当前位置:文档之家› 第二章运算方法和运算器习题参考答案

第二章运算方法和运算器习题参考答案

第二章运算方法和运算器习题参考答案
第二章运算方法和运算器习题参考答案

1. 写出下列各数的原码、反码、补码、移码表示(用8位二进制数)。其中MSB是最高位(又是符号位)LSB是最低位。如果是小数,小数点在MSB之后;如果是整数,小数点在LSB之后。

(1) -35/64 (2) 23/128 (3) -127 (4) 用小数表示-1 (5) 用整数表示-1

解:(1)先把十进制数-35/64写成二进制小数:

(-35/64)10=(-100011/1000000)2=(-100011×2-110)2=(-0.100011)2

令x=-0.100011B

∴ [x]原=1.1000110 (注意位数为8位) [x]反=1.0111001

[x]补=1.0111010 [x]移=0.0111010

(2) 先把十进制数23/128写成二进制小数:

(23/128)10=(10111/10000000)2=(10111×2-111)2=(0.0001011)2

令x=0.0001011B

∴ [x]原=0.0001011 [x]反=0.0001011

[x]补=0.0001011 [x]移=1.0001011

(3) 先把十进制数-127写成二进制小数:

(-127)10=(-1111111)2

令x= -1111111B

∴ [x]原=1.1111111 [x]反=1.0000000

[x]补=1.0000001 [x]移=1.0000001

(4) 令x=-1.000000B

∴ 原码、反码无法表示

[x]补=1.0000000 [x]移=0.0000000

(5) 令Y=-1=-0000001B

∴ [Y]原=10000001 [Y]反=11111110

[Y]补=11111111 [Y]移=01111111

2. 设[X]补= a0,a1,a2…a6 , 其中a i取0或1,若要x>-0.5,求a0,a1,a2,…,a6的取值。

解:a0= 1,a1= 0, a2,…,a6=1…1。

3. 有一个字长为32位的浮点数,阶码10位(包括1位阶符),用移码表示;尾数22位(包括1位尾符)用补码表示,基数R=2。请写出:

(1) 最大数的二进制表示;

(2) 最小数的二进制表示;

(3) 规格化数所能表示的数的范围;

(4) 最接近于零的正规格化数与负规格化数。

解:(1)1111111111 0111111111111111111111

(2)1111111111 1000000000000000000000

(3)1111111111 0111111111111111111111~0111111111 1000000000000000000000 (4)0000000000 0000000000000000000001~0000000000 1111111111111111111111

4. 将下列十进制数表示成浮点规格化数,阶码3位,用补码表示;尾数9位,用补码表示。(1) 27/64

(2) -27/64

解:(1)27/64=11011B×=0.011011B=0.11011B×

浮点规格化数 : 1111 0110110000

(2) -27/64= -11011B×= -0.011011B= -0.11011B×

浮点规格化数 : 1111 1001010000

5. 已知X和Y, 用变形补码计算X+Y, 同时指出运算结果是否溢出。

(1)X=0.11011 Y=0.00011

(2)X= 0.11011 Y= -0.10101

(3)X=-0.10110 Y=-0.00001

解:(1)先写出x和y的变形补码再计算它们的和

[x]补=00.11011 [y]补=00.00011

[x+y]补=[x]补+[y]补=00.11011+00.00011=0.11110

∴ x+y=0.1111B 无溢出。

(2)先写出x和y的变形补码再计算它们的和

[x]补=00.11011 [y]补=11.01011

[x+y]补=[x]补+[y]补=00.11011+11.01011=00.00110

∴ x+y=0.0011B 无溢出。

(3)先写出x和y的变形补码再计算它们的和

[x]补=11.01010 [y]补=11.11111

[x+y]补=[x]补+[y]补=11.01010+11.11111=11.01001

∴ x+y= -0.10111B 无溢出

6. 已知X和Y, 用变形补码计算X-Y, 同时指出运算结果是否溢出。

(1) X=0.11011 Y= -0.11111

(2) X=0.10111 Y=0.11011

(3) X=0.11011 Y=-0.10011

解:(1)先写出x和y的变形补码,再计算它们的差

[x]补=00.11011 [y]补=11.00001 [-y]补=00.11111

[x-y]补=[x]补+[-y]补=00.11011+00.11111=01.11010

∵运算结果双符号不相等∴ 为正溢出

X-Y=+1.1101B

(2)先写出x和y的变形补码,再计算它们的差

[x]补=00.10111 [y]补=00.11011 [-y]补=11.00101

[x-y]补=00.10111+11.00101=11.11100

∴ x-y= -0.001B 无溢出

7. 用原码阵列乘法器、补码阵列乘法器分别计算X×Y。

(1)X=0.11011 Y= -0.11111

(2)X=-0.11111 Y=-0.11011

解:(1)用原码阵列乘法器计算:

[x]原=0.11011 [y]原=1.00001

1 1 0 1 1

×) 1 1 1 1 1

----------------------------------

1 1 0 1 1

1 1 0 1 1

1 1 0 1 1

1 1 0 1 1

1 1 0 1 1

-----------------------------------------

1 1 0 1 0 0 0 1 0 1

[x×y]原=1.101000101

∴ x×y= -0.101000101

(2)用补码阵列乘法器计算:

[x]补=0.11011 [y]补=1.00001

(0) 1 1 0 1 1

×) (1)0 0 0 0 1

----------------------------------

(0) 1 1 0 1 1

(0) 0 0 0 0 0

(0)0 0 0 0 0

(0) 0 0 0 0 0

(0) 0 0 0 0 0

(0) (1) (1) (0) (1) (1)

-----------------------------------------

(1) 0 0 1 0 1 1 1 0 1 1

[x×y]补=1.0010111011

∴ x×y= -0.1101000101

8.用原码阵列除法器计算X÷Y。

(1)X=0.11000 Y= -0.11111

(2)X=-0.01011 Y=0.11001

解:(1)[x]原=[x]补=0.11000 [-∣y∣]补=1.00001

被除数 X 0.11000

+[-∣y∣]补 1.00001

----------------------

余数为负 1.11001 →q0=0

左移 1.10010

+[|y|]补0.11111

----------------------

余数为正0.10001 →q1=1

左移 1.00010

+[-|y|]补 1.00001

----------------------

余数为正0.00011 →q2=1

左移 0.00110

+[-|y|]补 1.00001

----------------------

余数为负 1.00111 →q3=0

左移 0.01110

+[|y|]补0.11111

----------------------

余数为负 1.01101 →q4=0

左移 0.11010

+[|y|]补0.11111

----------------------

余数为负 1.11001 →q5=0

+[|y|]补0.11111

----------------------

余数 0.11000

故[x÷y]原=1.11000 即x÷y= -0.11000B

余数为0.11000B×

9. 设阶为5位(包括2位阶符), 尾数为8位(包括2位数符), 阶码、尾数均用补码表示, 完成下列取值的[X+Y],[X-Y]运算:

(1)X=×0.100101 Y=×(-0.011110)

(2)X=×(-0.010110) Y=×(0.010110)

解:(1)将y规格化得:y=×(-0.111100)

[x]浮=1101,00.100101 [y]浮=1101,11.000100 [-y]浮=1101,00.111100

① 对阶

[ΔE]补=[Ex]补+[-Ey]补=1101+0011=0000

∴ E x=E y

② 尾数相加

相加相减

00.100101 00.100101

+ 11.000100 + 00.111100

------------ --------------

11.101001 01.100001

[x+y]浮=1101,11.101001 左规 [x+y]浮=1100,11.010010

∴ x+y=×(-0.101110)

[x-y]浮=1101,01.100001 右规 [x-y]浮=1110,00.1100001

舍入处理得 [x-y]浮=1110,00.110001

∴ x-y=×0.110001

(2) [x]浮=1011,11.101010 [y]浮=1100,00.010110 [-y]浮=1100,11.101010

① 对阶

[ΔE]补=[Ex]补+[-Ey]补=1011+0100=1111

∴ △E= -1 [x]浮=1100,11.110101(0)

② 尾数相加

相加相减

11.110101(0) 11.110101(0)

+ 00.010110 + 11.101010

-------------- ------------------

00.001011(0) 11.011111(0)

[x+y]浮=1100,00.001011(0) 左规 [x+y]浮=1010,00.1011000

∴ x+y=×0.1011B

[x-y]浮=1100,11.011111(0)

∴ x-y=×(-0.100001B)

14. 某机字长16位,使用四片74181组成ALU,设最低位序标注为0位,要求:

(1)写出第5位的进位信号C6的逻辑表达式;

(2)估算产生C6所需的最长时间;

(3)估算最长的求和时间。

解:(1)组成最低四位的74181进位输出为:C4=G+P C0,C0为向第0位的进位

其中:G=y3+x3y2+x2x3y1+x1x2x3y0, P=x0x1x2x3

所以:C5=y4+x4C4

C6=y5+x5C5=y5+x5y4+x5x4C4

(2)设标准门延迟时间为T,"与或非"门延迟时间为1.5T,则进位信号C0由最低位传送至C6需经一个反相器,两级"与或非"门,故产生C6的最长延迟时间为:

T+2×1.5T=4T

(3)最长求和时间应从施加操作数到ALU算起:第一片74181有3级"与或非"门(产生控制参数x0,y0C n+4),第二、第三片74181共2级反相器和2级"与或非"门(进位链),第四片74181求和逻辑(1级"与或非"门和1级半加器,其延迟时间为3T),故总的加法时间为:T=3×1.5T+2T+2×1.5T+1.5T+1.5T+3T=14T

17.设A,B,C是三个16位的通用寄存器,请设计一个16位定点补码运算器,能实现下述功能:

(1)A±B→A

(2)B×C→A, C(高位积在寄存器A中)

(3)A÷B→C(商在寄存器C中)

解:设计能完成加、减、乘、除运算的16位定点补码运算器框图。

分析各寄存器作用:

加减乘除

A 被加数→和同左初始为0 被除数→余数

部分积→乘积(H)除数

B 加数同左被乘数

C -- -- 乘数→乘积(L)商

∴ A:累加器(16位),具有输入、输出、累加功能及双向移位功能;

B:数据寄存器(16位),具有输入、输出功能;

C:乘商寄存器(16位),具有输入、输出功能及双向移位功能。

画出框图:

计算方法的课后答案

《计算方法》习题答案 第一章 数值计算中的误差 1.什么是计算方法?(狭义解释) 答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。 2.一个实际问题利用计算机解决所采取的五个步骤是什么? 答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(5 3 -+-=x x x x P 在3-=x 处的值,并编程获得解。 解:400)(2 3 4 5 -+?+-?+=x x x x x x P ,从而 所以,多项式4)(5 3 -+-=x x x x P 在3-=x 处的值223)3(-=-P 。 5.叙述误差的种类及来源。 答:误差的种类及来源有如下四个方面: (1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。 (2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。 (3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。 (4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。这样引起的误差称为舍入误差。 6.掌握绝对误差(限)和相对误差(限)的定义公式。 答:设* x 是某个量的精确值,x 是其近似值,则称差x x e -=* 为近似值x 的绝对误差(简称误差)。若存在一个正数ε使ε≤-=x x e * ,称这个数ε为近似值x 的绝对误差限(简称误差限或精度)。 把绝对误差e 与精确值* x 之比* **x x x x e e r -==称为近似值x 的相对误差,称

计算方法——第二章——课后习题答案刘师少

2.1 用二分法求方程013=--x x 在[1, 2]的近似根,要求误差不超过3102 1-?至少要二分多少? 解:给定误差限ε=0.5×10-3,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(2 11 a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =10. 2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过 0.5×10-4的根要二分多少次? 证明 令f (x )=1-x -sin x , ∵ f (0)=1>0,f (1)=-sin1<0 ∴ f (x )=1-x -sin x =0在[0,1]有根.又 f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间 [0,1]内有唯一实根. 给定误差限ε=0.5×10-4,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211 a b k 即可,亦即 7287.1312 lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =14. 2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式: (1)211x x +=,迭代公式2111k k x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x ,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x 试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。 解:(1)令211)(x x f + =,则3 2)(x x f -=',由于 159.05.112)(33<≈≤='x x f ,因而迭代收敛。 (2)令321)(x x f +=,则322)1(3 2)(-+='x x x f ,由于

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

计算方法练习题与答案

练习题与答案 练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练习题一 一、是非题 1.–作为x的近似值一定具有6位有效数字,且其误差限。() 2.对两个不同数的近似数,误差越小,有效数位越多。() 3.一个近似数的有效数位愈多,其相对误差限愈小。()

4.用近似表示cos x产生舍入误差。 ( ) 5.和作为的近似值有效数字位数相同。 ( ) 二、填空题 1.为了使计算的乘除法次数尽量少,应将该表达式改写 为; 2.–是x舍入得到的近似值,它有位有效数字,误差限 为,相对误差限为; 3.误差的来源是; 4.截断误差 为; 5.设计算法应遵循的原则 是。 三、选择题 1.–作为x的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值 3.用 1+x近似表示e x所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用s*=g t2表示自由落体运动距离与时间的关系式 (g为重力加速度),s t是在时间t内的实际距离,则s t s*是()误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.作为的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。

四、计算题 1.,,分别作为的近似值,各有几位有效数字? 2.设计算球体积允许的相对误差限为1%,问测量球直径的相对误差限最大为多少? 3.利用等价变换使下列表达式的计算结果比较精确: (1), (2) (3) , (4) 4.真空中自由落体运动距离s与时间t的关系式是s=g t2,g为重力加速度。现设g是精确的,而对t有秒的测量误差,证明:当t增加时,距离的绝对误差增加,而相对误差却减少。 5*. 采用迭代法计算,取 k=0,1,…, 若是的具有n位有效数字的近似值,求证是的具有2n位有效数字的近似值。 练习题二 一、是非题 1.单点割线法的收敛阶比双点割线法低。 ( ) 2.牛顿法是二阶收敛的。 ( ) 3.求方程在区间[1, 2]内根的迭代法总是收敛的。( ) 4.迭代法的敛散性与迭代初值的选取无关。 ( ) 5.求非线性方程f (x)=0根的方法均是单步法。 ( ) 二、填空题

数值计算方法习题答案(第二版)(绪论)

数值计算方法习题答案(第二版)(绪论)

数值分析 (p11页) 4 试证:对任给初值x 0, (0) a a >的牛顿 迭代公式 112(),0,1 ,2,......k a k k x x x k +=+= 恒成立下列关系式: 21 12(1)(,0,1,2,.... (2),1,2,...... k k k x k x a x a k x a k +-= -=≥= 证明: (1) ( 2 2 112222k k k k k k k k x a a x ax a x a x a x x x +-??-+-=+-== ? ?? (2) 取初值0 >x ,显然有0 >k x ,对任意0≥k , a a x a x x a x x k k k k k ≥+??? ? ??-=???? ??+=+2 12121 6 证明: 若k x 有n 位有效数字,则n k x -?≤ -1102 1 8, 而 ( )k k k k k x x x x x 28882182 1-=-??? ? ??+=-+ n n k k x x 21221102 1 5.221041 85 .28--+?=??<-∴>≥ 1 k x +∴必有2n 位有效数字。

8 解: 此题的相对误差限通常有两种解法. ①根据本章中所给出的定理: (设x 的近似数* x 可表示为m n a a a x 10......021* ?±=,如果* x 具有l 位有效数字,则其相对误差限为 ()11 * *1021 --?≤ -l a x x x ,其中1 a 为* x 中第一个非零数) 则7 .21 =x ,有两位有效数字,相对误差限为 025.0102 21 111=??≤--x x e 71 .22=x ,有两位有效数字,相对误差限为 025.0102 21 122=??≤--x x e 3 2.718 x =,有两位有效数字,其相对误差限为: 00025.0102 21 333=??≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7 .21 =x ,0183.01 <-e x ∴ 其相对误差限为00678.07 .20183.01 1≈<-x e x 同理对于71 .22 =x ,有 003063.071 .20083 .022≈<-x e x

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

(完整版)计算方法习题第一、二章答案

第一章误差 1问3.142, 3.141, 22分别作为n 的近似值各具有几位有效数字? 7 分析 利用有效数字的概念可直接得出。 解 n =3.141 592 65 … =3.141 59 …-3.142 85…=-0.001 26 …知 2 10 3 | 22| 1 10 2 因而X 3具有3位有效数字。 2 已知近似数X*有两位有效数字,试求其相对误差限。 分析本题显然应利用有效数字与相对误差的关系。 解 利用有效数字与相对误差的关系。这里 n=2,a 1是1到9之间的数字。 分析本题利用有效数字与相对误差的关系。 解 a 1是1到9间的数字。 * (X)0.3 % 1000 2 102 2 (9 1) ? 2(a? 1) 10' 设x*具有n 位有效数字,令-n+仁-1,则n=2,从而x*至少具有2位有效数字。 4计算sin 1.2,问要取几位有效数字才能保证相对误差限不大于 0.01%。 分析本题应利用有效数字与相对误差的关系。 解 设取n 位有效数字,由sin 1.2=0.93…,故a 1=9。 *(x) | 悩盍 10n1 o.。1% 104 解不等式丄 10 n 1 10 4知取n=4即可满足要求。 2ai 5 计算盂盘,视已知数为精确值,用4位浮点数计算。 因而 因而 记 X 1=3.142, X 2=3.141 , X 3= ^2 . 由 n - X 1=3.141 59 …-3.142=-0.000 40 …知 1 103 | 2 X 1具有4位有效数字。 由 n - X 2=3.141 59…-3.141=-0.000 59 …知 1 103 I X 2| X 2具有3位有效数字。 104 10 2 22 7 I *(x)| | X X* I |X*| 1 1 10n1 1021 5 % 已知近似数的相对误差限为 0.3%,问X*至少有几位有效数字?

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数 为 ,拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 10、已知f (1)=2,f (2)=3,f(4)=5.9,则二次Ne wton 插值多项式中x 2系数为 ( 0.15 ); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该

计算方法-习题第一、二章答案

第一章 误差 1 问3.142,3.141,7 22分别作为π的近似值各具有几位有效数字? 分析 利用有效数字的概念可直接得出。 解 π=3.141 592 65… 记x 1=3.142,x 2=3.141,x 3=7 22. 由π- x 1=3.141 59…-3.142=-0.000 40…知 3411110||1022 x π--?<-≤? 因而x 1具有4位有效数字。 由π- x 2=3.141 59…-3.141=-0.000 59…知 223102 1||1021--?≤-

数值计算方法习题答案(绪论,习题1,习题2)

引论试题(11页) 4 试证:对任给初值x 0, 0)a >的牛顿迭代公式 112(),0,1 ,2,......k a k k x x x k +=+= 恒成立下列关系式: 2112(1)(,0,1,2,.... (2)1,2,...... k k k x k x x k x k +-=≥= 证明: (1 )(2 2 11222k k k k k k k k x a x a x x x x x +-??-+=+= =? ?? (2) 取初值00>x ,显然有0>k x ,对任意0≥k , a a x a x x a x x k k k k k ≥+??? ? ??-=???? ??+=+2 12121 6 证明: 若k x 有n 位有效数字,则n k x -?≤ -1102 1 8, 而() k k k k k x x x x x 28882182 1-=-???? ??+=-+ n n k k x x 21221102 1 5.22104185 .28--+?=??<-∴>≥ 1k x +∴必有2n 位有效数字。 8 解: 此题的相对误差限通常有两种解法. ①根据本章中所给出的定理: (设x 的近似数* x 可表示为m n a a a x 10......021*?±=,如果* x 具有l 位有效数字,则其相对误差限为 ()11 * *1021 --?≤ -l a x x x ,其中1a 为*x 中第一个非零数) 则7.21=x ,有两位有效数字,相对误差限为

025.0102 21 111=??≤--x x e 71.22=x ,有两位有效数字,相对误差限为 025.0102 21 122=??≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为: 00025.0102 21 333=??≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x ∴其相对误差限为 00678.07 .20183 .011≈<-x e x 同理对于71.22=x ,有 003063 .071 .20083 .022≈<-x e x 对于718.23=x ,有 00012.0718 .20003 .033≈<-x e x 备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。 (2)采用第二种方法时,分子为绝对误差限,不是单纯的对真实值与近似值差值的四舍五入,绝对误差限大于或等于真实值与近似值的差。 11. 解: ......142857.3722≈,.......1415929.3113 255≈ 21021 722-?≤-∴ π,具有3位有效数字 6102 1 113255-?≤-π,具有7位有效数字

(完整word版)计算方法习题集及答案.doc

习题一 1. 什么叫数值方法?数值方法的基本思想及其优劣的评价标准如何? 数值方法是利用计算机求解数学问题近似解的方法 x max x i , x ( x 1 , x 2 , x n ) T R n 及 A n R n n . 2. 试证明 max a ij , A ( a ij ) 1 i n 1 i n 1 j 证明: ( 1)令 x r max x i 1 i n n p 1/ p n x i p 1/ p n x r p 1/ p 1/ p x lim( x i lim x r [ ( ] lim x r [ lim x r ) ) ( ) ] x r n p i 1 p i 1 x r p i 1 x r p 即 x x r n p 1/ p n p 1/ p 又 lim( lim( x r x i ) x r ) p i 1 p i 1 即 x x r x x r ⑵ 设 x (x 1,... x n ) 0 ,不妨设 A 0 , n n n n 令 max a ij Ax max a ij x j max a ij x j max x i max a ij x 1 i n j 1 1 i n j 1 1 i n j 1 1 i n 1 i n j 1 即对任意非零 x R n ,有 Ax x 下面证明存在向量 x 0 0 ,使得 Ax 0 , x 0 n ( x 1,... x n )T 。其中 x j 设 j a i 0 j ,取向量 x 0 sign(a i 0 j )( j 1,2,..., n) 。 1 n n 显然 x 0 1 且 Ax 0 任意分量为 a i 0 j x j a i 0 j , i 1 i 1 n n 故有 Ax 0 max a ij x j a i 0 j 即证。 i i 1 j 1 3. 古代数学家祖冲之曾以 355 作为圆周率的近似值,问此近似值具有多少位有效数字? 113 解: x 325 &0.314159292 101 133 x x 355 0.266 10 6 0.5 101 7 该近似值具有 7 为有效数字。

计算方法习题第一、二章答案

第一章 误差 1 问,,7 22分别作为π的近似值各具有几位有效数字? 分析 利用有效数字的概念可直接得出。 解 π= 592 65… 记x 1=,x 2=,x 3=7 22. 由π- x 1= 59…= 40…知 34111 10||1022 x π--?<-≤? 因而x 1具有4位有效数字。 由π- x 2= 59…= 59…知 223102 1||1021--?≤-

现代设计方法复习题集含答案

《现代设计方法》课程习题集 西南科技大学成人、网络教育学院 版权所有 习题 【说明】:本课程《现代设计方法》(编号为09021)共有单选题,计算题,简答题, 填空题等多种试题类型,其中,本习题集中有[ 填空题,单选题]等试题类型未进入。 一、计算题 1. 用黄金分割法求解以下问题(缩小区间三次)。 342)(m in 2+-=x x x f ,给定初始区间[][]3,0,=b a ,取1.0=ε。 2. 用黄金分割法求解以下问题(缩小区间三次) 32)(m in 2+=x x f ,给定[][],1,2a b =-,取1.0=ε 3. 用黄金分割法求解以下问题(缩小区间三次) 432+=x )x (f min ,给定[][]40,b ,a =,取10.=ε。 4. 用黄金分割法求解以下问题(缩小区间三次)。 12)(m in 3+-=x x x f ,给定初始区间[][]3,0,=b a ,取5.0=ε 5. 用黄金分割法求解以下问题(缩小区间三次)。 107)(m in 2+-=x x x f ,给定初始区间[][]3,0,=b a ,取1.0=ε 6. 用梯度法求解无约束优化问题: 168)(m in 22221+-+=x x x X f ,取初始点[]T X 1,1)0(= ,计算精度1.0=ε。 7. 用梯度法求解96)(m in 12221+-+=x x x X f ,[]T X 1,1)0(= ,1.0=ε。 8. 用梯度法求解44)(m in 22221+-+=x x x X f ,[]T X 1,1)0(=,1.0=ε 。 9. 用梯度法求解无约束优化问题:1364)(m in 222 121+-+-=x x x x X f ,取初始点

计算方法模拟试题及答案

计算方法模拟试题 一、 单项选择题(每小题3分,共15分) 1.近似值210450.0?的误差限为( )。 A . 0.5 B. 0.05 C . 0.005 D. 0.0005. 2. 求积公式)2(3 1 )1(34)0(31)(2 0f f f dx x f ++≈ ?的代数精确度为( )。 A. 1 B. 2 C. 3 D. 4 3. 若实方阵A 满足( )时,则存在唯一单位下三角阵L 和上三角阵R ,使LR A =。 A. 0det ≠A B. 某个0 det ≠k A C. )1,1(0det -=≠n k A k D. ),,1(0det n k A k =≠ 4.已知?? ?? ? ?????=531221112A ,则=∞A ( )。 A. 4 B. 5 C. 6 D 9 5.当实方阵A 满足)2(,221>>-=i i λλλλ,则乘幂法计算公式1e =( )。 A. 1+k x B. k k x x 11λ++ C. k x D. k k x x 11λ-+ 二、填空题(每小题3分,共15分) 1. 14159.3=π,具有4位有效数字的近似值为 。 2. 已知近似值21,x x ,则=-?)(21x x 。 3.已知1)(2-=x x f ,则差商=]3,2,1[f 。 4.雅可比法是求实对称阵 的一种变换方法。

5.改进欧拉法的公式为 。 三、计算题(每小题12分 ,共60分) 1. 求矛盾方程组; ??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 2.用列主元法解方程组 ??? ??=++=++=++4 26453426352321 321321x x x x x x x x x 3.已知方程组 ???? ? ?????=????????????????????----131********x x x a a a a (1) 写出雅可比法迭代公式; (2) 证明2

黄云清版数值计算方法习题解答.docx

第一章 引论(习题) 2. 明 : f ( x) x , x x * x x * x x x * 1 E r ( f ) x x( x x * )xx * x 2 E r ( x) . 3. 明: 令: (a b) fl (a b) fl (a b) 可估 : | fl (a b) | c 1 ( c a b ), 故: | | 1 c t c 1 1 1 t 2 2 于是: fl ( a b) (a b) (1 ) . 4. 解 (1) 2x 2 (1 x) (1 2x) . (2) 2 x . ( x 1 x x 1 x ) 1 cos x sin 2 x sin x . (3) x x(1 cos x) 1 cos x 6.解 a 的相 差:由于 | E( x) | x a 1 10 3 . E r ( x) x a , 2 x E r (x) 1 10 2 1 10 2 . ( Th1) 2 9 18 f (a) 于 f (x) 的 差和相 差 . | E( f ) | | 1 x 1 a |= a x 21 10 3 =10 3 x 1 a 2 0.25 1 | E r ( f ) | 10 3 1 a 4 10 3 . 9. 解 推关系: y n 1 100.01 y n y n 1 (1) 取初 y 0 1, y 1 0.01 算 可得: y 2 100.01 10 2 1 1.0001 1 10 4 y 3 10 6 , y 4 10 8 , y 5 10 10 , ?

(2) 取初值 y 0 1 10 5 , y 1 10 2 , 记: n y n y n , 序列 n ,满足递推关系,且 10 5 , 1 0 n 1 100.01 n n 1 , 于是: 2 10 5 , 3 100.01 10 5 , 4 (100.01) 2 10 5 10 5 , 5 (100.01)3 10 5 200.02 10 5 , 可见随着 n 的主项 (100.01)n 2 10 5 的增长,说明该递推关系式是不稳定的 . 第二章 多项式插值 ( 习 题) 1. 方法一 . 由 Lagrange 插值公式 L 3 ( x) f 0 l 0 ( x) f 1 l 1 (x) f 2 l 2 ( x) f 3 l 3 ( x) l 0 (x) x(x 21 )( x 1) 1 1 1) , ( 1)( 23 )( 2) x( x 2 )( x 3 (x 1)( x 21 )( x 1) 2(x 2 1)( x 21 ) , l 1 (x) 1 2 l 2 (x) (x !1) x( x 1) 8 2 1) x , l 3 ( x 1)x( x 21 ) 1 3 1 1 3 ( x ( x) 1 ( x 1)x( x 2 ) . 2 2 ( 2 ) 2 1 2 可得: L 3 ( x) x 2 ( x 1 2) 方法二 . 令: L 3 (x) x( x 1 2) (Ax B) 由 L 3 ( 1) 3 1 , L 3 (1) , 定 A , B (称之为待定系数法) 2 2 2. 证明 (1) 由于 l i ( x j ) i , j 故: L n ( x) n x i k l i (x) x k j , j 0,1, i 0 ,当 x x j 时 有: L n ( x j ) , n L n ( x) 也即为 x k 的插值多项式,由唯一性,有: n x i k l i (x) x k , k 0,1, , n i 0

计算方法引论课后答案

第一章 误差 1. 试举例,说明什么是模型误差,什么是方法误差. 解: 例如,把地球近似看为一个标准球体,利用公式2 4A r π=计算其表面积,这个近似看为球体的过程产 生的误差即为模型误差. 在计算过程中,要用到π,我们利用无穷乘积公式计算π的值: 12 222...q q π=? ?? 其中 11 2,3,... n q q n +?=?? ==?? 我们取前9项的乘积作为π的近似值,得 3.141587725...π≈ 这个去掉π的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也成为截断误差. 2. 按照四舍五入的原则,将下列各数舍成五位有效数字: 7 015 50 651 13 236 23 解: 0 7 236 3. 下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字 13 05 0 解: 五位 三位 六位 四位 4. 若1/4用表示,问有多少位有效数字 解: 两位 5. 若 1.1062,0.947a b ==,是经过舍入后得到的近似值,问:,a b a b +?各有几位有效数字 解: 已知4311 d 10,d 1022 a b --

计算方法作业第一章

习题二 1. 用二分法求方程0134=+-x x 在区间【0.3,0.4】内的根,要求误差不超过2102 1-?。 3.方程0123=--x x 在1.5附近有根,把方程写成4种不同的等价形式,并建立相应的迭代公式。 (1)231x x +=,32 11n n x x +=+ (2)211x x + =,=+1n x 211n x + (3)1 1 2 -= x x ,=+1n x 1 1-n x

(4)132-=x x ,= +1n x 13-n x 4.用迭代法求02.05 =--x x 的正根,要求准确到小数点后第5位 解:迭代公式:512.0+=+x x n 7.用迭代-加速公式求方程x e x -=在x=0.5附近的根,要求准确到小数点后第4位 解:迭代公式:x n e x -+=1,n n x q q x q x ---= +1111 8用埃特金加速法求方程13 -=x x 在区间【1,1.5】内的根,要求准确到小数点后第4位 解:迭代公式:13 1-=+x x n ,13 12-=++n n x x ,n n n n n n n x x x x x x x +--= ++-++122 1 212

9.用牛顿法求方程0133=--x x 在20=x 附近的根,要求准确到小数点后第3位 解:迭代公式:3 31 32 31 ----=+n n n n n x x x x x 11.分别用单点和双点弦截法求方程013 =--x x 在【1,1.5】内的根,要求 51102 1 ||-+?≤ -n n x x 解:单点:)111() 111()1(1 13 1--------- =+n n n n x x x x 双点:)1() 1()1(3 13 1311--------- =---+n n n n n n n n n n x x x x x x x x x x

计算方法课后习题答案

习 题 一 3.已知函数y x = 在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函 数求7的近似值,并估计其误差。 解:0120124, 6.25,9;2, 2.5,3y x x x x y y y = ======由题意知: (1) 采用Lagrange 插值多项式2 20 ()()j j j y x L x l x y == ≈= ∑ 27020112012 0102101220217()|()()()()()()()()()()()()(7 6.25)(79) (74)(79)(74)(7 6.25) 2 2.53 2.255 2.25 2.75 2.755 2.6484848 x y L x x x x x x x x x x x x x y y y x x x x x x x x x x x x ==≈------=++ ------------= ?+ ?+??-??= 其误差为 (3) 25(3) 2 5(3) 2 [4,9] 2() (7)(74)(7 6.25)(79) 3!3()83m ax |()|4 0.01172 8 1|(7)|(4.5)(0.01172)0.00879 6 f R f x x f x R ξ- - =---= = <∴< =又则 (2)采用Newton 插值多项式2()y x N x =≈ 根据题意作差商表: i i x () i f x 一阶差商 二阶差商 0 4 2 1 6.25 2.5 29 2 9 3 211 4 495 - 22 4 (7)2(74)()(74)(7 6.25) 2.64848489 495 N =+?-+-?-?-≈ 4. 设()()0,1,...,k f x x k n ==,试列出()f x 关于互异节点()0,1,...,i x i n =的 Lagrange 插值多项式。

计算方法练习题与答案

练习题与答案练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练习题一 一、是非题 1.*x=–作为x的近似值一定具有6位有效数字,且其误差限 4 10 2 1 - ? 。 () 2.对两个不同数的近似数,误差越小,有效数位越多。 ( ) 3.一个近似数的有效数位愈多,其相对误差限愈小。 ( ) 4.用 2 1 2 x - 近似表示cos x产生舍入误差。 ( )

和作为π的近似值有效数字位数相同。 ( ) 二、填空题 1.为了使计算 ()()23 34912111y x x x =+ -+ ---的乘除法次数尽量少,应将该表 达式改写为 ; 2.* x =–是x 舍入得到的近似值,它有 位有效数字,误差限 为 ,相对误差限为 ; 3.误差的来源是 ; 4.截断误差为 ; 5.设计算法应遵循的原则 是 。 三、选择题 1.* x =–作为x 的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值 3.用 1+x 近似表示e x 所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用s *=21 g t 2表示自由落体运动距离与时间的关系式 (g 为重力加速度),s t 是 在时间t 内的实际距离,则s t s *是( )误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.作为2的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。

相关主题
文本预览
相关文档 最新文档