当前位置:文档之家› 光纤传感器市场调研报告

光纤传感器市场调研报告

光纤传感器市场调研报告
光纤传感器市场调研报告

光纤传感器市场调研报告

光纤传感器件因其具有重量轻、体积小、灵敏度高、抗电磁干扰、易于复用形成分布式测量等优点,成为传感领域研究的热点之一,下面是光纤传感器市场调研报告,请看:光纤传感器市场调研报告纤传感器的分类

光纤传感器具有多种分类方式,根据传感原理可分为功能型传感器和非功能型传感器。功能型光纤传感器也叫传感型光纤传感器,光纤直接作为敏感元件;非功能型光纤传感器也叫传光型光纤传感器,光纤只作为传输光信号的媒介,需要利用其它的光敏元件来感知外界环境的变化。

纤传感技术的发展

型光纤传感器

当环境介质的折射率发生变化(如振动或温度变化等引起),传感光纤经过此处时的光波相位会发生变化。对传感光纤中的相干光进行相位调制,检测段处就可以观察到外界环境变化带来的干涉结果的变化,这就是干涉型光纤传感器的工作原理。目前最常用的干涉型光纤传感器有:迈克尔逊(Michelson)干涉型光纤传感器、马赫曾德(MachZehnder)干涉型光纤传感器、法布里珀罗(FabryPerot干涉型光纤传感器、萨格纳克(Sagnac)干涉型光纤传感器。

与传统光纤干涉仪传感器相比,全光纤MZ干涉x传感器的结构更为简单。在同一根光纤上制作两个相隔一定距离

的光纤结构,使不同模式之间形成干涉,构成光纤内的MZ 干涉仪,因不需要耦合器,具有制作简单,成本低,尺寸小,灵敏度和稳定性高等显著的优点。

Hu Liang等人[一段液体填充的光子晶体光纤熔接到单模光纤上,构成了一种MZ干涉仪,其温度和力传感的灵敏度分别为m/°C和nm/N。Hui Ding等人[过在单模光纤尾端熔接一小段光子晶体光纤,制成一种光纤FP型温度传感器,在°C范围内温度响应灵敏度达到/°C。

光纤光栅传感器

根据光纤光栅周期的长短,将光栅分为光纤布拉格光栅和长周期光纤光栅。光纤布拉格光栅的光谱是向前传输的光与反射回来的光,即传输方向相反的模式之间发生耦合。长周期光纤光栅的光谱是同向传输的纤芯基模与包层中的高阶模之间的耦合,因而也叫透射光栅。光纤光栅的布拉格波长可以表示为,有效折射率neff和栅格周期?撰受温度和应变的影响,布拉格波长会随温度?姿Beagg=ff?撰和应变的变化产生漂移,这就是光纤光栅传感器的原理[ ,Yan Feng等人[作了光纤光栅温度传感器,实验表明在度段,温度响应灵敏度为°C。Xinpu Zhang等人[用多模光纤光栅多峰的特点,解决了在光纤传感领域一直困扰大家的温度、折射率等多物理量的交叉敏感问题。

光纤SPR传感器

光纤表面等离子体共振(Surface Plasmon Resonance,SPR)传感器是一种将光纤作为激发SPR效应基体的新型传感器。传统光纤SPR传感方式主要有在线传输式和终端反射式,光纤传输模式的能量基本集中在纤芯区域,为保证 SPR 效应的产生,无论采用哪种方式,都需要去除其部分包层,在纤芯表面镀上金属薄膜。利用光在纤芯包层界面发生全内反射时产生的SPR效应,通过传输损耗谱的峰值变化来分析待测样品的参数变化。

纪代,新型光子晶体光纤(Photonic Crystal Fiber,PCF)[开始进入科研人员的视野。Hassani 等人提出了两种基于PCF的SPR传感器[在 PCF的第二层空气孔内壁镀上金属膜。空气孔中填充的待测液体与金属膜激发的表面等离子体模式发生耦合,仿真结果表明这种传感器的分辨率能达到U。

纤传感器的应用

由于具有体积小、质量轻、灵敏度高、耐腐蚀、电绝缘性好、抗电磁干扰等诸多优点,光纤传感器已经在很多领域被广泛应用。

工程中的应用

光纤传感器能对钢筋混凝土结构进行无损伤实时监测,因此光纤温度、压力传感器被广泛应用于桥梁,隧道的裂缝、错层以及水利大坝的渗漏和边坡变形监测,从而及时发现并

排除安全隐患。

系统中的应用

我国地域广阔,各地地理环境和温度差异很大,光纤电流传感器和电功率传感器形成阵列格排列,对错综复杂的线路实现分布式监控,监测电力传输络中的温度、电压和电流等参数,保证电力传输的稳定性以及安全性。

工业生产中的应用

光纤传感器的耐水性、电绝缘性好,耐腐蚀、抗电磁干扰,特别适合在易燃易爆及强电磁干扰等恶劣环境下使用,因此可以应用于煤矿生产中的井下气体浓度监测及油气井开采过程中油、水、气等生产参数的动态检测。

医学中的应用

光纤传感器有不受射频和微波的干扰,绝缘性好等优点,同时对生物体有着良好的亲和性,因此光纤温度、压力传感器被应用于生物医学等领域的PH值测量、血液流速测量、医用图像传输等方面。

光纤湿度传感器应用的文献综述

光纤通信原理(论文) 文献综述 学院:电气工程学院 题目:光纤湿度传感器应用

光纤湿度传感器研究进展 文献综述 学院:电气工程学院专业:通信工程 摘要:光纤湿度传感器是传感器的重要组成部分,而光纤湿度传感器的使用敏感材料也很多,原理也各有异同,导致传感器结构不同、检测方式有差异和成本相差较大等问题,引起了研究者的广泛兴趣。本文比较了几种主要光纤湿度传感器的特点,并对光纤湿度传感技术目前存在的问题及发展趋势进行了讨论。 关键词:光纤湿度传感器;湿度;敏感材料 1.引言 光纤湿度传感器具有体积较小,响应速度较快,抗电磁干扰强,适应温度范围大,动态范围较大,灵敏度非常高的特点,在恶劣的环境中能发挥天然的优势。因而在国防科研、石油化工和电力等领域的湿度检测中有着广阔的应用前景[ 1]。 光学湿度传感器主要是利用光学材料在空气相对湿度发生变化后, 材料的物理和化学特性将发生变化,介质感受到相应的变化,从而引起波长光学参数,光波导和反射系数的变化进行的湿度测量[1]。 2.光纤湿度传感器的分类 按照不同的传感原理,光纤湿度传感器可分为两类:一类是光功率检测型[12],即外界湿度变化引起传输光功率的变化,如基于锥形光纤[13-15] [16,17]、塑料包层石英光纤[18,19]等湿度传感器;另一类是波长检测型 [20,21],即外界湿度变化引起涂敷在传感器表面的湿敏材料有效折射率发生变化,进而导致中心波长发生漂移,如基于布拉格光纤光栅[22-25]、长周期光纤光栅[26-29]、光纤Fabry-Perot腔[30-33]等湿度传感器。 1.3.1 2.1光功率检测型 2.1.1光纤传光式湿度传感器 光纤传光式湿度传感器的传感原理为:当湿敏材料薄膜与空气湿度相互接触后,湿敏材料发生化学反应导致其光学参数发生变化。因此,通过测量湿敏材料

光纤传感器的应用研究(中英对照)教学文案

光纤传感器的应用研究 摘要本文介绍了光纤传感器研究的目的、意义及其发展趋势,通过分析研究各类光纤传感器的基本原理,设计出了几种功能较完善的光纤传感器。首先从研究光纤传感器的工作原理出发,分析各种光纤传感器的结构和原理,通过对原有光纤传感器的结构和控制机理的分析,结合学过的电子知识,设计光纤传感温度计、光纤传感压强计等。在整个研究过程中采取实验和理论相结合的方式。 1绪论 光纤传感器是70年代末发展起来的一种新型传感器,它具有不受电磁场影响,本 质上安全防爆,体积小,耐腐蚀,灵敏度高等优点。可用在传统传感器难以涉足的极端 恶劣环境,所以在军事、航空航天、生物医学、建筑施工等领域被受青睐。因此对光纤 传感器的研究具有很重要的现实意义。传感技术是近几年热门的应用技术,传感器在朝 着灵敏、精确、适应性强、小巧和智慧化的方向发展。在这一过程中,光纤传感器这个 传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐 射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、 耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如 核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受 不到的外界信息。光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比 如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的 测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了 独特的魅力。因此,光纤传感技术应用的研究具有很好的前景。光纤传感优点:灵敏度 较高;几何形状具有多方面的适应性,可以制成任意形状的光纤传感器;可以制造传感 各种不同物理信息(声、磁、温度、旋转等)的器件;可以用于高压、电气噪声、高温、 腐蚀、或其它的恶劣环境;而且具有与光纤遥测技术的内在相容性。 光纤传感器用光作为敏感信息的载体,用光纤作为传递敏感信息的媒质。因此,它 同时具有光纤及光学测量的特点。 ①电绝缘性能好。 ②抗电磁干扰能力强。 ③非侵入性。

国内外光纤传感器的发展现状

国内外光纤传感器的发展现状 2011-6-29 8:25:44 讯石光通讯咨询网作者:iccsz 摘要:本文将分析光纤传感器国内外发展的现状。主要介绍了两方面的情况:光纤传感器原理性研究的发展现状和光纤传感器产品的应用与开发的现状。 本文将分析光纤传感器国内外发展的现状。主要介绍了两方面的情况:光纤传感器原理性研究的发展现状和光纤传感器产品的应用与开发的现状。前者报道了光纤光栅、分布式光纤传感技术以及光纤传感网的发展,这些是目前的研究热点;后者介绍了光层析成像技术、智能材料、光纤陀螺及惯性导航系统、工业工程类传感器(其中包括电力工业用高电压、大电流传感器,利用光纤的弹光效应和FBG器件的应力传感器等)。最后介绍了新型光纤材料与器件、氟化物玻璃光纤,碳涂覆光纤、以及正在研究中的蜂窝型波导光纤、液晶光纤等。 一、引言 随着密集波分复用DWDM技术、掺铒光纤放大器EDFA技术和光时分复用OTDR技术的发展和成熟,光纤通信技术正向着超高速、大容量通信系统的方向发展,并且逐步向全光网络演进。在光通信迅猛发展的带动下,光纤传感器作为传感器家族中年轻的一员,以其在抗电磁干扰、轻巧、灵敏度等方面独一无二的优势,已迅速成长为年成交额超过10亿美金,并预计将于2010年拥有超过50亿美金市场的产业。每年由美国光学工程师学会(OSA)主办的光纤传感国际会议(OFS)及时报道着光纤传感领域的最新进展,并对光纤传感及其相应技术进行有益的研讨。 当前,世界上光纤传感领域的发展可分为两大方向:原理性研究与应用开发。随着光纤技术的日趋成熟,对光纤传感器实用化的开发成为整个领域发展的热点和关键。由于光纤传感技术并未如光纤通信技术那样迅速地获得产业化,许多关键技术仍然停留在实验室样机阶段,距商业化有一定的距离,因此光纤传感技术的原理性研究仍处于相当重要的位置。由于很多光纤传感器的开发是以取代当前已相当成熟,可靠性和成本已得到公认,并已经被广泛采用的传统机电传感系统为目的,所以尽管这些光纤传感器具有如电磁绝缘、高灵敏度、易复用等诸多优势,其市场渗透所面临的困难和挑战是可想而知的。而那些具有前所未有全新功能的光纤传感器则在竞争中占有明显优势,FBG和其它的光栅类传感器就是一个最好的例证。当前的原理性研究热点集中于光纤光栅(FBG和LPG)型传感器和分布式光纤传感系统两大板块。 FBG型光纤传感器自发明之日起,已走过了原理性研究和实验论证的百家争鸣阶段。目前成熟的FBG制作工艺已可形成小批量生产能力,而研究的焦点也转向解决高精度应用,完善解调和复用技术,以及降低成本等几个方向上。另一方面,由于光纤传感器具有将传输与传感媒质合而为一的特性,使得沿布设路径上的光纤可全部成为敏感元件,因此,分布式传感成为光纤传感器与生俱来的优点。 对于光纤传感技术的应用研究主要有以下四大类:光(纤)层析成像技术(OCT,OPT)、智能材料(SMART MATERIALS)、光纤陀螺与惯导系统(IFOG,IMIU )和常规工业工程传感器。另外,由于光纤通信市场需求的带动以及传感技术的特殊要求,新型器件和特种光纤的研究成果也层出不穷。 目前,我国的光纤传感器研究大多数集中于大专院校和科研单位,仍然未完成由实验室向产品化的过渡。其中,比较成熟的技术包括:清华大学光纤传感中心与总后合作研制开发的光纤油罐液位与温度测量系统,已经安装运行数年;北京航空航天大学与总装合作研制的光纤陀螺系统,目前指标为0.2°/hr ;中国计量学院研制的分布式光纤传感系统,已有产品报道;华中理工大学与广东某公司联合研制的强电压、大电流传感系统。此外,在广东、深圳等地,还建立了许多光纤无源器件生产厂

文献综述——光纤振动传感器

中国计量学院 毕业设计(论文)文献综述 学生姓名:徐婷学号: 0800403238 专业:光电信息工程 班级: 08光电2 设计(论文)题目: 光纤振动传感器的设计 指导教师:李裔 二级学院:光学与电子科技学院 2011年 3 月07日

光纤振动传感器的设计 文献综述 一、概述: 光纤传感器的历史可追溯到上世纪70 年代,那时,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。由于其具有常规传感器所无法比拟的优点和广阔的发展前景,很多国家不遗余力地加大对光纤传感器的研究力度,也涌现出许多成果。但它仍存在诸如价格昂贵、技术不够成熟等瓶颈,这使得它在工程上的应用较少。最近涌现的很多成果无论是在价位上还是技术上都有了新的突破。随着新方法、新工艺不断被引入,大量低价位高性能光纤传感器面世,而光纤与其他学科理论相结合,不仅使光纤传感器在信号检测精度、传输减损、信号处理方面有了很大的提高,而且其应用领域也越加广阔。 光纤传感器作为一种优势明显的新型传感器不但在高、精、尖领域得到应用,而且在传统的工业领域被迅速推广,其本身产品也不断推层出新,显示出强大的生命力。可以预见随着制作技术的日益成熟和器件性能的不断提高,不久的将来光纤传感器必将在海洋、化工、土木工程、水利电力等各个领域显示其应用活力。 二、光纤传感器的特点和工作原理: a。光纤结构和种类: 光纤是一种光信号的传输媒介。 光纤的结构:最内层的纤芯是一种截面积很小、质地脆、易断裂的光导纤维,制造材料可以是石英、玻璃或塑料。纤芯的外层由折射率比纤芯小的材料制成。由于纤芯与包层之间存在着折射率的差异,光信号得以通过全反射在纤芯中不断向前传播。光纤的最外层是起保护作用的外套。通常是将多根光纤扎成束并裹以保护层制成多芯光缆。 图一光纤结构 光纤的种类:1)按纤芯和包层的材质:玻璃光纤、塑料光纤。2)按折射率的变化:阶跃型、渐变型(聚焦光纤)。3)按传播模式:单模光纤、多模光纤。 b。光纤传感器的特点 近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程

常用的五类光纤传感器基本原理解析

常用的五类光纤传感器基本原理解析 根据被调制的光波的性质参数不同,这两类光纤传感器都可再分为强度调制光纤传感器、相位调制光纤传感器、频率调制光纤传感器、偏振态调制光纤传感器和波长调制光纤传感器。 1)强度调制型光纤传感器 基本原理是待测物理量引起光纤中传输光光强的变化,通过检测光强的变化实现对待测量的测量。恒定光源发出的强度为I的光注入传感头,在传感头内,光在被测信号的作用下其强度发生了变化,即受到了外场的调制,使得输出光强的包络线与被测信号的形状一样,光电探测器测出的输出电流也作同样的调制,信号处理电路再检测出调制信号,就得到了被测信号。 这类传感器的优点是结构简单、成本低、容易实现,因此开发应用的比较早,现在已经成功的应用在位移、压力、表面粗糙度、加速度、间隙、力、液位、振动、辐射等的测量。强度调制的方式很多,大致可分为反射式强度调制、透射式强度调制、光模式强度调制以及折射率和吸收系数强度调制等等。一般反射式强度调制、透射式强度调制、折射率强度调制称为外调制式,光模式称为内调制式。但是由于原理的限制,它易受光源波动和连接器损耗变化等的影响,因此这种传感器只能用于干扰源较小的场合。 2)相位调制型光纤传感器 基本原理是:在被测能量场的作用下,光纤内的光波的相位发生变化,再用干涉测量技术将相位的变化转换成光强的变化,从而检测到待测的物理量。相位调制型光纤传感器的优点是具有极高的灵敏度,动态测量范围大,同时响应速度也快,其缺点是对光源要求比较高同时对检测系统的精密度要求也比较高,因此成本相应较高。 目前主要的应用领域为:利用光弹效应的声、压力或振动传感器;利用磁致伸缩效应的电流、磁场传感器;利用电致伸缩的电场、电压传感器;利用赛格纳克效应的旋转角速度传感器(光纤陀螺)等。

光纤传感技术

光纤传感器的应用与发展趋势 学生:王超 学号:1049721103105 专业:物理电子学 光在传输过程中,光纤易受到外界环境的影响,如温度、压力等,从而导致传输光的强度、相位、频率、偏振态等光波量发生变化,通过监测这些量的变化可以获得相应的物理量,这就是光纤传感技术。该技术是随着光纤及通信技术的发展而逐步发展起来的一门崭新技术。密集波分复用D W D M 技术、掺铒光纤放大器EDFA 技术和光时分复用OTDR 技术的不断发展成熟,使得光纤传感技术以其在抗电磁干扰、轻巧、灵敏度等方面独一无二的优势,获得了飞速的发展,各种光纤传感器系统层出不穷。 光纤传感器系统的原理 由于光纤不仅作为光波的传播介质,而且光波在光纤中传播时,光波的特征参量( 振幅、相位、偏振、波长等) 会因外界因素(温度、压力、应变、电场、位移等)间接或直接的发生变化,从而可将光纤用作传感元件探测物理量。根据光纤在传感器中的作用,光纤传感器可分为功能型、非功能型、拾光型三大类。 1、功能型光纤传感器中光纤不仅作为导光介质也是敏感元件,光在光纤内受到被测量物理量的调制。它的特点是结构紧凑、灵敏度高,但它须用特殊光纤和先进的检测技术,因此成本高。光纤陀螺即是典型的功能型光纤传感器。 2、非功能型光纤传感器中光纤仅起导光作用,光照到非光纤型敏感元件上受被测量物理量调制。因其无需特殊光纤及特殊技术,易实现、成本低,但灵敏度也相应较低,常用于灵敏度要求不太高的场合。目前的光纤传感器大多是该类型的。 3、拾光型光纤传感器中光纤作为探头,接收由被测对象辐射的光或被其反射、 散射的光。如光纤激光多普勒速度计、辐射式光纤温度传感器等。 光纤传感器的特点 由光纤传感器的原理我们可以很容易理解它有如下几个特点: (1 )光纤具有宽波长范围、低衰减的特性,光源、检测器和光学元件的选择余地大,可以适用于不同的应用场合。

光纤传感器的应用研究

光纤传感器的应用研究 孙义才 2011301510103 电科三班 摘要:光纤传感技术是一门新的科学技术,也是信息社会的一个重要技术基础,在当代高科技中占有十分重要的位置。该技术是测量技术、半导体技术、计算机技术、信息处理技术、微电子学、光学、声学、精密机械、仿生学、材料科学等众多学科相互交叉的综合性高新技术和密集型前沿技术。本课题主要了解光纤导光的基本原理及其在传感技术上应用的物理基础,重点研究光纤传感器敏感的物理量、光纤传感器的基本类型及其相关应用。 关键词:传感器;光纤通信;禁带宽度;光纤传感温度计;光纤传感压强计。 1.序言 光纤传感技术是二十世纪七十年代左右随着光纤通信技术的萌芽而迅速建立起来的,通过以光波这一载体并光纤这一媒质,起到具有感知与信号传输的新型传感技术。作为被测量信号载体的光波和作为光波传播媒质的光纤,具有一系列独特的、其他载体和媒质难以相比的优点。传感技术是近几年热门的应用技术,传感器在朝着灵敏、精确、适应性强、小巧和智慧化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。 现阶段,光纤传感领域在世界中的发展大致分为两大方面:应用开发与相关原理性研究。 2.1光纤传感器的结构原理 以电为基础的传统传感器是一种把测量的状态转变为可测的电信号的装置。它的电源、敏感元件、信号接收和处理系统以及信息传输均用金属导线连接,见图(a)。光纤传感器则是一种把被测量的状态转变为可测的光信号的装置。由光发送器、敏感元件(光纤或非光纤的)、光接收器、信号处理系统以及光纤构成由光发送器发出的光经源光纤引导至敏感元件。这时,光的某一性质受到被测量的调制,已调光经接收光纤耦合到光接收器,使光信号变为电信号,最后经信号处理得到所期待的被测量。 可见,光纤传感器与以电为基础的传统传感器相比较,在测量原理上有本质的差别。传统传感器是以机—电测量为基础,而光纤传感器则以光学测量为基础。

一文深度了解光纤传感器的应用场景

一文深度了解光纤传感器的应用场景 文| 传感器技术(WW_CGQJS)光纤传感器与测量技术是当今传感器技术领域新的发展引应用,其测量用的光纤传感器有很多种类,有很多种工作方式。国内市场上光纤传感器应用主要在以下四种:光纤陀螺、光纤光栅传感器、光纤电流传感器和光纤水听器。下面对这四种产品分别介绍一下。光纤传感器应用种类一、光纤陀螺。 光纤陀螺按原理可分为干涉型、谐振型和布里渊型,这是三代光纤陀螺的代表。第一代干涉型光纤陀螺,目前该项技术已经成熟,适合进行批量生产和商品化;第二代谐振型光纤陀螺,暂时还处于实验室研究向实用化推进的发展阶段;第三代布里渊型,它还处于理论研究阶段。 光纤陀螺结构根据所采用的光学元件有三种实现方法:小型分立元件系统、全光纤系统和集成光学元件系统。目前分立光学元件技术已经基本退出,全光纤系统用在开环低精度、低成本的光纤陀螺中,集成光学器件陀螺由于其工艺简单、总体重复性好、成本低,所以在高精度光纤陀螺很受欢迎,是其主要实现方法。 二、光纤光栅传感器 目前国内外传感器领域的研究热点之一光纤布拉格光栅传感器。传统光纤传感器基本上可分为两种类型:光强型和干

涉型。光强型传感器的缺点在于光源不稳定,而且光纤损耗和探测器容易老化;干涉型传感器由于要求两路干涉光的光强同等,所以需要固定参考点而导致应用不方便。 目前开发的以光纤布拉格光栅为主的光纤光栅传感器可以避免出现上面两种情况,其传感信号为波长调制、复用能力强。在建筑健康检测、冲击检测、形状控制和振动阻尼检测等应用中,光纤光栅传感器是最理想的灵敏元件。光纤光栅传感器在地球动力学、航天器、电力工业和化学传感中有广泛的应用。三、光纤电流传感器 电力工业的迅猛发展带动电力传输系统容量不断增加,运行电压等级也越来越高,电流也越来越大,这样测量起来就非常困难,这就显现出光纤电流传感器的优点了。在电力系统中,传统的用来测量电流的传感器是以电磁感应为基础,这就存在以下缺点:它容易爆炸以至引起灾难性事故;大故障电流会造成铁芯磁饱和;铁芯发生共振效应;频率响应慢;测量精度低;信号易受干扰;体积重量大、价格昂贵等等,已经很难满足新一代数字电力网的发展需要。这个时候光纤电流传感器应运而生。 四、光纤水听器 光纤水听器主要用来测量水下声信号,它通过高灵敏度的光纤相干检测,将水声信号转换为光信号,并通过光纤传至信号处理系统进行识别。与传统水听器相比,光纤水听器具有

光纤传感技术读书笔记

题目光纤传感技术读书笔记学院(系): 专业班级: 学生姓名: 指导教师:

摘要:主要阐述了光纤传感技术的原理、特点及国内外的发展情况,介绍了在 实际测量中的一些具体应用。提出了我国光纤传感技术存在的问题,指出了今后的发展的方向,为光纤传感技术的深入研究提供了有益的参考 关键词:光纤传感技术;测量精度;光纤传感器 1 前言 自1966年高昆博士提出光纤传输的理论,以及1969年日本平板波利公司制出200dB/KM梯度光纤以来,光纤传感技术取得了飞速发展,而且已经形成了独立的光通讯产业形成。由于它独特的优点,决定了可实现某些特殊条件下的测量工作,比常规检测技术具有诸多优势,是传感技术发展的一个主导方向。光纤传感技术代表了新一代传感器的发展趋势。光纤传感器产业已被国内外公认为最具有发展前途的高新技术产业之一,它以技术含量高、渗透能力强、市场前景广等特点为世人所瞩目。 2 光纤与光纤传感器的原理 光纤的结构由纤芯,包层,涂覆层,护套组成。光缆的结构由12×12的光纤阵列,光纤带,纸,聚乙烯内壳,聚烯烃双绞线,聚乙烯外壳,抗应变的钢索组成。而光纤传感器通常由光源、传感光纤、传感元件或调制区、光检测等部分组成。其传光原理是利用了光的全反射原理,将被测参量转换为光信号参数的变化。众所周知,描述光波特征的参量很多(如光强、波长、振幅、相位、偏振态和模式分布等)。这些参量在光纤传输中都可能会受到外界影响而发生改变,特别是温度、压力、加速度、电压、电流、位移、振动、转动、弯曲、应变以及化学量和生物化学量等对光路产生影响时,都会使这些参量发生相应变化。光纤传感器就是根据这些参量随外界因素的变化关系来检测各相位物理量的大小。 从结构上来讲,光纤传感器与电类传感器对比,光纤传感器的调制参量是振幅,相位。而电类传感器是电阻,电容,电感等。光纤传感器的传输信号为光,而电类传感器的传输信号为电。传输介质也有了很大的不同,光纤传感器的传输介质是光纤,光缆,而电类传感器的介质是电线,电缆。由结构的对比可见,光纤传感器与电类传感器是并行互补的一类新型传感器。 从应用上来讲,光纤传感器与传统传感器相比有其独特的优点,即非接触式测量、抗干扰力强、灵敏度高、体积小、重量轻、柔性好,而且测量对象广泛。因此,在传感器行业中,光纤传感器越来越显示出它的优势。它将替代传统的机械接触式传感器及电容非接触式传感器。机械接触式传感器磨损被测表面,这就限制了测量精度。电容非接触式传感器的抗电磁干扰力差,使得其适用范围受到限制。 3 光纤传感器的调制技术以及光信号的解调技术 光纤传感器的调制技术有四种,(1)强制调制,(2)相位调制,(3)偏振态调制,(4)频率调制。 强制解调有1)利用小的线位移或角位移进行强度调制;2)反射式强度调制;

压力传感器文献综述

压力传感器文献综述 摘要:传感器技术是综合多种学科的复合型技术,是一门正在蓬勃发展的现代化传感器技术。本文通过部分文献资料对压力传感器的发展过程、研究现状和发展趋势做一简要介绍。关键词:压力;传感器; 1 压力传感器的发展历程 现代压力传感器以半导体传感器的发明为标志,而半导体传感器的发展可以分为四个阶段(1) 发明阶段(1945 - 1960 年) :这个阶段主要是以1947 年双极性晶体管的发明为标志。此后,半导体材料的这一特性得到较广泛应用。史密斯与1945 发现了硅与锗的压阻效应,即当有外力作用于半导体材料时,其电阻将明显发生变化。依据此原理制成的压力传感器是把应变电阻片粘在金属薄膜上,即将力信号转化为电信号进行测量。此阶段最小尺寸大约为1cm。 (2) 技术发展阶段(1960 - 1970 年) :随着硅扩散技术的发展,技术人员在硅的(001) 或(110) 晶面选择合适的晶向直接把应变电阻扩散在晶面上,然后在背面加工成凹形,形成较薄的硅弹性膜片,称为硅杯。这种形式的硅杯传感器具有体积小、重量轻、灵敏度高、稳定性好、成本低、便于集成化的优点,实现了金属- 硅共晶体,为商业化发展提供了可能。(3) 商业化集成加工阶段(1970 - 1980 年) :在硅杯扩散理论的基础上应用了硅的各向异性的腐蚀技术,扩散硅传感器其加工工艺以硅的各项异性腐蚀技术为主,发展成为可以自动控制硅膜厚度的硅各向异性加工技术,主要有V 形槽法、浓硼自动中止法、阳极氧化法自动中止法和微机控制自动中止法。由于可以在多个表面同时进行腐蚀,数千个硅压力膜可以同时生产,实现了集成化的工厂加工模式,成本进一步降低。(4) 微机械加工阶段(1980 年- 今) :上世纪末出现的纳米技术,使得微机械加工工艺成为可能。通过微机械加工工艺可以由计算机控制加工出结构型的压力传感器,其线度可以控制在微米级范围内。利用这一技术可以加工、蚀刻微米级的沟、条、膜,使得压力传感器进入了微米阶段。 2 压力传感器国内外研究现状 传感器是新技术革命和信息社会的重要技术基础,是现代科技的开路先锋。美、日、英、法、德和独联体等国都把传感器技术列为国家重点开发关键技术之一。美国长期安全和经济繁荣至关重要的22项技术中就有6项与传感器信息处理技术直接相关。关于保护美国武器系统质量优势至关重要的关键技术,其中8项为无源传感器。。正是由于世界各国普遍重视和投入开发,传感器发展十分迅速。目前,我国传感器行业规模较小,应用范围较窄。为此,我们亟须转变观念,将传感器的研发由单一型传感器的研发,转化为高度集成的新型传感器研发。新型传感器的开发和应用已成为现代系统的核心和关键,它将成为21世纪信息产业新的经济增长点。改革开放30年来,我国传感器技术及其产业取得了长足进步,主要表现在:建立了传感技术国家重点实验室、微米/纳米国家重点实验室、国家传感技术工程中心等研究开发基地;MEMS、MOEMS等研究项目列入了国家高新技术发展重点;在“九五”国家重科技攻关项目中,传感器技术研究取得了51个品种86个规格新产品的成绩,初步建立了敏感元件与传感器产业;2007年传感器业总产量达到20.93亿只,品种规格已有近6000种,并已在国民经济各部门和国防建设中得到一定的应用。压力传感器的发展动向主要有以下几个方向: 2.1光纤压力传感器 这是一类研究成果较多的传感器,但投入实际领域的并不是太多。光纤传感器基本原理是将光源发出的光经光纤送入调制区,在调制区内,外界被测参数与进入调制区的光相互作用,使光的强度、频率、相位、偏振等发生变化成为被调制的信号光,再经光纤送入光探测器、

光纤传感器的制作工艺及工程应用研究

光纤传感器的制作工艺及工程应用研究 陈涛 深圳太辰光通信股份有限公司广东深圳518040 摘要:光纤传感器是以光纤为基础制作的新型传感器设备,具有抗电磁干扰能力强、电绝缘性好、耐腐蚀、测量范围广、体积小以及传输容量大等优点,常用于检测位移、温度、偏振、压力等,现代光纤传感器能在高压环境下代替人工完成作业,因此被广泛用于医疗、交通、电力、机械、航空航天等各个领域。如今光纤传感技术的应用推动通信技术的飞速发展,在众多产业有重要的地位。基于此,本文将着重分析探讨光纤传感器的制作工艺及其应用要点。 关键词:光纤传感器;制作;应用 1、光纤传感器基本原理概述 光纤传感器主要分为传感型和传光型等两类,其中传感型的传感器主要是利用被测对象的物理和化学的状态变化来引起光纤传输特性的变化,并通过传光特性来检测光纤中所传输光波的强度、相位等的变化,最终确定被测对象的状态。而传光型的传感器主要是利用被测对象的状态变化,引起光变换器件工作状态的变化,通过利用传光特性来检测光变换器中光纤所传输光波参数的变化,最终确定被测对象的状态。 1)典型的光纤传感器光源有发光二极管和半导体激光器;白炽灯也可用于某些化学传感器。2)光纤包括石英光纤、玻璃光纤和塑料光纤,其中石英光纤和玻璃光纤主要用于红外波段,塑料光纤则主要用于可见光波段;在某些传感器中还需要用专门研制的特殊光纤。3)光纤器件是为了使信号被限制在纤芯范围内传输,或是为了改变光的某些参数使其更适合于测量的部件,典型的光纤器件有光纤耦合器、滤波器、衰减器等,在一些简单的光纤传感器中有时没有光纤器件。4)传感元件是根据被测信号来调制光纤传输光参数的部件,它有时候是光纤本身,如拉曼散射式光纤温度传感器。5)探测器是用来对光信号进行检测的器件,一般包括光电二极管、光电三极管、光电池、光电雪崩二极管、光电倍增管等。6)信号处理单元接收光电探测器输出的电信号,将其还原为被测信号,

光纤传感器的三大要素

光纤传感器的三大要素 光纤传感器的原理: 在如今科学技术飞速发展的社会,光纤传感器的发展技术也是很受重视的,光纤传感器在各行业中的应用也不错,今天小编收集和整理了一些有关于光纤传感器的基本知识,希望大家都能好好的浏览以下的内容。光纤传感器的基本工作原理是将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,再过利用被测量对光的传输特性施加的影响,完成测量。(1)功能型——利用光纤本身的某种敏感特性或功能制成(2)传光型——光纤仅仅起传输光的作用,它在光纤端面或中间加装其它敏感元件感受被测量的变化。光纤传感器的测量原理有两种。(1)物性型光纤传感器原理,物性型光纤传感器是利用光纤对环境变化的敏感性,将输入物理量变换为调制的光信号。其工作原理基于光纤的光调制效应,即光纤在外界环境因素,如温度、压力、电场、磁场等等改变时,其传光特性,如相位与光强,会发生变化的现象。因此,如果能测出通过光纤的光相位、光强变化,就可以知道被测

物理量的变化。这类传感器又被称为敏感元件型或功能型光纤传感器。激光器的点光源光束扩散为平行波,经分光器分为两路,一为基准光路,另一为测量光路。外界参数(温度、压力、振动等)引起光纤长度的变化和相位的光相位变化,从而产生不同数量的干涉条纹,对它的模向移动进行计数,就可测量温度或压等。(2)结构型光纤传感器原理,结构型光纤传感器是由光检测元件(敏感元件)与光纤传输回路及测量电路所组成的测量系统。其中光纤仅作为光的传播媒质,所以又称为传光型或非功能型光纤传感器。 光纤传感器的特点一。灵敏度较高;二。几何形状具有多方面的适应性,可以制成任意形状的光纤传感器;三。可以制造传感各种不同物理信息(声、磁、温度、旋转等)的器件;四。可以用于高压、电气噪声、高温、腐蚀、或其它的恶劣环境;五。而且具有与光纤遥测技术的内在相容性。光纤传感器的优点是与传统的各类传感器相比,光纤传感器用光作为敏感信息的载体,用光纤作为传递敏感信息的媒质,具有光纤及光学测量的特点,有一系列独特的优点。电绝缘性能好,抗电磁干扰能力强,非侵入性,高灵敏度,容易实现对被测信号的远距离监控,耐腐蚀,防爆,光路有可挠曲性,便于与计算机联接。传感器朝着灵敏、精确、适应性强、小

光纤传感器的综述

现代传感器论文 题目:光纤传感器综述 姓名:张艳婷 学院:物理与机电工程学院 系:机电系 专业:精密仪器与机械 年级:2013级 学号:19920131152905 指导教师:吴德会老师 2014 年2月18日

光纤传感器综述 [摘要] 光纤传感器是一种有广泛应用前景的新型传感器。本文对光纤传感器的原理、特点、分类和发展历程进行了详细综述,介绍了光纤温度传感器、光纤陀螺仪这两种典型光纤传感器的应用,指出了这类光纤传感器在应用过程中存在的问题,并提出光纤传感器今后的发展趋势, 为光纤传感器的深入研究提供了有益参考。 [关键词]:光纤传感器原理特点发展历程发展趋势 一、引言 传感器在当代科技领域及实际应用中占有十分重要的地位,各种类型的传感器早已广泛应用于各个学科领域。近年来,传感器朝着灵敏、精巧、适应性强、智能化和网络化方向发展。光纤传感技术是20世纪70年代末新兴的一项技术[1],在全世界成了研究热门,已与光纤通信并驾齐驱。光纤传感器作为传感器家族的一名新成员,由于其优越的性能而备受青睐,其具有体积小、质量轻、抗电磁干扰、防腐蚀、灵敏度高、测量带宽、检测电子设备与传感器可以间隔很远等优点,优良的性能使得光纤传感器具有广泛的应用前景。本文从光纤传感器的基本原理及特点、光纤传感器的发展历程、光纤传感器的分类及应用原理、光纤传感器的应用及存在问题以及光纤传感器的发展趋势五大方面对光纤传感器进行介绍。 二、光纤传感器的基本原理及特点 光纤( Optical Fiber) 是光导纤维的简称,光纤的主要成份为二氧化硅,由折射较高的纤芯、折射率较低的包层及保护层组成。纤芯为直径大约0.1 mm 左右的细玻璃丝,把光封闭在其中并沿轴向进行传播的导波结构。光纤传感器的发现起源于探测光纤外部扰动的实践,在实践中,人们发现当光纤受到外界环境的变化时,会引起光纤内部传输光波参数的变化,而这些变化与外界因素成一定规律,由此发展出光纤传感技术。

光纤传感器的应用及发展

文章编号:10044736(2004)02006304 光纤传感器的应用及发展 杨春曦,胡中功3,戴克中 (武汉化工学院电气信息工程学院,湖北武汉430073) 摘 要:简要介绍了光纤传感器的特点,综述了光纤传感器的发展以及近期国际上光纤传感器的研究和应用情况,最后描述了其前景和主要研究方向. 关键词:光纤传感器;应用;光纤布拉格光栅;温度测量中图分类号:TQ 174.75+9 文献标识码:A 收稿日期:20031013 作者简介:杨春曦(1976),男,贵州铜仁人,硕士研究生.3通讯联系人. 0 引 言 光纤传感器的历史可追溯到上世纪70年代, 那时,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来.1977年,美国海军研究所(N RL )开始执行由查尔斯?M ?戴维斯(Charles M .D avis )博士主持的Fo ss (光纤传感器系统)计划[1],这被认为是光纤传感器问世的日子.从这以后,光纤传感器在世界的许多实验室里出现.由于其具有常规传感器所无法比拟的优点和广阔的发展前景,很多国家不遗余力地加大对光纤传感器的研究力度,也涌现出许多成果[2].但它仍存在诸如价格昂贵、技术不够成熟等瓶颈,这使得它在工程上的应用较少.最近涌现的很多成果无论是在价位上还是技术上都有了新的突破.随着新方法、新工艺不断被引入,大量低价位高性能光纤传感器面世,而光纤与其他学科理论相结合,不仅使光纤传感器在信号检测精度、传输减损、信号处理方面有了很大的提高,而且其应用领域也越加广阔.本文简要地介绍了光纤传感器的特点,并对光纤传感器近期的发展动态进行简要地概述. 1 光纤传感器的特点 光纤传感器由光源、传输光纤、传感元件或调制区、光检测等部分组成.众所周知,描述光波特征的参量很多(如光强、波长、振幅、相位、偏振态和模式分布等),这些参量在光纤传输中都可能会受外界影响而发生改变.如当温度、压力、加速度、电压、电流、位移、振动、转动、弯曲、应变以及化学量和生物化学量等对光路产生影响时,均会使这 些参量发生相应变化.光纤传感器就是根据这些参量随外界因素的变化关系来检测各相应物理量的大小.一般光纤传感器按其作用不同可分为两种类型:传光型和敏感型.而按其检测方法不同主要又可分为两种类型:强度型和相位型.图1是光纤传感器的结构框图 . 图1 光纤传感器的结构框图 F ig .1 Structu ral diagram of fiber op tic sen so r 与传统的传感器相比,光纤传感器具有抗电磁干扰、灵敏度高、耐腐蚀、本质安全及测量对象广泛等特点,而且在一定条件下可任意弯曲,可根据被测对象的情况选择不同的检测方法,再加上它对被测介质影响小,非常有利于在医药卫生等具有复杂环境的领域中应用. 2 光纤传感器在研究和工程中的应 用近况 2.1 光纤传感器的工程应用 光纤的优点和具体学科理论相结合,产生一大批应用范围更广、性能更好、价格相对低廉的各具特色的光纤传感器,在传统领域和新兴领域都得到很好的应用. 2.1.1 光纤传感器在化学和生物学中的应用 当前,在国外研究得比较多的化学和生物光纤传感器主要有光吸收型传感器,荧光型传感器和衰减波形光纤传感器三种. a .光吸收型传感器的工作原理是根据测定被测物对特定波长的光产生吸收以及吸收的强度来确 第26卷第2期 武 汉 化 工 学 院 学 报 V o l .26 N o.22004年6月 J. W uhan In st . Chem. T ech . Jun. 2004

光纤传感器的应用和发展

文章编号:100320794(2004)0820009202 光纤传感器的应用和发展 马天兵,杜 菲 (安徽理工大学,安徽淮南232001) 摘要:主要阐述了光纤传感器的原理、特点及国内外的发展情况,介绍了在实际测量中的一些具体应用。提出了我国光纤传感器存在的问题,指出了今后发展的方向,为光纤传感器的深入研究提供了有益的参考。 关键词:光纤传感器;测量精度;传感技术 中图号:T N253文献标识码:A 1 前言 自20世纪70年代以来,光纤传感器取得了飞速发展。由于它独特的优点,决定了可实现某些特殊条件下的测量工作,比常规检测技术具有诸多优势,是传感技术发展的一个主导方向。光纤传感技术代表了新一代传感器的发展趋势。光纤传感器产业已被国内外公认为最具有发展前途的高新技术产业之一,它以技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人所瞩目。 2 光纤传感器的原理 光纤传感器通常由光源、传输光纤、传感元件或调制区、光检测等部分组成。众所周知,描述光波特征的参量很多(如光强、波长、振幅、相位、偏振态和模式分布等)。这些参量在光纤传输中都可能会受外界影响而发生改变,特别如温度、压力、加速度、电压、电流、位移、振动、转动、弯曲、应变以及化学量和生物化学量等对光路产生影响时,都会使这些参量发生相应变化。光纤传感器就是根据这些参量随外界因素的变化关系来检测各相应物理量的大小。 光纤传感器与传统传感器相比有其独特的优点,即非接触式测量、抗干扰力强、灵敏度高、体积小、重量轻、柔性好,而且测量对象广泛。因此,在传感器行业中,光纤传感器越来越显示出它的优势。它将替代传统的机械接触式传感器及电容非接触式传感器。机械接触式传感器磨损被测表面,这就限制了测量精度。电容非接触式传感器的抗电磁干扰力差,使得其实用范围受到限制。 3 国内外光纤传感器的发展概况 由于光纤传感器应用的广泛性及其广阔的市场,其研究和开发在世界范围内引起了高度的重视,各国家更是竟相研究开发并引起激烈的竞争。 美国是研究光纤传感器起步最早、水平最高的国家,在军事和民用领域的应用方面,其进展都十分迅速。在军事应用方面,研究和开发主要包括:水下探测的光纤传感器、用于航空监测的光纤传感器、光纤陀螺、用于核辐射检测的光纤传感器等。这些研究都分别由美国空军、海军、陆军和国家宇航局(NAS A)的有关部门负责,并得到许多大公司的资助。美国也是最早将光纤传感器用于民用领域的国家。如运用光纤传感器监测电力系统的电流、电压、温度等重要参数,监测桥梁和重要建筑物的应力变化,检测肉类和食品的细菌和病毒等。日本和西欧各国也高度重视并投入大量经费开展光纤传感器的研究与开发。日本在20世纪80年代便制定了“光控系统应用计划”,该计划旨在将光纤传感器用于大型电厂,以解决强电磁干扰和易燃易爆等恶劣环境中的信息测量、传输和生产过程的控制。20世纪90年代,由东芝、日本电气等15家公司和研究机构,研究开发出12种具有一流水平的民用光纤传感器。西欧各国的大型企业和公司也积极参与了光纤传感器的研发和市场竞争,其中包括英国的标准电讯公司、法国的汤姆逊公司和德国的西门子公司等。 我国在20世纪70年代末就开始了光纤传感器的研究,其起步时间与国际相差不远。目前,已有上百个单位在这一领域开展工作,如清华大学、华中理工大学、武汉理工大学、重庆大学、核工业总公司九院、电子工业部1426所等。他们在光纤温度传感器、压力计、流量计、液位计、电流计、位移计等领域进行了大量的研究,取得了上百项科研成果,其中相当数量的研究成果具有很高的实用价值,有的达到世界先进水平。每年发表的论文、申请的专利也不少。但与发达国家相比,我国的研究水平还有不小的差距,主要表现在商品化和产业化方面,大多数品种仍处于实验室研制阶段,不能投入批量生产和工程化应用。 4 光纤传感器的应用 光纤传感器的应用范围很广,几乎涉及国民经济的所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了许多行业多年 ? 9 ?  2004年第8期 煤 矿 机 械

光纤传感器的应用与展望

光纤传感器的应用与展望

光纤传感器的应用与展望 计算机与信息技术 摘要:介绍了光纤传感器的种类及其工作原理,总结了光纤传感技术在农业、医学、军事,及光纤传感器未来的应用与展望。 关键词:光纤传感器农业医学军事应用 背景 近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能;绝缘、无感应的电气性能;耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。在农业、军事、航空领域有着很大的应用。 1.光纤传感器的种类 光纤传感器可以分为两大类:一类是功能型(传感型)传感器; 另一类是非功能型(传光型)传感器。按光在光纤中被调制的原理不同,光纤传感器可分为:强度调制型、相位调制型、偏振态调制型、频率调制型、波长调制型等。迄令为止,光纤传感器能够测定的物理量已达七十多种。 1.1功能型(传感型)传感器 功能型传感器是利用光纤本身的特性把光纤作为敏感元件, 被测量对光纤内传输的光进行调制, 使传输的光的强度、相位、频率或偏振态等特性发生变化, 再通过对被调制过的信号进行解调, 从而得出被测信号。光纤在其中不仅是导光媒质,而且也是敏感元件,光在光纤内受被测量调制,多采用多模光纤。优点:结构紧凑、灵敏度高。缺点:须用特殊光纤,成本高,典型例子:光纤陀螺、光纤水听器等。 1.2非功能型(传光型)传感器 非功能型传感器是利用其它敏感元件感受被测量的变化, 光纤仅作为信息的传输介质,常采用单模光纤。光纤在其中仅起导光作用,光照在光纤型敏感元件上受被测量调制。优点:无需特殊光纤及其他特殊技术;比较容易实现,成本低。缺点:灵敏度较低。 2.光纤传感器的原理 光纤传感器由光源、入射光纤、出射光纤、光调制器、光探测器以及解调制器组成。其基本原理是将光源的光经入射光纤送人调制区,光在调制区内与外界被测参数相互作用,使光的光学性质(如强度、波长、频率、相位、偏正态等)发生变化而成为被调制的信号光,再经出射光纤送入光探测器、解调器而获得被测参数。

光纤传感器技术简介

光纤传感器技术简介 摘要:光纤传感器技术经过二十多年的研发阶段,已经步入了实用阶段。光纤传感器特有的优点以及广泛的种类使其具备了替代传统传感器的能力。通过环境变量对光纤中传输光束强度、相位、偏振、光谱等光学特性的调制,使光纤传感器能够在远距离监控恶劣环境中系统的温度、应力、电流等不同的物理量。光纤在这个过程中同时起到了信号传感和传输的作用。光纤传感技术在工业,生物,工程,智能结构,人居生活等方面都有广阔的应用前景。本文旨在为读者介绍光纤传感器技术和它的一些应用领域。 关键词: 光纤传感器; 调制型光纤传感器; 分布式传感器; 传感器的应用 An Introduction to Fiber Optic Sensor Technology Liu Wj Abstract: The technology of fiber optic sensor has entered the stage of practical application after the past decades’ development. Fiber optic sensors, with their unique advantages and a wide range of types, have the ability to displace traditional sensors. Fiber optic sensor technology offers the possibility of sensing different parameters like strain, temperature, pressure in harsh environment and remote locations. These kinds of sensors modulate some features of the light wave in an optical fiber such an intensity and phase or use optical fiber as a medium for transmitting the measurement information. This paper is an introduction to fiber optic sensor technology and some of the applications that make this branch of optic technology, which is still in its early infancy, an interesting field. Key words: Fiber optic sensors; modulation based fiber optic sensors; distributed sensors; sensor applications 0引言 光电子学和光纤通信的进步带来了许多新的产业的革命,光纤不仅可以作为一种传输介质,同时也可以用来设计传感系统。利用光纤作为传感元件,或者通过光纤来和传感元件联系的技术都包含在光纤传感器技术的范畴内,光纤传感器技术现在已经是光纤技术中的一个重要分支。光纤质量轻、体积小、电绝缘、耐高温、多参量测量、抗电磁干扰能力强。同时光纤具有传光特性,无需其他介质就能把待测量值与光纤内光特性变化联系起来,集信息传感和传输与一体,容易组成光纤传感网络。这些都使它拥有了其它电子传感器件不具备的优势。

相关主题
文本预览
相关文档 最新文档