当前位置:文档之家› 温度传感器

温度传感器

温度传感器
温度传感器

第一章设计方案

1.1设计思路

本设计是一个基于单片机PIC18F4620的数字温度计和温度传感器DS18B20的设计,用来测量环境温度,测量范围为-55~125℃,显示分辨率为0.5℃,误差≤±0.5℃.

整个设计系统主要包括硬件电路的设计和系统软件的设计.硬件电路主要包括主控制器、测温电路和显示电路等。主控制器采用单片机PIC18F4620,温度传感器采用美国DALLAS半导体公司生产的DS18B20来实现环境温度的采集,同时因其输出为数字形式,且为串行输出,这就方便了单片机进行数据处理,但同时也对编程提出了更高的要求。单片机把采集到的温度进行相应的转换后,显示电路采用LCD显示屏直读显示。系统程序主要包括主程序,读出温度子程序,写入温度子程序,报警子程序等。

1.2总体系统框图

本系统采用单片机作为微控制器,如图1.1所示,分为:测温电路、显示电路、复位电路、晶振电路、报警电路。单片机用PIC18F4620,温度传感器用DS18B20,采用4MHZ晶振,电源采用5V。该电路经过设计分析、绘图、仿真调试、制板、焊接等工作后数字温度传感器成型。

采用数字温度芯片DS18B20测量温度,输出信号全数字化,便于单片机处理及控制,省去传统的测温方法的很多外围电路。且该芯片的物理化学性很稳定,它能用作工业测温元件,此元件线形较好。

DS18B20最大的特点之一采用了单总线的数据传输,有数字温度计DS18B20和微控制器PIC18F4620构成的温度测量装置,它直接输出温度的数字信号,可直接与计算机连接。这样,测温系统的结构就比较简单,体积也不大。采用PIC单片机控制,软件编程的自由度大,而且体积小,硬件实现简单,安装方便。

1-1系统框图

1.3所用主要元器件

单片机PIC18F4620一个,温度传感器DS18B20一个,4MHZ晶振一个,LCD1602一个,排阻一个,电源一个,USB一个,蜂鸣器一个,三极管一个,电阻电容及导线若干。

第二章硬件设计

2.1电路原理图

按照设计思路和系统框图,得到的电路原理图如图2-1所示.

在图中,主控制器为单片机PIC18F4620,为增强型闪存单片机,单字指令可达32768,有44个引脚,可在软件控制下自动编程,有四种晶振模式,拥有自动采样功能, 支持高低压检测中断。

采用的温度传感器为DS18B20温度传感器,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9-12位的数字值读数方式。

本设计的发挥部分,是加入了报警电路,如果我们所设计的系统是监控某一设备,一旦环境的温度超过我们所设定的温度值(10℃~35℃)时,系统会产生报警。

本系统中上电复位采用按键电平方式开关复位,这种方式电路比较简单,且又避免了上电自动复位需要切断电源的缺点.

单片机的晶振频率为4MHZ,所以我们采用了4MHZ,加两个22p电容。在单片机内部有一个高增益反相放大器,其输入端为芯片引脚XTAL1,输出端为引脚XTAL2,在芯片的外部通过这两个引脚跨接晶体振荡器和微调电容,形成反馈电路,就构成一个稳定的自激振荡器。

温度的显示可以采用LED数码管来显示,LED亮度高、醒目,但是电路复杂,占用资源多且信息量小。而采用液晶显示器有明显的优点:工作电流比LED小几个数量级,故其功耗小;尺寸小,厚度约为LED的1/3;字迹清晰、美观,寿命长,使用方便,故本设计采用LCD1602来显示温度。

第三章软件设计

3.1 概述

整个系统的功能是由硬件电路配合软件来实现的。当硬件定型后,软件的功能也就基本定下来了。从软件的功能不同可分为两大类:一是监控软件(主程序),它是整个控制系统的核心,专门用来协调各执行模块和操作者的关系;而是执行软件(子程序),它是用来完成各种实质性的功能如测量、计算、显示、通讯等。

3.2 主程序模块

主程序需要调用四个子程序,各模块功能程序如下:

(1)数码管显示程序:向数码的显示送数,控制系统的显示部分。

(2)温度测试及处理程序:对温度芯片送过来的程序进行处理,进行判断和显示。

(3)报警子程序:进行温度上下限判断及报警输出。

(4)中断设定程序:实现设定上下限报警功能。

主程序流程图见图3-1.

3-1 主程序流程图

第四章综合调试

硬件设计和软件设计完成后,我们就准备材料进行焊接了。在焊接时,我们应做到以下几点:

(1)水平安装电阻、二极管(发光二极管除外),紧贴印刷板。

(2)插件装配要美观、均匀、端正、整齐,不能歪斜,高矮要有序。

(3)所焊出来的焊点要求圆滑、光亮、防止虚焊、搭焊和散锡。

(4)布局合理,疏密适当。

(5)用比较好的助焊剂。

焊接完成后,将程序烧录到单片机机中,我们就可以开始调试了。对于整个系统的调试是将温度传感器置于被监测温度处,接通系统电源,系统开始运行,随着温度的不断调节,显示温度不断变化,离开被监测温度处,显示温度不断下降。当温度大于35度或小于10度是,蜂鸣器就会报警,而发光二极管也会由绿变红。再将显示温度同温度进行多次计算比较,结果显示温度与实际温度间的误差小于0.1℃,满足系统设计要求。以上过程经过多次反复检测系统均运行正常、稳定,系统基本实现了预定的功能。

系统需要的改进方向:

(1)停电正常工作

系统能在断电时正常工作,使用将更加方便。

(2)在外界干扰出错后能自动恢复正常

在外界干扰出错后能自动恢复正常,就不必要手动复位。

第五章总结与体会

在做这次比赛设计的过程中,我们深深地体会到“工欲善其事,必先利其器”的道理,生活中无论做什么事,都应该事先有充分的准备,做到心中有数,才能更好地完成工作。在做的过程中,为了使设计更加完善,我们查阅了大量的有关这方面的资料。而且,在这次课程设计中,全面实践一个基于单片机的应用系统的开发过程,我们运用了学过的专业课知识,如:proteus仿真、C语言、单片机知识等,是一个综合性很高的实践。对于一些以前学的不是很扎实的课程的内容,也在不断的研究中深化了理解和运用。

另外还充分体会了从事单片机开发工作需要特别严谨认真的态度和作风,一点马虎不得。每一个细微的细节都必须十分的注意,如果不认真思考决策,就会出现或大或小的错误,导致设计无法成功,有时还需要推倒很多前面做的工作重来。

第六章产品说明书

一、产品介绍

1、产品名称:数字显示温度声光报警器

2、功能介绍:本产品机型小,特别适用于冰箱、空调、冷库等制冷电器产品的测温,也可用于家庭、办公室、汽车等多种场合的温度测量。适用面广,操作简单、方便、显示直观清晰。

本品可以检测当前环境温度,其测温范围为-55℃~+125℃,固有测温分辨率0.1℃。在一些特定环境中,可设置最低温度和最高温度,当超出上下限时,本产品会自动报警,报警有声光两种显示状态。当处于限定温度范围内时,会显示为绿灯,一旦超限,该显示灯便会由绿转红。

二、

电烙铁:一种手工焊接的主要工具。

助焊剂:松香熔于酒精(1:3)形成"松香水",又称助焊剂。

规格参数

1.供电电压:5V

2.输出信号:单线输出数字信号

3.温度测量范围:-55℃~+125℃

4.模块重量:10g

5精度:0.1 ℃

三、使用方法

使用前,在你要使用的地方,先通过螺丝钉、螺栓等进行固定,将其固定于物品表面。然后接5V电源,有温度显示后,若有特定温度要求,左边按钮温度增加,右边按钮温度减少;若温度显示错误,则初始化,进行复位。

四、注意事项

1. 在未认真阅读本说明之前请勿给驱动板加电!以免错误接线造成驱动板永久损坏。

2. 请认真查看引脚功能说明,注意简明标识符,正确接线!切勿将电源线接反,造成电子器件烧毁。

附录程序清单

__CONFIG(1,HS & FCMDIS & IESODIS);

__CONFIG(2,WDTDIS);

__CONFIG(3,PBDIGITAL);

__CONFIG(4,LVPDIS);

#define uchar unsigned char

#define uint unsigned int

#define rs LATC0

#define rw LATC1

#define e LATC2

#define FMQ LATC3

#define out LATD

#define out_tris TRISD

#define DS18B20_DATA_TRIS TRISB4

#define DS18B20_DATA RB4

#include "1602.h"

#include "ds18b20.h"

const uchar table1[]=" DS18B20 ";

const uchar table2[]=" Temp: xx.x'C ";

const uchar ascii[]="0123456789ABCDEF";

void Port_Init()

{

TRISC=0;

TRISD=0;

TRISB=0;

PORTB=0XFF;

PORTC=0XFF;

PORTD=0XFF;

}

//============1MS延时==========================// void delay(uint z)

{

uint x,y;

for(x=z;x>0;x--)

for(y=110;y>0;y--);

}

//============主函数========================= void main()

{

uchar i,asc[16];

uint temp;

Port_Init();

init();

int j;

for(i=0;i<16;i++) {asc[i]=table2[i];}

while(1)

{

temp = DS18B20_Read();

temp = temp*0.625;

asc[8]=ascii[temp/100];

asc[9]=ascii[temp%100/10];

asc[11]=ascii[temp%10];

for(i=0;i<10;i++) //连续扫描数码管10次

{

LCD_PY(table1,1);

LCD_PY(asc,2);

}

if(temp/100<2)

FMQ=0;

else if(temp/100>2)

for(j=0;j<20;j++)

{

FMQ=1;delay(20);

FMQ=0;

}

else if(temp/100==2,temp%100/10>=3)

for(j=0;j<20;j++)

{

FMQ=1;delay(20);

FMQ=0;

}

else

FMQ=0;

}

}

void delayds18b20(uint t)

{

while(t--);

}

//=============初始化DS18B20======================= void Init18B20(void)

{

DS18B20_DATA_TRIS = 0;

DS18B20_DATA=0;

__delay_us(480); //至少延时480us(400us~960us) DS18B20_DATA=1;

__delay_us(50); //延时15-60us

DS18B20_DATA_TRIS = 1;

while(DS18B20_DATA); //等待DS18b20将数据总线拉低60-240us

__delay_us(100); //至少延时100us

while(!DS18B20_DATA); //等待DS18B20延时结束

DS18B20_DATA_TRIS = 0;

DS18B20_DATA=1;

}

//=============向18B20写入一个字节=========================

void Write_Byte (uchar wr) //单字节写入

{

uchar i;

DS18B20_DATA_TRIS = 0;

DS18B20_DATA=1;

for (i=0;i<8;i++)

{

DS18B20_DATA = 0; //拉低信号线

__delay_us(7); //<15us

if(wr&0x01) //最低为1则输出为1,否则为0位

{

DS18B20_DATA=1;

}

else

{

DS18B20_DATA=0;

}

__delay_us(45); //延时45us

wr = (wr>>1); //将要发送的数据移位

DS18B20_DATA=1;

}

}

//=====================读18B20的一个字节函数========================

uchar Read_Byte (void) //读取单字节

{

uchar i,u=0;

DS18B20_DATA_TRIS = 0;

DS18B20_DATA = 1;

for(i=0;i<8;i++)

{

DS18B20_DATA = 0;

__delay_us(7); //延时,15us内释放信号线

u = (u>>1);

DS18B20_DATA = 1;

DS18B20_DATA_TRIS = 1;

__delay_us(1);

if(DS18B20_DATA)

{

u= (u|0x80);

}

__delay_us(50); //延时50us

DS18B20_DATA_TRIS = 0;

DS18B20_DATA = 1;

}

return(u);

}

//===========================读取温度函数=========================== uint DS18B20_Read(void)

{

uint temp;

uchar temp_L;

Init18B20();

Write_Byte(0xCC); // 跳过ROM

Write_Byte(0x44); // 启动温度转换

Init18B20(); //复位操作

Write_Byte(0xCC); // 跳过ROM

Write_Byte(0xBE); // 读暂存器

temp_L = Read_Byte(); //读低位

temp = Read_Byte(); //读高位

temp <<= 8; //高位右移8位

temp |= temp_L; //低位与高位相或

return temp;

}

void delay_50us(uint t)

{

uchar j;

for(;t>0;t--)

for(j=10;j>0;j--);

}

void write_com(uchar com)

{

e=0;rs=0;rw=0;out=com;

delay_50us(10);e=1;delay_50us(20);e=0;

}

void write_data(uchar dat)

{

e=0;rs=1;rw=0;out=dat;

delay_50us(10);e=1;delay_50us(20);e=0; }

void init(void)

{

delay_50us(300);

write_com(0x38);

delay_50us(100);

write_com(0x38);

delay_50us(100);

write_com(0x38);

write_com(0x38);

write_com(0x08);

write_com(0x01);

write_com(0x06);

write_com(0x0c);

}

void LCD_PY(uchar *p,uchar line)

{

uchar addr;

uchar i;

if(line==1) addr=0x80;

if(line==2) {addr=0x80+0x40;}

write_com(addr);

for(i=0;i<16;i++)

{

write_data(*p);

p++;

}

}

温度传感器原理

一、温度传感器热电阻的应用原理 温度传感器热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 1.温度传感器热电阻测温原理及材料 温度传感器热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。温度传感器热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造温度传感器热电阻。 2.温度传感器热电阻的结构

(1)精通型温度传感器热电阻工业常用温度传感器热电阻感温元件(电阻体)的结构及特点见表2-1-11。从温度传感器热电阻的测温原理可知,被测温度的变化是直接通过温度传感器热电阻阻值的变化来测量的,因此,温度传感器热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制,有关具体内容参见本篇第三章第一节. (2)铠装温度传感器热电阻铠装温度传感器热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,如图2-1-7所示,它的外径一般为φ2~φ8mm,最小可达φmm。 与普通型温度传感器热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。

(3)端面温度传感器热电阻端面温度传感器热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,其结构如图2-1-8所示。它与一般轴向温度传感器热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 (4)隔爆型温度传感器热电阻隔爆型温度传感器热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型温度传感器热电阻可用于Bla~B3c级区内具有爆炸危险场所的温度测量。 3.温度传感器热电阻测温系统的组成 温度传感器热电阻测温系统一般由温度传感器热电阻、连接导线和显示仪表等组成。必须注意以下两点: ①温度传感器热电阻和显示仪表的分度号必须一致

单片机温度传感器及无线传输

通信与测控系统课程设计 报告

一、课程设计目的及要求 ①通过一个具体的项目实例,熟悉项目开发的流程,学习与通信相关的测控系统开发,包括基本知识、技术、技巧 ②锻炼硬件编程能力(C51),积累编程经验,形成代码风格,理解软件层次结构 ③常用外围器件(接口)的操作、驱动 一、实习主要任务 ①采集远端温度信息,无线收集,上位机显示信息 ②硬件配置:51系统板、DS18B20、无线数传模块IA4421、数码管 ③编程、调试,完成作品 二、硬件电路的原理框图 图一、AT89S51、数码管硬件原理图

图二、IA4421硬件原理图图三、DS18B20硬件原理图最终实现的功能: 三、软件设计及原理 1、读主程序流程图

主程序代码: #include #include #include #include #include #include #define uint unsigned int #define uchar unsigned char unsigned char m; unsigned char n; void zhuanhuan(); void delay_led(uint z) { uint x,y; for(x=z;x>0;x--) for(y=110;y>0;y--); } uint aa; uchar wei_1,wei_2,wei_3,v,wei_4,wei_5,wei_6; uint shuju;//得到的温度值 uchar temp[2]={0,0}; //存放DS18B20的温度寄存器值 uint value = 0; sbit DQ=P3^3; //数据线 void ReadSerialNumber(void); uchar sn1,sn2,sn3,sn4,sn5,sn6,sn7,sn8; //存放DS18B20的64位序列号void ow_reset(void); void tmstart (void); void ReadSerialNumber(void); void Read_Temperature(void); void write_byte(char); uint read_byte(void); void delay_18B20(uint); //void baojing(); /*******主函数**********/ void main() { m=0; //init_led();//初始化子程序 tmstart (); delay_18B20(50); /*等待转换结束*/ while(1) { m++; Read_Temperature(); delay_18B20(50);

热电偶温度传感器设计报告详解

传感器课程设计 设计题目:热电偶温度传感器 2010年12月30日 目录 1、序言 (3) 2、方案设计及论证 (4)

3、设计图纸 (9) 4、设计心得和体会 (10) 5、主要参考文献 (11) 一、序言 随着信息时代的到来,传感器技术已经成为国内外优先发展的科技领域之一。测控系统的设计通常是从对象信息的有效获取开始的不同种

类的物理量不仅需要不同种类的传感器进行采集,而且因信号性质的不同,还需要采用不同的测量电路对信号进行调理以满足测量的要去。因此,触感其与检测技术在现代测量与控制系统中具有非常重要的地位。 而在所有的传感器中,热电偶具有构造简单、适用温度范围广、使用方便、承受热、机械冲击能力强以及响应速度快等特点,常用于高温区域、振动冲击大等恶劣环境以及适合于微小结构测温场合。 因此,我们想设计一种热电偶传感器能够在低温下使用,可以适用于试验和科研中,测量为温度范围:-200 ℃ ~500 ℃,电路不太复杂的简易的热电偶温度传感器,考虑到制作材料相对便宜,我们选择了铜-铜镍(康铜)。在选择测量电路时,我们从简单,符合测量范围要求及热电偶的技术特性,我们采用了AD592对T型热电偶进行冷结点的补偿电路。这种型号的电路允许的误差(0.5 ℃或0.004x|t|)相对于其他类型的热电偶具有测量温度精度高,稳定好,低温时灵敏度高,价格低廉。能较好的满足测量范围。 热电偶同其它种温度计相比具有如下特点: a、优点 ·热电偶可将温度量转换成电量进行检测,对于温度的测量、控制,以及对温度信号的放大、变换等都很方便, ·结构简单,制造容易, ·价格便宜, ·惰性小,

温度传感器在汽车上的运用

温度传感器在汽车上的运用 201110301314 机自113 王盟为了确定发动机的温度状态,正确的控制燃油喷射、点火正时、怠速转速和尾气排放,提高发动机的运行性能,发动机控制模块需要能连续精确地监测冷却液的温度、进气温度与排气温度的传感器(部分车型装备)。从结构上讲,这些温度传感器有绕线电阻式、热敏电阻式、扩散电阻式、半导体晶体管式、金属芯式和热电偶式等。应用较多的是绕线电阻式和热敏电阻式温度传感器。而从检测对象方面讲,温度传感器包括发动机冷却液温度传感器、进气温度传感器和排气温度传感器。 1.作用 (1)发动机冷却液温度传感器(ECT) 发动机冷却液温度传感器又称水温传感器,它用来检测发动机冷却液的温度,并将温度信号转变成电信号输送给发动机控制模块,作为汽油喷射、点火正时、怠速和尾气排放控制的主要修正信号。 (2)进气温度传感器(IAT)

进气温度传感器(IAT)用来检测进气温度,并将进气温度信号转变成电信号输送给发动机控制模块,作为汽油喷射、点火正时的修正信号。(3)排气温度传感器 排气温度传感器用来检测再循环废气的温度,用以判断废气再循环系统工作是否正常。2. 分类 温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种 类型。热电偶应用很广泛,因为它们非常坚固而且不太贵。热电偶有多种类型,它们覆盖非常宽的温度范围,从200℃到2000℃。它们的特点是:低灵敏度、低稳定性、中等精度、响应速度慢、高温下容易老化和有漂移,以及非线性。另外,热电偶需要外部参考端。RTD精度极高且具有中等线性度。它们特别稳定,并有许多种配置。但它们的最高工作温度只能达到400℃左右。它们也有很大的TC,且价格昂贵(是热电偶的4~10倍),并且需要一个外部参考源。拟输出IC温度传感器具有很高的线性度 (如果配合一个模数转换器或ADC可产生数字输出)、低成本、高精

(完整版)无线无源温度检测原理

无线测温技术方案 (基于EH技术) 1.EH技术说明 1.1. EH技术简介 环境能量采集(EnergyHarvesting)技术具有可循环、无污染、低能耗等优点,它建立在微电子技术和微功耗技术的基础上,是近几年发展起来的一门新兴学科,它涵盖了太阳能、风能、热能、机械能、电磁能采集等诸多方面。能量收集技术应用范围极其广泛:交通、能源、物联网、航空航天、生物等等。把能量采集技术应用到电力设备的在线监测是一个前所未有的创新,必将为解决电网智能化运行提供一个全新的平台。 能量收集(EH)也称为能量积聚,使用环境能量为小型电子和电气器件提供电能。 能量收集系统包含能量收集模块和处理器/发送器模块。能量收集模块从光、振动、热或生物来源中捕获毫瓦级能量。可能的能源还来自手机天线塔等发出的射频。然后,电源经过调节并存储起来。系统随后按照所需的间隔触发,将能量释放给后续负载使用。 1.2.EH技术应用 在变电所、站的运行现场具有丰富的电磁能,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备和模具),磁场要比电场大得多。因此我们认为高压设备内是一个工频电场和磁场能量非常密集的区域。我们正是利用微电子技术、低功耗技术以及能量管理技术收集高压设备中的电磁能,并将其能量转化为无线温度传感器所需之电源。 将EH技术应用于高压设备一次回路的无线测温,解决了传感器的能量需求问题,使得传感器摆脱了对传统电池的束缚,体积更小,可靠性更高,安装更方便,维护更简单,产品更环保,技术更先进。 2.基于EH技术的富邦电控FTZ600无线测温系统 2.1. 无线测温系统简介

温度传感器在汽车上的应用

温度传感器的应用 矿山机电谢文通 090732105 摘要:温度传感器主要在汽车上用于检测发动机温度、吸入气体温度、冷却水温度、燃油温度以及催化温度等。已实用化的产品有热敏电阻式温度传感器(通用型-50~130℃,精度1.5%,响应时间10ms;高温型600~1000℃,精度5%,响应时间10ms)、铁氧体式温度传感器(ON/OFF 型,-40~120℃,精度2.0%)、金属或半导体膜空气温度传感器(-40~150℃,精度2.0%、5%,响应时间20ms)等。 关键字:传感器热电偶热敏电阻 一、感器在汽车上的应用 温度感器的作用是测量发动机的进气,冷却水,燃油等的温度,并把测量结果转换为电信号输送给ECU.对于所有的汽油机电控系统,进气温度和冷却水温度是ECU进行控制所必须的两个温度参数,而其他的温度参数则随电控系统的类型及控制需要而不尽相同。 进气温度传感器通常安装在空气流量计或从空气滤清器到节气门体之间的进气道或空气流量计中,水温传感器则布置在发动机冷却水路,汽缸盖或机体上上的适当位置.可以用来测量温度的传感器有绕线电阻式,扩散电阻式,半导体晶体管式,金属芯式,热电偶式和半导体热敏电阻式等多种类型,目前用在进气温度和冷却水温度测量中应用最广泛的是热敏电阻式温度传感器. 二、温度传感器的类型 温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。 热电偶应用很广泛,因为它们非常坚固而且不太贵。热电偶有多种类型,它们覆盖非常宽的温度范围,从200℃到2000℃。它们的特点是:低灵敏度、低稳定性、中等精度、响应速度慢、高温下容易老化和有漂移,以及非线性。另外,热电偶需要外部参考端。 RTD精度极高且具有中等线性度。它们特别稳定,并有许多种配置。但它们的最高工作温度只能达到400℃左右。它们也有很大的TC,且价格昂贵(是热电偶的4~10倍),并且需要一个外部参考源。拟输出IC温度传感器具有很高的线性度(如果配合一个模数转换器或ADC可产生数字输出)、低成本、高精度(大约1%)、小尺寸和高分辨率。它们的不足之处在于温度范围有限(C55℃~+150℃),并且

温度传感器常见故障的处理方法

温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。在实际使用上通常会和一些仪表配套使用,但也会出现很多故障现象。下面就让艾驰商城小编对温度传感器常见故障的处理方法来一一为大家做介绍吧。 第一,被测介质温度升高或者降低时变送器输出没有变化,这种情况大多是温度传感器密封的问题,可能是由于温度传感器没有密封好或者是在焊接的时候不小心将传感器焊了个小洞,这种情况一般需要更换传感器外壳才能解决。 第二,输出信号不稳定,这种原因是温度源本事的原因,温度源本事就是一个不稳定的温度,如果是仪表显示不稳定,那就是仪表的抗干扰能力不强的原因。 第三,变送器输出误差大,这种情况原因就比较多,可能是选用的温度传感器的电阻丝不对导致量程错误,也有可以能是传感器出厂的时候没有标定好。 温度传感器出现故障的情况很少见,只要出厂的时候进行仔细的检测,这些情况都是可以避免的,所以温度传感器在出厂的时候一地要进行检验,客户也可找传感器厂家索要出厂检测报告进行参考。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.doczj.com/doc/d21732062.html,/

温度传感器的选用

温度传感器的选用 摘要:在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为许多的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视。可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。 关键字:温度传感器热电偶热电阻集成电路 引言: 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温 度传感器;每一类温度传感器有自己独特的温度测量围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。 1、热电偶 热电偶由二根不同的金属线材,将它们一端焊接在一起构成;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需 要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差 引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情 真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度,以硬件或硬件-软件相结 合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电 阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

无线温度传感器课程设计

邮电与信息工程学院 现代测控技术 课程设计说明书 课题名称:无限温度采集系统 学生学号:0941050212 专业班级:09测控技术及仪器2班 学生姓名:刘奎 学生成绩: 指导教师:李国平 课题工作时间:2012-6-20 至2012-7-4

摘要 无线温度采集系统是一种基于射频技术的无线温度检测装置。本系统由传感器和接收机,以及显示芯片组成。传感器部分由数字温度传感器芯片18B20,单片机89C52,低功耗射频传输单元NRF905和天线等组成,传感器采用电源供电;接收机无线接收来自传感器的温度数据,经过处理、保存后在LCD1602上显示,所存储的温度数据可以通过串行口连接射频装置与接收端进行交换。 数字单总线温度传感器是目前最新的测温器件,它集温度测量,A/D转换于一体,具有单总线结构,数字量输出,直接与微机接口等优点。既可用它组成单路温度测量装置,也可用它组成多路温度测量装置,文章介绍的单路温度测量装置已研制成产品,产品经测试在-10℃-70℃间测得误差为0.25℃,80℃≤T≤105℃时误差为0.5℃,T>105℃误差为增大到1℃左右。 关键词:温度采集系统;无线收发;温度传感器;89C52单片机;

Abstract Wireless temperature acquisition system based on RF technology is a kind of wireless temperature detecting device. The system consists of the sensor and receiver, and display chip. The sensor consists of digital temperature sensor18B20 chip, chip 89C52, low power RF transmission unit NRF905 and antenna components, sensors using wireless power supply; the receiver receives from the temperature data, processed, preserved in the LCD1602 display, the stored temperature data can be through the serial port connected to the RF device and the receiving terminal exchange. The digital single bus temperature sensor is the current measuring device, it sets the temperature measurement, A/D conversion in one, with a single bus structure, digital output, the advantages of direct interface with microcomputer. Not only can it consists of single channel temperature measuring device, it is also available to form a multichannel temperature measuring device, this paper introduces single temperature measurement device has been developed into products, products tested in -10℃-70 ℃measured between the error is 0.25℃,80 ℃≤T ≤105 ℃error is 0.5℃, T>105 ℃error in order to increase to about 1 ℃. Key words: temperature acquisition system; wireless transmission; temperature sensor; SCM 89C52

常用温度传感器解析,温度传感器的原理、分类及应用

常用温度传感器解析,温度传感器的原理、分类及应用 温度传感器(temperature transducer)是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。 温度传感器的分类接触式 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。 随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量 1.6~300K范围内的温度。 非接触式 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。 最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐

几种无线温度传感器优劣(声表面波等)

依据测温原理的无线温度传感器分类 无线测温系统在电力系统开关柜中投入应用已有多年,而在这几年间,陆续出现了多种类型的无线温度传感器。对于究竟哪一种传感器更适合开关柜内部使用并未有一个明确标准。在此,我们对现今常见的无线温度传感器依据测温原理进行分类以及对各种类型的特点进行一次客观的阐述。 依据测温的原理,应用于开关柜无线测温的无线温度传感器主要可分为四类。一类是利用热敏电阻的温度特性接触式测温的传感器;第二类是利用半导体材料(PN结)的温度特性,接触式测温的传感器;第三类是利用红外热辐射技术,传感器采用红外探头,非接触式测温;第四类是利用压电晶体,采用声表面波技术无源接触式测温的传感器 a.热敏电阻 利用热敏电阻测温的传感器,其原理是热敏电阻的阻值会随温度的变化而改变,通过阻值的大小来反映温度。这种传感器其优点是灵敏度高(因为热敏电阻的电阻温度系数大,阻值随温度改变的变化明显)。缺点是,由于热敏电阻阻值与温度的线性关系较差,直接测量的精度低,必须通过运算补偿才能得到较准确的测量值。电阻元件易老化,使用寿命短,精度及稳定性随使用变差。其无线是体现在通讯方式上,通过传感器内部的A/D转换,将数字信号无线发送出。 b.PN结 采用PN结作为测温元件的无线温度传感器,其原理是PN结的压降随温度的变化而改变,施加恒定电流,通过输出电压的大小来反映温度。其压降与温度的关系几乎为线性,精度高,但灵敏度相对热敏电阻要低,反应时间比热敏电阻长。半导体元件不易老化,使用寿命较长,可靠性高。其无线同样是体现在通讯方式上。 c.红外热辐射 采用红外技术的无线温度传感器,测温原理与常见的红外点温枪基本类似——任何高于绝对零度的物体都在发射出辐射能,辐射能的强度与物体温度有着密切关系,传感器探测物体发出的红外辐射,将辐射能转变为电信号,通过校准运算最终得到被测物体表面的温度。数据进一步通过传输模块无线发射出。红外传感器测温反应灵敏度极高,测温范围远大于其他几种,且非接触式测温使得探头使用寿命更长,对被测点无影响。但红外测温对空间要求较高,探头与被测表面必须无任何阻挡,且探头与被测表面间距受传感器距离比率(D:S)的限制,安装部位的选择不易。 以上三类无线温度传感器一般都是由感温模块(热敏电阻、PN结或红外探头)、数模转换模块、无线射频传输模块以及电源模块(可以是电池或感应取电,本文不对供电方式作讨论或比较)组成。 d.声表面波 基于声表面波的无线温度传感器则与其他类别有较大区别。首先,其最大的特点就是传感器本身不需要电源;其次,其无线并不是仅仅体现在通讯方式上,同时也体现在测温原理上。声表面波无线温度传感器是由天线、叉指换能器、反射栅以及压电基片组成,与其他传感器截然不同。其测温的原理是,传播在压电基片表面的声表面波,其波长和波速会随基片表面或内部相关因素(包括温度)的改变而变化。由对应的接收器发出无线激励信号,信号输入传感器的压电基片激起声表面波,不同温度下,传感器输出不同的信号,信号再由接收器接收,经过调解获取温度值。声表面波传感器体积小,不需要电源,传感器成本低是其主要的优势。但正由于无源,传感器需要接收采集器发出的激励信号,这种激励信号的有效无线传输距离较短;另一方面,由于被测设备的震动产生位移,导致声表面波的相位等发生变化,测温的精度严重降低,而现在尚无较好的校准方式。

18B20温度传感器应用解析重点

https://www.doczj.com/doc/d21732062.html, 电子技术—创造独立资源! 18B20温度传感器应用解析 https://www.doczj.com/doc/d21732062.html, 原创 V2.0 2007.3.16 DS18B20 https://www.doczj.com/doc/d21732062.html, 原创 温度传感器的种类众多,在应用与高精度、高可靠性的场合时DALLAS(达拉斯公司生产的DS18B20温度传感器当仁不让。超小的体积,超低的硬件开消,抗干扰能力强,精度高,附加功能强,使得DS18B20更受欢迎。对于我们普通的电子爱好者来说,DS18B20的优势更是我们学习单片机技术和开发温度相关的小产品的不二选择。了解其工作原理和应用可以拓宽您对单片机开发的思路。

DS18B20的主要特征: 全数字温度转换及输出。 先进的单总线数据通信。 最高12位分辨率,精度可达土0.5摄氏度。 12位分辨率时的最大工作周期为750毫秒。 可选择寄生工作方式。 检测温度范围为–55°C ~+125°C (–67°F ~+257°F 内置EEPROM,限温报警功能。 64位光刻ROM,内置产品序列号,方便多机挂接。多样封装形式,适应不同硬件系统。 DS18B20芯片封装结构:

图1 DS18B20引脚功能: ·GND电压地 ·DQ单数据总线 ·VDD电源电压 ·NC空引脚 DS18B20工作原理及应用: DS18B20的温度检测与数字数据输出全集成于一个芯片之上,从而抗干扰力更强。其一个工作周 期可分为两个部分,即温度检测和数据处理。在讲解其工作流程之前我们有必要了解18B20的内 部存储器资源。18B20共有三种形态的存储器资源,它们分别是: ROM只读存储器,用于存放DS18B20ID编码,其前8位是单线系列编码 (DS18B20的编码是

温度传感器的常见分类 温度传感器应用大全

温度传感器的常见分类温度传感器应用大全 温度传感器在我们的日常生活中扮演着十分重要的角色,同时它也是使用范围最广,数量最多的传感器。关于它你了解多少呢?本文主要介绍的就是各种温度传感器的分类及其原理,温度传感器的应用电路。 温度传感器从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器,近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速,由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用也更加方便。 1、热电偶传感器: 两种不同导体或半导体的组合称为热电偶。热电势EAB(T,T0)是由接触电势和温差电势合成的,接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关,当有两种不同的导体和半导体A和B组成一个回路,其相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端,另一端温度为TO,称为自由端,则回路中就有电流产生,即回路中存在的电动势称为热电动势,这种由于温度不同而产生电动势的现象称为塞贝克效应。 2、热敏电阻传感器: 热敏电阻是敏感元件的一类,热敏电阻的电阻值会随着温度的变化而改变,与一般的固定电阻不同,属于可变电阻的一类,广泛应用于各种电子元器件中,不同于电阻温度计使用纯金属,在热敏电阻器中使用的材料通常是陶瓷或聚合物,正温度系数热敏电阻器在温度越高时电阻值越大,负温度系数热敏电阻器在温度越高时电阻值越低,它们同属于半导体器件,热敏电阻通常在有限的温度范围内实现较高的精度,通常是-90℃?130℃。 3、模拟温度传感器: HTG3515CH是一款电压输出型温度传感器,输出电流1~3.6V,精度为±3%RH,0~100%RH相对湿度范围,工作温度范围-40~110℃,5s响应时间,0±1%RH迟滞,是一个带

温度传感器在测量中的四大误差

1、安装不当引入的误差 如热电偶安装的位置及插入深度不能反映炉膛的真实温度等,换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性。 热电偶冷端太靠近炉体使温度超过100℃;热电偶的安装应尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。 2、绝缘变差而引入的误差 如热电偶绝缘了,保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。 3、热惰性引入的误差 由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,在进行快速测量时这种影响尤为突出。所以应尽可能采用热电极较细、保护管直径较小的热电偶。测温环境许可时,甚至可将保护管取去。由于存在测量滞后,用热电偶检测出的温度波动的振幅较炉温波动的振幅小。测量滞后越大,热电偶波动的振幅就越小,与实际炉温的差别也就越大。 当用时间常数大的热电偶测温或控温时,仪表显示的温度虽然波动很小,但实际炉温的波动可能很大。为了准确的测量温度,应当选择时间常数小的热电偶。时间常数与传热系数成反比,与热电偶热端的直径、材料的密度及比热成正比,如要减小时间常数,除增加传热系数以外,最有效的办法是尽量减小热端的尺寸。使用中,通常采用导热性能好的材料,管壁薄、内径小的保护套管。在较精密的温度测量中,使用无保护套管的裸丝热电偶,但热电偶容易损坏,应及时校正及更换。 4、热阻误差 高温时,如保护管上有一层煤灰,尘埃附在上面,则热阻增加,阻碍热的传导,这时温度示值比被测温度的真值低。因此,应保持热电偶保护管外部的清洁,以减小误差。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断

智能无线温度传感器的设计

题目智能无线温度传感器的设计 摘要 本文介绍的重点是无线温度传感的设计。硬件部分是以单片机为核心,还包括数据采集模块,模-数转换模块,无线数传模块和串行接口部分,还有一些简单的外围电路。模-数转换模块,实现对采集到的数据进行模拟量到数字量的转换。无线数传模块是通过单片机的通信口发射和接受信号。软件部分,主要是应用汇编语言。编程时要用尽量少的语句,实现系统的功能。 关键词:传感器,单片机,无线

金华职业技术学院毕业论文

目录 中文摘要 (ⅰ) 英文摘要 (ⅱ) 目录 (ⅲ) 引言 (1) 第一章硬件电路设计 (2) 1.1 系统结构设计 (2) 1.2 单片机 (2) 1.3 模-数转换模块 (3) 1.4 温度传感器 (5) 1.5 信号调理电路 (6)

1.6 无线数传模块 (6) 第二章软件系统设计 (8) 2.1系统软件结构 (8) 2.2 程序流程图 (10) 第三章系统调试 (12) 3.1 硬件调试 (12) 3.2 软件调试 (12) 3.3 软硬结合调试 (12) 总结 (14) 谢辞 (15) 附录A 程序清单 (16) 附录B 原理图 (19) 附录C 实物图 (20) 参考文献 (21)

引言 现代信息技术的三大基础是信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)。传感器属于信息技术的前沿尖端产品,尤其是温度传感器被广泛用于工农业生产、科学研究和生活等领域,数量高居各种传感器之首。近百年来,温度传感器的发展大致经历了以下三个阶段;(1)传统的分立式温度传感器(含敏感元件);(2)模拟集成温度传感器和控制器;(3)智能温度传感器。目前,国际上新型温度传感器正从模拟式向数字式、由集成化向智能化、网络化的方向发展。 无线与在线式温度传感器相比较,有如下优点: 1、无线温度传感器的安装位置没有任何限制摆放灵活且无须布线。 2、无线温度传感器采用防水设计可以应用于非常潮湿的环境。 3、无线温度传感器的安装和维护非常简便。 4、减少了电缆使用量,降低了系统成本、提高了系统的可靠性。 5、如果库房翻新,无线温度传感器不存在连接电缆问题可以随意拆卸,不存在重复投资问题。 6、系统可以很方便的与空调机的自动控制系统连接。 7、无线连接方式是当今传感器发展的一个主要趋势。 现代测量中,无线温度传感器已成为日益重要的一种测量工具。现在无线温度传感器已广泛应用于粮库、油田、矿井以及饭店等需要远距离监控温度的场合。 此系统的最前端是传感器,传感器把采集到的模拟信号,经过信号调理电路,对采集到的信号进行适当调整,以适合A/D转换器的需要。A/D转换器采用MC14433,它满足本系统的要求,MC14433把模拟量转换为数字量后输出给单片机,本文采用AT89C2051作为核心控制部件,它功能比较齐全,可以满足系统设计的需要。单片机控制数据的采集,传输,它是整个系统的核心。由单片机处理后,通过无线发射模块来发射。这样就实现了无线温度传感器的功能要求。 系统的硬件部分,将部分重点的在第一章里做详细介绍。系统的软件部分,主要用汇编语言。软件部分包括单片机初始化的设计,串行通信的设计,A/D转换的设计。软件部分的内容将在第二章里做详细介绍。调试部分包括硬件调试和软件调试以及软硬件结合调试,系统调试部分的内容将在第三章里做详细介绍。

温度传感器

温度传感器 一、简介 温度传感器是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。 二、主要分类 1、接触式 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测量范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸气压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差热电偶等。低温温度计要求感温元件体积小、精确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳少杰而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6-300K范围内的温度。 2、非接触式 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。 最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微

温度传感器工作原理与类型

温度传感器工作原理与类型 前言:温度传感器热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 一、温度传感器热电偶的应用原理 温度传感器热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因温度传感器热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的温度传感器热电偶从-50~+1600℃均可边续测量,某些特殊温度传感器热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。温度传感器热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.温度传感器热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。温度传感器热电偶就是利用这一效应来工作的。 2.温度传感器热电偶的种类及结构形成 (1)温度传感器热电偶的种类 常用温度传感器热电偶可分为标准温度传感器热电偶和非标准温度传感器热电偶两大类。所谓标准温度传感器热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的温度传感器热电偶,它有与其配套的显示仪表可供选用。非标准化温度传感器热电偶在使用范围或数量级上均不及标准化温度传感器热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化温度传感器热电偶我国从1988年1月1日起,温度传感器热电偶

温度传感器工作原理

温度传感器工作原理 1.引脚★ ●GND接地。 ●DQ为数字信号输入\输出端。 ●VDD为外接电源输入端(在寄生电源接线方式时接地) 2.与单片机的连接方式★ 单线数字温度传感器DS18B20与单片机连接电路非常简单,引脚1接地(GND),引脚3(VCC)接电源+5V,引脚2(DQ)接单片机输入\输出一个端口,电压+5V和信号线(DQ)之间接有一个4.7k的电阻。 由于每片DS18B20含有唯一的串行数据口,所以在一条总线上可以挂接多个DS18B20芯片。 外部供电方式单点测温电路如图★ 外部供电方式多点测温电路如图★ 3.DS18B20的性能特点 DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器。与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。DS18B20的性能特点如下: ●独特的单线接口仅需要一个端口引脚进行通信。 ●多个DS18B20可以并联在唯一的三线上,实现多点组网功能。 ●不需要外部器件。 ●在寄生电源方式下可由数据线供电,电压范围为3.0~5.5V。 ●零待机功耗。 ●温度以9~12位数字量读出 ●用户可定义的非易失性温度报警设置。 ●报警搜索命令识别并标识超过程序限定温度(温度报警条件)的器件。 ●负电压特性,电源极性接反时,温度计不会因发热而烧毁,只是不能正常工作。 4.内部结构 .DS18B20采用3脚PR—35封装或8脚SOIC封装,其内部结构框图★ 64位ROM的位结构如图★◆。开始8位是产品类型的编号;接着是每个器件的唯一序号,共有48位;最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用单线进行通信的原因。非易失性温度报警触发器TH和TL,可通过软件写入用户报警上 DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的E2PROM。 高速暂存RAM的结构为9字节的存储器,结构如图★。前2字节包含测得的温度信息。第3和4字节是TH和TL的拷贝,是易失的,每次上电复位时被刷新。第5字节为配置寄存器,其内容用于确定温度值的数字转换分辨率,DS18B20工作时按此寄存器中的分辨率将温度转化为相应精度的数值。该字节各位的定义如图★,其中,低5位一直为1;TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式,在DS18B20出厂时,该位被设置为0,用户不要去改动;R0和R1决定温度转化的精度位数,即用来设置分辨率,其定义方法见表★ 高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。第9字节是前面所有8

PT100温度传感器测温详解

一种精密的热电阻测温方法 摘要: 本文介绍了一种采用恒压分压法精密测量三线制热电阻阻值的方法,对于Pt100热电阻,检测分辨率可以达到0.005W。同时采用计算的方法,能够使获得的温度准确度达到0.05℃。 关键词: 恒压;三线制;热电阻;精度 引言 温度参数是目前工业生产中最常用的生产过程参数之一,对温度的测量虽然有许多不同的方法,但热电阻凭借其优良的特性成为目前工业上温度测量中应用最广泛普遍的传感元件之一。由于金属铂优良的物理特性,使它成为制造热电阻的首选材料。它能够制造成体积微小的薄膜形式,或者缠绕在陶瓷和云母基板上制造出高稳定性的温度传感器,能够适应各种复杂的测温场合。一般在-200℃至+400℃的温度范围内,Pt100热电阻温度传感器是首选测温元件。 目前在各种检验设备中,如各种检验用恒温槽,都要求设备能够提供高精度的温度指示,这就要求作到对温度的高精度测量。又如,在配置Pt100热电阻传感器的智能型二线制一体化温度变送器中,也要求对温度有高精度的测量,这样才能够保证变送器在全量程范围内的高精度。为了消除导线电阻对测量的影响,在实验室和工业应用中,都是采用三线制引线接法来消除导线电阻影响的。本文介绍的就是一种精密测量三线制热电阻阻值的方案,同时提供了高精度的温度转换方法。 三线制热电阻阻值检测电路 图1是一个采用恒压分压法精密测量三线制热电阻阻值的检测电路,实际是一个高精度温度变送器的检测部分。它采用AD7705作为模数转换器,系统控制CPU采用P87LPC764,整体系统是一个低功耗系统。 图1中,电阻体RT接成了三线制,RL为三根导线电阻,一般每根导线电阻在5W之内。电阻体与测量电路以A、B、C三点连接,实际上是与电阻R 构成了对电压VREF的分压电路。一般情况下,为避免驱动电流导致电阻体发热引起测量误差,电流应该小于3mA,这里笔者通过选择VREF和R,使驱动热电阻的电流约为0.6 mA左右。当在VREF和R是已知的前提下,

相关主题
文本预览
相关文档 最新文档