当前位置:文档之家› 大型液体火箭发动机喷管数字化铣槽加工系统

大型液体火箭发动机喷管数字化铣槽加工系统

大型液体火箭发动机喷管数字化铣槽加工系统
大型液体火箭发动机喷管数字化铣槽加工系统

航空发动机隐身性之尾喷管技术分析

航空发动机隐身性之尾喷管技术分析 邱朝 (飞行器动力工程西安航空学院阎良10021) 摘要:随着航空科技的不断发展和未来战场的需求,对于飞机的各种性能也要求的越来越高,本文主要针对于航空发动机隐身方面的技术分析,通过对比国内外航空发动机隐身的原理和方法,从而对未来航空发动机隐身技术发展的方向做出了一个准确的推测。 Analysis of stealthy technology for aeroengine and exhuast nozzle Abstract:company with aero-technology constantly congress and fultural battlefield.It’s advanced require for a kind of airplane’s performance.The acticle mainly point the aspect in which stealthy technology analysis of aeroengine.Passed by comparing with home and abroad aeroengine stealthy priciple and method.Thus make a accurate prediction about aeroengine stealthy technology direction of development. 前言: 飞机隐身技术是指以减小飞机的电、光、声等可探测特征,来提高其突防和生存能力的一种技术。美国第一批采用隐身技术的B-1B战略轰炸机与老式B_52相比,速度提高两倍,载弹量增加5000,但其雷达反射面积仅为其100,不到1平方米。而随后研制的B-2轰炸机,其探测特性只有百万分之一的数量级,在雷达光屏上的反映,只相当于一个飞行中的蜂鸟,因而具有很强的突防、作战和生存能力。发展发动机隐身技术是实现飞机隐身的重要一环,其内容函盖减小发动机可观察部件的探测反射特征、降噪和红外抑制技术,而对于尾喷管的改造则能很大程度上改善整体发动机的隐身性能。 1尾喷管的作用和类型 在涡轮风扇发动机上,喷管的主要作用是使发动机排出的燃气继续膨胀,

液体火箭发动机故障检测与诊断技术综述——张惠军

第 30 卷 第 5 期 火 箭 推 进 Vol.30,№.5 2004年10月 JOURNAL OF ROCKET PROPULSION Oct.2004  收稿日期:2004-05-20;修回日期:2004-06-25。 作者简介:张惠军(1971—),男,工程师,研究领域为姿控发动机试验测量技术。 液体火箭发动机故障检测与诊断技术综述 张惠军 (西安航天动力试验技术研究所,陕西 西安 710100) 摘 要:对几种主要的液体火箭发动机故障检测与诊断技术的研究应用现状作了阐述,对国内外的有效经验作了简单介绍,提出了有待解决的问题。 关键词:液体火箭发动机;故障检测;故障诊断 中图分类号:V434 文献标识码:A 文章编号:(2004)05-0040-06  Study on Liquid Rocket Engine Fault Detection and Diagnostic Technology Zhang Huijun (Xi’an Aerospace Propulsion Test Technique Institute, Xi’an 710100, China ) Abstract :Application of liquid rocket engine fault detection and diagnostic methods are summarized and presented. Some useful domestic and foreign experiences are briefly introduced. Questions are given for future study. Key words :liquid rocket engine; fault detection; fault diagnosis 1 引言 液体火箭发动机故障包括试验和飞行中的一切非正常状态(包括性能下降与失效)。由于发动机是火箭的动力核心,如果发生故障就有可能造成巨大的人员和财产损失,所以对发动机的状态进行监测,及时准确地发现异常征兆,不仅可以采取紧急补救措施减少损失,还可以为改进设计和生产工艺、合理选择材料、制定合理的操作规程积累有益的经验。 液体火箭发动机是复杂的大系统,其故障的表现也呈现复杂性,这种复杂性体现为环境干扰的多样性,故障特征的多样性,故障的多样性以及内部的多耦合表现出的强非线性,这给液体火箭发动机故障检测与诊断带来很大困难,但电子信息技术、信号分析处理技术、人工智能技术、非线性理论等相关学科的发展为解决困难带来了突破。 近年来,液体火箭发动机的检测与诊断方法和技术的研究在国内外逐渐得到重视并取得了重要的进展,主要体现在以下几方面:基于信号分析的方法,基于模型的方法,基于人工智能的方法,

层板发汗冷却在液体火箭发动机中的应用与发展综述

第33卷第6期 2007年12月 火箭推进 JOURNALOFROCKETPROPULSION Vol.33,№.6Dec.2007 收稿日期:2006-10-30;修回日期:2007-10-18。基金项目:国家自然科学基金(50276067)。作者简介:张峰(1980—),男,博士研究生,研究领域为航天器及其动力系统热分析与热控制。 层板发汗冷却在液体火箭发动机中的 应用与发展综述 张峰,刘伟强 (国防科技大学航天与材料工程学院,湖南,长沙410073) 摘要:较系统地介绍了应用于液体火箭发动机推力室冷却的层板技术,指出了层板发 汗冷却的技术优势。介绍了一内壁全部由层板构成的液体火箭发动机推力室结构及其层板发汗冷却单元的设计和加工工艺问题。总结了国内外关于层板发汗在火箭推力室冷却方面的研究进展,并简要论述了其应用前景。 关键词:层板;发汗冷却;液体火箭发动机;推力室中图分类号:V434 文献标识码:A 文章编号: (2007)06-0043-06 Applicationanddevelopmentofplatelettranspiration coolingtechnologyinLRE ZhangFeng,LiuWeiqiang (Inst.ofAerospaceandMaterialEngineering,NationalUniv.ofDefenseTechnology,Changsha410073,China) Abstract:Platelettechnologyanditsadvantagesareintroducedindetail.Athrustchamberstructurewithwholeinnerwallconsistingofplateletsanditsmanufactureprocessarepresented.ProgressesinplatelettechnologyapplicationstoLRE'sthrustchamberbothindomesticandabroadaresummarized.Itsfutureapplicationprospectisdiscussed. Keywords:platelet;transpirationcooling;LRE;thrustchamber 1引言 上世纪六十年代,美国空军火箭推进实验室(AirForceRocketPropulsionLaboratory)在研究 高压火箭燃烧室时,Kuntz等人设计并制成了用 多个表面刻有冷却剂通道的薄板构成的发汗冷却推力室,如图1[1]所示。到目前为止,已经出现了数百种层板热控制装置。该冷却方式有降低冷却系统压降,减轻涡轮泵负担,所用冷却剂量较小

火箭发动机发汗冷却技术文献综述

中图分类号:V434 文献综述 火箭发动机发汗冷却技术Transpiration cooling technologyin rocket motor 学科专业: 航空宇航推进理论与工程

航天防热技术是保证航天器在上升段和再入段的外部加热环境下不至于发生过热和烧毁的一项关键技术,同时也是保证导弹在再入气动加热环境下正常工作和保证火箭发动机在严重的内部加热环境下正常工作的一项关键技术。防热技术的目的是设计吸收或耗散气动加热,通过采用各种防热结构和材料实现。 随着航空航天技术的发展,对所需材料——尤其高温工作部件的材料的各种性能的要求越来越高,在航天领域有些材料的工作温度远远超过材料的熔点,火箭发动机内的燃气温度高达3000~4800 K,喷管出口处的燃气流马赫数最高可达6 Ma以上,这样的高温燃气将会产生巨大的热流并传向发动机燃烧室壁面和喷管壁面,若不采取有效的发动机热防护措施,将会造成发动机结构的破坏,要求其保持较好的气动外形以及重要性能指标仍然保持在一定的水平,常规的材料不能满足要求;为此除研制新型高温特殊材料外,从20世纪60年代初对材料采用相应冷却技术进行了研究,以提高材料的使用温度,从而增加推重比和推进效率,使推进系统和燃烧室承受更高的压力和温度,这就需要在所能接受的极限温度范围内采用更加可靠有效的冷却技术来保持材料的可靠性和完整性。防热技术包括烧蚀防热、辐射防热、热沉防热、隔热、发汗冷却和主动冷却等多种防热方式。如图1所示,左中右分别是辐射冷却、烧蚀冷却和再生冷却的原理图。本文,我们主要介绍发汗冷却。发汗冷却技术是将要在液体火箭发动机中得到了广泛应用的一种行之有效的热防护措施[1]。 图1辐射冷却、烧蚀冷却和再生冷却原理图

液体火箭发动机再生冷却 (北航宇航学院火箭发动机热防护作业)

液体火箭发动机再生冷却文献综述报告 (火箭发动机热防护作业)

一、再生冷却简史[1] 再生冷却的概念最先苏联人齐奥尔科夫斯基提出来。 齐奥尔科夫斯基的学生格卢什科为液体火箭发动机作了大量的理论与实验研究,并于1930—1931年研制了苏联第一台液体火箭发动机OPM-1,采用四氧化二氮和甲苯,以及液氧煤油推进。采用再生冷却系统。 二、再生冷却的一般涵义[2] 再生冷却是在液体火箭发动机上通用的一种冷却方法。它利用推进剂中的一种组分或者可能是两种组分,在喷入燃烧室之前先通过推力室上的通道进行冷却。 再生冷却的优点是:没有性能损失(被冷却剂吸收的热能返回到喷注器),壁的型面基本上不随时间变化,其持续工作时间没有限制,而且结构较轻。 其缺点是:对绝大部分冷却剂使节流受到限制,对一些冷却剂(如肼)降低了可靠性,在高热流下需要高的压降,推力量级,混合比或喷管面积比可能受到最大容许冷却剂温度的限制。 三、再生冷却的计算模型 1、总论 再生冷却推力室的传热可以通过隔着多层隔层的二股运动着的流体间的传 热来描述。如图1所示。 由燃气通过包括 金属室壁在内的隔层 到冷却液的一般稳态 传热关系式可以用下 式表示: 图1 冷却系统的温度分布简图

()()gc aw wg wg wc k h T T q T T t ?? -==- ??? (1) ()()h T T h T T aw wg wc co gc c -=- (2) ()()h T T H T T aw wg aw co gc -=- (3) 111 H t h k h gc c = ++ (4) 式中 q ----热流,() 2Btu in s gc h ----燃气侧总热导率,() 2 Btu in s F ,没有沉积物时,gc g h h = c h ------冷却剂侧传热系数,() 2Btu in s F k ------室壁的热导率,() 2Btu in s F t ------室壁厚度 in aw T -----燃气绝热壁温,R wg T -----燃气侧壁温, R wc T ----冷却剂侧壁温, R co T -----冷却剂体积温度,R H -----总传热系数,() 2Btu in s F 冷却剂从冷却通道进入到离开,其体积温度增高,它是所吸收热量和冷却剂流量的函数。为保持室壁温度低于可能发生熔化或应力破坏的温度,使这些参数达到适当的平衡,是设计再生冷却推力室的主要要求之一。通常用于推力室的金属材料,如不锈钢、镍、铜-银-锆合金(NARLOY-Z )和镍基超耐热合金,其燃气侧壁温限制在900—1800 F 的范围内。燃气温度和壁温之间的差值在2500--6000F

液体火箭发动机工作原理

液体火箭发动机工作原理: 液体火箭发动机是指液体推进剂的化学火箭发动机。 常用的液体氧化剂有液态氧、四氧化二氮等,燃烧剂由液氢、偏二甲肼、煤油等。氧化剂和燃烧剂必须储存在不同的储箱中。 液体火箭发动机一般由推力室、推进剂供应系统、发动机控制系统组成。 推力室是将液体推进剂的化学能转变成推进力的重要组件。它由推进剂喷嘴、燃烧室、喷管组件等组成,见图。推进剂通过喷注器注入燃烧室,经雾化,蒸发,混合和燃烧等过成生成燃烧产物,以高速(2500一5000米/秒)从喷管中冲出而产生推力。燃烧室内压力可达200大气压(约200MPa)、温度300℃~4000℃,故需要冷却。 推进剂供应系统的功用是按要求的流量和压力向燃烧室输送推进剂。按输送方式不同,有挤压式(气压式)和泵压式两类供应系统。挤压式供应系统是利用高压气体经减压器减压后(氧化剂、燃烧剂的流量是靠减压器调定的压力控制)进入氧化剂、燃烧剂贮箱,将其分别挤压到燃烧室中。挤压式供应系统只用于小推力发动机。大推力发动机则用泵压式供应系统,这种系统是用液压泵输送推进剂。 发动机控制系统的功用是对发动机的工作程序和工作参数进行调节和控制。工作程序包括发动机起动、工作、关机三个阶段,这一过程是按预定程序自动进行的。工作参数主要指推力大小、推进剂的混合比。 液体火箭发动机的优点是比冲高(250~500秒),推力范围大(单台推力在1克力~700吨力)、能反复起动、能控制推力大小、工作时间较长等。液体火箭发动机主要用作航天器发射、姿态修正与控制、轨道转移等。 液体火箭发动机是航天发射的主流,构造上比固体发动机复杂得多,主要由点火装置,燃烧室,喷管,燃料输送装置组成。点火装置一般是火药点火器,对于需要多次启动的上面级发动机,则需要多个火药点火器,如美国战神火箭的J-2X发动机,就具备2个火药点火器实现2次启动功能,我国的YF-73和YF-75也都安装了2个火药点火器,具备了2次启动能力;燃烧室是液体燃料和氧化剂燃烧膨胀的地方,为了获得更高的比冲,一般具有很高的压力,即使是普通的发动机,通常也有数十个大气压之高的压力,苏联的RD-180等发动机,燃烧室压力更是高达250多个大气压。高压下的燃烧比之常压下更为复杂,同时随着燃烧室体积的增加,燃烧不稳定情况越来越严重,解决起来也更加麻烦。目前根本没有可靠的数学模型分析燃烧稳定性问题,主要靠大量的发动机燃烧试验来解决。美国的土星5号火箭的F-1发动机,进行了高达20万秒的地面试车台燃烧测试,苏联能源号火箭的RD-170发动机,也进行了10多万秒的地面试车台燃烧测试,在反复的燃烧测试中不断优化发动机各项参数,

航天发动机尾喷管材料的简介

航天发动机尾喷管材料的简介 ————高温合金 摘要:随着航天航空的迅速发展,对耐高温材料有了更高的要求,但是随着高温材料的发展,它们的加工问题也越来越严峻,急需相应工艺的发展,对高温材料的有效加工必将是高温材料今后有效利用的关键。 关键词:加工工艺,高温合金,切削,应用,发展。 一、零件的材料 火箭发动机喷管是用于火箭发动机的一种(通常是渐缩渐阔喷管)推力喷管。它用于膨胀并加速由燃烧室燃烧推进产生的燃气,使之达到超高音速。 喷嘴的外形:钟罩形或锥形。在一个高膨胀比的渐缩渐阔喷嘴中,燃烧室产生的高温气体通过一个开孔(喷口)排出。如果给喷嘴提供足够高的压力(高于围压的2.5至3倍),就会形成喷嘴阻流和超音速射流,大部分热能转化为动能,由此增加排气的速度。在海平面,发动机排气速度达到音速的十倍并不少见。一部分火箭推力来自燃烧室内压力的不平衡,但主要还是来自挤压喷嘴内壁的压力。排出气体膨胀(绝热)时对内壁的压力使火箭朝向一个方向运动,而尾气向相反的方向。 当火箭发动机运转以后,从燃烧室中喷出极高的温度与压力的气体,需要经过尾喷管对高温高压气体调整方向,从而使火箭达到超高音速的要求,所以鉴于如此高温,高压的恶劣环境,则对尾喷管的材料提出很高的要求,这种材料不但需要有极好的耐高温性,需要经受住2000摄氏度到3500摄氏度的高温,还需要有极好的耐冲击性,灼热表面的超高速加热的热冲击,还有高热引起的热梯度应力,有较好的刚度,耐氧化性,耐热疲劳性。 在如此恶劣的工作环境下,我们需要一种满足以上要求的材料,儿高温合金的出现满足了这个要求。 二、高温合金的分类、性能等 760℃高温材料变形高温合金 变形高温合金是指可以进行热、冷变形加工,工作温度范围-253~1320℃,具有良好的力学性能和综合的强、韧性指标,具有较高的抗氧化、抗腐蚀性能的一类合金。按其热处理工艺可分为固溶强化型合金和时效强化型合金。GH后第一位数字表示分类号即1、固溶强化型铁基合金 2、时效硬化型铁基合金 3、固溶强化型镍基合金 4、钴基合金 GH后,二,三,四位数字表示顺序号。

液体火箭发动机综述

液体火箭发动机发展现状及发展趋势概述 摘要:介绍了液体火箭发动机的优缺点、工作原理,总结了大推力和小推力发动机的国内外发展现状,提出了未来液体火箭发动机的发展方向。 关键词:液体火箭发动机,推进系统,发展现状,发展趋势 1 引言 液体火箭发动机作为目前最为成熟的推进系统之一,具有诸多独特的优势,仍然是各国努力发展的主力推进系统,并且在大推力和小推力方面都取得了诸多成果,本文将美国、俄罗斯、欧洲、日本、中国等国家的发展状况进行了综述,目前美国仍然在大多数推进系统方面领先世界,俄罗斯则继续保持液体推进特别是大推力液体火箭方面的领先地位,欧盟和日本在追赶美国的技术水平,以中国为代表的第三世界国家也开始在液体推进领域同传统强国展开竞争。 2 定义与分类 液体火箭发动机(Liquid Rocket Motor)是指液体推进剂火箭发动机,即使用液态化学物质作为能源和工质的化学火箭推进系统。按照推进剂供应系统,可以分为挤压式和泵压式;按照推进剂组元可分为单组元、双组元、三组元;按照功能分,一类用于航天运载器和弹道导弹,包括主发动机、助推发动机、芯级发动机、上面级发动机、游动发动机等,另一类用于航天器主推进和辅助推进,包括远地点发动机、轨道机动发动机、姿态控制和轨道控制发动机等。 3 工作原理 液体火箭发动机工作时(以双组元泵压式液体火箭发动机为例),推进剂和燃料分别从储箱中被挤出,经由推进剂输送管道进入推力室。推进剂通过推力室头部喷注器混合雾化,形成细小液滴,被燃烧室中的火焰加热气化并剧烈燃烧,在燃烧室中变成高温高压燃气。燃气经过喷管被加速成超声速气流向后喷出,产生作用在发动机上的推力,推动火箭前进。

尾喷管

尾喷管 为了获得大的推力,排气必须具有很高的动能,这意味着具有很高的排气速度。喷管前后的落压比控制膨胀过程。当出口压力等于外界压力时,对于给定的发动机来说,就获得了最大得的推力。 尾喷管的功能可以概括如下: 2以最下小的总压损失把气流加速到很高的速度; 2使出口压力尽可能接近外界大气压力; 2允许加力燃烧室工作不影响主发动机工作,这就需要采用可调面积喷管; 2如果需要,可使涡扇发动机的核心气流与外涵气流混合; 2如果需要,可使推力反向和/或转向; 2如果需要,可抑制喷气噪声和红外辐射。 各种不同类型的尾喷管归结为两大类:一类为固定喷管,包括简单收敛喷管和高涵道比分开排气喷管;另一类为可调面积喷管,包括引射喷管、收敛-扩张喷管、塞式喷管以及各种不同类型的非轴对称喷管。 尾喷管类型的选择主要是根据发动机、飞机和任务的综合要求以及适当的权衡分析决定。 对尾喷管的研究主要集中在喷管的内特性和气动载荷两方面。在喷管的内特性方面所考虑的是喷管的推力系数和流量系数随喷管的流动损失、漏气量、冷却空气损失和气流分离损失的变化,供发动机性能计算用。在气动载荷研究方面,要估算作用在主喷管、副喷管调节和外鱼鳞片上的气动载荷,用于零件结构强度设计和作动系统设计。 在喷气发动机发展的初期,飞机大多是亚音速或低超音速的,此时一般采用固定的简单收敛喷管。70年代,高涵道比涡扇发动机采用了分开排气喷管。在早期的超音超音速飞机的涡喷发动机上采用引射喷管,允许不同流量的外部空气进入喷管,用以冷却,又使进气道与发动机流量匹配更好,底部阻力减小.随着飞行速度的提高,涡扇发动机装备了加力燃烧室,喷管落压比增大,研制出喉部和出口面积都可调的收敛-扩张喷管。这种喷管保证了加力燃烧室工作不影响主发动机工作,且在宽广的飞行范围内保持发动机性能最佳。普2惠公司F100加力式涡扇发动机上采用的平衡梁式收敛-扩张喷管是这类喷管的代表,它的主喷管调节鱼鳞片上的转轴由前端移到中部,在调节过程中可始终利用作用在鱼鳞片上

超燃冲压发动机原理与技术分析

本科毕业论文(设计) 题目:超燃冲压发动机原理与技术分析 学院:机电工程学院 专业:热能与动力工程系2010级热能2班 姓名:王俊 指导教师:刘世俭 2014年 5 月28 日

超燃冲压发动机原理与技术分析 The Principle and Technical Analysis of Scramjet Engine

摘要 通过对超燃冲压发动机的基本原理与特点的介绍,比较了世界主要国家在超燃冲压理论研究与工程实际中的一些成果;结合高超音速空气动力学以及流体力学的一些基本原理,阐述进气道、隔离段、燃烧室、尾喷管的设计并进行性能分析;列举目前投入应用的几种主流构型及其选择依据;分析主要参数对超燃冲压发动机的影响;最后综合阐述超燃冲压发动机的发展趋势以及用途。 关键词:超燃冲压发动机性能分析一体化设计热循环分析

Abstract: Introduction the basic principle and features of scramjet engine, comparison of major powerful countries’ theoretical researches and practical achievements on this project. Expound and analyses the design and property programmes of air inlet、isolator、combustion chamber、tailpipe nozzle with theories of hypersonic aerodynamics and hydrodynamics; Its application in several mainstream configuration and its choice; analysis of the effect of main parameters on the scramjet. Finally, the developing trend of integrated scramjet paper and uses Key words: scramjet engine property analysis integrating design Thermal cycle analys

液体火箭发动机试验台贮箱增压系统数值仿真

第22卷第1期2007年1月 航空动力学报 Journal of Aerospace Power Vol.22No.1 Jan.2007 文章编号:1000-8055(2007)01-0096-06 液体火箭发动机试验台贮箱 增压系统数值仿真 陈 阳1 ,张振鹏1 ,瞿 骞2 ,朱子环 2 (1.北京航空航天大学宇航学院,北京100083; 2.北京航天试验技术研究所,北京100074) 摘 要:在不考虑传热传质的情况下建立了一种简化的贮箱模型,并采用液体火箭发动机试验台气路系统通用模块化建模与仿真软件对容腔放气过程和某试验台贮箱增压系统在发动机点火工作段的增压过程进行了仿真,计算结果与分析解和试验结果获得了较好的一致,验证了软件的有效性和通用性.对两个系统的建模过程表明软件所采用的模块化建模与仿真方法适用于对复杂管网的建模,在液体火箭发动机系统仿真上具有较好的应用前景.对贮箱增压系统的仿真表明,合理设计P ID 控制参数并根据经验预置与额定流量相近的调节阀初始开度,对于提高增压系统起动过程的平稳性有利. 关 键 词:航空、航天推进系统;液体火箭发动机;试验台贮箱增压系统;数值仿真;P ID 控制中图分类号:V 434 文献标识码:A 收稿日期:2005-12-12;修订日期:2006-05-09 作者简介:陈阳(1979-),男,河南漯河人,北京航空航天大学宇航学院博士生,主要从事液体火箭发动机系统动力学与仿真研究. Numerical simulation for tank pressurization system of LRE test -bed CHEN Yang 1,ZH ANG Zhen -peng 1,QU Qian 2,ZHU Z-i huan 2 ( 1.School of Astr onautics, Beijing U niversity of A ero nautics and Astro nautics,Beijing 100083,China;2.Beijing Institute of Aerospace Testing Technolog y,Beijing 100074,China )Abstract:A simple mo del of propellant tank w as established by neg lecting m ass and heat transfer betw een the pr opellant and pressurant.T hen by employing the modular ization modeling and sim ulation softw are for liquid r ocket engine(LRE)test -bed g as sy stem(LRET-BMM SS -GS),blow dow n of a tank and pressurization of a LO 2tank pr essurizatio n sy stem during engine firing w ere simulated.T he sim ulation r esults ar e in g ood ag reem ent with the analytical solution and test data.Accordingly ,the softw are is validated to be effective and versatile.T he prog ress of m odeling tw o sy stems show s that the m ethod of M M S is suitable for modeling complicated LRE system and can be used to sim ulate all kinds of w orking pro cesses of LRE sy stem.T he simulatio n o f LO 2tank pressurization system indicates that PID control parameters should be set reasonably and the initial opening of pneumatic dia -phragm co ntrol valve should be adjusted to nom inal pressurant mass rate,w hich is effective to improv e stability of pr essurizatio n starting transient. Key words:aerospace propulsion system ;liquid rocket eng ine(LRE);tank pressur ization system of LRE test -bed;num erical sim ulation;PID co ntro l 液体火箭发动机试验台作为液体火箭发动机热试车与热检验的试验检测平台,为满足液体火 箭发动机的各种试验要求,需要在试验台设计阶段、安装调试阶段、热试车阶段开展全面的研究.

航空发动机构造

航空发动机构造 课堂测试-1 1.航空发动机的研究和发展工作具有那些特点? 技术难度大;周期长;费用高 2.简述航空燃气涡轮发动机的作用。 是现代飞机与直升机的主要动力(少数轻型、小型飞机和直升机采用航空活塞式发动机),为飞机提供推进力,为直升机提供转动旋翼的功率。 3.航空燃气涡轮发动机包括哪几类?民航发动机主要采用哪种? 涡喷、涡桨、涡扇、涡轴、桨扇、齿扇等;涡扇。 4.高涵道比民用涡扇发动机的涵道比范围是多少? 5-12 课堂测试-2 1.发动机吊舱包括(进气道)、(整流罩)和(尾喷管)等。 2.对于民用飞机来说,动力装置的安装位置应该考虑到以下几点: 不影响进气道的效率;排气远离机身;容易接近,便于维护 3.在现代民用飞机上,发动机在飞机上的安装布局常见的有(翼下安装)、(翼下吊装和垂直尾翼安装)和(机身尾部安装)。 4.发动机安装节分两种:(主安装节)与(辅助安装节)。前者传递轴向力、径向力、扭矩,后者传递径向力、扭矩。一般主安装节装于(温度较低,靠近转子止推轴承处的压气机或风扇机匣上)上,辅助安装节装于(涡轮或喷管的外壳上)上。 5.涡轮喷气发动机的进气道可分为(亚音速)进气道和(超音速)进气道两大类。我国民航主要使用亚音速飞机,其发动机的进气道大多采用(亚音速)进气道。 6.通常在涡轮喷气和涡轮风扇发动机上采用(热空气)防冰的方式,在涡轮螺旋桨发动机上采用(电加热)防冰,或是两种结合的方式。 7.对于涡轮螺旋桨发动机来说,需要防冰的部位有(进气道)、(桨叶)和(进气锥)。 8.为了对吊舱进行通风冷却,一般把吊舱分成不同区域,各区之间靠(防火墙)隔开,以阻挡火焰的传播。9.发动机防火系统包括(火情探测)、(火情警告)和(灭火)三部分。 课堂测试-3 1.现代涡轮喷气发动机由(进气道)、(压气机)、(燃烧室)、(涡轮)、(尾喷管)五大部件和附件传动装置 与附属系统所组成。 2.发动机工作时,在所有的零部件上都作用着各种负荷。根据这些负荷的性质可以分为(气动)、(质量) 和(温度)三种。 3.航空燃气涡轮发动机主轴承均采用(滚动)轴承,其中(滚棒轴承)仅承受径向载荷,(滚珠轴承)可承 受径向载荷与轴向载荷。 4.转子上的止推支点除承受转子的(轴向)负荷、(径向)负荷外,还决定了转子相对于机匣的(轴向)位 置。因此每个转子有(一)个止推支点,一般置于温度较(低)的地方。 5.压气机转子轴和涡轮转子轴由(联轴器)连接形成发动机转子,分为(柔性联轴器)和(刚性联轴器)。 其中(柔性联轴器)允许涡轮转子相对压气机转子轴线有一定的偏斜角。 6.结合图3.9,简述发动机的减荷措施有哪些?这些措施是否会减少发动机推力? 减荷措施:

液体火箭发动机再生冷却-(北航宇航学院火箭发动机热防护作业)

液体火箭发动机再生冷却-(北航宇航学院火箭发动机热防护作业)

液体火箭发动机再生冷却文献综述报告 (火箭发动机热防护作业)

一、再生冷却简史[1] 再生冷却的概念最先苏联人齐奥尔科夫斯基提出来。 齐奥尔科夫斯基的学生格卢什科为液体火箭发动机作了大量的理论与实验研究,并于1930—1931年研制了苏联第一台液体火箭发动机OPM-1,采用四氧化二氮和甲苯,以及液氧煤油推进。采用再生冷却系统。 二、再生冷却的一般涵义[2] 再生冷却是在液体火箭发动机上通用的一种冷却方法。它利用推进剂中的一种组分或者可能是两种组分,在喷入燃烧室之前先通过推力室上的通道进行冷却。 再生冷却的优点是:没有性能损失(被冷却剂吸收的热能返回到喷注器),壁的型面基本上不随时间变化,其持续工作时间没有限制,而且结构较轻。 其缺点是:对绝大部分冷却剂使节流受到限制,对一些冷却剂(如肼)降低了可靠性,在高热流下需要高的压降,推力量级,混合比或喷管面积比可能受到最大容许冷却剂温度的限制。 三、再生冷却的计算模型 1、总论 再生冷却推力室 的传热可以通过隔着 多层隔层的二股运动 着的流体间的传热来 描述。如图1所示。 由燃气通过包括 金属室壁在内的隔层 到冷却液的一般稳态 传热关系式可以用下 式表示: 图 1 冷却系统的温

()()gc aw wg wg wc k h T T q T T t ??-==- ??? (1) ()()h T T h T T aw wg wc co gc c -=- (2) () ()h T T H T T aw wg aw co gc -=- (3) 111H t h k h gc c =++ (4) 式中 q ----热流,()2Btu in s g gc h ----燃气侧总热导率,()2Btu in s F o g g ,没有沉积物时,gc g h h = c h ------冷却剂侧传热系数,()2Btu in s F o g g k ------室壁的热导率,()2Btu in s F o g g t ------室壁厚度 in aw T -----燃气绝热壁温, R o wg T -----燃气侧壁温,R o wc T ----冷却剂侧壁温,R o co T -----冷却剂体积温度, R o H -----总传热系数,()2Btu in s F o g g 冷却剂从冷却通道进入到离开,其体积温度增高,它是所吸收热量和冷却剂流量的函数。为保持室壁温度低于可能发生熔化或应力破坏的温度,使这些参数达到适当的平衡,是设计再生冷却推力室的主要要求之一。通常用于推力室的

航空发动机尾喷管

航空发动机尾喷管 中文名称:尾喷管 英文名称:nozzle 相关技术:传统的收敛/扩张喷管;新型矢量喷管;操纵机构设计 分类:发动机;尾喷管; 定义与概念: 尾喷管又称排气喷管、喷管或推力喷管。它是喷气发动机中使高压燃气(或空气)膨胀加速并以高速排出发动机的部件。 国外概况: 为了获得大的推力,排气必须具有很高的动能,这意味着具有很高的排气速度。喷管前后的落压比控制膨胀过程。当出口压力等于外界压力时,对于给定的发动机来说,就获得了最大得的推力。 尾喷管的功能可以概括如下: 2以最下小的总压损失把气流加速到很高的速度; 2使出口压力尽可能接近外界大气压力; 2允许加力燃烧室工作不影响主发动机工作,这就需要采用可调面积喷管; 2如果需要,可使涡扇发动机的核心气流与外涵气流混合; 2如果需要,可使推力反向和/或转向; 2如果需要,可抑制喷气噪声和红外辐射。 各种不同类型的尾喷管归结为两大类:一类为固定喷管,包括简单收敛喷管和高涵道比分开排气喷管;另一类为可调面积喷管,包括引射喷管、收敛-扩张喷管、塞式喷管以及各种不同类型的非轴对称喷管。 尾喷管类型的选择主要是根据发动机、飞机和任务的综合要求以及适当的权衡分析决定。 对尾喷管的研究主要集中在喷管的内特性和气动载荷两方面。在喷管的内特性方面所考虑的是喷管的推力系数和流量系数随喷管的流动损失、漏气量、冷却空气损失和气流分离损失的 变化,供发动机性能计算用。在气动载荷研究方面,要估算作用在主喷管、副喷管调节和外

鱼鳞片上的气动载荷,用于零件结构强度设计和作动系统设计。 在喷气发动机发展的初期,飞机大多是亚音速或低超音速的,此时一般采用固定的简单收敛喷管。70 年代,高涵道比涡扇发动机采用了分开排气喷管。在早期的超音超音速飞机的涡喷发动机上采用引射喷管,允许不同流量的外部空气进入喷管,用以冷却,又使进气道与 发动机流量匹配更好,底部阻力减小.随着飞行速度的提高,涡扇发动机装备了加力燃烧室,喷管落压比增大,研制出喉部和出口面积都可调的收敛-扩张喷管。这种喷管保证了加力燃 烧室工作不影响主发动机工作,且在宽广的飞行范围内保持发动机性能最佳。普2惠公司F 100 加力式涡扇发动机上采用的平衡梁式收敛-扩张喷管是这类喷管的代表,它的主喷管调 节鱼鳞片上的转轴由前端移到中部,在调节过程中可始终利用作用在鱼鳞片上的气动力平衡从而减轻操纵鱼鳞片的作动系统的重量。 为实现垂直起落动力装置,从50 年代开始研究转向喷管,它可以向下旋转90°或更多,以提供垂直升力或反推力。采用转向喷管的"飞马"发动机于1968 年装在"鹞"式飞机上投入 使用。 从70 年代开始,国外开始大力研究利用推力矢量控制技术来提高战斗机机动性。所谓推力矢量控制是指通过改变发动机尾喷流的方向,提供俯仰、偏航和横滚力矩以及反推力, 用于补充或取代常规由飞机气动力面产生的气动力进行飞行控制。 在70 年代进行的研究工作的基础上,美国在80 年代进行了带矢量喷管的发动机地面试验和飞机的飞行试验。首先,通用电气公司和普2 惠公司进行了带俯仰推力矢量和反推力功能的二元喷管试验。后来,这两家公司在二元矢量喷管的经验基础上,根据各自的F110 和F100 发动机的特点研制了具有俯仰和偏航推力矢量能力的轴对称推力矢量喷管AVEN 和P/ YBBN 并进行了试验。试验结果表明,喷管可以在360°范围内偏转± 20°,偏转角速度达 到60° -120°/s。 在成功地进行带矢量喷管的发动机的地面试验以后,为研究大迎角下过失速状态飞行特性和推力矢量飞机综合飞行/推进控制律,验证矢量喷管技术,评估推力矢量技术对飞机性能和作战效能的影响,从80 年代开始美国和德国实施了多项飞行试验计划,如F-15 短距起落 /机动性技术验证机(STOL/MTD) 、F-18 大迎角气动特性验证机(HARV) 、X-31 增强战斗机机动性验证机 (EFMD )、F-16 多轴推力矢量验证机(MATV) 和F-15 综合飞行器先进控制技术(ACTIVE)计划等。 俄罗斯从1980 年开始研究推力矢量技术。1985 年开始进行二元和轴对称矢量喷管的研制工作,并在苏-27 上进行了飞行试验。经比较后认为,轴对称矢量喷管较有前途,于是,便集中力量发展轴对称矢量喷管。 从90 年代开始,美国进行装二元矢量喷管的F119 发动机的工程研制,并于1997 年9 月装在F-22原型机上进行了首飞。F-22将于2004年左右具备初步作战能力。由于原来试验 的二元喷管在设计时没有更多考虑阻力、效率、重量、可靠性、维修性和成本,不适于生产型发动机。因此,取消了反推力能力。

超燃冲压发动机技术

推进技术 本文2002206216收到,作者系中国航天科工集团三院31所高级工程师 ———超燃冲压发动机技术——— 刘小勇 摘 要 超燃冲压发动机是研究对应飞行马赫数大于6、以超声速燃烧为核心的冲压发动机技术。它的应用 背景是高超声速巡航导弹、高超声速飞机和空天飞机等。半个世纪以来,它的研究受到了美、俄、法等国的重视。目前,超燃冲压发动机技术已经开始进行飞行演示验证。21世纪,超燃冲压发动机技术必将得到较快发展和实际应用,必定会对未来的军事、政治、经济等产生深远影响。 主题词 冲压发动机 超声速燃烧 超燃冲压发动机 高超声速飞行器 概述 冲压发动机(ramjet )属于吸 气式喷气发动机类,由进气道、燃烧室和尾喷管构成,没有压气机和涡轮等旋转部件,高速迎面气流经进气道减速增压,直接进入燃烧室与燃料混合燃烧,产生高温燃气经尾喷管膨胀加速后排出,从而产生推力。它结构简单,造价低、易维护,超声速飞行时性能好,特别适宜在大气层或跨大气层中长时间超声速或高超声速动力续航飞行。 当冲压发动机燃烧室入口气流速度为亚声速时,燃烧主要在亚声速气流中进行,这类发动机称为亚燃冲压发动机,目前得到广泛应用;当冲压发动机燃烧室入口气流速度为超声速时,燃烧在超声速气流中开始进行,这类发动机称为超燃冲压发动机,目前得到了广泛研究。亚燃冲压发动机一般应用于飞行马赫数低于6的飞行器,如超声速导弹和高空侦察机。超燃冲压发动机一般应用于飞行马赫数高于6的飞行器,如高超声速巡航导弹、高超声速飞机和空天飞机。 超燃冲压发动机通常又可分为双模态冲压发动机(dual modle ramjet )和双燃烧室冲压发动机(dual combustor ramjet )。双模态冲压发动机是指发动机根据不同的来流速度,其燃烧室分别工作于亚声速燃烧状态、超声速燃烧状态或超声速燃烧/亚声速燃烧/超声速燃烧状态。对于这种发动机如果其几何固定,通常能够跨4个飞行马赫数工作,目前研究较多的是M ∞=3(4)~7(8)的双模态冲压发动机;双模态冲压发动机如果几何可调,则能够在更宽的马赫数范围内工作,如M ∞=2~12。双燃烧室冲压发动机是指同一发动机同时具有亚燃冲压和超燃冲压双循环的超燃冲压发动机,采用双循环的主要目的是用亚燃冲压发动机点燃超燃冲压发动机来解决煤油燃料的点火和稳定燃烧等问题。 超燃冲压发动机技术是发展 高超声速技术的关键。它涉及到空气动力学、气动热力学、计算流体力学、燃烧学、材料学等多学科的前沿问题及其交叉,是超声速燃烧、吸热型碳氢燃料、热防护、发动机/飞行器机体一体化、地面模拟试验和飞行试验等众多高新技术的集成,以其为动力装置的高超声速巡航导弹、高超声速飞机、空间作战飞行器/未来低成本可重复使用大地往返运输系统(空天飞机)对于国防安全、未来空间作战和航天运输都有重要意义。 目前,美、俄、法、日、德、英、印度等都正大力发展这方面技术。预计美国将在2010年前后完成高超声速巡航导弹研制,在2020年前后研制成实用的高超声速飞机,在2025年前后研制成功未来低成本可重复使用大地往返运输系统(空天飞机)。1 超燃冲压发动机的应用背景 超燃冲压发动机的应用背景是高超声速巡航导弹、高超声速

俄罗斯的液体火箭发动机系列

俄罗斯的液体火箭发动机系列 动力机械科研生产联合体(NPO Energomash)是俄罗斯一家专门从事液体推进剂火箭设计生产的公司。其创建者是苏联20世纪20年代就开始从事火箭发动机研究的瓦朗坦·格鲁什科,1954年,他成立了这家公司,并担任主席,公司当时叫做OKB-456。格卢什科领导设计局长达30多年,给当时的苏联提供了许多性能最好的发动机。公司曾设计了RD-107和RD-108发动机,驱动R-7火箭将卫星号人造卫星送入太空。之后又为“质子号”火箭设计了RD-253发动机,给“能源号”设计了RD-170,给“天顶号”设计了RD-171和RD-120,给“宇宙神”和“安加拉”设计了RD-180和RD-191,给“第聂伯”设计了RD-264,给“旋风号”设计了RD-261等。 R-7是前苏联最早的一种火箭,R-7火箭的设计特点之一是具有一个芯级发动机段(A),其上捆绑了4个助推器(B,V,G和D)形成了第一级。每一级的芯级发动机上都捆绑着4个主发动机和4个游动发动机。对于第一级,一共有20个主燃烧室和12个游动燃烧室,都在同一时刻点火,推举着飞行器离开发射台。当连接器引爆时它们就会分离,剩下芯级发动机继续运行,其上面级称为第二级。 对R-7的早期设计研究集中在以液氧和煤油的混合物为推进剂的单燃烧室发动机上,由格鲁什科负责的OKB-456设计局进行研发。芯级主发动机为RD-106发动机,发射时可以产生约520kN的推力,真空条件下可以产生约645kN的推力。4个捆绑助推器采用RD-105发动机,发射时每个发动机可以产生约540kN的推力。然而,在研发过程中,这些发动机在单燃烧室燃烧稳定性上都暴露出了问题。到1953年,这一问题变得更加突出,使得火箭无法再承受高热核弹头不断增加的质量。1953年前,这种设计思想曾计划用于采用洲际弹道导弹来发射原子弹,但是后来转而用于发射(更重的)氢弹(或热核弹)。从原子弹转到热核弹是运载能力必须增加的主要原因。它必须具有把一个5.4吨的弹头送到8,500千米远的运载能力。令人万分苦恼的是,洲际弹道导弹的质量因此要达到283吨,需要将近3,920kN的推力。 RD-107发动机(左)和RD-108发动机(右)

相关主题
文本预览
相关文档 最新文档