当前位置:文档之家› 阶梯波发生电路的设计

阶梯波发生电路的设计

阶梯波发生电路的设计
阶梯波发生电路的设计

实验三阶梯波发生电路的设计

一、实验目的

1、掌握阶梯波发生器电路的结构特点。

2、掌握阶梯波发生器电路的工作原理。

3、学习复杂的集成运算放大器电路的设计。

二、实验要求

1、设计一个能产生周期性阶梯波的电路,要求阶梯波周期在18ms左右,输出

电压范围10V,阶梯个数5个。(注意:电路中均采用模拟、真实器件,不可以选用计数器、555定时器、D/A转换器等数字器件,也不可选用虚拟器件。)

2、对电路进行分段测试和调节,直至输出合适的阶梯波。

3、改变电路元器件参数,观察输出波形的变化,确定影响阶梯波电压范围和周

期的元器件。

三、实验原理

1、阶梯波发生器原理

要设计阶梯波发生电路,首先要设计好方波发生电路,然后通过微分电路,这是会得到上下均有尖脉冲的波形。这是要只取上面的尖脉冲,就需通过限幅电路滤除下半部分的波形。当这些脉冲经过积分累加电路时,一个尖脉冲累加为一个固定的值,下一个脉冲到来时又会增加同样的一个值,于是输出形成了阶梯波形。当累加结果没有超过比较器的阈值时,会一直累加下去。而达到门限后,比较器输出电压翻转,输出正电压使振荡控制电路工作,使方波停振,同时积分电容对地短路放电,电容器恢复起始状态累加结束。而在电容放电之后,积分器输出由负值向零跳变,使比较器又一次翻转,振荡电路不能工作,比

阶梯波发生原理框图

2、实验原理图

阶梯波原理图

四、实验过程

1、电路设计

(1)方波发生电路设计

设计电路如图所示,从图所示的示波器中可读出方波的周期为。

方波发生电路

方波波形

(2)微分电路设计

在上图所示的方波发生电路的输出端接电阻R3和电容C2即可组成下图所示的微分电路,示波器所得的输出波形见下下图的尖脉冲波形。

方波发生电路+微分电路

方波微分后波形

(3)限幅电路设计

限幅电路的作用是将负半周期的尖脉冲滤除掉。可利用二极管的单向导电性来进行限幅,电路如图所示。示波器显示的单边尖脉冲如图所示。

方波发生电路+微分电路+限幅电路

单侧脉冲波形

(4)积分累加电路设计

用集成运放组成的积分电路实现积分累加,在上图所示电路的基础上连接积分累加电路如下图所示,打开仿真开关,可以得到积分累加的输出波形如下下图所示。

方波发生电路+微分电路+限幅电路+积分累加电路

阶梯波形

(5)周期阶梯波电路设计

在上图的基础上家上电压比较器和开关控制器以及快速放电电路,就组成了完整的阶梯波发生电路,如第二幅图所示,输出波形如下图。从中可以读周期性阶梯的周期为左右,电压变化范围为10V,阶梯个数为5个。

阶梯波波形

2、改变元件参数确定其作用 (1)只影响周期的量

首先当成倍改变Rf 或C1的值时,周期T 的值也成相同的倍数改变。若改变R2或R1的值,周期T 也会改变,但均不是线性关系。实际上,振荡周期21ln(122/1)f T R C R R =+。下面保持其他部分不变,令Rf=150k Ω,即扩大两倍时,波形如下图所示,周期T=,约莫扩大两倍,而电压变化范围和阶梯高度不变化。保持其余不变,令R2=20k Ω,即扩大两倍,则周期T=,波形如图所示,并非一般线性关系,电压变化范围和阶梯高度也保持不变。

Rf=150k ,其余不变

R2=20kΩ,其余不变

(2)只影响阶梯高度的量

1>微分电路对波形高度影响

同样C2的值也会影响阶梯高度,具体关系见下表。由表可知,当其余值保持不变,仅改变C2的值,则阶梯高度与之成正比。

C2/nF10 30 51 100

阶梯高度/V

3

10-

?

改变C2,其余值不变

R3的值对阶梯高度也有影响,见下表。可以看出,阶梯高度与R3并没有明显的正比关

R3/

1 2 3 10

阶梯高度/V

3

10-

?3

10-

?

8

改变R3的值,其余不变

2>积分电路对波形高度影响

改变C3的值会改变阶梯的高度,具体关系见下表 (电容换成虚拟元件进行测试)。由表可知,当其余值保持不变,仅改变C3的值,则阶梯的高度与之成反比。

C3/nF10 30 100 200

阶梯高度/V

3

10-

?3

10-

?

阶梯个数约2 28

改变C3,其余不变

改变R6的值也会改变阶梯的高度,理论上,根据积分电路的原理,改变电路中的63

R C 可以改变阶梯波的每个阶梯的高度。63

R C与阶梯波的每个阶梯的高度成反比。但实验测得的具体关系如下表(电阻换成虚拟元件进行测试)。

R6/kΩ1210

阶梯高度/V

阶梯个数35

改变R6,其余不变

③总结

可见,影响阶梯高度的主要是R3、C2、R6和C3。根据微分器积分器原理,理论上,阶

梯高度与

23

36

C R

C R

?

?

成正比关系。实际上,根据实验所测,对于电容关系正确,但对于电阻

关系并不能准确刻画。其实这样的正比关系是忽略了中间的单向限幅电路的影响,对于本实验的阶梯波电路影响输出波形的主要是电容元件。

(3)同时影响周期和幅度的量

①改变R8的值,阶梯波电压范围和周期都会改变,而阶梯高度基本不变。若增大R8的值,则阶梯波电压范围和周期均变小。

R8= 20kΩ,其余不变

②改变R10的值,阶梯高度基本不变,但阶梯波电压变化范围变化,周期也会变化,

增大R10时,阶梯波电压变化范围变大,周期变大。

R10=20kΩ,其余不变

③改变R7时,电压范围和周期也会变化,阶梯高度不变。减小R9时,电压范围和周期均变小。这里不再图示。

注:当减小R8或增加R10到一定值时,后来会成一条直线。而增加R7到

某一值时,也不会正常显示阶梯波。

(4)同时改变周期和高度的量

①改变R4的值,波形也会发生变化。当增大R4时,阶梯高度变小,周期变大,但电压变化范围基本不变。当R3=10kΩ,即扩大5倍时,波形如下图所示。

R3=10k ,其余不变

②在一定范围内(当接近15V时没有影响,运放饱和有关)改变D1和D2的击穿电压时,电压范围即幅度基本不变,而周期和阶梯高度会随之变化,对应关系见表。周期大致

稳压值VF/V1012

周期/ms

阶梯高度

稳压值改变,其余不变

五、实验感想

阶梯波电路设计中关于毛刺的处理,一般是如何消去,我引入了一个电容来延时使毛刺变成有效电平,但同时又产生了电路有-10V到0V的瞬变的延时充电的副作用,所以又在原电路的基础上加入一个放电回路选择控制开关,以弥补抵消延时副作用,从而实现了选择性延时的功能,而且绝对无毛刺,(对于毛刺的产生,均可以通过调节延时电容来消去,也可以控制电平的多少以及阶梯的个数的微调),原理都是课上讲过的,了解了原理,这个设计也就不难了,这次实验系统疏通了模电的知识,锻炼了实验动手能力,使理论联系实际,为以后学以致用打下了部分基础

基于51单片机的波形发生器的设计讲解

目录 1 引言 (1) 1.1 题目要求及分析 (1) 1.1.1 示意图 (1) 1.2 设计要求 (1) 2 波形发生器系统设计方案 (2) 2.1 方案的设计思路 (2) 2.2 设计框图及系统介绍 (2) 2.3 选择合适的设计方案 (2) 3 主要硬件电路及器件介绍 (4) 3.1 80C51单片机 (4) 3.2 DAC0832 (5) 3.3 数码显示管 (6) 4 系统的硬件设计 (8) 4.1 硬件原理框图 (8) 4.2 89C51系统设计 (8) 4.3 时钟电路 (9) 4.4 复位电路 (9) 4.5 键盘接口电路 (10) 4.7 数模转换器 (11) 5 系统软件设计 (12) 5.1 流程图: (12) 5.2 产生波形图 (12) 5.2.1 正弦波 (12) 5.2.2 三角波 (13) 5.2.3 方波 (14) 6 结论 (16) 主要参考文献 (17) 致谢...................................................... 错误!未定义书签。

1引言 1.1题目要求及分析 题目:基于51单片机的波形发生器设计,即由51单片机控制产生正弦波、方波、三角波等的多种波形。 1.1.1示意图 图1:系统流程示意图 1.2设计要求 (1) 系统具有产生正弦波、三角波、方波三种周期性波形的功能。 (2) 用键盘控制上述三种波形(同周期)的生成,以及由基波和它的谐波(5次以下)线性组合的波形。 (3) 系统具有存储波形功能。 (4) 系统输出波形的频率范围为1Hz~1MHz,重复频率可调,频率步进间隔≤100Hz,非正弦波的频率按照10次谐波来计算。 (5) 系统输出波形幅度范围0~5V。 (6) 系统具有显示输出波形的类型、重复频率和幅度的功能。

方波三角波转换

一方波、三角波发生器 设计目的 1.学习由运算放大器组成的方波——三角波发生器电路,提高对运算放大器非线性应用的认识。 2.掌握方波——三角波发生电路的分析、设计和调试方法。 3.熟悉常用仪表,了解电路调试的基本方法 4.培养综合应用所学知识来指导实践的能力法 二、 设计要求 1.复习教材中波形发生电路的原理。 2.根据所给的性能指标,设计一个方波、三角波发生器,计算电路中的元件参数, 3.设计一个能产生方波、三角波信号发生器, 4.能同时输出一定频率一定幅度的2种波形:方波、和三角波; 5.可以用±12V 或±15V 直流稳压电源供电 6.画出标有元件值的电路图,制定出实验方案,选择实验仪器设备。 7实现方波和三角波输出电压:方波输出幅值110o p p U V -≤, 28o p p U V -≤。能够输出确定频率的三角波 三、 原理图 四、 设计说明书

1、设计题目 方波、三角波发生器 2设计目的 1.学习由运算放大器组成的方波——三角波发生器电路,提高对运算放大器非线性应用的认识。 2.掌握方波——三角波发生电路的分析、设计和调试方法。 3.熟悉常用仪表,了解电路调试的基本方法 4.培养综合应用所学知识来指导实践的能力法 3、设计要求 1.复习教材中波形发生电路的原理。 2.根据所给的性能指标,设计一个方波、三角波发生器,计算电路中的元件参数, 3.设计一个能产生方波、三角波信号发生器, 4.能同时输出一定频率一定幅度的2种波形:方波、和三角波; 5.可以用±12V或±15V直流稳压电源供电 6.画出标有元件值的电路图,制定出实验方案,选择实验仪器设备。 4、设计过程 实验器材 1)uA741 2片

正弦波-方波-锯齿波函数转换器

课程设计说明书 课程设计名称:模拟电子技术课程设计 课程设计题目:正弦波-方波-锯齿波函数转换器 学院名称:信息工程学院 专业:通信工程班级:090421 学号:09042134 :尚虎 评分:教师: 20 11 年 3 月16 日

任务书 题目3:设计制作一个产生正弦波—方波—锯齿波函数转换器。设计任务和要求 ①输出波形频率围为0.02Hz~20KHz且连续可调; ②正弦波幅值为±2V; ③方波幅值为2 V; ④锯齿波峰-峰值为2V,占空比可调;

摘要 本次课程设计的目的是: 应用电路分析低频等所学的知识设计一个正弦波-方波-锯齿波函数发生器。设计的正弦波-方波-锯齿波函数发生器是由正弦波发生器、过零比较器、积分电路等三大部分组成。正弦波发生器产生正弦波,正弦波经过过零比较器转变为方波,方波经过积分电路产生锯齿波。 关键字:正弦波、方波、锯齿波

目录 第一章设计目的及任务 1.1 课程设计的目的 (5) 1.2 课程设计的任务与要求 (5) 1.3 课程设计的技术指标 (5) 第二章系统设计方案选择…………………………………………… 2.1 方案提出 (6) 2.2 方案论证和选择 (6) 第三章系统组成及工作原理......................................................3.1 系统组成 (7) 3.2 正弦波发生电路的工作原理 (7) 3.3 正弦波转换方波电路的工作原理 (8) 3.4 方波转换成锯齿波电路的工作原理 (9) 3.5 总电路图 (11) 第四章单元电路设计、参数计算、器件选择........................4.1 正弦波发生电路的设计 (12) 4.2 正弦波转换方波电路的设计 (13) 4.3 方波转换成锯齿波电路的设计 (14) 第五章实验、调试及测试结果与分析.................................5.1电路总体仿真图如下所示 (17) 5.2 调试方法与调试过程 (18) 第六章结论 (21) 参考文献 (23) 附录(元器件清单) (23)

多波形信号发生器设计 电子技术课程设计

湖南文理学院课程设计报告 课程名称:电子技术课程设计 教学院部:电气与信息工程学院 专业班级:通信工程08101班 学生姓名:林洪湖(200816020143) 指导教师:邱德润 完成时间:2010 年6月25日 报告成绩:

目录 1.绪论 (3) 信号发生器现状 (3) 2.系统设计 (3) 控制芯片的选择 (4) 3.硬件电路的设计 (4) 3.1基本原理: (4) 3.2各部分电路原理 (8) 4.软件设计 (14) 4.1主程序流程图 (14) 4.2子程序流程图 (15) 5.测试结论 (18) 5.1软件仿真结果 (19) 5.2硬件测试结果 (21) 参考文献 (21)

多波形信号发生器设计 1.绪论 1.1信号发生器现状 波形发生器亦称函数发生器,作为实验用信号源,是现今各种电子电路实验设计应用中必不可少的仪器设备之一。目前,市场上常见的波形发生器多为纯硬件的搭接而成,且波形种类有限,多为锯齿、正弦、方波、三角等波形。 信号发生器作为一种常见的应用电子仪器设备,传统的可以完全由硬件电路搭接而成,如采用555振荡电路发生正弦波、三角波和方波的电路便是可取的路径之一,不用依靠单片机。但是这种电路存在波形质量差,控制难,可调范围小,电路复杂和体积大等缺点。在科学研究和生产实践中,如工业过程控制,生物医学,地震模拟机械振动等领域常常要用到低频信号源。而由硬件电路构成的低频信号其性能难以令人满意,而且由于低频信号源所需的RC很大;大电阻,大电容在制作上有困难,参数的精度亦难以保证;体积大,漏电,损耗显著更是其致命的弱点。一旦工作需求功能有增加,则电路复杂程度会大大增加。 本次用要用到的有函数发生器5G8038、集成振荡器E1648、集成定时器555/556. 2.系统设计 2.1系统方案 方案:采用函数信号发生器5G8038集成模拟芯片,它是一种可以同时产生方波、三角波、正弦波的专用集成电路。但是这种模块产生的波形都不是纯净的波形,会寄生一些高次谐波分量,采用其他的措施虽可滤除一些,但不能完全滤除掉。

三角波、方波、正弦波发生电路

波形发生电路 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器。 指标:输出频率分别为:102H Z、103H Z和104Hz;方波的输出电压峰峰值V PP≥20V (1)方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器 从而把正弦波转换成方波。 3、把方波信号通过一个积分器。转换成三角波。 方案二: 1、由滞回比较器和积分器构成方波三角波产生电路。 2、然后通过低通滤波把三角波转换成正弦波信号。 方案三: 1、由比较器和积分器构成方波三角波产生电路。 2、用折线法把三角波转换成正弦波。 (2)方案的比较与确定

方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、C1=C2。即f=f0时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。 通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化围很小的情况下使用。然而,指标要求输出频率分别为102H Z、103H Z和104Hz 。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波、三角波发生器原理如同方案二。 比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大;即零附近的差别最小,峰值附近差别最大。 因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比 例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率 围的限制。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 (3)工作原理:

方波-三角波-正弦波-锯齿波发生器

方波-三角波-正弦波-锯齿波发生器

电子工程设计报告

目录 设计要求 1.前言 (1) 2方波、三角波、正弦波发生器方案 (2) 2.1原理框图 (2) 3.各组成部分的工作原理 (3) 3.1方波发生电路的工作原理 (3) 3.2方波--三角波转换电路的工作原理 (4) 3.3三角波--正弦波转换电路的工作原理 (6) 3.4方波—锯齿波转换电路的工作原理 (7) 3.5总电路图 (8)

方波—三角波—正弦波函数信号发生器 摘要 波形函数信号发生器广泛地应用于各场所。函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。 函数(波形)信号发生器。能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途 而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。 关键词:振荡电路;电压比较器;积分电路;低通滤波电路 设计要求 1.设计、组装、调试方波、三角波、正弦波发生器。 2.输出波形:方波、三角波、正弦波;锯齿波 3.频率范围:在0.02-20KHz范围内且连续可调; 1.前言 在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在各种实验应用和实

方波_三角波发生电路实验报告

河西学院物理与机电工程 学院 综合设计实验 方波-三角波产生电路 实验报告 学院:物理与机电工程学院 专业:电子信息科学与技术

:侯涛 日期:2016年4月26日 方波-三角波发生电路 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波形发生器。 指标:输出频率分别为:102HZ、103HZ和104Hz;方波的输出电压峰峰值VPP≥20V 一、方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器从而把正弦波转换成方波。 3、把方波信号通过一个积分器。转换成三角波。 方案二: 1、由滞回比较器和积分器构成方波三角波产生电路。 2、然后通过低通滤波把三角波转换成正弦波信号。 方案三: 1、由比较器和积分器构成方波三角波产生电路。

2、用折线法把三角波转换成正弦波。 二、方案的比较与确定 方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、C1=C2。即f=f0时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化围很小的情况下使用。然而,指标要求输出频率分别为102HZ、103HZ和104Hz 。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波、三角波发生器原理如同方案二。比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大即零附近的差别最小,峰值附近差别最大。因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率围的限制。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 三、工作原理: 1、方波、三角波发生电路原理

多种波形发生器的设计与制作

课题三 多种波形发生器的设计与制作 方波、三角波、脉冲波、锯齿波等非正弦电振荡信号是仪器仪表、电子测量中最常用的波形,产生这些波形的方法较多。本课题要求设计的多种波形发生器是一种环形的波形发生器,方波、三角波、脉冲波、锯齿波互相依存。电路中应用到模拟电路中的积分电路、过零比较器、直流电平移位电路和锯齿波发生器等典型电路。通过对本课题的设计与制作,可进一步熟悉集成运算放大器的应用及电路的调试方法,提高对电子技术的开发应用能力。 1、 设计任务 设计并制作一个环形的多种波形发生器,能同时产生方波、三角波、脉冲波和锯齿波,它们的时序关系及幅值要求如图3-3-1所示。 图3-3-1 波形图 设计要求: ⑴ 四种波形的周期及时序关系满足图3-3-1的要求,周期误差不超过%1±。 ⑵ 四种波形的幅值要求如图3-3-1所示,幅值误差不超过%10±。 ⑶ 只允许采用通用器件,如集成运放,选用F741。

要求完成单元电路的选择及参数设计,系统调试方案的选取及综合调试。 2、设计方案的选择 由给定的四种波形的时序关系看:方波决定三角波,三角波决定脉冲波,脉冲波决定锯齿波,而锯齿波又决定方波。属于环形多种波形发生器,原理框图可用3-3-2表示。 图3-3-2 多种波形发生器的方框图 仔细研究时序图可以看出,方波的电平突变发生在锯齿波过零时刻,当锯齿波的正程过零时,方波由高电平跳变为低电平,故方波发生电路可由锯齿波经一个反相型过零比较器来实现。三角波可由方波通过积分电路来实现,选用一个积分电路来完成。图中的u B电平显然上移了+1V,故在积分电路之后应接一个直流电平移位电路,才能获得符合要求的u B波形。脉冲波的电平突变发生在三角波u B的过零时刻,三角波由高电平下降至零电位时,脉冲波由高电平实跳为低电平,故可用一个同相型过零比较器来实现。锯齿波波形仍是脉冲波波形对时间的积分,只不过正程和逆程积分时常数不同,可利用二极管作为开关,组成一个锯齿波发生电路。由上,可进一步将图3-3-2的方框图进一步具体化,如图3-3-3所示。 图3-3-3 多种波形发生器实际框图 器件选择,设计要求中规定只能选用通用器件,由于波形均有正、负电平,应选择由正、负电源供电的集成运放来完成,考虑到重复频率为100Hz(10ms),故选用通用型运放F741(F007)或四运放F324均可满足要求。本设计选用F741。其管脚排列及功能见附录三之三。

方波三角波产生电路方案

方波-三角波产生电路的设计 1 技术指标 设计一个方波- 三角波产生电路,要求方波和三角波的重复频率为500Hz,方波脉冲幅度为6- 6.5V,三角波为1.5-2V,振幅基本稳定,振荡波形对称,无明显非线性失真。 2 设计方案及其比较 产生方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以直接产生三角波—方波。由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波。 2.1 方案一 非正弦波发生器的组成原理是电路中必须有开关特性的器件,可以是电压比较器,、集成模拟开关、TTL与非门等;具有反馈网络,它的作用是通过输出信号的反馈,改变开关器件的状态;具有延迟环节,常用RC电路充放电来实现;具有其他辅助部分,,如积分电路等。 矩形经过积分器就变成三角波形,即三角波形发生器是由方波发生器和反向积分器所组成的。但此时要求前后电路的时间常数配合好,不能让积分器饱和。 如图1所示为该电路设计图。 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。如图所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生 器。构成迟滞比较器,用于输出方波;构成积分电路,用于把方波转变为三角波,即输出三角波。

图1 方案一电路设计图 U1构成迟滞比较器,同相端电位由和决定。利用叠加定理可得: 当时,U1输出为正,即 当时,U1输出为负,即 构成反相积分器,为负时,正向变化。为正时,负向变化。 当时,可得: 当上升使略高于0v时,U1的输出翻转到 同样,时,当下降使略低于0时,。 这样不断重复就可以得到方波和三角波,输出方波的幅值由稳压管决定,被限制在之间。 积分电路的输入电压是滞回比较器的输出电压,而且不是,就是,所以输出电压的表达式为:

矩形波发生器的设计

目录 第一章概述 (1) 第二章设计原理及思路 (1) 2.1 占空比可调的矩形波发生电路 (1) 2.1.1 电路组成及工作原理 (1) 2.1.2 占空比可调电路的实现 (2) 2.2 RC串并联网络振荡电路 (3) 第三章系统电路总图及元件清单 (4) 3.1电路设计图 (4) 3.1.1 Protel原理图 (4) 3.1.2 仿真图 (5) 3.2元件清单 (7) 第四章电路调试与分析 (8) 4.1 测试仪器 (8) 4.2 测试说明 (8) 4.3 误差分析 (8) 第五章设计心得 (8) 参考文献 (9)

第一章 概述 非正弦波发生电路常常用于脉冲和数字系统中作为信号源,而常用的非正弦波发生电路有矩形波发生电路、三角波发生电路和锯齿波发生电路等。其中,矩形波发生电路是三角波发生电路和锯齿波发生电路等的基础,因此,本设计旨在创建一种能够产生稳定且占空比和频率可调的矩形波模块电路,包括了Protel 原理图和Mulstism 仿真图。 该电路主要由RC 串并联网络振荡电路及一个滞回比较器和一个RC 充放电回路组成,重点阐述了发生器的电路结构及工作原理,分析了单元电路的制作和工作过程并进行了调试,调试结果表明设计的电路在低频段是可行的。 第二章 设计原理及思路 2.1 占空比可调的矩形波发生电路 2.1.1 电路组成及工作原理 图2-1为矩形波发生电路,它由反相输入的滞回比较器和RC 电路组成。RC 回路既作为延迟环节,又作为反馈网络,通过RC 充放电实现输出状态的自动转换。 图中滞回比较器的阈值电压 Z T U R R R U ?+±=±2 11 (1) 因而滞回比较器的电压传输特性如图2-2所示:

方波三角波正弦波锯齿波发生器

方波三角波正弦波锯齿波 发生器 This manuscript was revised by the office on December 10, 2020.

电子工程设 计报告

目录

方波—三角波—正弦波函数信号发生器 摘要 波形函数信号发生器广泛地应用于各场所。函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。 函数(波形)信号发生器。能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途 而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。 关键词:振荡电路;电压比较器;积分电路;低通滤波电路 设计要求 1.设计、组装、调试方波、三角波、正弦波发生器。 2.输出波形:方波、三角波、正弦波;锯齿波 3.频率范围:在-20KHz范围内且连续可调; 1.前言 在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,

信号发生器设计---实验报告

信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U =6V,正弦波U p-p>1V。 p-p 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r <5%。(计算参数) ~ 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。(差模传输特性)其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注 应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V m 管的截止电压值。 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。取Ic2上面的电流(看输出) 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。(n>3) ③输出电压:一般指输出波形的峰-峰值U p-p 。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r ~和r △;表征方波特性的参数是上升时间t r 。 四、电路仿真与分析 实验仿真电路图如图

方波发生器设计

方波发生器设计 摘要:随着EDA技术以及大规模集成电路技术的迅猛发展,波形发生器的各方面性能指标都达到了一个新的水平。采用CPLD/FPGA器件在QuartuesII设计环境中用VHDL语言完成的波形发生器具有频率稳定性高,可靠性高,输出波形稳定等特点。本文介绍了基于EDA技术的波形发生器的研究与设计。 一、设计任务与要求 设计一方波发生器并且输出信号的频率范围为100Hz~200KHz,输出频率可以调节;可以存储任意波形特征数据并能重现该波形,还可完成各种波形的线形叠加输出,具有显示输出波形、频率的功能。 通过运用VHDL语言编程,通过运用软件Quartus II 6.0,逐渐掌握EDA的用法,熟练步骤,为以后的学习与工作做很好的铺垫。 二、总体框图 (1)方案论证 方案一: 本系统由FPGA(可编程门阵列),数模转换,时钟(提供clk信号)等组成。全部为FPGA试验箱所有,不需要增加任何器件。用FPGA产生的255—0的计数值输入到DAC0832中,将产生对应的模拟信号。本系统采用的是软硬件结合的方法。由于一个周期内的任意波形的离散样点数对硬件实现的复杂性直接产生影响,因此,为了简化硬件存储器件的规模,取64个样点进行讨论。 具体做法是先对一个周期进行64点采样,然后依次存于ROM中,再以fs频率给出地址码,控制存储器周期的读出数据,并经D、A转换和模拟放大,便能得到一定的频率的周期信号。因此周期信号的频率为fo=fs/M.其中M为采样点个数,本设计中取为64;fs为存储器读出频率。显然,通过改变读出频率fs,便可获得不同频率的周期信号fo.。 原理说明: 完整的波形发生器由三部分组成:由计数器构成的地址信号发生器、波形数据ROM和D/A。在FPGA的顶层文件中,计数器通过外来控制信号和高速时钟信号向波形数据ROM发出地址信号,输出波形的批评你率由发出的地址信号的速度决定;当以固定的频率扫描输出地址时,输出波形是固定频率,而当以周期性时变方式扫描输出地址时,则输出波形为扫频信号。波形数据ROM中存有发生器的波形数据,如正弦波或者三角波数据等。当接受来自FPGA的地址信号后,将从数据线输出相应的波形数据。波形数据ROM可以由多种方式实现,如在FPGA外面外接普通ROM或者由FPGA中的EAB模块相当,即利用LPM-ROM来实现。 D/A转换器负责将ROM输出的数据转换成模拟信号,经过滤波电路后输出。输出波形的频率上限与D/A转换器件的转换速度有重要关系,我们的试验箱上用

方波、三角波、正弦波信号产生

课程设计报告 题 目 方波、三角波、正弦波信号 发生器设计 课 程 名 称 模拟电子技术课程设计 院 部 名 称 机电工程学院 专 业 电气工程及其自动化 班 级 电气及其自动化(2)班 学 生 姓 名 李丽 学 号 1104102067 课程设计地点 C206 课程设计学时 1周 指 导 教 师 赵国树 金陵科技学院教务处制

目录 1、绪论 (4) 1.1相关背景知识 (4) 1.2课程设计条件................................................... . (4) 1.3课程设计目的.......... (4) 1.4课程设计的任务 (4) 1.5课程设计的技术指标 (5) 2、信号发生器的基本原理 (5) 2.1原理框图 (4) 2.2总体设计思路 (5) 3、各组成部分的工作原理 (5) 3.1 正弦波产生电路 (5) 3.1.1正弦波产生电路 (5) 3.1.2正弦波产生电路的工作原理 (6) 3.2 正弦波到方波转换电路 (8) 3.2.1正弦波到方波转换电路图 (6) 3.2.2正弦波到方波转换电路的工作原理 (8) 3.3 方波到三角波转换电路 (11) 3.3.1方波到三角波转换电路图 (11) 3.3.2方波到三角波转换电路的工作原理 (13) 4、电路仿真结果 (13) 4.1正弦波产生电路的仿真结果 (14) 4.2 正弦波到方波转换电路的仿真结果 (14) 4.3方波到三角波转换电路的仿真结果 (15) 5、设计结果分析与总结 (16)

1、绪论 1.1相关背景知识 信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器在电路实验和设备检测中具有十分广泛的用途,可以用于生产测试、仪器维修和实验室,还广泛使用在其它科技领域,如医学、教育、化学、通讯、地球物理学、工业控制、军事和宇航等。它是一种不可缺少的通用信号源。 1.2课程设计条件 以本学期学习的电子技术基础(模拟部分)为知识背景,我们知道通过放大器、比较器等元器件可构成集成电路、反馈放大电路、运算放大电路等一系列组合放大电路。信号在我们的生活中是无处不在的,模拟信号是时间和幅度连续变化的信号。通过传感器我们可以将各种物理信号转换为电信号,再进过一系列信号的处理。如滤波、幅度放大等,我们可以获得自己需要的信号。 正弦波振荡电路。在通信、广播、医疗、电视系统中,都有广泛的应用。非正弦波产生电路。在一些电子系统中,如数学领域,方波、三角波的应用都是极其广泛的。 1.3课程设计目的 通过本次课程设计所要达到的目的是:提高学生在模拟集成电路应用方面的技能,树立严谨的科学作风,培养学生综合运用理论知识解决实际问题的能力。学生通过电路设计初步掌握工程设计方法,逐步熟悉开展科学实践的程序和方法,为后续课程的学习和今后从事的实际工作打下必要的基础。 1.4课程设计的任务 ①设计一个方波、三角波、正弦波函数发生器; ②能同时输出一定频率一定幅度的三种波形:正弦波、方波、三角波; ③用±5V电源供电。 产生正弦波、方波、三角波的方案有多种,如: ①首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;②也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波;③也可以通过单片集成函数发生器8038来实现… 先是对电路的分析,参数的确定选择出一种最适合本课题的方案。在达到课题要求的前提下保证最经济。最方便。最优化的死亡合剂策略。然后运用仿真软件Multisim对电路进行仿真。观察效果并与要求的性能指标作对比。

压控锯齿波发生器的设计.

2012级机械设计制造及其自动化专业 电子技术课程设计 压控锯齿波发生器的设计 姓名: 院别:工学院 专业:机械设计制造及其自动化 学号: 指导教师: 2014年12月

工学院课程设计评审表

《电子技术课程设计》课程设计任务书

压控锯齿波发生器的设计 1 设计任务与要求 1.1 设计任务: 利用集成运放实现一个压控锯齿波发生器的设计 1.2 设计要求: 自行设计并确定元件参数,画出电路图,列出元件明细表,做出产品。通过实验测试电路参数,验证电路是否符合设计要求。 2 设计原理 工作原理: ω与输入控制电指输出频率与输入控制电压有对应关系的发生器电路,其特性用输出角频率0 ω,0称为自由振荡角频率;曲压c u之间的关系曲线来表示(如图1)。图1中c u为零时的角频率0 ω,0处的斜率0K称为控制灵敏度。使振荡器的工作状态或振荡回路的元件参数受输入控制线在0 电压的控制,就可构成一个压控振荡器。 图1 压控震荡器的控制特性 3 电路设计 3.1 设计思路 本次设计采用比较电路输出矩形波,通过积分电路将波形转换为锯齿波,调节输入电压,当积分电路的正向积分时间常数远大于反向积分常数,或者反向积分时间常数远大于正向积分时间常数时,那么输出电压0u上升和下降的斜率相差很多,就可以获得锯齿波。利用二极管的单向导电性使积分电路两个方向的积分通路相同,就可得到锯齿波发生电路。 3.2压控锯齿发生电路的各部分电路 3.2.1滞回比较器

滞回比较器又称施密特触发器,迟滞比较器。这种比较器的特点是当输入信号逐渐增大或逐渐减小时,它有两个阈值,且不相等,其传输特性具有“滞回”曲线的形状。 滞回比较器也有反相输入和同相输入两种方式。 滞回比较器的电路图 3.2.2积分电路 积分电路是使输出信号与输入信号的时间积分值成比例的电路。改变三角波产生电路中积分电路的正向积分时间和反向积分时间,就可以在电路输出端得到锯齿波

信号发生器实验报告(波形发生器实验报告)

信号发生器 一、实验目的 1、掌握集成运算放大器的使用方法,加深对集成运算放大器工作原理的理解。 2、掌握用运算放大器构成波形发生器的设计方法。 3、掌握波形发生器电路调试和制作方法 。 二、设计任务 设计并制作一个波形发生电路,可以同时输出正弦、方波、三角波三路波形信号。 三、具体要求 (1)可以同时输出正弦、方波、三角波三路波形信号,波形人眼观察无失真。 (2)利用一个按钮,可以切换输出波形信号。。 (3)频率为1-2KHz 连续可调,波形幅度不作要求。 (4)可以自行设计并采用除集成运放外的其他设计方案 (5)正弦波发生器要求频率连续可调,方波输出要有限幅环节,积分电路要保证电路不出现积分饱和失真。 四、设计思路 基本功能:首先采用RC 桥式正弦波振荡器产生正弦波,然后通过整形电路(比较器)将正弦波变换成方波,通过幅值控制和功率放大电路后由积分电路将方波变成三角波,最后通过切换开关可以同时输出三种信号。 五、具体电路设计方案 Ⅰ、RC 桥式正弦波振荡器 图1 图2 电路的振荡频率为:RC f π21 0= 将电阻12k ,62k 及电容100n ,22n ,4.4n 分别代入得频率调节范围为:24.7Hz~127.6Hz ,116.7Hz~603.2Hz ,583.7Hz~3015Hz 。因为低档的最高频率高于高档的最低频率,所以符合实验中频率连续可调的要求。 如左图1所示,正弦波振荡器采用RC 桥式振荡器产生频率可调的正弦信号。J 1a 、J 1b 、J 2a 、J 2b 为频率粗调,通过J 1 J 2 切换三组电容,改变频率倍率。R P1采用双联线性电位器50k ,便于频率细调,可获得所需要的输出频率。R P2 采用200k 的电位器,调整R P2可改变电路A f 大小,使得电路满足自激振荡条件,另外也可改变正弦波失真度,同时使正弦波趋于稳定。下图2为起振波形。

PWM波形的发生器的设计

综合实验二PWM波形的发生器的设计 一、系统设计与理论分析 1.用ADC0809进行A/D转换,采集到数字信号D 2.在P1.1上产生周期T为1kHz的PWM波形,其中脉冲宽度Tao由数字信号D决定(如当采集到的数字信号为80H时,占空比为50%,依此类推) 本实验是先采集模拟信号,然后将模拟信号转换成数字信号,经CPU处理,用数字信号来决定CPU产生的波形的占空比,并将占空比显示出来。 二、硬件设计 本系统采用51芯片控制,使用可变电阻作为传感器,通过 ADC0809采集模拟信号,将模拟信号转换成数字信号给51芯片处理,再通过8155扩展IO口,显示模块采用数码管,与8155相连,51单片机通过8155控制数码管的显示。 本次试验器材采用的是试验箱,各模块的芯片选择已经固定,只需将所用模块线路搭连好即可。 本实验使用74LS164串转并来实现数码管的显示,减少了IO口的使用数量,使系统有更多的IO口实现其他功能的扩张。

三、软件设计 首先将8155的模式通过控制字地址传入8155,接着对8051的定时中断进行初始化设置,将从传感器上通过AD转换的数据送到8051,赋值给Tao,接着通过8051将Tao值拆分,然后将拆分的数据通过8155的IO口串行输出,再通过74LS164将串行数据转换成并行数据,使与74LS164并行口相连的八段数码管显示出数据。另一方面,定时器每隔3ns对Tao与T进行比较,并在P1.1上输出相应的值。

四、系统测试 实验仪器使用的是实验箱,测试用的仪器仪表实验室均有提供,而软件代码老师已经给出,测试部分是本次实验主要要做的部分。由于实验箱好坏程度不同,在硬件方面,判断其好坏花去不少时间,实验器材换了又换,结果还是存在一定问题。而软件方面,keil的安装时常出现奇形怪状的问题,经老师检查,未查出原因致使电脑换了一台又一台,能否成功安装上keil软件的概率无法估计。总而言之,在到达这测试的部分时已花去相当一大部分时间,因此,测试数据不够完善,存在一些问题未解决。 根据系统设计,占空比=Tao·(2-1+2-2+……2-8)·100%

集成运放构成的三角波方波发生器

集成运放构成的三角波方波发生器 一、实验目的 1.理解三角波方波发生器的设计思路,搭接出最简单的电路,获得固定频率、幅度的三角波、方波输出。 2.理解独立可调的设计思路,搭接出频率、占空比、三角波幅度、三角波直流偏移、方波幅度、方波直流偏移均独立可调的电路,调整范围不限。 3.理解分块调试的方法,进一步增强故障排查能力。 二、实验思路 利用集成运放构成的比较器和电容的充放电,可以实现集成运放的周期性翻转,进而在输出端产生一个方波。这个电路如图2.3.1所示,它的工作原理请参阅相关教科书。注意在这个电路中,给电容的充电是恒压充电,随着电容电压的升高,其充电电流越来越小,电容电压上升也越来越缓慢。理论分析可知,电容上电压的变化,是一个负指数曲线。因此,这个电路只能实现方波发生。但是,我们注意到,这个负指数曲线在工作过程中是不停地正向充电、反向放电,已经和三角波有些类似。如果能够使得电容上充电电流固定,则其电压的上升或者下降将是线性的,就可以在电容端获得一个三角波。 我们可以立即联想到这样一个事实:当积分器的输入是固定电压,则其输出是线性上升或者下降的。因此,将图2.3.1中的RC充电电路去掉,用一个积分器替代,并考虑到极性,再增加一级反相电路,就可以实现三角波的产生,如图2.3.2所示。 图2.3.2电路使用了3个集成运放。电路设计者认为,A3并不是必须的,因为它仅仅完成了1倍的反相放大,这个功能完全可以利用A1的输入端极性进行巧妙设计来实现。为了节省1个运放,设计者给出了新的电路,如图2.3.3所示,它仅使用2个运放。

图2.3.3所示电路的工作原理,请参阅相关教科书。图中稳压管DZ和电阻R3组成稳压电路,目的是克服运放输出的不对称。 本实验在实现上述基本电路的基础上,还提出了新的要求。有下列6个量:三角波和方波共有的频率、共有的占空比、三角波的幅度、方波的幅度、三角波的直流偏移、方波的直流偏移,其中每个量都由一个独立的电位器控制,当调节某个量时,其它5个量不能发生变化。这就是独立可调的要求。 本实验将给出一个独立可调的三角波方波发生器电路,要求学生在认真分析的基础上,用运放、电阻、电容、稳压管等元器件,自己实现搭接。然后在搭接好的电路上,观察、调节、记录,体会其中的设计思想。 三、实验原理 图2.3.4是可以满足设计要求的最终电路。其中A1、A2、A3及其附属电路,完成三角波、方波的发生,并且实现频率和占空比的可调。A4、A5及其附属电路,实现三角波和方波的幅度、直流偏移可调。 图2.3.4电路与图2.3.3电路有3点主要的区别。第一、用R13、RW2、DZ1、DZ2组成一个双向电阻值不同的电路,取代图2.3.3中的积分器电阻R,使得积分器工作过程中,正向充电和反向放电的时间常数不一致,三角波上升斜率和下降斜率大小不同,造成方波的占空比不同。需要注意的是,由于用一个电位器调节,无论在什么位置,积分器的正向时间常数和反向时间常数的和,是一个常数,就造成单纯调节RW2,只改变占空比而不会改变频率。第二、在稳压管输出和积分器之间,加入A3构成的反相放大器,可以通过RW1调节积分器输入电压大小,进而改变积分器输出电压变化斜率,造成波形发生的频率变化。这样,uo1产生方波,uo2产生三角波。这两个波形的频

信号发生器实验报告

电子线路课程设计报告设计题目:简易数字合成信号发生器 专业: 指导教师: 小组成员:

数字合成信号发生器设计、调试报告 一:设计目标陈述 设计一个简易数字信号发生器,使其能够产生正弦信号、方波信号、三角波信号、锯齿波信号,要求有滤波有放大,可以按键选择波形的模式及周期及频率,波形可以在示波器上 显示,此外可以加入数码管显示。 二、完成情况简述 成功完成了电路的基本焊接,程序完整,能够实现要求功能。能够通过程序控制实现正弦波的输出,但是有一定噪声;由于时间问题,我们没有设计数码管,也不能通过按键调节频率。 三、系统总体描述及系统框图 总体描述:以51单片机开发板为基础,将输出的数字信号接入D\A转换器进行D\A转换,然后接入到滤波器进行滤波,最后通过运算放大器得到最后的波形输出。 四:各模块说明 1、单片机电路80C51 程序下载于开发板上的单片机内进行程序的执行,为D\A转换提供了八位数字信号,同时为滤波器提供高频方波。通过开发板上的232串口,可以进行软件控制信号波形及频率切换。通过开发板连接液晶显示屏,显示波形和频率。 2、D/A电路TLC7528 将波形样值的编码转换成模拟值,完成单极性的波形输出。TLC7528是双路8位数字模拟转换器,本设计采用的是电压输出模式,示波器上显示波形。直接将单片机的P0口输出传给TLC7528并用A路直接输出结果,没有寄存。 3、滤波电路MAX7400 通过接收到的单片机发送来的高频方波信号(其频率为所要实现波频率的一百倍)D转换器输出的波形,对转换器输出波形进行滤波并得到平滑的输出信号。 4、放大电路TL072

TL072用以对滤波器输出的波进行十倍放大,采用双电源,并将放大结果送到示波器进行波形显示。 五:调试流程 1、利用proteus做各个模块和程序的单独仿真,修改电路和程序。 2、用完整的程序对完整电路进行仿真,调整程序结构等。 3、焊接电路,利用硬件仿真器进行仿真,并用示波器进行波形显示,调整电路的一些细节错误。 六:遇到的问题及解决方法 遇到的软件方面的问题: 最开始,无法形成波形,然后用示波器查看滤波器的滤波,发现频率过低,于是检查程序发现,滤波器的频率设置方面的参数过大,延时程序的参数设置过大,频率输出过低,几次调整好参数后,在进行试验,波形终于产生了。 七:原理图和实物照片 波形照片:

相关主题
文本预览
相关文档 最新文档