当前位置:文档之家› 与圆有关的动点问题[下学期]--浙教版

与圆有关的动点问题[下学期]--浙教版

中考数学动点问题专题练习(含答案)

动点专题 一、应用勾股定理建立函数解析式 例1(2000年2上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 二、应用比例式建立函数解析式 例2(2006年2山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式; (2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由. A E D C B 图2 H M N G P O A B 图1 x y

C 三、应用求图形面积的方法建立函数关系式 例4(2004年2上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y . (1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积. 一、以动态几何为主线的压轴题 (一)点动问题. 1.(09年徐汇区)如图,ABC ?中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长; (2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时, 求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. A B C O 图8 H

人教版七年级下册数学动点问题教学内容

动点问题 1、如图6-7,已知A 、B 两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x 轴上行驶,从原点O 出发. (1)汽车行驶到什么位置时离A 村最近?写出此点的坐标. (2)汽车行驶到什么位置时离B 村最近?写出此点的坐标. (3)请在图中画出汽车行驶到什么位置时,距离两村的和最短? 2.如图,以直角三角形AOC 的直角顶点O 为原点,以OC 、OA 所在直线为x 轴 和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0) 20b -=. (1) 则A 点的坐标为___________,C 点的坐标为__________; (2) 已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是(1,2),设运动时间为t (t >0)秒.问:是否存在这样的t ,使S △ODP = S △ODQ ,若存在,请求出t 的值;若不存在,请说明理由; (3) 点F 是线段AC 上一点,满足∠FOC =∠FCO ,点G 是第二象限中一点,连OG ,使得∠AOG =∠AOF .点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC ∠+∠∠的值是否会发生变化,若不变,请求出它的值;若变化,请说明理由. 3.如图1,在平面直角坐标系中,第一象限内长方形ABCD , AB ∥y 轴,点A (1,1),点C (a , b ),

满足035=-+-b a . (1)求长方形ABCD 的面积. (2)如图2,长方形ABCD 以每秒1个单位长度的速度向右平移,同时点E 从原点O 出发沿x 轴以每秒2 个单位长度的速度向右运动,设运动时间为t 秒. ①当t=4时,直接写出三角形OAC 的面积为 ; ② 若AC ∥ED ,求t 的值; (3)在平面直角坐标系中,对于点()P x y ,,我们把点(11)P y x '-++,叫做点P 的伴随点, 已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1A ,2A ,3A ,…,n A . ①若点1A 的坐标为(3,1),则点3A 的坐标为 ,点2014A 的坐标为 ; ②若点1A 的坐标为(a ,b ),对于任意的正整数n ,点n A 均在x 轴上方,则a ,b 应满足的条件为 . 4、如图,在平面直角坐标中,A (0,1),B (2,0),C (2,1.5). (1)求△ABC 的面积; (2)如果在第二象限内有一点P (a ,0.5),试用a 的式子表示四边形ABOP 的面积; (3)在(2)的条件下,是否存在这样的点P ,使四边形ABOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由. y x P O C B A 5、如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0). (1)求△ABC 的面积; (2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C '''; (3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使 2ACP ABC S S =V V ; (4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使 D C B A E O y x 24题图2 24题图1 D C B A O y x

圆的动点问题--经典习题及答案

圆的动点问题 25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 已知:在Rt ABC △中,∠ACB =90°,BC =6,AC =8,过点A 作直线MN ⊥AC ,点E 是直线 MN 上的一个动点, (1)如图1,如果点E 是射线AM 上的一个动点(不与点A 重合),联结CE 交AB 于点P .若 AE 为x ,AP 为y ,求y 关于x 的函数解析式,并写出它的定义域; (2) 在射线AM 上是否存在一点E ,使以点E 、A 、P 组成的三角形与△ABC 相似,若存在求 AE 的长,若不存在,请说明理由; (3)如图2,过点B 作BD ⊥MN ,垂足为D ,以点C 为圆心,若以AC 为半径的⊙C 与以ED 为半径的⊙E 相切,求⊙E 的半径. A B C P E M 第25题图1 D A B C M 第25题图2 N

25.(本题满分14分,第(1)小题6分,第(2)小题2分,第(3)小题6分) 在半径为4的⊙O 中,点C 是以AB 为直径的半圆的中点,OD ⊥AC ,垂足为D ,点E 是射线AB 上的任意一点,DF //AB ,DF 与CE 相交于点F ,设EF =x ,DF =y . (1) 如图1,当点E 在射线OB 上时,求y 关于x 的函数解析式,并写出函数定义域; (2) 如图2,当点F 在⊙O 上时,求线段DF 的长; (3) 如果以点E 为圆心、EF 为半径的圆与⊙O 相切,求线段DF 的长. A B E F C D O A B E F C D O

25.如图,在半径为5的⊙O中,点A、B在⊙O上,∠AOB=90°,点C是弧AB上的一个动点,AC与OB的延长线相交于点D,设AC=x,BD=y. (1)求y关于x的函数解析式,并写出它的定义域; (2)如果⊙O1与⊙O相交于点A、C,且⊙O1与⊙O的圆心距为2,当BD=OB时,求⊙O1 的半径; (3)是否存在点C,使得△DCB∽△DOC?如果存在,请证明;如果不存在,请简要说明理由.

动点问题--圆(含答案)

2.如图7,梯形中,,,, ,,点 为线段上一动点(不与点重合),关于的轴对称图 形为,连接,设,的面积为, 的面积为. 1)当点落在梯形的中位线上时,求的值;(全等) 2)试用表示,并写出的取值范围;(相似) 3)当的外接圆与相切时,求的值.(垂径定理+中线+等面积+ 相似) 答案】解:(1)如图1,为梯形的中位线,则,过点作 于点,则有: 在中,有 在中, 解得: 2)如图2,交于点,与关于对称, 则有:, 又与关于对称, 3)如图3,当的外接圆与相切时,则为切点. 的圆心落在的中点,设为

则有,过点作, 连接,得 解得:(舍去) 3.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0) (1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(全等) (2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(全等+分类讨论)(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与

【分析】:(1)连接PM,PN,运用△PMF≌△PNE证明, (2)分两种情况①当t>1 时,点E在y轴的负半轴上,02 时,三角形相似时还各有两种情况,根据比例式求出时间t. 【解答】: 证明:(1)如图,连接PM,PN, ∵⊙P与x轴,y轴分别相切于点M和点N, ∴PM⊥MF,PN⊥ON且PM=PN, ∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF, ∠NPE=∠MPF=90°﹣∠MPE, 在△PMF和△PNE中,,∴△PMF≌△PNE(ASA), ∴PE=PF, (2)解:①当t>1时,点E在y轴的负半轴上,如图, 由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1, ∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1, ∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0

圆中动点问题2

圆中动点问题 一、选择题 【题1】如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确 ...的是( C ) A、当弦PB最长时,ΔAPC是等腰三角形。 B、当ΔAPC是等腰三角形时,PO⊥AC。 C、当PO⊥AC时,∠ACP=300. D、当∠ACP=300,ΔPBC是直角三角形 【答案】 【题2】如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F两点,则EF的长( C )

A.等于42 B.等于43 C.等于6 D.随P点位置的变化而变化 【答案】分析:连接NE,设圆N半径为r,ON=x,则OD=r﹣x,OC=r+x,证△OBD∽△OCA,推出OC:OB=OD:OA,即(r+x):1=9:(r﹣x),求出r2﹣x2=9,根据垂径定理和勾股定理可求出答案. 解答:解:连接NE,设圆N半径为r,ON=x,则OD=r﹣x,OC=r+x, ∵以M(﹣5,0)为圆心、4为半径的圆与x轴交于A.B两点,∴OA=4+5=9,0B=5﹣4=1, ∵AB是直径,∴∠APB=90°,∵∠BOD=90°,∴∠PAB+∠PBA=90°,∠ODB+∠OBD=90°, ∵∠PBA=∠OBD,∴∠PAB=∠ODB,∵∠APB=∠BOD=90°,∴△OBD∽△OCA, ∴OC OD OB OA =,即 9 1 r x r x + = - 解得:r2﹣x2=9, 由垂径定理得:OE=OF,OE2=EN2﹣ON2=r2﹣x2=9, 即OE=OF=3,∴EF=2OE=6,故选C. 【题3】如图,已知⊙O1的半径为1cm,⊙O2的半径为2cm,将⊙O1,⊙O2放置在直线l上,如果⊙O1在直线l上任意滚动,那么圆心距O1O2的长不可能是0.5cm 【答案】解:∵⊙O1的半径为1cm,⊙O2的半径为2cm,∴当两圆内切时,圆心距为1,∵⊙O1在直线l上任意滚动,∴两圆不可能内含,∴圆心距不能小于1,故选D. 【题4】如图,⊙O的半径为4cm,直线l与⊙O相交于A、B两点,AB=4cm,P为直线l上一动点,以1cm为半径的⊙P与⊙O没有公共点.设PO=dcm,则d的范围是d>5cm或2cm≤d<3cm.

初一上数学线段动点问题

数学线段动点问题 1.已知数轴上两点A 、B 对应的数分别为—1,3,点P 为数轴上一动点,其对应的数为x. (1)若点P 到点A 、点B 的距离相等,求点P 对应的数;(1) (2)数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为5?若存在,请求出x 的值。若不存在,请说明理由?(-1.5,3.5) (3)当点P 以每分钟一个单位长度的速度从O 点向左运动时,点A 以每分钟5个单位长度向左运动,点B 一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P 点到点A 、点B 的距离相等?(2/23) 2.数轴上点A 对应的数是-1,B 对应的数是1,一只小虫甲从点B 出发沿着数轴的正方向以每秒4个单位长度的速度爬行至C 点,再立即返回到A 点,共用了4秒。 (1)求点C 对应的数;(8) (2)若小虫甲返回到A 点后作如下运动:第1次向右爬行2个单位长度,第2次向左爬行4个单位长度,第3次向右爬行6个单位长度,第4次向左爬行8个单位长度,…依次规律爬下去,求它第10次所停在点所对应的数.(-11) (3)若小虫甲返回到A 后继续沿着数轴的负方向以每秒4个单位长度的速度爬行,这时另一只小虫乙从点C 出发沿着数轴的负方向以每秒7个单位长度的速度爬行,设小虫甲爬行后对应的点为E ,小虫乙爬行后对应的点为F.设点A 、E 、F 、B 所对应的数分别是x A 、x E 、x F 、x B ,当运动时间t 不超过1时, |x A -x E |-|x E -x F |+|x F -x B |的值是否发生变化?若变化,请说明理由;若不变,请求出其值。 如图,点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC=120°.将直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方. (1)将图1中的三角板绕点O 逆时针旋转至图2,使一边OM 在∠BOC 的内部,且恰好平分∠BOC .问:此时直线ON 是否平分∠AOC ?请说明理由. (2)将图1中的三角板绕点O 以每秒6°的 速度沿逆时针方向旋转一周,在旋转的过程中, 第t 秒时,直线ON 恰好平分锐角∠AOC ,求t 的值. (3)将图1中的三角板绕点O 顺时针旋转至 图3,使ON 在∠AOC 的内部,求∠AOM-∠NOC 的度数. 3.已知数轴上A 、B 两点对应数为-2、4,P 为数轴上一动点,对应的数为x 。

最新七年级数学动点问题(北师大版)整理

例1 如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b+3a)2=0 (1)求A、B两点之间的距离; (2)若在数轴上存在一点C,且AC=2BC,求C点表示的数; (3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略 球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒), ①分别表示甲、乙两小球到原点的距离(用t表示); ②求甲、乙两小球到原点的距离相等时经历的时间.例2如图,有一数轴原点为O,点A所对应的数是-1 2,点A沿数轴匀速平移经过原点到达点B. (1)如果OA=OB,那么点B所对应的数是什么? (2)从点A到达点B所用时间是3秒,求该点的运动速度. (3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。

例3动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒) (1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置; (2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在 两个动点正中间; (3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B 点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单 位长度.例4已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应 的数为x. (1)若点P到点A,点B的距离相等,求点P对应的数; (2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由; (3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时 点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P 所经过的总路程是多少?

圆中动点问题

圆中的动态问题 【方法点拨】 圆中的动态问题实际是圆的分类讨论问题,做这种题型重要的是如何将动点转化为固定的点,从而将题型变为分类讨论 【典型例题】 题型一:圆中的折叠问题 例题一 (2012江西南昌12分)已知,纸片⊙O 的半径为2,如图1,沿弦AB 折叠操作. (1)①折叠后的?AB 所在圆的圆心为O ′时,求O ′A 的长度; ②如图2,当折叠后的?AB 经过圆心为O 时,求?AOB 的长度; ③如图3,当弦AB =2时,求圆心O 到弦AB 的距离; (2)在图1中,再将纸片⊙O 沿弦CD 折叠操作. ①如图4,当AB ∥CD ,折叠后的?AB 与?CD 所在圆外切于点P 时,设点O 到弦AB .CD 的距离之和为d ,求d 的值; ②如图5,当AB 与CD 不平行,折叠后的?AB 与?CD 所在圆外切于点P 时,设点M 为AB 的中点,点N 为CD 的中点,试探究四边形OMPN 的形状,并证明你的结论. 【答案】解:(1)①折叠后的?AB 所在圆O ′与⊙O 是等圆,∴O ′A =OA =2。 ②当?AB 经过圆O 时,折叠后的?AB 所在圆O ′在⊙O 上,如图2所示,连接O ′A .OA .O ′B ,OB ,OO ′。 ∵△OO ′A ,△OO ′B 为等边三角形, ∴∠AO ′B =∠AO ′O +∠BO ′O =60°+60°=120°。 ∴?AOB 的长度120241803 ππ ??== 。 ③如图3所示,连接OA ,OB , ∵OA =OB =AB =2,

∴△AOB 为等边三角形。 过点O 作OE ⊥AB 于点E ,∴OE =OA ?sin 60°=3。 (2)①如图4,当折叠后的?AB 与?CD 所在圆外切于点P 时, 过点O 作EF ⊥AB 交AB 于点H 、交?AEB 于点E ,交CD 于点G 、交?CFD 于点F ,即点E 、H 、P 、O 、G 、F 在直径EF 上。 ∵AB ∥CD ,∴EF 垂直平分AB 和CD 。 根据垂径定理及折叠,可知PH = 12PE ,PG =1 2 PF 。 又∵EF =4,∴点O 到AB .CD 的距离之和d 为: d =PH +PG =12PE +12PF =1 2 (PE +PF )=2。 ②如图5,当AB 与CD 不平行时,四边形是OMPN 平行四边形。证明如下: 设O ′,O ″为?APB 和?CPD 所在圆的圆心, ∵点O ′与点O 关于AB 对称,点O ″于点O 关于CD 对称, ∴点M 为的OO ′中点,点N 为OO ″的中点。 ∵折叠后的?APB 与?CPD 所在圆外切, ∴连心线O ′O ″必过切点P 。 ∵折叠后的?APB 与?CPD 所在圆与⊙O 是等圆, ∴O ′P =O ″P =2,∴PM = 12OO ″=ON ,PN =1 2 OO ′=OM , ∴四边形OMPN 是平行四边形。 【考点】翻折变换(折叠问题)相切两圆的性质,等边三角形的判定和性质,平行四边形的判定,垂径定理,弧长的计算,解直角三角形,三角形中位线定理。 【分析】(1)①折叠后的?AB 所在圆O ′与⊙O 是等圆,可得O ′A 的长度。 ②如图2,过点O 作OE ⊥AB 交⊙O 于点E ,连接OA .OB .AE 、BE ,可得△OAE 、△OBE 为等边三角形,从而 得到?AOB 的圆心角,再根据弧长公式计算即可。 ③如图3,连接O ′A .O ′B ,过点O ′作O ′E ⊥AB 于点E ,可得△AO ′B 为等边三角形,根据三角函数的 知识可求折叠后求?AOB 所在圆的圆心O ′到弦AB 的距离。

初一数学动点问题解题技巧

初一数学动点问题解题技巧 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想数形结合思想转化思想。 1、有一数轴原点为O,点A所对应的数是-1 12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度. (3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C 所对应的数。 2、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒) (1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度. 3、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A 与点B重合时,点P所经过的总路程是多少? 4、数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒. (1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度; (2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置? 5、在数轴上,点A表示的数是-30,点B表示的数是170. (1)求A、B中点所表示的数. (2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.

动点问题(与圆相关)

动点问题(与圆相关) 1.如图,在平面直角坐标系中,四边形OABC 是梯形,BC ∥AO ,顶点O 在坐标原点,顶点A (4,0),顶点B (1,4).动点P 从O 出发,以每秒1个单位长度的速度沿OA 的方向向A 运动;同时,动点Q 从A 出发,以每秒2个单位长度的速度沿A →B →C 的方向向C 运动.当其中一个点到达终点时,另一个也随之停止.设运动时间为t 秒. (1)当t 为何值时,PB 与AQ 互相平分 (2)设△PAQ 的面积为S ,求S 与t 的函数关系式.当t 为何值时,S 有最大值最大值是多少 (3)在整个运动过程中,是否存在某一时刻t ,使得以PQ 为直径的圆与y 轴相切若存在,求出相应的t 值;若不存在,请说明理由. B y C O x A P Q B y C O x A 备用图 B y C O x A 备用图

2.如图,矩形ABCD中,AB=4,BC=2,动点M、N分别从点A、B同时出发,动点M沿AB边以每秒1 个单位的速度向点B运动,动点N沿BC→CD边以每秒3 2 个单位的速度向点D运动,连结MN,设运动时 间为t(s). (1)当t为何值时,MN∥BC (2)当点N在CD边上运动时,设MN与BD相交于点P,求证: 点P的位置固定不变; (3)以AD为直径作半圆O,问:是否存在某一时刻t,使得 MN与半圆O相切若存在,求t的值,并判断此时△MON的形状;若 不存在,请说明理由.A C B D M N

3(乌鲁木齐)如图,在△ABC中,∠B=90°,AB=6米,BC=8米,动点P以2米/秒的速度从A点 出发,沿AC向点C移动,同时,动点Q以1米/秒的速度从C点出发,沿CB向点B移动.当其中有一点 到达终点时,它们都停止移动,设移动的时间为t秒. ②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式; (2)在P、Q移动的过程中,当△CPQ为等腰三角形时,直接写出t (3)以P为圆心,PA为半径的圆与以Q为圆心,QC 求出t的值. C

中考数学动点问题专题讲解

中考动点专题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式 例1(2000年2上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH=32NH=2 1 32?OP=2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴ 2362 1 21x OH MH -== . 在Rt △MPH 中, . 222223362 1 419x x x MH PH MP +=- +=+=H M N G P O A B 图1 x y

最新中考动点问题专题(教师讲义带答案)

中考动点型问题专题 一、中考专题诠释 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. “动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。 二、解题策略和解法精讲 解决动点问题的关键是“动中求静”. 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 三、中考考点精讲 考点一:建立动点问题的函数解析式(或函数图像) 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系. 例1 (2015?兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为() A.B.C.D. 思路分析:分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论. 解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则: (1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1); (2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2). 综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2), 这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求. 故选B. 点评:本题结合动点问题考查了二次函数的图象.解题过程中求出了函数关系式,这是定量的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择. 对应训练 1.(2015?白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是() A.B.C.D. 1.C 考点二:动态几何型题目

七年级数学(上册)动点问题

七年级数学上册动点问题 1、如图,有一数轴原点为O,点A所对应的数是-1 12,点A沿数轴匀速平移经过原点到达点B. (1)如果OA=OB,那么点B所对应的数是什么? (2)从点A到达点B所用时间是3秒,求该点的运动速度. (3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。 2、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒) (1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置; (2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间; (3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C 立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.

3、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x. (1)若点P到点A,点B的距离相等,求点P对应的数; (2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由; (3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B 之间,求当点A与点B重合时,点P所经过的总路程是多少? 4、数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速 度为2个单位/秒. (1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度; (2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;

与圆有关的动点问题

与圆有关的动点问题 G D M D C 0 6 B (1)求/ APC 与Z ACD 的度数 ⑶OD 动点M 从点F 出发,按逆时针方向运动半周 Z A = 60o,以点D 为圆心的OD 与边AB 相切于点E S A HD M 3 S △ MDF 时,求动点 M 2、如图,在菱形 ABCD 中, A 吐 ⑴求证:OD 与边BC 也相切 向左移动正 M , N 分别是边BC , AD ⑵设OD 与BD 相交于点H,与边CD 相交于点F ,连接HF,求图中阴影部分的面积(结果保留二) 经过的弧长(结果保留二) (2)当点P 移动到CB 弧的中点时,求证:四边形 OBP (是菱形 DC 在I 上. 过点B 作的一条切线BE , E 为切点. 如图1,当点A 在。O 上时,Z EBA 的度数是 __________ 2,当E , A , D 三点在同一直线上时,求线段 OA 的长 以正方形ABCD 的边AD 与OF 重合的位置为初始位置, (图3),至边BC 与OF 重合时结束移动 MON 的面积的范围. (3) P 点移动到什么位置时,△ APW A ABC 全等,请说明理由 1、如图,?O 的直径AB=4 C 为圆周上一点,AC=2过点C 作。0的切线DC , P 点为优弧CBA 上一动 3、半径为2cm 的与O O 边长为2cm 的正方形ABCD 在水平直线I 的同侧 O O 与I 相切于点F (1) ① 填空:如图1,当点 ②如图2,当E ,A , I (2)以正方形ABCD 方形(图3),至边BC 与O O 的公共点,求扇形 D C 團2 与AB 、 过点 、AD 及O O 半径的长 求y 关于x 的函数关系式 求相应的y 值. &旦刈 A B 点(不与A. C 重合) F D C ( F 图1 4、如图,Rt △ ABC 的内切圆O O BC=3,点P 在射线AC 上运动 (1) 直接写出线段AC (2) 设 PH=x , PC=y , (3) 当PH 与O O 相切时 DFC / 图3 BC 、CA 分别相切于点 D 、E 、F ,且Z ACB=90 ° ° AB=5 P 作PH 丄AB ,垂足为H . t 7』 B\ / 1

动点问题中的最值、最短路径问题(解析版)

专题01 动点问题中的最值、最短路径问题 动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何图形的长度及面积的最值,函数的综合类题目,无不包含其中. 其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法. 一、基础知识点综述 1. 两点之间,线段最短; 2. 垂线段最短; 3. 若A、B是平面直角坐标系内两定点,P是某直线上一动点,当P、A、B在一条直线上时,PA PB 最大,最大值为线段AB的长(如下图所示); (1)单动点模型 ~ 作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P是x轴上一动点,求PA+PB的最小值的作图.

P是∠AOB内一点,M、N分别是边OA、OB上动点,求作△PMN周长最小值. 作图方法:作已知点P关于动点所在直线OA、OB的对称点P’、P’’,连接P’P’’与动点所在直线的交点M、N即为所求. O 5. 二次函数的最大(小)值 ()2 y a x h k =-+,当a>0时,y有最小值k;当a<0时,y有最大值k. 二、主要思想方法 利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析) ~ 三、精品例题解析 例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为

2014年中考数学专题复习:与圆有关的动点问题(精品含答案)(最新整理)

2014 年中考数学专题复习:与圆有关的动点问题 1、如图,⊙O 的直径 AB=4,C 为圆周上一点,AC=2,过点 C 作⊙O 的切线 DC ,P 点为优弧 CBA 上一动点(不与 A .C 重合). (1) 求∠APC 与∠ACD 的度数; (2) 当点 P 移动到 CB 弧的中点时,求证:四边形 OBPC 是菱形. (3)P 点移动到什么位置时,△APC 与△ABC 全等,请说明理由. 2、如图,在⊙O 上位于直径 AB 的异侧有定点 C 和动点 P , AC= 1 2 AB ,点 P 在半圆弧 AB 上运动(不与 A 、B 两点重合),过点 C 作直线 PB 的垂线 CD 交 PB 于 D 点. (1) 如图 1,求证:△PCD ∽△ABC ; (2) 当点 P 运动到什么位置时,△PCD ≌△ABC ?请在图 2 中画出△PCD 并说明理由; (3) 如图 3,当点 P 运动到 CP ⊥AB 时,求∠BCD 的度数.

3、如图,在半径为 2 的扇形 AOB 中,∠AOB=90°,点 C 是弧 AB 上的一个动点(不与点 A、B 重合)OD⊥BC,OE⊥AC,垂足分别为 D、E. (1)当BC=1 时,求线段 OD 的长; (2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在, 请说明理由; (3)设BD=x,△DOE的面积为 y,求y 关于x 的函数关系式,并写出它的定义域. 4、如图,菱形ABCD 的边长为2cm,∠DAB=60°.点P 从A 点出发,以cm/s 的速度,沿AC 向C 作匀速运动;与此同时,点 Q 也从A 点出发,以 1cm/s 的速度,沿射线 AB 作匀速运 动.当 P 运动到 C 点时,P、Q 都停止运动.设点 P 运动的时间为 ts. (1)当P 异于A.C 时,请说明PQ∥BC; (2)以P 为圆心、PQ 长为半径作圆,请问:在整个运动过程中,t 为怎样的值时,⊙P与 边BC 分别有 1 个公共点和 2 个公共点?

与圆有关的动点问题

与圆有关的动点问题的教学设计 一、教学内容分析 与圆有关的动点问题是动态问题中的一类问题,它以圆为载体,主要研究几何图形在点的运动中的位置关系和数量关系;它集几何、代数知识于一体,是数形结合的完美表现,具有较强的综合性、灵活性和多样性。而做这种题就是要抓住图形运动的本质规律,用“静态”的方法来分解图形的运动的过程,用静态的方法来研究运动当中的变与不变的函数关系,把复杂的运动过程化为简单的数学问题。复习时,除了深刻理解图形的基本性质外,还必须注重数形结合、转化等数学思想方法的学习,努力发展空间观念,切实提高分析解决问题的能力。 二、学情分析 九年级的学生已经具备了抽象、概括和分析问题解决问题的能力,通过合作交流、共同探讨,形成了一定的探究能力,此年龄段的学生独立意识、表现欲望较为强烈,要培养他们敢于面对挑战和勇于克服困难的意志。因此在课程内容的安排中创设了一些具有一定难度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,鼓励他们大胆尝试,敢于发表自己的看法,从中获得成功的体验,激发学习热情。 三、教学目标:

(1)知识与技能: 培养学生观察图形,探索动点运动的特点和规律的能力。引导学生正确分析变量与其它量之间的内在联系,建立它们之间的关系,(2)过程与方法: 通过观察、动手操作培养学生发现问题、解决问题的能力;(3)情感、态度与价值观 让学生通过观察图形,探索动点运动的特点和规律的能力,培养学生数形结合的思想。 四、教学重难点: 重点:如何探索动点运动的特点和规律。 难点:如何探索动点运动的特点和规律。 五、教学方法分析 根据本专题的特点,为了较好的达成本节课的教学目标,突出重点,突破难点,我采用教师启发引导,学生合作交流的方式来组织本节课的教学。同时利用Z Z动态演示图形的运动变化过程,化抽象为直观,采取动中觅静、动静互化、以动制动的策略来帮助学生寻找图形中的基本关系,突破难点。 六、教学策略与手段: 新教材倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以

动点问题-圆(含答案)初三数学

2.如图7,梯形中,,,,,,点 为线段上一动点(不与点重合),关于的轴对称图 形为,连接,设,的面积为, 的面积为. (1)当点落在梯形的中位线上时,求的值;(全等) (2)试用表示,并写出的取值范围;(相似) (3)当的外接圆与相切时,求的值.(垂径定理+中线+等面积+相似)【答案】解:(1)如图1,为梯形的中位线,则,过点作于点,则有: 在中,有 在中, 又 解得: (2)如图2,交于点,与关于对称, 则有:, 又 又与关于对称, (3)如图3,当的外接圆与相切时,则为切点. 的圆心落在的中点,设为

则有,过点作, 连接,得 则 又 解得:(舍去) ① ② ③ 3.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y 轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0) (1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(全等) (2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(全等+分类讨论)(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的 值;若不存在,请说明理由.(讨论对称轴+全等+相似) 【分析】:(1)连接PM,PN,运用△PMF≌△PNE证明,

(2)分两种情况①当t>1时,点E在y轴的负半轴上,0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解, (3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t. 【解答】: 证明:(1)如图,连接PM,PN, ∵⊙P与x轴,y轴分别相切于点M和点N, ∴PM⊥MF,PN⊥ON且PM=PN, ∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF, ∠NPE=∠MPF=90°﹣∠MPE, 在△PMF和△PNE中,,∴△PMF≌△PNE(ASA), ∴PE=PF, (2)解:①当t>1时,点E在y轴的负半轴上,如图, 由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1, ∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1, ∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a, ②0<t≤1时,如图2,点E在y轴的正半轴或原点上, 同理可证△PMF≌△PNE, ∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t, ∴b+a=1+t+1﹣t=2, ∴b=2﹣a, (3)如图3,(Ⅰ)当1<t<2时, ∵F(1+t,0),F和F′关于点M对称, ∴F′(1﹣t,0) ∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q, ∴Q(1﹣t,0)∴OQ=1﹣t, 由(1)得△PMF≌△PNE [来源:学,科,网] ∴NE=MF=t,∴OE=t﹣1

相关主题
文本预览
相关文档 最新文档