础公式 热容 C p .m =a+bT+cT 2 (附录八) ● 液固系统----Cp.m=Cv.m ● 理想气体----Cp.m-Cv.m=R ● 单原子: Cp.m=5R/2 ● 双原子: Cp.m=7R/2 ● Cp.m / Cv.m=γ 理想气体 ? 状态方程 pV=nRT

? 过程方程 恒温:1122p V p V = ? 恒压: 1122//V T V T = ? 恒容: 1122/ / p T p T = ? 绝热可逆: 1122 p V p V γγ= 111122 T p T p γγγγ--= 1111 22 TV T V γγ--= 三、热力学第一定律在相变化中的应用----可逆相变化与不可逆相变化过程 1、 可逆相变化 Q p =n Δ 相变 H m W = -p ΔV 无气体存在: W = 0 有气体相,只需考虑气体,且视为理想气体 ΔU = n Δ 相变 H m - p ΔV 2、相变焓基础数据及相互关系 Δ 冷凝H m (T) = -Δ蒸发H m (T) Δ凝固H m (T) = -Δ熔化H m (T) Δ 凝华 H m (T) = -Δ 升华 H m (T) (有关手册提供的通常为可逆相变焓) 3、不可逆相变化 Δ 相变 H m (T 2) = Δ 相变 H m (T 1) +∫Σ(νB C p.m )dT 解题要点: 1.判断过程是否可逆; 2.过程设计,必须包含能获得摩尔相变焓的可逆相变化步骤; 3.除可逆相变化,其余步骤均为简单变化计算. 4.逐步计算后加和。 四、热力学第一定律在化学变化中的应用 1、基础数据 标准摩尔生成焓 Δf H θm,B (T) (附录九) 标准摩尔燃烧焓 Δc H θ m.B (T)(附录十) 2、基本公式 ?反应进度 ξ=△ξ= △n B /νB = (n B -n B.0) /νB ?由标准摩尔生成焓计算标准摩尔反应焓 Δr H θm.B (T)= ΣνB Δf H θ m.B (T) ?由标准摩尔燃烧焓计算标准摩尔反应焓 Δr H θ m.B (T)=-Σ νB Δc H θ m.B (T) (摩尔焓---- ξ=1时的相应焓值) ?恒容反应热与恒压反应热的关系 Q p =Δr H Q v =Δr U Δr H =Δr U + RT ΣνB (g) ?Kirchhoff 公式 微分式 d Δr H θ m (T) / dT=Δr C p.m 积分式 Δr H θm (T 2) = Δr H θ m (T 1)+∫Σ(νB C p.m )dT 本章课后作业: 教材p.91-96(3、4、10、11、16、17、38、20、23、24、28、30、33、34)

《光镊原理及应用》课程教学大纲

《光镊原理及应用》课程教学大纲 一、课程基本信息 课程中文名称:光镊原理及应用 课程英文名称:Optical tweezers theory and application 开课学期:2 学时:16 学分:1 二、课程目的和任务 激光生物学是多学科交叉的新兴学科,其中以激光微束光阱效应为基础的光镊技术是生命科学和生物工程研究的有力工具,已成为当前生物物理学中新方法和新仪器的研究热点之一。是光子技术和生命科学相互交叉与渗透而形成的一门新的边缘学科,课程教学目标:让光镊在生命学科及其他应用领域中的作用与地位,逐步树立科学的世界观,促进综合素质的提高;帮助学生获得光镊的基本知识,掌握光镊相关技术。通过课程小论文与研讨,让学生了解本学科的发展前沿,培养学生的创造型思维;开放式的教学,提高学生的综合分析和解决问题的能力。 三、教学内容与基本要求 教学主要内容及对学生的要求: 教学主要内容 第一章 光镊技术的产生与发展 光镊技术的理论研究、光镊技术的应用研究 国内外光镊技术的研究现状 第二章 光镊技术及其基本原理 光镊技术的描述、光镊的基本原理、光辐射压力、 梯度力和散射力、二维光学势阱、基于激光微束的三维光学势阱 第三章 光镊的理论分析与计算方法 光镊理论计算的意义、粒子分类与计算方法、光阱力与光操纵束缚条件第四章 光镊的系统构成与技术性能

传统光镊的原理、系统构成、激光器和显微镜的选取、多光镊技术 第五章 光纤光镊技术 远场光纤光镊、近场光镊 第5章 光镊技术的发展应用 光镊技术在生物学方面应用、光镊在分子生物学领域的应用、光镊与其它技术的结合应用 对学生的要求: 1、 对光镊原理方法有明确认识。 2、 对光镊系统的性能、参数能深入了解,并能自由运用。 3、 能够了解光阱力的计算方法。 4、 有查阅外文资料的能力。 五、教学设计及方法 教学方式 1) 教学与科研结合,激发学生的求知欲 2)专家讲授与教师专题讲座相结合,拓展学生知识面 3)理论与实践结合,加强学生实验技能的训练 4)中、英双语教学相结合,提高学生国际交流能力 5)撰写专题调研报告,培养学生的自主创新能力 教学手段 将多种现代的教学手段运用于课程教学之中,多方位多途径地展教学活动,以激发学生学习兴趣,提高教学效果。 1)将多媒体教学与板书相结合,以解决学时少内容多的矛盾 2)课件与电视录像片相结合,以提高学生的自学能力 3)丰富的网络资源为学生学习提供良好的软环境 六、调查、参观、实践、实验内容 七、主要参考资料 [1]《光镊原理、技术和应用》李银妹编译中国科学技术大学出版社1996 [2]《时域有限差分法FDTD Method 》 高本庆 国防工业出版社.1995年 [3][《非均匀介质中的场与波》美]Weng Cho Chew 著聂在平,柳清伙译电子工业出版社,1992年 [4] Ashkin A. Optical trapping and manipulation of single cells using infrared laser beams. Nature, 1987, 33: 256-

光的色散

光的色散 【教学目标】 1、知识与技能 ●初步了解太阳光的光谱。 ●了解色散现象,知道色光的三原色跟颜料的三原色。 ●探究色光的混合和颜料的混合,获得有关的知识体验探究的过程和方法。 2、过程与方法 ●探究色光的混合和颜料的混合,获得有关的知识,体验探究的过程和方法。 3、情感态度与价值观 ●通过观察、实验以及探究的学习活动,培养学生尊重客观事实,实事求是的科学态度。 ●通过亲身的感悟和体验,使学生获得感性认识,为后续学习打基础。 ●通过探究性物理学习活动,使学生获得成功的愉悦,乐于参与物理学习活动。 【教学重点】光的色散及色光的复合,物体的颜色。 【教学难点】色光的三原色跟颜料的三原色及其混合规律的不同。 【教具准备】教师:多媒体课件、三棱镜、档光板、白光屏。 学生:玻璃板、白纸板、盛水的碗、光碟、三棱镜、手电、各种颜色的颜料和透明光屏、调色碟。 【教学过程】 一引入新课 1.我们生活在五彩缤纷的世界,太阳光和我们息息相关。这节课我们就来研究与太阳光有关的光的色散。 2.将学生分成男、女两组,比较哪组表现的好(充分调动学生的积极、主动性,创造活跃的课堂气氛)。 二进行新课 1、光的色散 提出问题:太阳光经过三棱镜会发生什么现象呢? 教师演示(或通过课件演示)光的色散。引导学生观察自屏及彩色光带上颜色的排列顺序。 光通过三棱镜会发生折射(或两次折射);光的传播方向发生改变(可能向尖端也可能另一端;光经过三棱镜后,会出现彩色的光。太阳光分解成红、橙、黄、绿、蓝、靛、紫等七种颜色的光。 2、色光的混合 启发学生思考彩色光带再经过三棱镜后,又将怎样? 教师演示(或通过课件演示)七色光的混合。引导学生分析两次实验现象,讨论归纳实验结论:太阳光(白光)不是单色光,而是由各种色光混合而成的。 演示实验:用手摇转台装上红、绿、蓝三色盘进行演示.调整三色比例,旋转时就看到三色盘呈灰白色.对于红、绿色光的混合,可调整三个色盘,使其只露出红色和绿色部分,改变各色比例,旋转时就会观察到随着红、绿比例不同,会依次出现橙红、橙、黄和绿黄几种颜色.各种色光的混合不必都给学生演示,只演示其中几个即可,其余可由学生在课下完成. 联系生活实际举例光的色散和光的混合。彩色电视机里的各种颜色是怎样产生的? 指导学生利用实验探究三基色(课本图4—37)。认识红、绿、蓝被称为三基色。

150个物理现象与原理

物理学: 物理学(physics)是研究物质最一般的运动规律和物质基本结构的学科。作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科的研究基础。 物理学起始于伽利略和牛顿的年代,它已经成为一门有众多分支的基础科学。物理学是一门实验科学,也是一门崇尚理性、重视逻辑推理的科学。物理学充分用数学作为自己的工作语言,它是当今最精密的一门自然科学学科。 物理现象: 物理现象,是指物质的形态、大小、结构、性质(如高度,速度、温度、电磁性质)等的改变而没有新物质生成的现象,是物理变化另一种说法。换句话说,物理现象是指可直接感知的物理事件或物理过程,而不同于物理本质,物理本质是对同类物理现象共同本质属性的抽象。 光与微粒: 物理现象中光与微粒 光射到微粒上可以发生两种情况,一是当微粒直径大于入射光波长很多倍时,发生光的反射;二是微粒直径小于入射光的波长时,发生光的散射,散射出来的光称为乳光。丁达尔效应指光经过胶体(例如乳剂、混悬剂)时产生散射。 当光射向溶液时,光受到的散射较少,大部分光都能通过溶液。

但射向胶体时,胶体的粒子散射光,使得那些粒子有被散射的光的颜色。 维基中的讲:当一束光线透过胶体,从入射光的垂直方向可以观察到胶体里出现的一条光亮的“通路”,这种现象叫丁达尔现象,也叫丁达尔效应。 这是因为胶体微粒较大,对光线产生散射而形成的(溶液无此现象——可用以区别)。 英国物理学家丁达尔(1820~1893年) ,首先发现和研究了胶体中的上述现象。这主要是胶体中分散质微粒散射出来的光。 在光的传播过程中,光线照射到粒子时,如果粒子大于入射光波长很多倍,则发生光的反射;如果粒子小于入射光波长,则发生光的散射,这时观察到的是光波环绕微粒而向其四周放射的光,称之为散射光或乳光。丁达尔效应就是光的散射现象或称乳光现象。 由于溶胶粒子大小一般不超过100 nm ,小于可见光波长(400 nm ~700 nm ),因此,当可见光透过溶胶时会产生明显的散射作用。而对于真溶液,虽然分子或离子更小,但因散射光的强度随散射粒子体积的减小而明显减弱,因此,真溶液对光的散射作用很微弱。此外,散射光的强度还随分散体系中粒子浓度增大而增强。所以说,胶体能有丁达尔现象,而溶液没有,可以采用丁达尔现象来区分胶体和溶液。 清晨,在茂密的树林中,常常可以看到从枝叶间透过的一道道光柱,类似这种自然界的现象,也是丁达尔现象。这是因为云、雾、烟

光的色散

《光的色散》教学设计 一、教学任务分析 本节学习光的色散。学习本节内容需要光的反射、光的折射等知识为基础,进一步学习因不同单色光折射本领不同引发的光的色散现象、三原色光和物体的颜色之谜。 学生在日常生活中见到过各种颜色,而对彩虹类的现象见之不多,对其成因较难理解。通过小组实验、讨论,交流,知道有复色光与单色光的区别,并尝试解释彩虹形成原因,体会三原色组合应用,了解物体的颜色之谜。 本节课的教学要求学生主动参与,体验学习过程中的动手乐趣及学习活动中的实际操作,激发学习物理的兴趣,提高学习的能力层次,感受透过现象看本质的思维方法,感悟观察、实验、推理对形成概念和发现规律的重要作用。 二、教学目标 1、知识与技能 (1)知道光的色散现象和原因。 (2)知道光的三原色。 (3)知道物体的颜色成因。 (4)初步学会观察与光的色散有关的实验现象。 2、过程与方法 (1)经历把白光分解为各种色光的实验探究。 (2)感受色光混合的实验过程。 (3)经历研究透明物体和不透明物体颜色成因的过程。 3、情感、态度与价值观 (1)体验色散的各种事实,了解尊重事实、实事求是的科学态度。 (2)体验研究“白光分解”、“色光混合”和“透明物体和不透明物体颜色成因”的实验过程,萌发对物理现象的好奇心和物理学习的兴趣,树立尊重他人的意识。 三、教学重点和难点 重点:白光的色散、三原色光。 难点:色散的原因。 四、教学资源 1、学生实验器材:手电筒、装有水的圆形烧瓶、三棱镜、玻璃砖、彩色透明纸、三色陀螺、计算机等。 2、演示实验器材:强平行光源、三棱镜、教师制作的多媒体课件等。 3、自制模拟演示PPT幻灯片。 五、教学设计思路 本设计的内容包括白光的色散、物体的颜色等两部分内容。 本设计的基本思路是:以关于彩虹传说的flash动画和探究小实验为基础,以学生分组实验讨论、教师点拨为基本方法,引入白光的色散现象。通过“探究三原色光的混合”等学生实验,建立“三原色光”的概念。最后通过“透明物体颜色的成因”和“不透明物体颜色的成因”等学生实验和演示实验,得到物体颜色的成因。 本设计要突出的第一个重点是白光的色散。方法是:可以结合多媒体课件和实验现象两方面信息加深学生的印象和理解。实施教学时,创设情景引入,利用传说导入彩虹现象,激起学生的学习兴趣与求知欲,并鼓励他们利用现有的器材设法找到类似彩虹的彩色条纹,活动中让学生在没有框定的情况下以多种方法去探索寻找,从而全方位释放学生的思维活动,

光的色散研究_(完整)

评分: 大学物理实验设计性实验 实 验 报 告 物理系 大学物理实验室 实验日期:200 9 年 12 月 4 日 实验题目: 光的色散研究 班 级: 姓 名: 学号: 指导教师:

实验24 《光的色散研究》实验提要 实验课题及任务 《光的色散研究》实验课题任务是:当入射光不是单色光并且入射到三棱镜上时,虽然入射角对各种波长的光都相同,但出射角并不相同,表明折射率也不相同。对于一般的透明材料来说,折射率随波长的减小而增大。如紫光波长短,折射率大,光线偏折也大;红光波长长,折射率小,光线偏折小。折射率n 随波长λ又而变的现象称为色散。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《光的色散研究》的整体方案,内容包括:写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤,然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,写出完整的实验报告,也可按书写科学论文的格式书写实验报告。 设计要求 ⑴ 通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵ 选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶ 掌握用分光计测定三棱镜顶角和最小偏向角的原理和方法,并求出物质的折射率。 ⑷ 用分光计观察谱线,并测定玻璃材料的色散曲线λ~n ; ⑸ 应该用什么方法处理数据,说明原因。 ⑹ 实验结果用标准形式表达,即用不确定度来表征测量结果的可信赖程度。 实验仪器 给定分光仪、平面镜、三棱镜、高压汞灯、钠光灯 实验提示 最小偏向角min δ。与入射光的波长有关,折射率也随不同波长而变化。折射率n 与波长λ之间的关系曲线称为色散曲线。本实验以高压汞灯为光源,各谱线的波长见附录。用汞灯的光谱谱线的波长作为已知数据,测量其通过三棱镜后所对应的各最小偏向角,算出与min δ对应的n 值,在直角坐标系中做出三棱镜的λ~n 色散曲线。用同一个三棱镜测出钠光谱谱线的最小偏向角,计算相对应的折射率,用图解插值法即可在三棱镜的色散曲线上求出钠光谱谱线的波长。 教师指导(开放实验室)和开题报告1学时;实验验收,在4学时内完成实验;

光镊技术在原子物理和生命科学中的应用与发展

光镊技术在原子物理和生命科学中的应用与发展 信息工程系 王 坚 [摘要] 激光陷阱和控制、操作中性微小粒子的光镊技术是以光的辐射压原理为基础的,利用光与物质间动量的传递的力学效应形成三维梯度光学陷阱。光压的实际应用在20世纪激光诞生后才得以实现。由于激光突出的高方向性、高相干性、高亮度产生的辐射压高于一般的光,所以使得基于光压原理的光镊能够被发现并运用。光镊能够捕获和操纵微米尺度粒子成为捕获操纵粒子独特且有效的手段,并且这种方法在物理和生物科学等领域掀起了一场技术革命。本文简要回顾了早期光镊技术在原子物理和生命科学中的应用与发展,以及当代光镊技术研究的最新成就。 [关键词] 激光陷阱,光镊,激光 1. 引言 光镊是基于光的力学效应的一种新的物理工具,它如同一把无形的机械镊子,可实现对活细胞及细胞器的无损伤的捕获与操作。光镊的发明正适应了生命科学深入到细胞、亚细胞层次的研究趋势,也为生物工程技术提供了一种新的手段。仅仅20年光镊的应用已展示其在物理和生命科学领域中无限美好的应用前景。 2. 光镊技术原理 2.1光压原理 光镊技术是基于光压原理的,光压原理在牛顿和开普勒时期就已经提出来了但是一直都没有什么应用。光的压力原理早期只有在天文学中有些应用,德国的天文学家开普勒,在17世纪初提出彗尾之所以背向太阳的原因是,其受到了太阳辐射光压的作用力。因为只有在天文学研究中当光的强度和距离都非常大的时候,光压对物质的影响才会明显的表现出来。1873年Maxwell 从光的波动理论角度根据电磁理论推导出了光压的存在(电磁辐射压)并且给出了垂直入射到部分反射吸收体表面的光束的光压为: ()R c E p +=1 其中,E 为每秒钟垂直入射到12m 上的能量,c 为光速,R 为物体对光的反射系数。

八上物理知识点总结

八年级物理(上) 第一章声现象 第一节、声音的产生与传播 1、产生:声音是由物体振动产生的,振动停止,发声也停止 例:鼓面碎纸屑跳动; 吊着的小球被振动的音叉弹开 (碎纸屑、小球的作用为把不易观察到的微小现象放大成明显、易观察的现象,这种方法叫做放大法或者转换法) 2、传播:声以波的形式通过介质传播 3、介质 分类:固体、液体、气体。都可以传声 真空不能传声 举例:宇航员在太空不能直接对话 从玻璃罩中抽出空气,闹钟声音逐渐变小直至消失4、声速 声速与介质种类、介质温度有关 ↓↓ V固>V液>V气空气中温度越高传播速度越快15℃空气,声速:340m/s 回声测距计算:s=vt/2 声波遇到障碍物要发生反射的现象叫回声 第二节、我们怎样听到声音 1、人听到声音的两个途径: 通过人耳:物体振动产生声波→介质→骨膜振动→听小骨振动→听觉神经→大脑 骨传声:物体振动产生声波→骨头→听觉神经→大脑 说明固体能够传声,且传音效果比空气好举例:贝多芬失聪后利用骨传声创作乐曲; 咀嚼口香糖、饼干觉到的声音比周围人感觉到的更大 2、双耳效应:声源到两耳距离不同,导致声音传入两耳的时刻、强弱、步调不同 双耳效应是判断声源方位的重要基础,其他应用:双声道立体声 第四章、声音的特性(超级超级重点) 1、乐音三要素: 音调:声音高低称为音调,频率大则音调高(每秒振动次数称为频率,单位:赫兹,符号:Hz,人耳听觉频率 可听范围20~20000Hz,低于20Hz为次声波,高于20000Hz为超声波) 响度:声音强弱叫做响度,与振幅、距离有关 (振动幅度的大小称作振幅) 音色:与发声体材料、结构有关 例: 音调:小提琴改变琴弦松紧(定弦),改变音调吸管长度不同,吹气音调不同 养蜂人区分蜜蜂是否采蜜 暖水瓶灌水声音变化 一玻璃杯先后倒入不同量的水,细棒轻敲,频率不同 医生检查病人腹部积水 女高音音调高于男低音 响度:男低音响度大于女高音 震耳欲聋 音色:人耳能区分出不同乐器的声音、声纹锁的原理、只闻其声便知其人 第四节、噪声的危害和控制 1、噪声来源:物理学角度:发声体做无规则振动 环境保护角度:妨碍人们正常休息、学习、工作的声音 2、噪声强弱:听觉下限0dB,理想安静环境30-40dB,超过50dB影响休息,超过70dB影响学习工作,超过90dB影响听力,150dB失听力 3、控制噪声的途径(重点) 声源处减弱(例:消声器、无声手枪、禁止鸣笛等) 传播过程中减弱(例:远离噪声源、隔音板、关闭门窗、设立屏障或植树等) 人耳处减弱(例:耳塞、耳罩、防声头盔等) 第五节、声的利用 1、超声波 超声波具有方向性好、穿透能力强、易获得较集中的声能的特点 1)声能传播信息: 举例回声定位(蝙蝠利用超声波夜飞、声呐测距、超声波检测物体) B超(是超声波) 2)声能传播能量: 举例,超声波清洗污垢、超声波治疗结石、 声波熄灭烛焰、造成破坏、超声波除尘、 超声波焊接 3、次声波 火箭发射、飞机飞行以及火山爆发、陨石坠落、地震、海啸、台风、雷电都会产生次声波。 次声波传得很远,很容易绕开障碍物,且无孔不入

光的色散

光的色散 教学目标: 1、知识与技能领域: (1)初步了解光的色散现象,知道光谱、单色光、复色光、三原色光等概念; (2)初步了解物体的颜色是由什么决定的,解释简单的有关物体的颜色现象。 2、能力与方法领域: (1)了解实验是研究物理问题的重要方法,培养学生初步的观察分析、实验能力,渗透通过实验总结物理规律的方法; (2)通过小组实验、观察、讨论活动,能归纳决定的物体的颜色主要规律; (3)学生能根据实验目的、步骤和要求,使用给定的实验器材,完成较简单的实验任务;会写简单的实验报告。 3、情感、态度与价值领域: (1)通过主动参与学习活动,初步形成对自然现象的好奇心、对物理学习的兴趣和亲和感; (2)养成主动关注周围世界,乐于思考和想象的学习习惯; (3)形成乐于交流、善于合作的团队意识。 ·教学重点:光的色散现象 教学难点:物体的颜色 教学准备: 演示实验仪器:较强的手电筒,三棱镜,屏幕; 小组实验仪器:白的、黑的、红的、绿的、蓝的颜色纸,白的、黑的、红的、绿的、蓝 的透明玻璃纸,三个光比较强的手电筒,实验报告纸。(4人/组) 教学流程: 设计思路: 这节内容与生活联系非常紧密,取自上海教育出版社出版的8年级实验教材。《光的色散》是在学习了光的传播、光的反射和折射的基础进行学习的,教学内容为:光的色散、颜色。本节教材的教学意图是将物理知识融于观察实验中,但由于本节内容是属于知道级的教学内容,只安排了一教时,故在教学中,教师通过演示光的色散现象,让学生观察实验现象,归纳色散现象。探究“颜色之谜”系列活动内容丰富、充实,实验新颖,

饶有趣味,教师通过提供实验报告,适当引导,而在实验报告中,又让学生的个性得以发展。让学生在自由的气氛中自主愉快地学习,培养动手技能、实验观察、知识探究的能力,归纳物体“颜色之谜”。初步形成“在做中学,在学中做”以及对自然现象的好奇心、对物理学习的兴趣。 教学过程 (一)情景引入: (教师描述):在太阳光下,我们可以看到五光十色的各种物体。然而,在漆黑无光、伸手不见五指的黑暗场所里,我们却什么也看不见。如果有灯光的照射,则光照到哪里,我 们就能看到那里的物体及其色彩。这一现象证明了一条什么规律? (引导归纳):有光才有色,没有光就没有色。 (教师设问):为什么我们周围的物体会呈现出各种各样的颜色?今天让我们一起来揭开这光色之迷。 (二)新课教学: 1、光的色散现象: (教师演示):在暗室中将一束白光透过三棱镜折射后,调整角度,将光谱再现与屏幕上。 (教师提问):看到了什么现象? (学生描述):白光透过三棱镜,会分解成许多不同颜色的光。 (教师引导):我们把这种现象称之为光的色散。请同学根据光的色散原理图归纳什么是光的色散? (学生归纳):白光透过三棱镜,分解成红、橙、黄、绿、蓝、靛、紫的顺序排列的彩色光带的现象称之为光的色散。 (归纳板书):光的色散现象 把红、橙、黄、绿、蓝、靛、紫的顺序排列的彩色光带,称之为光谱。 2、单色光、复色光: (教师演示):(1)将一束红光透过三棱镜后的光,调整角度,再现与屏幕上; (2)将一束绿光透过三棱镜后的光,调整角度,再现与屏幕上。 请同学根据光透过三棱镜后出现的现象,归纳白光与色光的区别。 (学生归纳):白光透过三棱镜,会分解成许多不同颜色的光。色光透过三棱镜后不能再色散。 (引导归纳):我们把透过三棱镜后不能再色散的光称之为单色光。 由几种单色光合成的光称之为复色光。白光是一种复色光。 3、颜色之迷:(实验报告) (学生实验):(1)探究的透明体颜色由什么决定的。(分组实验) (实验观察):

光镊原理教学提纲

精品文档 1.1光镊技术简介 光镊是以激光的力学效应为基础的一种物理工具,是利用强会聚的光场与微粒相互作用时形成的光学势阱来俘获粒子的【4】。1969年,A. Ashkin等首次实现了激光驱动微米粒子的实验。此后他又发现微粒会在横向被吸入光束(微粒的折射率大于周围介质的折射率)。在对这两种现象研究的基础上,Ashkin提出了利用光压操纵微粒的思想,并用两束相向照射的激光,首次实现了对水溶液中玻璃小球的捕获,建立了第一套利用光压操纵微粒的工具。1986年,A. Ashkin等人又发现,单独一束强聚焦的激光束就足以形成三维稳定的光学势阱,可以吸引微粒并把它局限在焦点附近,于是第一台光镊装置就诞生了【5,6】。也因此,光镊的正式名称为“单光束梯度力势阱”(single-beam optical gradient force trap)。由于使用光镊来捕获操纵样品具有非接触性、无机械损伤等优点,这使得光镊在生物学领域表现出了突出的优势。这些年来,随着研究的深入和技术的不断完善,光镊在生物学的应用对象由细胞和细胞器逐步扩展到了大分子和单分子等。目前,光镊常被用来研究生物过程中的细胞和分子的运动过程【7-10】,也常被用来测 量生物过程中的一些力学特征【11-14】。 1.2光镊的原理与特点 众所周知,光具有能量和动量,但是在实际应用中人们经常利用了光的能量,却很少利用光的动量。究其原因,这主要是因为在生活中我们接触到的自然光和照明光等的力学效应都很小,无法引起人们可以直接感受到或观察到的宏观效应。而科学家们利用激光所具有的高亮度和优良的方向性,使得光的力学效应在显微镜下显现了出来,在这里我们要介绍的光镊技术正是以这种光的力学效应为基础发展起来的。 1.2.1光压与单光束梯度力光阱 光与物质相互作用的过程中既有能量的传递,也有动量的传递,动量的传递常常表现为压力,简称光压。1987年,麦克斯韦根据电磁波理论论证了光压的存在,并推导出了光压力的计算公式。1901年,俄国人П.Н.列别捷夫用悬在细丝下的悬体实现了光压的实验测量【15】。此后,美国物理学家尼克尔、霍尔也精品文档. 精品文档 分别测量了光压【16】。20世纪70年代,人们开始研究激光的辐射压力,并发 展了原子束的激光偏转【17】、激光冷却【18】、光子粘团【19】等实验技术。在宏观微粒的光压力研究方面,由光悬浮发展到光捕获、光致旋转等【20】。1970年,A.Ashkin【21】首次实现了水溶液中的光悬浮。随后的一些研究【22-25】 最终导致了光镊的发明。 通常光对物体的作用力都是推力。但是,在一定条件下光也可以对物体产生拉力,或更一般的,产生束缚力。这就牵涉到光对物体作用的梯度力。 为了阐明梯度力的概念,以透明介质

相关主题
文本预览
相关文档 最新文档