当前位置:文档之家› 1、国家电网公司110(66)kV~500kV架空输电线路技术标准及编制说明

1、国家电网公司110(66)kV~500kV架空输电线路技术标准及编制说明

1、国家电网公司110(66)kV~500kV架空输电线路技术标准及编制说明
1、国家电网公司110(66)kV~500kV架空输电线路技术标准及编制说明

附件一:

110(66)kV~500kV架空输电线路

技术标准

国家电网公司

目录

1 总则 (3)

1.1 目的 (3)

1.2 依据 (3)

1.3 内容 (3)

1.4 适用范围 (3)

2 本标准适用的环境条件 (3)

3 线路主要特征及设备分类 (3)

4 导地线技术参数和要求 (4)

4.1 引用标准 (4)

4.2 主要技术参数 (5)

4.3 主要特点 (6)

4.4 选用原则和技术要求 (7)

4.6 出厂验收 (9)

4.7 标志、包装、运输、贮存 (9)

4.8 制造厂提供的技术资料 (9)

4.9 备品备件 (10)

4.10 现场检验 (10)

4.11 现场安装 (10)

4.12 售后技术服务及质量承诺 (10)

5 杆塔技术参数和要求 (10)

5.1 引用标准 (10)

5.2 主要技术参数 (11)

5.3 主要特点 (11)

5.4 选用原则和技术要求 (12)

5.6 出厂验收 (14)

5.7 标志、包装、运输、贮存 (14)

5.8 制造厂提供的技术资料 (15)

5.9 备品备件 (16)

5.10 现场检验 (16)

5.11 现场安装 (16)

5.12 售后技术服务及质量承诺 (16)

6 绝缘子技术参数和要求 (16)

6.1 引用标准 (16)

6.2 主要技术参数 (17)

6.3 主要特点 (18)

6.4 选用原则和技术要求 (18)

6.5 监造 (19)

6.6 出厂验收 (19)

6.7 标志、包装、运输、贮存 (20)

6.8 制造厂提供的技术资料 (21)

6.9 备品备件 (21)

6.10 现场检验 (21)

6.11 现场安装 (22)

6.12 售后技术服务及质量承诺 (22)

7 金具技术参数和要求 (22)

7.1 引用标准 (22)

7.2 主要技术参数 (23)

7.3 主要特点 (23)

7.4 选用原则和技术要求 (24)

7.5 监造 (25)

7.6 出厂验收 (26)

7.7 标志、包装、运输、贮存 (26)

7.8 制造厂提供的技术资料 (27)

7.9 备品备件 (27)

7.10 现场检验 (27)

7.11 现场安装 (28)

7.12 售后技术服务及质量承诺 (28)

8 接地装置技术参数和要求 (28)

8.1 引用标准 (28)

8.2 主要技术参数 (28)

8.3 主要特点 (29)

8.4 选用原则和技术要求 (29)

8.5 现场安装和检验 (31)

附录A:典型气象区 (32)

附录B:高压架空输电线路污秽分级标准 (33)

架空输电线路设备技术规范编制说明 (37)

110(66)kV~500kV架空输电线路技术标准

1 总则

1.1 目的

为适应电网的发展要求,加强架空输电线路技术管理,保证输电线路的安全可靠运行,特制定本技术标准。

1.2 依据

本标准是依据国家、行业和国际有关标准、规程和规范,并结合近年来国家电网公司输变电设备评估分析、生产运行情况分析以及设备现场运行经验制定。

1.3 内容

本标准对架空输电线路的设计选型(运行选用)、订货、监造、出厂验收、包装运输、现场安装和现场验收等环节提出了具体的技术要求。

1.4 适用范围

本标准适用于国家电网公司系统的110(66)kV 500kV交流架空输电线路。35kV交流架空输电线路和±500kV直流架空输电线路可参照执行。

2 本标准适用的环境条件

2.1本标准适用于I ~IX级典型气象区和0~IV级污秽区的架空输电线路(以下简称“线路”),具体典型气象区和污秽分级标准参见附录A、B。

2.2本标准适用于海拔高度不超过1000m地区的线路。

2.3线路的设计应综合考虑气象、地形地貌、地质、环保、施工、运行、交通条件、综合造价等因素,做到安全可靠、经济合理、适当先进。

2.4线路应尽量避开人口密集区、林区、不良地质地带、采矿(石)区、重冰区、重污秽区以及严重影响安全运行的其他地区,并应考虑线路路径与邻近公共设施,如通讯设施、机场、弱电线路、铁路、公路、航道等的相互影响。

3 线路主要特征及设备分类

3.1 主要特征

⑴电压等级

⑵输送容量

⑶线路路径、路径长度

⑷线路回路数

⑸气象条件

最高气温(℃)

最低气温(℃)

覆冰气温(℃)

最大风速气温(℃)

安装气温(℃)

雷电过电压气温(℃)

操作过电压气温(℃)

年平均气温(℃)

最大风速(m/s)

覆冰风速(m/s)

安装风速(m/s)

雷电过电压风速(m/s)

操作过电压风速(m/s)

覆冰厚度(mm)

冰的密度(g/mm3)

雷暴日(或小时)

⑹土壤冻结深度(m)

⑺导地线型式

⑻绝缘子型式

⑼金具型式

⑽杆塔型式

⑾基础型式

⑿接地装置型式

3.2 设备分类

⑴导地线:钢芯铝绞线、合金类绞线、铝包钢类绞线、镀锌钢绞线、光纤复合架空地线(OPGW);

⑵杆塔:自立式铁塔(角钢塔、钢管塔、大跨越塔)、拉线铁塔、钢管电杆、混凝土电杆(普通钢筋混凝土电杆、预应力钢筋混凝土电杆、薄壁钢管混凝土电杆);

⑶绝缘子:瓷、玻璃和复合绝缘子;

⑷金具:悬垂线夹、耐张线夹、防护金具、连接金具、接续金具;

⑸接地装置:自然接地、人工接地

4 导地线技术参数和要求

4.1 引用标准

以下为输电设备设计、制造及试验所应遵循的国家、行业和企业的标准及规范,但不仅限于此:

GB/T 1179-1999 圆线同心绞架空导线

GB/T 3048.2-1994 电线电缆电性能试验方法金属导体材料电阻率试验

GB/T 3428-1997 钢芯铝绞线用镀锌钢丝

GB/T 4909.2-1985 裸电线试验方法尺寸测量

GB/T 17048-1997 架空绞线用硬铝线

GB/T 17937-1999 电工用铝包钢线

GBJ 233-1990 110~500KV架空电力线路施工及验收规范

DL/T 741-2001 架空送电线路运行规程

DL/T 832-2003 光纤复合架空地线

JB/T 8134-1997 架空绞线用铝-镁-硅系合金圆线

JB/T 8137.1~8137.2-1999 电线电缆交货盘

YB/T 124-1997 铝包钢绞线

YB/T 5004-2001 镀锌钢绞线

国家电网公司电力生产设备评估管理办法(生产输电[2003]95号)

国家电网公司关于加强电力生产技术监督工作意见(生产输电[2003]29号)

国家电网公司预防110(66)kV~500kV架空输电线路事故措施(国家电网生[2004] 641 号)

4.2 主要技术参数

⑴名称、型号

⑵结构(钢比、绞线直径、截面积、单丝根数、单丝直径)、绞向

⑶单位长度质量

⑷额定抗拉力

⑸综合弹性模量

⑹线膨胀系数

⑺直流电阻(20℃)

⑻额定载流量

⑼最大允许短路电流(仅包括地线、OPGW)

⑽最小弯曲半径

⑾最高允许运行温度

⑿设计覆冰厚度

⒀设计风速

⒁设计安全系数、最大和平均运行张力

⒂弧垂

⒃防振措施

⒄安全距离要求

⒅线路与弱电线路交叉角要求

⒆雷暴日

⒇耐腐蚀要求

4.3 主要特点

4.3.1按材料分类的技术特性定性比较,见表1。

表1 各类导地线按材料分类的技术特性表

4.3.2 按用途分类的技术特性定性比较,见表2。

表2 各类导地线按用途分类的技术特性表

4.4 选用原则和技术要求

4.4.1导线选用原则

⑴根据负荷容量和电网发展规划、系统潮流确定导线载流量;

⑵在确定导线载流量的基础上,综合考虑导线经济电流密度、线路运行经验、环境条件、气象条件、综合造价等因素,确定导线的类别、型号;并按允许载流量、允许运行温度、电晕及无线电干扰等条件进行校验。

4.4.2 导线选用技术要求

⑴无特殊要求时宜选用钢芯铝绞线、铝合金绞线、铝合金芯铝绞线;

⑵线路增容改造宜采用铝合金绞线或钢芯耐热铝合金绞线;

⑶大跨越线路宜采用钢芯铝绞线(大钢比)、高强度钢芯铝合金绞线、铝包钢芯铝合金绞线、防腐型高强度钢芯铝合金绞线、高强度钢芯耐热铝合金绞线、防腐型高强度钢芯耐热铝合金绞线、铝包钢绞线;

⑷线路在污染严重地区宜采用防腐型钢芯铝绞线或铝包钢芯铝绞线;

⑸线路在重冰区或风力较强地区宜采用钢芯铝绞线(大钢比)或钢芯铝合金绞线;

⑹导线的弧垂须满足设计规程要求;

⑺导线的选用还须考虑可靠的防振措施;

(8) 对特殊地段应考虑环境因素和气象条件的影响:如盐雾影响应考虑采用防腐类导线,大跨距应考虑提高钢芯强度。

4.4.3 地线选用原则

⑴根据防雷设计和工程技术条件的要求,并按与导线配合及热稳定的要求选取地线;

⑵OPGW的选取首先须满足线路防雷保护和自身抗雷击的要求,同时应满足光纤通信要求。

4.4.4 地线选用技术要求

⑴无特殊要求时宜选用镀锌钢绞线;

⑵线路增容改造短路电流增大时,宜采用钢芯铝绞线或铝包钢类绞线;

⑶线路在腐蚀严重地区宜采用铝包钢类绞线;

⑷弧垂须满足设计规程要求;

⑸选用还须采取可靠的防振措施。

4.5 监造

用户应委托具有技术权威的单位对导地线进行监造。监造单位应与运行单位共同对制造厂在以下主要方面进行监督、检查,并进行记录、归档,同时要求制造厂定期或按生产过程各阶段报送有关资料。

监造单位应编制监造大纲,并指派专业技术人员进行监造。

监造工作既不能解除或减轻制造厂按照合同规定应承担的责任,也不能替代制造厂的产品质量管理、检查和现场质量检验。

4.5.1 生产条件监证

⑴主要生产设备与条件监证;

⑵检测设备与条件监证。

4.5.2 质量保证文件的监证

⑴质量计划;

⑵生产工艺文件;

⑶生产进度;

⑷各主要生产工序质量记录。

4.5.3 生产过程中关键工序质量监督检查

⑴抽查原材料的质量合格证明及原材料的复检报告。原材料抽查参照GB/T 17048-1997、GB/T 1179-1999、GB/T 17937-1999、GB/T 3428-1997、DL/T 832-2003、YB/T 124-1997、YB/T 5004-2001等标准执行;

⑵铝杆(铝合金杆、铝包钢杆)生产工序监督与抽查,主要检查铝杆(铝合金杆、铝包钢杆)的外观等;

⑶铝(铝合金、铝包钢)单丝生产工序监督与抽查,主要检查单丝的直径、圆度、强度、直流电阻等,参照GB/T 3048.2-1994,GB/T 4909.2-1985执行;

⑷钢芯绞制工艺监督与抽查,主要检查钢芯的强度等,参照GB/T 1179-1999执行;

⑸绞制工艺监督与抽查,主要检查绞合紧密度、结构、外径等,参照GB/T 1179-1999执行;

⑹包装监督检查。

4.5.4 检验监证

⑴绞线结构;

⑵拆股后单丝。主要检查铝(铝合金、铝包钢)单丝的直径、圆度、强度、直流电阻等,参照GB/T 3048.2-1994,GB/T 4909.2-1985、GB/T 1179-1999、JB/T 8134-1997等标准执行。上述各监证与检查记录由监造负责人认真填写,并由制造厂的质量管理者代表(或指定代表人)签字认同,作为监造资料存档。

4.6 出厂验收

4.6.1 出厂验收是在制造厂完成全部出厂试验后进行;

4.6.2 出厂验收须参照订货要求及相关标准进行抽样检查、试验;

4.6.3 仪器、仪表及试验设备应满足试验要求并可控,计量仪器、仪表须溯源;

4.6.4 试验人员应具备相应资质,试验报告应规范。

4.7 标志、包装、运输、贮存

4.7.1标志

每盘导地线的铭牌上应标明:

⑴制造厂名称

⑵型号及规格

⑶装运、旋转方向或放线标志

⑷运输时线盘不能平放的标记

⑸由外至内每根导线的长度

⑹毛重及净重

⑺制造日期

⑻生产标准编号

⑼盘号,台班号

4.7.2包装

⑴导地线应按用户要求包装,成盘交货,并有可靠的防损伤、防腐蚀措施。

⑵电线(缆)盘应具有足够的强度和刚度,保证装卸、运输、贮存及放线工作的正常进行,通常采用的结构型式如下:

1)直径为500~800毫米采用木结构或钢木结构;

2)直径为900~2500毫米应采用瓦楞形钢板组装结构或型钢结构,也可以采用木结构;

3)直径为2500毫米以上采用型钢焊接结构。

⑶导地线装盘时,最外一层与电线(缆)盘侧板边缘的距离不小于30mm。连在一起的两

根导地线,其连接处应至少剪断一半,并将连接处的两边扎牢;

⑷电缆交货盘应符合JB/T 8137.1~8137.2-1999的规定。

4.7.3运输

⑴装卸时应避免摔、撞、冲击,装卸后的交货盘侧板应保持与地面处于垂直状态;

⑵运输过程中应采取可靠措施,防止导地线受到外力损伤。

4.7.4贮存

⑴电线(缆)盘的堆放和搬运,均应遵守相关的操作规程和正确的搬运方法,避免冲击和损伤线盘;

⑵电线(缆)盘应避免长期日晒、雨淋,或放在潮湿、易腐蚀的场所。

4.8 制造厂提供的技术资料

⑴技术参数表

⑵规定要求的各项试验及检验报告

⑶产品合格证书

4.9 备品备件

⑴制造厂应提供用户要求的备品备件;

⑵所有备品备件应该是未使用过的,与所提供设备的相应部件可以互换,并应是同样规范、材料和工艺制造的,具有同等的机械和电气等性能。

4.10 现场检验

⑴包装,标志

⑵数量

⑶型号、规格、外径、绞合紧密度、表面情况、绞向

⑷按订货要求进行现场抽检

4.11 现场安装

⑴现场安装包括放线、连接和紧线三个步骤,安装方法及工艺按GBJ 233-1990执行;

⑵现场安装过程中检验每盘导地线的长度及其偏差;

⑶现场安装应制定合理有效的技术措施,谨防对导地线的损伤。如果发生导地线损伤,可采取缠绕、补修管、补修预绞丝修补等方法,参照DL/T 741-2001执行;

⑷330kV及以上电压等级线路的工程施工必须采用张力放线。

4.12 售后技术服务及质量承诺

制造厂应提供质量承诺,质保期至少为交货后12个月。在质保期内,如果发生导地线断股等质量问题,制造厂应赔偿由此造成的损失。在质保期之外,也应提供技术支持。

5 杆塔技术参数和要求

5.1 引用标准

以下为输电设备设计、制造及试验所应遵循的国家、行业和企业的标准及规范,但不仅限于此:

GB 222-1984 钢的化学分析用试样取样法及成品化学成份允许偏差

GB 396-1994 环形钢筋混凝土电杆

GB 2694-2003 输电线路铁塔制造技术条件

GB 4623-1994 环形预应力混凝土电杆

GB 50061-1997 66kV及以下架空电力线路设计规范

GB 50017-2003 钢结构设计规范

GB 50205-2001 钢结构工程施工质量验收规程

GB/T 470-1997 锌分类及技术条件

GB/T 2975-1998 钢及钢产品力学性能试验取样位置及试样制备

GBJ 10-1989 混凝土结构设计规范

GBJ 233-1990 110~500kV架空电力线路施工及验收规程

DL/T 646-1998 输电线路钢管杆制造技术条件

DL/T 741-2001 架空送电线路运行规程

DL/T 5030-1994 薄壁离心钢管混凝土结构技术规程

DL/T 5092-1999 110~500kV架空送电线路设计技术规程

DL/T 5130-2001 架空送电线路钢管杆设计技术规定

国家电网公司电力生产设备评估管理办法(生产输电[2003]95号)

国家电网公司关于加强电力生产技术监督工作意见(生产输电[2003]29号)

国家电网公司预防110(66)kV~500kV架空输电线路事故措施(国家电网生[2004]641 号)

5.2 主要技术参数

⑴杆塔特征:

类别、材料、型式、呼称高、全高、水平档距、垂直档距、铁塔根开、杆塔重量、拉线型式、基础型式

⑵绝缘配合:

导地线布置,参见DL/T 5092-1999、GB 50061-1997

带电部分与杆塔构件的间隙,参见DL/T 5092-1999、GB 50061-1997

⑶强度要求

⑷稳定要求

⑸倾斜度要求

⑹挠度及构件变形要求

⑺连接要求

⑻构造要求

⑼防盗措施

⑽防松措施

⑾防腐措施

⑿防雷措施

⒀名称牌、相位标志、警示标志、色标

5.3 主要特点

各类杆塔的技术特性定性比较,见表3。

表3 各类杆塔的技术特性表

5.4 选用原则和技术要求

5.4.1选用原则

⑴根据线路特征、线路运行经验、环境条件、综合造价等选用杆塔;

⑵对于特殊线路或大跨越线路,应特殊设计并进行比较、论证;

⑶对于杆塔设计采用新理论、新材料或新结构型式,须经过试验验证;

⑷工业区、居民区等路径走廊受限制地区时,可考虑选用多回路杆塔。

5.4.2选用技术要求

⑴无特殊要求时宜选用角钢自立式铁塔;

⑵当杆塔承受荷载较大时,宜选用钢管自立式铁塔;

⑶线路经过城区、工业区、居民区等路径走廊或杆塔基础征地面积受限制的地区时,宜选用钢管电杆或无拉线的混凝土电杆;

⑷杆塔挠度受限制时,宜选用自立式铁塔;

⑸对不均匀沉降区,可选用拉线铁塔。拉线杆塔不得使用于跨越铁路、高速公路和其他重要交叉跨越的地点;

⑹杆塔选用还须考虑下列要求:

1)杆塔铁件应采用热浸镀锌防腐,或采用其他等效的防腐措施。拉线棒(地上500mm 和地下部分)和易受腐蚀部件,应采取其他有效的附加防腐措施。钢管塔应内外采用热浸镀锌防腐;

2)采取必要的铁塔防盗、防松措施。

5.5 监造

用户应委托具有技术权威的单位对杆塔进行监造。监造单位应与运行单位共同对制造厂在以下主要方面进行监督、检查,并进行记录、归档,同时要求制造厂定期或按生产过程各阶段报送有关资料。

监造单位应编制监造大纲,并指派专业技术人员进行监造。

监造工作既不能解除或减轻制造厂按照合同规定应承担的责任,也不能替代制造厂的产品质量管理、检查和现场质量检验。

5.5.1 生产条件监证

⑴主要生产设备与条件监证;

⑵检测设备与条件监证。

5.5.2 质量保证文件的监证

⑴质量计划;

⑵生产工艺文件;

⑶生产进度;

⑷各主要生产工序质量记录。

5.5.3 生产过程中关键工序质量监督检查

⑴抽查原材料质量合格证明,及对原材料的复检报告。有必要时进行机械性能试验和化学成分化验:

1)铁塔及钢管电杆原材料检查,参照GB 2694-2003、DL/T 646-1998执行;

2)铁塔及钢管电杆原材料性能检验,机械性能试验参照GB/T 2975-1998执行,化学成分化验参照GB 222-1984 、GB/T 470-1997执行;

3)混凝土电杆原材料检查,参照GB 4623-1994、GB 396-1994执行。

⑵主要工艺质量的监造:

1)铁塔和钢管电杆主要工艺质量的监造:

a 切割下料

b 制弯及开合角

c 制孔

d 钢印标记

e 组焊

f 焊接

g 焊缝探伤

h 镀锌

i 矫直(含黑件及白件)

检查标准参照GB2694-2003、DL/T 646-1998执行。

2)混凝土电杆主要工艺质量的监造:

a 钢筋拉伸(对环形预应力混凝土电杆)

b 混凝土成形

c 力学性能试验

检查标准参照GB 396-1994、GB 4623-1994执行。

3)薄壁离心钢管混凝土电杆主要工艺质量的监造:

a 钢管制作

b 混凝土成形

c 防腐处理

d 力学性能试验

检查标准参照GB 396-1994、GB 4623-1994、DL/T 5030-1994执行。

5.5.4 检验监证:

⑴试组装检验监证;

⑵型式试验、抽检试验、例行试验监证,参照GB 2694-2003、GB 396-1994、GB 4623-1994、DL/T 5030-1994执行。

上述检验项目,应具备完整的记录。

各监证与检查记录由监造负责人认真填写,并由制造厂的质量管理者代表(或指定代表人)签字认同,作为监造资料存档。

5.6 出厂验收

5.6.1出厂验收是在制造厂完成全部出厂试验后进行。

5.6.2出厂验收须参照订货要求及相关标准进行抽样检查、试验。

5.6.3仪器、仪表及试验设备应满足试验要求并可控,计量仪器、仪表须溯源。

5.6.4试验人员应具备相应资质,试验报告规范。

5.6.5出厂验收项目

⑴铁塔、钢管电杆出厂验收:

1)数量;

2)杆塔试组装验收;

3)抽样:尺寸检查、力学性能试验;

4)镀锌锌层质量检查。

具体方法参照GB 2694-2003、DL/T 646-1998执行。

⑵混凝土电杆出厂验收:

1)数量;

2)抽样:尺寸检查、力学性能试验,具体方法参照GB 396-1994、GB 4623-1994执行;

3)镀锌锌层质量检查(对薄壁离心钢管混凝土电杆),具体方法参照DL/T 5030-1994执行。

⑶角钢塔材出厂检查拆包开包率不低于5%,如100%合格可装运;如有不合格,则增加10%开包检查,如100%合格可装运;如仍有不合格,则全部开包检查。成品出厂拆包检查应填写记录。

5.7 标志、包装、运输、贮存

5.7.1 铁塔

⑴标志

铁塔零部件的标记钢印,宜排列整齐,字型不得有残缺。钢印深度根据钢材厚度可在0.5~1.0毫米内。焊接部件的钢印不得被覆盖,零部件标记的钢印清楚可不盖油印;为了明

显,制造厂应在钢印附近加盖制造厂厂标或盖明显符号的油印。

⑵包装

1)包装须以整塔为单元进行;

2)外包装标志应标明制造厂名称和用户名称、项目名称、商品的品种和数量、净重及毛重、到达目的地以及其它必须的资料;

3)包装标志应清晰、正确,起吊位置清楚;

4)制造厂应以任何运输过程中都能保护货物不受到损坏的方式而设计和包装,做到包装整齐、牢固不松动,并应防止防腐涂层、涂料受到损坏;

5)包装应有足够的强度,能在短途搬运、货物贮存和装车、装船中承受较大冲击而不会散包;

6)在货物交付时应有包装清单,包装单元内包装物应与包装清单相符。

⑶运输

包装件应捆绑牢固,易擦伤部位用麻布等软物包扎,吊装时应用尼龙绳。杆塔部件发运时的凸出部分在装车、运输和装卸时,应将其妥善固定,以免发生变形。运输中应注意装、卸,不能损坏包装或使产品变形、损坏。

以上具体内容参照GB 2694-2003执行。

⑷贮存

1)产品堆放场地应平整。

2)产品应按规格、类别、等级等分别堆放。

5.7.2 电杆

⑴标志

分为永久标志和临时标志。参照GB 396-1994、GB 4623-1994执行。

⑵运输

参照GB 396-1994、GB 4623-1994执行。

⑶贮存

1)产品堆放场地应平整;

2)产品应按规格、类别、等级等分别堆放;

3)产品堆垛应放在支垫物上,层与层之间用支垫物隔开,每层支承点在同一平面上,各层支垫物位置在同一垂直线上。

5.8制造厂提供的技术资料

⑴技术文件、参数表;

⑵规定要求的各项试验及检验报告;

⑶产品合格证书;

⑷钢材、紧固件原始检验证明和复验报告;

⑸设计变更和材料代用说明;

⑹竣工图。

5.9备品备件

⑴制造厂应提供用户要求的备品备件;

⑵所有备品备件应该是未使用过的,与所提供设备的相应部件可以互换,并应是同样规范、材料和工艺制造的,具有同等的机械等性能。

5.10现场检验

5.10.1货物运抵合同规定交货地点后,用户和制造厂应确定现场检验的时间;

5.10.2 现场检验主要内容

⑴制造厂提供的质量证明文件;

⑵包装,标志:检查包装是否有严重破损导致产品有损伤,查看标志是否清晰和正确;

⑶拆包抽查:检查包装内容(规格、型号、数量等)是否正确;

⑷按订货要求进行现场抽检。

5.11现场安装

⑴产品现场安放,应满足有关技术要求;

⑵现场安装人员应具有相应的资质;

⑶现场安装前应制定合理的施工工艺,施工过程中采用合理有效的技术措施。具体方法参照GBJ 233-1990。

5.12售后技术服务及质量承诺

⑴制造厂应派出工地服务代表,做好售后服务及现场技术指导工作,及时解决安装过程中产品出现的问题,如发现产品质量不能满足合同与安装要求,制造厂应承担修理、更换、退货等违约责任。

⑵制造厂应提供质量承诺,质保期至少为交货后12个月。在质保期内,如果发生产品质量问题,制造厂应赔偿由此造成的损失。在质保期之外,应提供技术支持。

6 绝缘子技术参数和要求

6.1 引用标准

以下为输电设备设计、制造及试验所应遵循的国家、行业和企业的标准及规范,但不仅限于此:

GB 772-1984 高压绝缘子瓷件技术条件

GB/T 1001.1-2003 标称电压高于1000V的架空线路绝缘子第一部分:交流系统用瓷

或玻璃绝缘子元件——定义、试验方法和判定准则GBJ 233-1990 110~500kV架空电力线路施工及验收规程

DL/T 741-2001 架空送电线路运行规程

DL/T 5092-1999 110~500kV架空送电线路设计技术规程

JB/T 3384-1999 高压绝缘子抽样方案

JB/T 5892-1991 高压线路用有机复合绝缘子技术条件

JB/T 5895-1991 污秽地区绝缘子使用导则

JB/T 8177-1999 绝缘子金属附件热镀锌层通用技术条件

JB/T 8460-1996 高压线路用棒形悬式复合绝缘子尺寸与特性

JB/T 9673-1999 绝缘子产品包装

JB/T 9678-1999 盘形悬式玻璃绝缘子的玻璃件外观质量接受判据

JB/T 56200-1999 悬式绝缘子质量分等

JB/T 8737-1998 高压线路用复合绝缘子使用导则

国家电网公司电力生产设备评估管理办法(生产输电[2003]95号)

国家电网公司关于加强电力生产技术监督工作意见(生产输电[2003]29号)

国家电网公司预防110(66)kV~500kV架空输电线路事故措施(国家电网生[2004]641 号)

6.2 主要技术参数

6.2.1 瓷质、玻璃绝缘子

⑴名称、型号

⑵公称结构高度

⑶公称盘径

⑷公称爬电距离

⑸额定机电破坏负荷

⑹机械破坏负荷

⑺工频击穿电压

⑻工频耐受电压

⑼雷电冲击干耐受电压

⑽工频湿耐受电压

⑾陡波冲击

⑿质量

6.2.2 复合绝缘子

⑴名称、型号

⑵公称结构高度

⑶伞裙直径、伞间距

⑷芯棒护套厚度

⑸最小公称爬电距离

⑹最小电弧距离

⑺例行拉伸负荷

⑻额定机电破坏负荷

⑼机械破坏负荷

⑽工频耐受电压

⑾雷电全波冲击湿耐受电压

⑿工频湿耐受电压

⒀陡波冲击

⒁伞套撕裂强度、耐漏电起痕

⒂憎水性、憎水迁移性

6.3 主要特点

各类绝缘子的技术特性定性比较,见表4。

表4 各类绝缘子的技术特性表

6.4选用原则和技术要求

6.4.1选用原则

根据线路具体情况,综合考虑当地气象条件、海拔高度、污秽状况和运行经验选用绝缘子具体型式。

6.4.2选用技术要求

⑴在雷害频发线路或大跨越段、重冰区及沿线地势高差较大的线路,应选用机电性能较高的瓷质或玻璃绝缘子;

⑵在污秽严重地区,宜考虑采用复合绝缘子或大爬距、防污型瓷质或玻璃绝缘子;在高灰密度等地区,应选用双伞、三伞型瓷质或玻璃绝缘子;

⑶在鸟害易发地区,宜考虑在绝缘子串上加装大盘径绝缘子。若选用复合绝缘子,宜考虑采用带有大伞径的复合绝缘子;

⑷220kV及以上电压等级线路的复合绝缘子,在满足电气干弧距离的基础上,应考虑加装均压环;

⑸110kV电压等级线路的复合绝缘子,在满足电气干弧距离的基础上,宜考虑加装均压环;

⑹66kV电压等级线路的复合绝缘子,原则上不加装均压环;

⑺在既是多雷区又是污秽严重地区,复合绝缘子应采用加长型产品。

6.5 监造

用户应委托具有技术权威的单位对线路设备进行监造。监造单位应与运行单位共同对制造厂在以下主要方面进行监督、检查,并进行记录、归档,同时要求制造厂定期或按生产过程各阶段报送有关资料。

监造单位应编制监造大纲,并指派专业技术人员进行监造。

监造工作既不能解除或减轻制造厂按照合同规定应承担的责任,也不能替代制造厂的产品质量管理、检查和现场质量检验。

6.5.1 生产条件监证

⑴主要生产设备与条件监证;

⑵检测设备与条件监证。

6.5.2 质量保证文件的监证

⑴质量计划;

⑵生产工艺文件;

⑶生产进度;

⑷各主要生产工序质量记录。

6.5.3 生产过程中关键工序质量监督检查

⑴抽查原材料质量合格证明,及对相关原材料的检验报告;

⑵瓷质和玻璃绝缘子生产工序监督与抽查:

主要检查原材料的主要成分及杂质(含铁量),检查生坯、瓷件(玻璃件)、钢帽、钢脚尺寸和外观质量。参考企业相关技术条件及产品图纸,参照GB 772-1984、GB 1001.1-2003执行;

⑶复合绝缘子生产工序监督与抽查:

主要检查伞套、芯棒及端部附件质量,检查端部联结、密封的质量,检查整体注塑(或挤包穿伞)工艺。参考企业相关技术条件及产品图纸,参照JB/T 5892-1991执行。

6.5.4 监督检查

主要检查绝缘子例行、抽查试验,参照GB 1001.1-2003、JB/T 5892-1991执行。

上述各监证与检查记录由监造负责人认真填写,并由制造厂的质量管理者代表(或指定代表人)签字认同,作为监造资料存档。

6.6 出厂验收

6.6.1 出厂验收是在制造厂完成全部出厂试验后进行;

6.6.2 出厂验收须参照订货要求及相关标准进行抽样检查、试验;

6.6.3 仪器、仪表及试验设备应满足试验要求并可控,计量仪器、仪表须溯源;

6.6.4 试验人员应具备相应资质,试验报告规范;

6.6.5 出厂验收项目

⑴瓷质和玻璃绝缘子

最新110kV变电站初步设计

110k V变电站初步设 计

一、可研阶段 1、变电站站址选择 应结合系统论证工作,进行工程选站工作。应充分考虑站用水源、站用电源、交通运输、土地用途等多种因素,重点解决站址的可行性问题,避免出现颠覆性因素。(常规变电站投资2200~2400万,其中土建部分500万左右,线路投资70万/公里(轻冰),110万/公里(重冰)。) 变电站选择应尽量避开基本农田,无法避让的应优先选用占地少的变电站技术方案。 1.1 基本规定 1.1.1 工程所在地区经济社会发展规划及站址选择过程概述。 1.1.2 根据系统要求,原则上应提出两个或两个以上可行的站址方案,如确实因各种难以克服的困难只能提供一个站址方案时,应提供充分的依据并作详细说明。 1.2 站址区域概况 1.2.1 站址所在位置的省、市、县、乡镇、村落名称。 1.2.2 站址地理状况描述:站址的自然地形、地貌、海拔高度、自然高差、植被、农作物种类及分布情况。 1.2.3 站址土地使用状况:说明目前土地使用权,土地用途(建设用地、农用地、未利用地),地区人均耕地情况。 1.2.4 交通情况:说明站址附近公路、铁路、水路的现状和与站址位置关系,进所道路引接公路的名称、路况及等级。 1.2.5 与城乡规划的关系及可利用的公共服务设施。

1.2.6 矿产资源:站址区域矿产资源及开采情况,对站址安全稳定的影响。1.2.7 历史文物:文化遗址、地下文物、古墓等的描述。 1.2.8 邻近设施:站址附近军事设施、通信电台、飞机场、导航台与变电站的相互影响;以及变电站对环境敏感目标(风景旅游区和各类保护区、医院、学校等)影响的描述。 1.3 站址的拆迁赔偿情况 应说明站址范围内己有设施和拆迁赔偿情况。 1.4 出线条件 按本工程最终规模出线回路数,规划出线走廊及排列秩序。根据本工程近区出线条件,研究确定本期一次全部建设或部分建设变电站出口线路的必要性和具体长度。 1.5 站址水文气象条件 1.5.1 水位:说明频率2%时的年最高洪水位;说明频率2%时的年最高内涝水位或历史最高内涝水位,对洪水淹没或内涝进行分析论述。 1.5.2 气象资料:列出气温、湿度、气压、风速及风向、降水量、冰雪、冻结深度等气象条件。 1.5.3 防洪涝及排水情况:应说明站区防洪涝及排水情况。(避免出现颠覆性条件) 1.6 水文地质及水源条件 1.6.1 说明水文地质条件、地下水位情况等。 1.6.2 说明水源、水质、水量情况。 1.7 站址工程地质(避免出现颠覆性条件)

500kV架空输电线路运行规范标准

附件1 110(66)kV~500kV架空输电线路运行规范 国家电网公司 二○○五年三月

目录 第一章总则 (1) 第二章引用标准 (1) 第三章岗位职责 (2) 第四章安全管理 (5) 第五章输电线路工程设计及验收管理 (9) 第六章输电线路的运行管理 (10) 第七章特殊区段输电线路的管理 (13) 第八章输电线路保护区管理 (13) 第九章运行维护重点工作 (15) 第十章输电线路缺陷管理 (23) 第十一章事故预想及处理 (24) 第十二章输电线路技术管理 (26) 第十三章输电线路评级与管理 (29) 第十四章带电作业管理 (29) 第十五章人员培训 (31) 附录A(规范性附录):架空输电线路缺陷管理办法 (35) 附录B(规范性附录):架空输电线路评级管理办法 (38) 附录C(规范性附录):架空输电线路专业年度工作总结提纲 (42) 附录D(规范性附录):架空输电线路故障调查及统计办法 (47) 附录E(资料性附录):架空输电线路运行技术资料档案(技术专档、线路台帐) (54) 编制说明 (64)

第一章总则 第一条为了规范架空输电线路(以下简称“输电线路”或“线路”)的运行管理,使其达到标准化、制度化,保证设备安全、可靠、经济运行,特制定本规范。 第二条本规范依据国家(行业)有关法律法规、标准(包括规程、规范等,下同),以及国家电网公司发布的生产技术文件(包括导则、管理制度等,下同),并结合近年来全国电力系统输电线路运行经验、设备评估分析而制定。 第三条本规范对架空输电线路生产过程中的工程设计、验收、运行、缺陷管理、事故预想及处理、技术管理、设备评级、带电作业、人员培训等项工作以及运行维护重点工作,分别提出了具体要求或指导性意见。 第四条本规范适用于国家电网公司系统内的110(66)kV 500kV交流架空输电线路。±500kV直流线路、35kV交流线路可参照执行。 第五条各区域电网、省(自治区、直辖市)电力有限公司可根据本规范,制定适合本地区电网实际情况的实施细则。 第二章引用标准 下列文件中的条款,通过本规范的引用即成为本规范的条款。凡是标注日期的引用文件,其后来所有的修改内容或修订版均不适用于本规范,但对根据本规范达成协议的各方,推荐使用这些文件的新内容或最新版本。凡是未标注日期的引用文件,其新内容或最新版本适用于本规范。 中华人民共和国电力法(中华人民共和国主席令第六十号) 电力设施保护条例(中华人民共和国国务院令第239号) 电力设施保护条例实施细则(中华人民共和国国家经济贸易委员会、中华人民共和国公安部令第8号) GB 50061-1997 66kV及以下架空电力线路设计规范 GB/T 2900.51-1998 架空线路术语 GBJ 233-1990 110~500kV架空电力线路施工及验收规范 GB/T 14286-2002 带电作业工具设备术语 DL 409-1991 电业安全工作规程(电力线路部分) DL 5009.2-1994 电力建设安全工作规程(架空电力线路部分) DL/T 620-1997 交流电气装置的过电压保护和绝缘配合 DL/T 5092-1999 110~500kV架空送电线路设计技术规程 DL/T 741-2001 架空送电线路运行规程

110kV变电站设计开题报告

110kv变电站110kv线路保护及主系统设计 1课题来源 本课题为某110kv中心变电站110kv线路保护记主系统设计课题。该变电站是最末一个梯级电站,装机容量600万千瓦,年发电量301亿千瓦时,用地总面积为8070.1374公顷。向家坝水电站110kV中心变电站为向家坝水电站提供施工供电电源和电站建成以后作为厂用电备用电源的一座变电站。设计容量为3 50MVA,电压等级为110/35/10kV, 110kV进出线有5条,中压35kV侧有10 回出线,低压10kV侧有20 回出线. 2 设计的目的和意义 110kV变电所是电力配送的重要环节,也是电网建设的关键环节。变电所设计质量的好坏,直接关系到电力系统的安全、稳定、灵活和经济运行。它是联系发电厂和用户的中间环节,起着变换和分配电能的作用。电气主接线是发电厂变电所主要环节,电气主接线连接直接影响运行的可靠性、灵活性。它的拟定直接关系着全厂电气设备的选择、配电装置的布置、继电保护、自动装置和控制方式的确定。 随着变电所综合自动化技术的不断发展与进步,变电站综合自动化系统取代或更新传统的变电所二次系统,继而实现“无人值班”变电所已成为电力系统新的发展方向和趋势。 3 国内外的现状和发展趋势 目前,我国小城市和西部地区经济的不断发展对电能资源的要求也越来越高,西部主要是高原地带,在高海拔的条件下,农村现有的变电技术远达不到经济的快速发展,这也在一定程度上影响了西部地区和中小城市变电技术的推广和应用技术的深化。因此,一方面需要创造条件有针对性地提高对小城市以及农村的变电站的建设,加强专业知识的培训来提高变电技术;另一方面,可以通过媒介积极开展技术交流,通过实践去体验、探索。 当今世界各方面因素正冲击着全球电力工业,在国外变电所技术有十分剧烈的竞争,而世界范围内的变电所都采用了新技术; 其次,不同的环境要求给所有的电力供应商增加了额外的责任,使电力自动化设备尤其是高压大功率变电站的市场开发空间大大拓展。另外高压变电所的最终用户对变电站的自动控制、节能、

架空输电线路杆塔基础的几种形式图文【最新版】

架空输电线路杆塔基础的几种形式图文 输电线路杆塔的地面以下部分的总体统称为杆塔基础。它的作用是用来稳定输电线路的杆塔,防止杆塔因为承受导地线、风、覆冰、断线张力等垂直荷载、水平荷载和其他外力作用而产生的上拔、下压或倾覆。 基础形式可分为以下几种: 1.岩石嵌固基础

岩石嵌固基础适用于覆盖层较浅或无覆盖层的强风化岩石地基,其特点是底板不配筋,基坑全部掏挖。上拔稳定,具有较强的抗拔承载能力。 需要时,可将主柱的坡度设置与塔腿主材坡度相同,以减小偏心弯矩,还可省去地脚螺栓。由于该基型充分利用了岩石本身的抗剪强度,混凝土和钢筋的用量都较小,同时减少了基坑土石方量,浇制混凝土不需要模板,施工费用较低。 岩石嵌固基础分利用了岩石本身的抗剪强度,混凝土和钢筋的用量都较小,同时减少了基坑土石方量,浇制混凝土不需要模板,施工费用较低。但对勘测深度要求较高,要求逐基鉴定岩石的稳定性、覆盖层厚度、岩石的坚固及风化程度情况,准确落实相关设计参数。 2.岩石锚杆基础

岩石锚桩基础适用于中等风化以上的整体性好的硬质岩。该基础型式是在岩石中直接钻孔、插入锚杆,然后灌浆,使锚杆与岩石紧密粘结,借岩石本身、岩石与砂浆间和锚筋的粘结力来抵抗上部杆塔结构传来的外力, 以保证对杆塔结构的锚固稳定,从而大大降低了基础混凝土和钢材量。岩石锚桩基础一般宜用于未风化、微风化和中等风化程度的岩石地基, 但随着现在实验和实践经验的积累, 强风化岩石地区亦可做岩石基础。岩石锚桩基础常用型式有直锚式、斜锚式、承台式、嵌固式、半嵌固式5种类型, 应用较为成功。直锚式岩石锚桩基础具有工艺简便、灵活性高、适用性强、造价低等优势, 适用于基础作用力较小的直线塔;斜锚式岩石锚桩基础使用于基础作用力较小的直线水泥杆或直线拉线塔等塔型; 而承台式岩石锚桩基础和嵌固式、半嵌固式岩石锚桩基础使用于基础作用力较大的耐张塔等塔型。 3.掏挖基础

110_220kV架空输电线路设计要点分析

TECHNOLOGY AND MARKET Vol.19No.5,2012 0引言 在国民经济飞速发展的大背景下,国家用于建设电力电网,尤其是高压输电线路的资金日益增多。输电线路的设计是输电线路建设工程的灵魂,它的好坏直接影响着整个电网的运行,如何对输电线路进行合理设计是保证电网可靠安全运行的一大关键问题。然而,由于我国幅员辽阔,各地环境气候、地质条件相差甚多,因此,所使用的输电线路也不尽相同,这种差异性使得目前的输电线路设计存在很多问题。本文结合多年的工作经验,对输电线路的设计,分析了其应注意的地方,以供相关从业人员参考。 1输电线路概述 电力系统由发电厂、输电线路、变电站和配电设备以及用电设备所构成。电厂发出的电能由输电线路输送到负荷中心,其主要任务就是输送电能,并联络各个发电厂与变电站,使之并列运行,从而实现电力系统联网。具体说来,高压输电线路是为了实现跨地区、跨流域,错开高峰,减少系统的备用容量以及增强整个系统的稳定性而存在的。 电力线路有低压、高压、超高压以及特高压线路之分。一般输送电能容量越大,线路采用的电压等级越高。目前,我国的输电线路的主要电压等级有10kV、20kV、35kV、60kV、110kV、220kV、330kV、500kV等。20kV及以下电压等级习惯上称为配电线路,35kV~220kV称为高压线路,330kV及以上电压等级称为特高压输电线路。而其中110kV~220kV输电线路是最常用的高压输电线路之一。按结构特点,输电线路可分为电缆线路和架空线路。电缆线路对电力电缆的要求高、费用昂贵,需较高的施工及检修技术,但因其受外界环境小,且对周边环境影响较小,因此,目前常用于城市稠密区及跨海输电等特殊场所。架空线路具有结构相对比较简单、施工方便、建造费用低、散热性能好、检修维护较容易以及技术要求不高等优点,从而得到广泛使用。鉴于这两点,将重点对110kV~220kV架空输电线路的设计要点提出一些看法与建议。 2110kV~220kV架空输电线路设计要点 架空输电线路是将多股裸导线用绝缘子和其他金具悬空架设在支持杆塔上。每个事物有利必有弊,架空输电线路的特点除了以上提到的几个优点,也包含以下几个缺陷:①由于其所处环境,因而容易受自然因素的影响与外力的破坏,发生事故的几率较大;②由于导线裸露在外,因此,对地面与建筑物以及其他设施都需要保持一定的安全距离,导致占地面积与空间大,影响土地的充分利用。针对架空输电线路的特点,其设计包括:选择所要使用的导线种类;设计输电线路的线路路径;杆塔设计;其他相关注意点。 2.1导线选择 导线是用于传导电流、输送电能的设施,是线路的关键部分之一。导线通常被架设于电杆上,需承受自身重量以及雨、风、日照、冰雪、以及温度的变化,因而需要导线有足够的机械强度和良好的电气性能。导线的种类多种多样,但钢芯铝绞线被应用得最多,钢芯铝绞线外部由多股铝线绞制而成,传输大部分电流,内部几股是钢线,机械强度较好。 在高压电网中,电压等级较高,输送容量大,为提高输送质量,减少电晕和对高频通讯的干扰,220kV及以上输电线路一般采用每两根或多跟导线组成的分裂导线。导线的截面选择由经济电流密度、容许电压的损耗量、发热条件以及电晕损耗来决定。对导线的一般要求有:①导线产品必须符合GB/T1179-2008的规定;②导线绞合的紧密度应满足机械张力的放线要求,绞合紧密应均匀一致;③导线表面应平滑圆整,不得有腐蚀斑点与夹杂物等。 对于110kV~220kV输电线路,如若采用400m2导线,建议设计覆冰小于10mm的地区采用LGJ-400/35钢芯铝绞线,覆冰小于15mm地区建议采用LGJ-400/50钢芯铝绞线。 2.2线路路径设计 输电线路的路径设计是整个设计的基础,该阶段设计的恰当与否直接关系着整个设计的质量,包括该工程的可行性、经济性、技术性以及系统运行的可靠性。路径设计的目的就是在保证运行的可靠性与稳定性的前提下,应尽可能地降低整个工程的造价。线路路径的设计包括两个方面,图上选线和现场选线。 1)图上选线。该部分的工作主要是收集输电线路所在地区的地形图、航测图。根据经验,将起点、终点与其中的必经点标出,并根据收集的资料(包括交通、民航、水文、地质、通信、气象以及林业等)避开一些大的设施与影响区域,同时考虑当地的交通条件等相关因素,依据线路路径最短原则,得出几个方案,将这几个方案进行技术上与经济上的比较,选出一个相对合理 110~220kV架空输电线路设计要点分析 刘鹏飞 (广西广晟电力设计有限公司,广西南宁530031) 摘要:输电线路承担着输送和分配电能的任务,是电力系统的一个重要组成部分,其设计的恰当与否直接影响整个电网运行的安全性和可靠性。文章结合多年的工程设计经验,在考虑设计方便可行、降低造价以及利于运行的角度,提出了110kV~220kV输电线路在导线选择、线路路径设计、杆塔设计等阶段的一些设计要点。 关键词:输电线路;线路路径;杆塔;施工技术 doi:10.3969/j.issn.1006-8554.2012.05.050 技术研发 92

10kV配电线路安装工艺标准

1. 配电线路“三架”安装工艺 1.1分段及支线开关引线架安装 工艺规范: 1、各层横担、支架应平行,左右扭斜、上下扭斜不得大于横担总长度的1%。 2、三相引线应排列整齐,弧度应平行一致,引线固定点之间距离不应超过1.5m。 3、各接点的电气连接应紧密,接线柱与引线的连接应采用设备线夹或接线端子,当引线为150mm2及以上导线时,设备线夹或接线端子与接线柱应有2个螺栓固定。当采用设备线夹时,进入设备线夹导线应先用铝包带包扎。 4、杆上设备引线均应采用10KV的绝缘导线。 5、开关与支撑的构架应至少有2个以上的固定点。 6、开关应安装在人员易到达、易操作的一侧。 1.2带刀闸电缆引线架安装 工艺规范: 1、各层横担、支架应平行,左右扭斜、上下扭斜不得大于横担总长度的1%。 2、三相引线应排列整齐,弧度应平行一致,引线固定点之间距离不应超过1.5m。 3、各接点的电气连接应紧密,接线柱与引线的连接应采用设备线夹或接线端子,当引线为150mm2及以上导线时,设备线夹或接线端子与接线柱应有2个螺栓固定。当采用设备线夹时,进入设备线夹导线应先用铝包带包扎。 4、杆上设备引线均应采用10KV的绝缘导线。 5、电缆保护管管口应用防火胶泥封堵。 6、电缆应悬挂标示牌。 7、电缆支架及保护管应与接地装置连接。 1.3直线杆T接分支线带隔离开关 工艺规范:

1、隔离开关与引线的连接应采用设备线夹或接线端子,当引线为150mm2及以上导线时,设备线夹或接线端子与接线柱应有2个螺栓固定。当采用设备线夹时,进入设备线夹导线应先用铝包带包扎。 2、T接横担应与线路方向平行,横担端部上下及左右歪斜不得超过20mm。 3、隔离开关安装牢固、排列整齐,倾斜30°为宜,相间距离应不小于500mm。 4、引线与电杆、拉线、横担的净空距离不应小于200mm。 1.4公用变配变台架 工艺规范: 1、杆上杆上变压器台架底部距地面高度应不小于2.5m,在路边车辆可能碰撞的地方应不小于4.5m。水平倾斜不大于台架根开的1/100。 2、一、二次引线应排列整齐,绑扎牢固。 3、变压器高压侧应设防雷装置、高压刀闸、高压跌落式开关;避雷器应装设在高压刀闸下端,跌落式开关距变压器台面的高度不小于2.5m。变压器低压侧应装设低压刀闸或低压熔断器。 4、接地可靠,变压器中性点、外壳、避雷器引下线应相连接后接地。 5、变压器高压侧套管必须加装高压绝缘护罩。 6、配变台架上层高压刀闸动触头应朝向配变低压侧,隔离刀刃分闸时应使静触头带电,各相隔离刀闸之间相间距离不应小于0.5m。 7、跌落式熔断器安装时与杆塔保持10-15oC的倾斜度,公路边的配变台架高压侧跌落式开关应朝向公路一侧。 8、综合配电箱安装在配变台架下方,底部距离地面高度应大于1.8m。配电箱出线电缆排列应整齐一致。 2. 10kV杆型安装工艺 2.1单回路单瓷横担三角排列杆 工艺规范: 1、瓷横担安装应符合下列规定:当直立安装时,顶端顺线路歪斜不应大于10mm;当水平安

110kV变电站设计

110KV变电所电气设计说明 所址选择: 首先考虑变电所所址的标高,历史上有无被洪水浸淹历史;进出线走廊应便于架空线路的引入和引出,尽量少占地并考虑发展余地;其次列出变电所所在地的气象条件:年均最高、最低气温、最大风速、覆冰厚度、地震强度、年平均雷暴日、污秽等级,把这些作为设计的技术条件。 主变压器的选择: 变压器台数和容量的选择直接影响主接线的形式和配电装置的结构。它的确定除依据传递容量基本原始资料外,还应依据电力系统5-10年的发展规划、输送功率大小、馈线回路数、电压等级以及接入系统的紧密程度等因素,进行综合分析和合理选择。 选择主变压器型式时,应考虑以下问题:相数、绕组数与结构、绕组接线组别(在电厂和变电站中一般都选用YN,d11常规接线)、调压方式、冷却方式。 由于本变电所具有三种电压等级110KV、35KV、10KV,各侧的功率均达到变压器额定容量的15%以上,低压侧需装设无功补偿,所以主变压器采用三绕组变压器。为保证供电质量、降低线路的损耗此变压器采用的是有载调压方式,在运行中可改变分接头开关的位置,而且调节范围大。由于本地区的自然地理环境的特点,故冷却方式采用自然风冷却。 为保证供电的可靠性,该变电所装设两台主变压器。当系统处于最大运行方式时两台变压器同时投入使用,最小运行方式或检修时只投入一台变压器且能满足供电要求。 所以选择的变压器为2×SFSZL7-31500/110型变压器。 变电站电气主接线: 变电站主接线的设计要求,根据变电站在电力系统中的地位、负荷性质、出线回路数等条件和具体情况确定。 通常变电站主接线的高压侧,应尽可能采用短路器数目教少的接线,以节省投资,随出线数目的不同,可采用桥形、单母线、双母线及角形接线等。如果变电站电压为超高压等级,又是重要的枢纽变电站,宜采用双母线带旁母接线或采用一台半断路器接线。变电站的低压侧常采用单母分段接线或双母线接线,以便于扩建。6~10KV馈线应选轻型断路器,如SN10型少油断路器或ZN13型真空断路器;若不能满足开断电流及动稳定和热稳定要求时,应采用限流措施。在变电站中最简单的限制短路电流的方法,是使变压器低压侧分列运行;若分列运行仍不能满足要求,则可装设分列电抗器,一般尽可能不装限流效果较小的母线电抗器。 故综合从以下几个方面考虑: 1 断路器检修时,是否影响连续供电; 2 线路能否满足Ⅰ,Ⅱ类负荷对供电的要求; 3大型机组突然停电对电力系统稳定运行的影响与产生的后果等因素。 主接线方案的拟定: 对本变电所原始材料进行分析,结合对电气主接线的可靠性、灵活性及经济性等基本要求,综合考虑。在满足技术、经济政策的前提下,力争使其技术先进,供电可靠,经济合理的主接线方案。此主接线还应具有足够的灵活性,能适应各

架空输电线路设计试卷概要

2011 年春季学期《输电线路设计》课程考试试卷( A 卷) 注意:1、本试卷共 2 页; 2、考试时间:110分钟; 3、姓名、学号、网选班级、网选序号必须写在指定地方。 一、填空题 (每空1分,共30分) 1、 输电线路的主要任务是 ,并联络各发电厂、变电站使 之并列运行。 2、 镀锌钢绞线 1×19-12.0-1370-A YB/T5004-2001中,1×19表示 , 12.0表示 ,1370表示 。 3、 某线路悬垂串的绝缘子个数为 13片,该线路的电压等级是 kV 。 4、 线路设计的三个主要气象参数是 、 、 。 5、 输电线路设计规范规定,导线的设计安全系数不应小于 ;年平 均气象条件下的应力安全系数不应小于 。 6、 导线换位的实现方式主要有 、 、 三种。 7、 架空线呈“悬链线”形状的两个假设条件是 、 。 8、 档距很小趋于零时, 将成为控制气象条件;档距很大趋于无限 大时, 将成为控制气象条件。 9、 判定架空线产生最大弧垂的气象条件,常用方法有 和 。 10、状态方程式建立的原则是 。 11、已知某档档距为 498 m ,高差为40 m ,相同条件下等高悬点架空

线的悬挂曲线长度L h=0=500 m,则该档架空线悬挂曲线长度为______________ m。 12、孤立档的最大弧垂位于相当梁上剪力的地方,最低点位于相当 梁上剪力的地方。 13、排定直线杆塔位置时需使用____________________模板,校验直 线杆塔上拔时需使用_____________________模板。 14、在杆塔定位校验中,摇摆角临界曲线的临界条件是 _____________;悬点应力临界曲线的临界条件是_________________;悬垂角临界曲线的临界条件是________________。 15、发生最大弧垂的可能气象条件是_______ _________或_____ _________。 二、判断题(每题2分,共10分) 1、架空线上任意两点的垂向应力差等于比载与相应高差的乘积。 () 2、架空线的平均应力等于平均高度处的应力。() 3、如果临界档距,则两者中较小者对应的气象条件不起 控制作用。 ( ) 4、导线只有在最低气温时产生最大张力。() 5、在连续倾斜档紧线施工时,各档的水平应力不等,山上档比山下 档大。() 三、简答题 (共24分)

线路施工工艺标准样本

线路施工工艺标准 7.1管道施工 7.1.1管道施工的原则 小区管道施工应符合现行国家标准《通信管道工程施工及验收规范》( GB 50374- ) 的有关规定, 管道路由( 位置) 合理, 距离最短, 小区内管道一般为1孔, 小区接入管道可规划2孔, 管道建筑形式宜采用塑料管道。 住宅小区及商住楼等建筑红线内的管道施工应符合信息产业部、建设部联合下发的《关于进一步规范住宅小区及商住楼通信管线及通信设施建设的通知》( 信部联规[ ]24号) 要求。 管道深度( 管顶至路面) : ( 1) 绿化带、草坪≥50cm; ( 2) 一般路面≥70cm。 管道宽度: 便于放管施工操作。 材料质量: 指定厂家或甲供材, 质量符合标准( 管材无变形及其它明显缺陷) 。 7.1.2管道施工注意事项 在绿化上开挖应把草皮放置阴凉处, 沟槽开挖不宜过宽、建筑垃圾不得乱堆乱放, 应做到及时开挖及时恢复, 绿化要及时浇水保养。 水泥路面开挖时必须先用切割机切开缝再破路面且不宜过宽。管道敷设后及时夯实、修复、现场清理干净。车行道一定要注意混凝土标号达到要求。 共用管道要注意走线位置, 及时回复原状。特别是槽式管道。 遇到障碍造成管道埋深不够时, 可采取水泥包封、钢管敷设等特殊处理措施。现场材料尽量堆放在较为隐蔽、不妨碍交通、通行的地方。材料堆放有序、整齐。 7.1.3小区及商住楼建筑地下通信管道建设要求 1) 、地下通信管道应纳入住宅小区及商住楼整体地下设施管线的规划, 应与住宅小区及商住楼道路同步建设, 并应符合下列规定: 1 地下通信管道在穿越道路、小桥等地段时, 应采用预埋敷设方式。

2 地下通信管道应与信息提供商主干管道、交接箱引上管相衔接。 3 地下通信管道的路由宜以通信业务接入点为中心向外辐射, 应选择在人行道、人行道旁绿化带及车行道下。 4 地下通信管道应与高压电力管、热力管、燃气管保持安全的距离, 并宜靠近通信业务量较大的道路一侧。 5 通信管道不应选在易受到强烈振动的地段。 2) 、地下通信管道的管孔数应按远期光缆条数、规格和管群组合类型及备用孔数确定。管孔总数量应满足信息提供商的需要, 并应包括住宅小区及商住楼的内部计算机网络及弱电系统需求的管孔, 并应符合下列规定: 1 通信管道可按不同直径的通信光缆与其它电缆敷设要求采用不同管径的管材进行组合。 2 通信管道的管孔内径不应小于线缆外径的1.25倍。 3 通信管道一般为单孔管, 同时应考虑4格栅或者9格栅的多种组合管孔。3) 、地下通信管道宜采用单孔塑料管及钢管, 并应符合下列规定: 1 在下列情况下宜采用塑料管: ( 1) 住宅小区及商住楼主干管道与配线管道; ( 2) 管道的埋深位于地下水位以下, 或避开被水浸泡的地段; ( 3) 地下综合管线较多及腐蚀情况比较严重的地段; ( 4) 地下障碍物复杂的地段; ( 5) 施工期限急迫或尽快要求回填土的地段。 2 在下列情况下宜采用钢管: ( 1) 管道附挂在桥梁上或跨越沟渠, 或需要悬空布线的地段; ( 2) 需采用机械顶管施工方法穿越道路的地段; ( 3) 管群跨越主要道路, 不具备包封条件的地段; ( 4) 埋深过浅或路面负荷过大的地段; ( 5) 受电力线等干扰影响, 且需要防护时; ( 6) 建筑物的通信引入管道或引上管道的暴露部分。

110kv变电站设计

目录 摘要 (3) 概述 (4) 第一章电气主接线 (6) 1.1110kv电气主接线 (7) 1.235kv电气主接线 (8) 1.310kv电气主接线 (10) 1.4站用变接线 (12) 第二章负荷计算及变压器选择 (13) 2.1 负荷计算 (13) 2.2 主变台数、容量和型式的确定 (14) 2.3 站用变台数、容量和型式的确定 (16) 第三章最大持续工作电流及短路电流的计算 (17) 3.1 各回路最大持续工作电流 (17) 3.2 短路电流计算点的确定和短路电流计算结果 (18) 第四章主要电气设备选择 (19) 4.1 高压断路器的选择 (21) 4.2 隔离开关的选择 (22) 4.3 母线的选择 (23) 4.4 绝缘子和穿墙套管的选择 (24) 4.5 电流互感器的选择 (24) 4.6电压互感器的选择 (26)

4.7各主要电气设备选择结果一览表 (29) 附录I 设计计算书 (30) 附录II 电气主接线图 (37) 10kv配电装置配电图 (39) 致谢 (40) 参考文献 (41)

摘要 本文首先根据任务书上所给系统与线路及所有负荷的参数,分析负荷发展趋势。从负荷增长方面阐明了建站的必要性,然后通过对拟建变电站的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了110kV,35kV,10kV以及站用电的主接线,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,同时也确定了站用变压器的容量及型号,最后,根据最大持续工作电流及短路计算的计算结果,对高压熔断器,隔离开关,母线,绝缘子和穿墙套管,电压互感器,电流互感器进行了选型,从而完成了110kV电气一次部分的设计。 关键词:变电站变压器接线

架空输电线路设计课程设计

目录 情况说明书 一、问题重述 (1) 二、模型假设与符号说明 (1) 三、问题分析 (2) 四、数据预处理与分析 (3) 五、判定控制条件 (5) 六、判定最大弧垂气象 (6) 七、计算各气象条件下应力和弧垂 (7) 八、计算安装曲线 (9) 九、应力弧垂曲线与安装曲线·················错误!未定义书签。 十、感言··························错误!未定义书签。十一、参考文献·······················错误!未定义书签。十二、附录·························错误!未定义书签。

一、问题重述 问题背景 《架空输电线路设计》这门课程是输电专业大三的第一门专业课,其内容繁复,需要通过输电线路课程设计这门课来巩固相关知识。 应力弧垂曲线表示了各种气象条件下架空线应力和有关弧垂随档距的变化,而安装曲线表示了各种可能施工温度下架空线在无冰、无风气象下的弧垂随档距变化情况,此两类曲线极大方便了工程上的使用。同时,其求解过程涉及到状态方程式求解、临界档距求解、控制气象判别及降温法等主干知识,能够起到较好复习、夯实基础知识,进一步熟悉两类曲线绘制的流程。 题设条件 设计任务书给出了设计条件,具体如下: 1) 气象条件:全国典型气象Ⅵ区; 2) 导线规格:LGJ-210/50(GB1179—1983); 3) 电压等级:110KV。 需解决的问题 根据设计任务书,本文需解决如下问题: 问题1:计算临界档距,判定控制条件及其作用档距范围; 问题2:判定最大弧垂气象; 问题3:计算各种气象条件下的导线应力和弧垂,计算档距范围50——800,间隔50,必须计算有效临界档距处的值并绘制导线应力弧垂曲线; 问题4:计算导线安装曲线(考虑初伸长)。温度范围:最低气温至最高气温,间隔5o C,并绘制百米弧垂曲线。 二、模型假设与符号说明 模型假设 假设1:该设计档两悬挂点等高,即高差为零。 假设2:作用于导线的荷载沿斜档距均布。 假设3:架空线为柔性索链,即导线刚度为零。 符号说明

110kv~750kv架空输电线路设计规范(gb 50545-) 强制性条文 word整理版

GB 50545-2010 110KV~750KV架空输电线路设计规范强制性条文 1.第5.0.4条: 5.0.4 海拔不超过1000m时,距输电线路边相导线投影外20m处且离地2m高且频率为0.5MHz时的无线电干扰限值应符合表5.0.4的规定。 表5.0.4 无线电干扰限值 2.第5.0.5条: 5.0.5 海拔不超过1000m时,距输电线路边相导线投影外20m处,湿导线条件下的可听噪声值应符合表5.0.5的规定。 表5.0.5 可听噪声限值 3. 第5.0.7条: 5.0.7 导、地线在弧垂最低点的设计安全系数不应小于2.5,悬挂点的设计安全系数不应小于2.25。地线的设计安全系数不应小于导线的设计安全系数。 4. 第6.0.3条: 6.0.3 金具强度的安全系数应符合下列规定: 1 最大使用荷载情况不应小于2.5。 2 断线、断联、验算情况不应小于1.5。 5. 第7.0.2条: 7.0.2 在海拔高度1000m以下地区,操作过电压及雷电过电压要求的悬垂绝缘子串的绝缘子最少片数,应符合表7.0.2的规定。耐张绝缘子串的绝缘子片数应在表7.0.2的基础上增加,对110~330kV输电线路应增加1片,对500kV输电线路应增加2片,对750kV输电线路不需增加片数。 表7.0.2 操作过电压及雷电过电压要求悬垂绝缘子串的最少绝缘子片数

6. 第 7.0.9条: 7.0.9 在海拔不超过1000m的地区,在相应风偏条件下,带电部分与杆塔构件(包括拉线、脚钉等)的间隙,应符合表7.0.9-1和表7.0.9-2的规定。 表7.0.9-1 110~500kV带电部分与杆塔构件(包括拉线、脚钉等)的最小间隙(m) 表7.0.9-2 750kV带电部分与杆塔构件(包括拉线、脚钉等)的最小间隙(m) 注:1 按雷电过电压和操作过电压情况校验间隙时的相应气象条件,可按本规范附录A的规定取值。 2 按运行电压情况校验间隙时风速采用基本风速修正至相应导线平均高度处的值及相应气温。 3 当因高海拔而需增加绝缘子数量时,雷电过电压最小间隙也应相应增大。 4 500kV空气间隙栏,左侧数据适合于海拔高度不超过500m地区;右侧是用于超过500m但不超过1000m的地区。 7. 第7.0.10条: 7.0.10 在海拔高度1000m以下地区,带电作业时,带电部分对杆塔与接地部分的校验间隙应符合表7.0.10的规定。 表7.0.10 带电部分对杆塔与接地部分的校验间隙 注:1 对操作人员需要停留工作的部位,还应考虑人体活动范围0.5m。 2 校验带电作业的间隙时,应采用下列计算条件:气温15℃,风速10m/s。 8. 第7.0.17条: 7.0.17 中性点非直接接地系统在居民区的无地线钢筋混凝土杆和铁塔应接地,其接地电阻不应超过30Ω。 9. 第7.0.19 条: 7.0.19 钢筋混凝土杆的铁横担、地线支架、爬梯等铁附件与接地引下线应有可靠的电气连接,并应符合下列规定: 1 利用钢筋兼作接地引下线的钢筋混凝土电杆,其钢筋与接地螺母、铁横担或地线支架之间应有可靠的电气连接。 2 外敷的接地引下线可采用镀锌钢绞线,其截面应按热稳定要求选取,且不应小于25mm2。

110kV变电站设计

一、110kV变电站电气一次部分设计的主要内容: 1、所址选择、负荷分级 2、选择变电所主变台数、容量和类型; 3、补偿装置的选择及其容量的选择; 4、设计电气主接线,选出数个主接线方案进行技术经济比较,确定一个较佳方案; 5、进行短路电流计算; 6、选择和校验所需的电气设备;设计和校验母线系统; 7、变电所防雷保护设计; 8、进行继电保护规划设计; 9、绘制变电所电气主接线图,变电所电气总平面布置图,110kV高压配电装置断面图(进线或出线)。 二、110kV变电站设计二次部分 一、系统继电保护 1、110kV线路保护 每回110kV线路的电源侧变电站一般宜配置一套线路保护装置,负荷侧变电站可以不配。保护应包括完整的三段相间和接地距离及四段零序方向过流保护。 每回110kV环网线及电厂并网线、长度低于10km短线路、宜配置一套纵联保护。 三相一次重合闸随线路保护装置配置。

组屏:宜两回线路保护装置组一面屏(柜)。如110kV采用测控、保护共同组屏(柜)方式, 1个电气单元组一面屏(柜)。 2、110kV母线保护 双母线接线应配置一套母差保护;单母线分段接线可配置一套母差保护。 组屏:独立组一面屏。 3、110kV母联(分段)断路器保护 母联(分段)按断路器配置一套完整、独立的,具备自投自退功能的母联(分段)充电保护装置和一个三相操作箱。 要求充电保护装置采用微机型,应具有两段相过流和一段零序过流。 4、备用电源自动投入装置配置原则 根据主接线方式要求,母联(分段、桥)断路器、线路断路器可配置备用电源自动投入装置。 组屏: 110kV断路器保护、备用电源自动投切均为独立装置,两套装置组一面屏。 5、故障录波器配置原则 对于重要的110kV变电站,其线路、母联(分段)及主变压器可配置一套故障录波器。 组屏:组一面屏。 6、保护及故障录波信息管理子站系统 110kV变电站配置一套保护及故障录波信息管理子站系统,保护及

架空输电线路150条专用名词术语解释

架空输电线路150条专用名词术语解释(双语) 【名词】电力系统 【英文】electrical power system;electricity supply system 【注释】发电、输电及配电的所有装置和设备的组合。 【名词】电力网 【英文】electrical power system;electrical power network 【注释】输电、配电的各种装置、变电站、电力线路或电缆的组合。 【名词】交流系统 【英文】alternating current system; AC system 【注释】由交流电压供电的系统。 【名词】直流系统 【英文】direct current system; DC system 【注释】由直流电压供电的系统。 【名词】输电 【英文】transmission or electricity 【注释】从发电站向用电地区输送电能。 【名词】(电力)线路 【英文】(electric)line 【注释】在电力系统两点之间输配电的导线、绝缘材料和各种附件组成的设施。 【名词】输电线路 【英文】transmission line 【注释】连接发电厂与变电站(所)的传输电能的电力线路,作为输电系统一部分的线路。 【名词】架空线路 【英文】overhead line 【注释】用杆塔和绝缘材料将导线架离地面的电力线路。 【名词】支线 【英文】branch line ; spur 【注释】连接到主线路中一点上的电力线路。 【名词】T接线路 【英文】ttapped line; teed line 【注释】连接有支线的线路。 【名词】系统标称电压 【英文】nominal coltage system

架空输电线路设计

课程设计(论文) 题目名称制作导线的应力弧垂曲线和安装曲线 课程名称架空输电线路设计(LGJ-185/45,VIII区) 学生姓名刘光辉 学号1041201185 系、专业电气工程系电气工程及其自动化 指导教师尹伟华 2013年1月6日

邵阳学院课程设计(论文)任务书 年级专业10输电线路学生姓名宁文豪学号1041201185 题目名称制作某线路导线的应力弧垂曲线和安装曲线。设计时 间 18、19周 课程名称架空输电线路设计课程编号设计地 点 一、课程设计(论文)目的 结合所学的线路设计知识,要求学生掌握线路设计中各项参数的查表发放,并结合工程实际,掌握具体线路的导线应力弧垂曲线和安装曲线做法,从中对线路设计中所涉及到的导线的比载计算,架空线弧垂、线长和应力的计算,架空线的状态方程式,临界档距,最大弧垂的判定,导线应力弧垂曲线和安装曲线做法有深刻的了解。最终加强学生的线路设计认识及动手能力 二、已知技术参数和条件 气象条件:全国线路设计气象条件汇集ⅤIII区 电压等级110kV 导线型号LGJ-185/45 三、任务和要求 a)学生应该完成课程设计说明书的内容,同时还包括导线应力弧垂曲线和安装曲线的绘 制图 b)为简明起见,各计算结果应尽量采用表格形式表示 c)每一计算过程应列出所用公式,并带入一组实际数据示范 d)各系数的取值应说明出处和理由 注:1.此表由指导教师填写,经系、教研室审批,指导教师、学生签字后生效; 2.此表1式3份,学生、指导教师、教研室各1份。

四、参考资料和现有基础条件(包括实验室、主要仪器设备等) 1、孟遂民,李光辉编著,架空输电线路设计,中国三峡出版社,2000.10 2、邵天晓,架空送电线路的电线力学计算,水利电力出版社,1987 3、周振山,高压架空送电线路机械计算,水利电力出版社,1987 4、东北电力设计院,电力工程高压送电线路设计手册,水利电力出版社,1991 五、进度安排 16周(1)查找相关资料,整理和收集数据(2)根据气象区确定气象参数计算相关比载(3)确定临界档距(4)档距的控制气象条件 17周(5)根据已知条件,利用状态方程式计算不同档距,各种气象条件下架空线的应力和弧垂值(6)按一定的比例绘制出应力弧垂曲线(7)绘制安装曲线图(8)按照有关规定,制作论文,打印成稿。 六、教研室审批意见 教研室主任(签字):年月日 七、主管教学主任意见 主管主任(签字):年月日 八、备注 指导教师(签字):学生(签字):

500kV输电线路架空绝缘地线

500kV 输电线路架空绝缘地线摘要〕通过对一起500kV 输电线路地线掉线事故的分析,指出了目前输电线 路设计、运行的不足和潜在的安全隐患,并提出若干防止地线掉线、改进防雷性能的对策。同时结合实际情况,对保护OPGW 复合光缆的课题进行了初步探讨。 关键词〕输电线路;感应电压;架空绝缘地线;掉线 500 kV东惠甲线由原500 kV惠增线在东莞站解口而成,是西电东送工 程的重要部分。该线路采用双地线结构,其中型号为LGJ-95/55的普通地线全线绝缘,另一回型号为AY/ST127/28 的OPGW 复合光缆则全线接地。 2004-10-16T 8:50,输电线路巡视人员发现500 kV东惠甲线N102塔地 线由于瓷质绝缘子铁帽和钢脚分离而掉线,掉线的地线跌落在导线A 相横担上,地线与A相导线的距离缩小,最大减幅达4 m。由于N102采用ZB1 直线塔型,横担比地线支架长约1.5 m,且前后数基均为直线塔,前后档距 也较小,因而地线垂直跌落后在距离横担边1 m 处,虽使地线对导线的距离减少,却未引发线路跳闸。 1原因分析 1.1架空绝缘地线的感应电压 输电线路上的架空地线,大多数都是在每基杆塔上直接接地的,但接了地的地线会长期流过感应电流,使线损增大。为了减少地线的线损和利 用地线进行高频载波通讯,不少线路都采用了架空绝缘地线。2000 年,500 kV东惠甲线由原500 kV惠增线在500 kV东莞站解口时,将原来一回架空 绝缘地线改为OPGW 复合光缆,通讯功能由OPGW 复合光缆承担,但为了减少线损,另一回仍采用架空绝缘形式。

架空绝缘地线有较高的感应电势,其大小与线路电压、负荷、长度及地线与导线间距离有关。500 kV 东惠甲线由于电压高、负荷重,架空绝缘地线的感应电势可能达到10 kV 级。如此高的感应电压使地线绝缘子实际上相当于被作为导线绝缘子(电压等级为几个10 kV 级的输电线路)使用,造 成对绝缘子电气和机械性能的损伤。 1.2瓷绝缘子电气和机械性能的丧失 (1) 由于所使用的瓷绝缘子为内胶装结构,其胶装粘合剂水泥和钢脚、铁帽、瓷件的热膨胀系数各不相同。温度变化时因各部件热胀系数的差异,将使瓷件受到压应力和剪切应力的作用;水泥的长期膨胀(俗称“水泥生长”) 也使瓷件和铁帽受到局部应力并产生疲劳效应,其绝缘性能随着运行时间的延长会逐渐降低,甚至完全丧失,此时瓷绝缘子处于击穿运行状态。运行中的瓷质绝缘子承受的感应电压越高,其电气性能丧失的时间越短。 (2) 处于临界击穿或已击穿状态的绝缘子的电气性能虽已大幅度下降或丧失,不能满足绝缘的要求,但其机械强度仍然可以满足设计的要求,所以此时地线不会马上掉线。由于胶装粘合剂水泥等填充物的存在,绝缘子有一定的电阻值,在10 kV 级感应电压的作用下,绝缘子出现了比正常接地感应电流大得多的“短路”感应电流。这个感应电流对绝缘子内部会有明显的热作用,热量的积累导致绝缘子温度升高。机电负荷和温升的长 期变化进一步加速了绝缘子的老化,而进一步老化的结果又导致热效应的加剧,从而形成了恶性循环。经过一段长时间或遭受雷击等强电流的作用,胶装粘合剂水泥等填充物因热效应局部融化,失去支撑能力,或因瞬间骤热而发生爆炸,因而产生绝缘子断串。 1.3掉线原因 500 kV东惠甲线的架空绝缘地线采用大连电瓷厂生产的XDP6-7C地线 专用绝缘子,带保护间隙,于1996 年投运。由于绝缘子掉线前2 个月内,当地并未出现雷电,因此掉线原因应该是绝缘子老化,绝缘子填充物局部融化。更换下来的绝缘子与悬垂线夹连接的金属部分有严重锈蚀,上面还残留有泪滴状的绝缘子填充物,绝缘子头部填充物有局部融化的痕迹,这表明高感应电压及其产生的强泄漏电流对绝缘子的老化和掉线起到了重要作用。 2暴露的问题 2.1绝缘子选用不当 500 kV 东惠甲线的架空绝缘地线采用瓷质绝缘子,有多种不利于运行的因素。

相关主题
文本预览
相关文档 最新文档