当前位置:文档之家› 基于LQR的倒立摆最优控制系统设计

基于LQR的倒立摆最优控制系统设计

基于LQR的倒立摆最优控制系统设计
基于LQR的倒立摆最优控制系统设计

基于LQR的倒立摆最优控制系统设计 [摘要]倒立摆系统是一个典型的多变量、非线性、强耦合和快速运动的高阶不稳定系统,它是检验各种新的控制理论和方法有效性的典型理想模型。在其控制过程中,能有效地反映诸如镇定性、鲁棒性、随动性以及跟踪等许多关键问题。本文主要研究二级倒立摆LQR控制方法。

本文以二级直线倒立摆为研究对象,对直线二级倒立摆系统进行分析,然后运用Matlab实时控制软件对模型进行控制算法的模拟仿真,最后得出相应结论。

本文先对二级直线倒立摆的模型进行分析,然后通过拉格朗日方程建立倒立摆的数学模型,然后再二级倒立摆的状态方程、系统的稳定性及能控性和能控性做了详细的分析,再以最优控制理论为原理,设计出LQR控制器,通过对倒立摆系统的LQR 控制算法的研究,探讨了加权矩阵Q和R的选取方法,最后利用Matlab建立倒立摆系统模型,进行了二级倒立摆的LQR控制器的仿真,模拟出相应参数下的阶跃响应曲线,通过对响应曲线的稳定性,快速性的观察,选取最合适的加权矩阵Q和R。

[关键词]二级直线倒立摆;LQR控制;仿真

Research on Double Inverted Pendulum Control System

Based on LQR

[Abstract]The inverted pendulum is a typical high order system, with multi- variable, non-linear, strong-coupling, fleet and absolutely instable. It is representative as an ideal model to prove new control theory and techniques. During the control process, pendulum can effectively reflect many key problems such as equanimity, robust, follow-up and track, therefore. This paper studies a control method of double inverted pendulum LQR.

In this paper, two linear inverted pendulum as the research object, linear inverted pendulum system for analysis, then the use of real-time control software Matlab model control algorithm simulation, finally draw the appropriate conclusions.

This article first for two straight inverted pendulum model analysis, and then through Lagrange equation established mathematical model of inverted pendulum, and then inverted pendulum equation of state, system stability and controllability and controllability do a detailed analysis, then the theory of optimal control theory to design a LQR controller, through the inverted pendulum system LQR control algorithm, discusses the weighting matrices Q and R, selection methods, and finally the use of Matlab established inverted pendulum system model for the two inverted pendulum LQR controller simulation, simulation of the corresponding parameters of the step response curve, through the response curve of stability, speed observation, select the most appropriate weighting matrices Q and R.

[Key Words]Double linear inverted pendulum; LQR control; Simulation

前言

倒立摆系统是进行控制理论研究的典型实验平台。由于倒立摆系统的控制策略和杂技运动员顶杆平衡表演的技巧有异曲同工之处,极富趣味性,而且许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等等,都可以通过倒立摆系统实验直观的表现出来,因此在欧美发达国家的高等院校,它已成为必备的控制理论教学实验设备。学习自动控制理论的学生通过倒立摆系统实验来验证所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。

倒立摆不仅仅是一种优秀的教学实验仪器,同时也是进行控制理论研究的理想实验平台。由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象,不断地从中发掘出新的控制策略和控制方法,相关的科研成果在航天科技和机器人学方面获得了广阔的应用。

二十世纪九十年代以来,更多更加复杂多种形式的倒立摆系统成为控制理论研究领域的热点,每年在专业杂志网站上都会有大量的优秀论文出现。目前,高等院校的自动控制教学基本能够提供整套基于倒立摆系统的实验解决方案,包括各种倒立摆的介绍、实验内容的安排和配置,以及对应的自动控制理论教学内容和相关经典教材的推荐。通过对倒立摆系统的研究,不仅可以解决控制中的理论问题,还能将控制理论所涉及的三个基础学科:力学、数学和电学有机的结合起来,在倒立摆系统中进行综合应用。

倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。

因此对倒立摆机理的研究具有重要的理论和实际意义,成为控制理论中经久不衰的研究课题。

绪论

基于LQR的倒立摆最优控制系统设计

1 绪论

1.1 研究倒立摆的背景及意义

随着现代科学技术的快速发展,控制工程所面临的问题越来越复杂。许多系统具有严重非线性、模型不确定、大滞后等特点。倒立摆就是这样的复杂系统,对它的研究具有一般性。倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪 50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。

在控制理论发展过程中,某一理论的正确性及其在实际应用中的可行性需要一个按其理论设计的控制器去控制一个典型对象来验证。倒立摆系统作为一个实验装置,形象直观,结构简单,成本低廉;作为一个控制对象,又相当复杂,同时就其本身而言,是一个高阶次、不稳定、多变量、非线性、强耦合系统,只有采取有效的控制方法才能使之稳定,因此倒立摆装置被公认为是自动控制理论中的典型实验设备。

通过对倒立摆系统的研究,不仅可以解决控制中的理论问题,还能将控制理论所涉及的三个基础学科:力学、数学和电学有机的结合起来,在倒立摆系统中进行综合应用。对倒立摆系统进行控制,其稳定效果非常明了,可以通过角度、位移和稳定时间直接度量,控制好坏一目了然[1]。理论是工程的先导,对倒立摆的研究不仅有其深

第1页(共34页)

自动控制原理课程设计——倒立摆系统控制器设计

一、引言 支点在下,重心在上,恒不稳定的系统或装置的叫倒立摆。倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。 问题的提出 倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。 倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。 倒立摆的控制方法 倒立摆系统的输入来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。 本次设计中我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型,然后通过开环响应分析对该模型进行分析,并利用学习的古典控制理论和Matlab /Simulink仿真软件对系统进行控制器的设计,主要采用根轨迹法,频域法以及PID(比例-积分-微分)控制器进行模拟控制矫正。

单级倒立摆系统的分析与设计

单级倒立摆系统的分析与设计 小组成员:武锦张东瀛杨姣 李邦志胡友辉 一.倒立摆系统简介 倒立摆系统是一个典型的高阶次、多变量、不稳定和强耦合的非线性系统。由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。由于倒立摆系统本身所具有的上述特点,使它成为人们深入学习、研究和证实各种控制理论有效性的实验系统。 单级倒立摆系统(Simple Inverted Pendulum System)是一种广泛应用的物理模型,其结构和飞机着陆、火箭飞行及机器人的关节运动等有很多相似之处,因而对倒立摆系统平衡的控制方法在航空及机器人等领域有着广泛的用途,倒立摆控制理论产生的方法和技术将在半导体及精密仪器加工、机器入技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。 倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。最初研究开始于二十世纪50年代,单级倒立摆可以看作是一个火箭模型,相比之下二阶倒立摆就复杂得多。1972年,Sturgen等采用线性模拟电路实现了对二级倒立摆的控制。目前,一级倒立摆控制的仿真或实物系统已广泛用于教学。 二.系统建模 1.单级倒立摆系统的物理模型 图1:单级倒立摆系统的物理模型

单级倒立摆系统是如下的物理模型:在惯性参考系下的光滑水平平面上,放置一个可以在平行于纸面方向左右自由移动的小车(cart ),一根刚性的摆杆(pendulum leg )通过其末端的一个不计摩擦的固定连接点(flex Joint )与小车相连构成一个倒立摆。倒立摆和小车共同构成了单级倒立摆系统。倒立摆可以在平行于纸面180°的范围内自由摆动。倒立摆控制系统的目的是使倒立摆在外力的摄动下摆杆仍然保持竖直向上状态。在小车静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆受到微小的摄动时就会发生不可逆转的破坏而使倒立摆无法复位,这时必须使小车在平行于纸面的方向通过位移产生相应的加速度。依照惯性参考系下的牛顿力学原理,作用力与物体位移对时间的二阶导数存在线性关系,单级倒立摆系统是一个非线性系统。 各个参数的物理意义为: M — 小车的质量 m — 倒立摆的质量 F — 作用到小车上的水平驱动力 L — 倒立摆的长度 x — 小车的位置 θ— 某一时刻摆角 整个倒立摆系统就受到重力、驱动力和摩擦阻力的三个外力的共同作用。这里,驱动力F 是由连接小车的传动装置提供,控制倒立摆的稳定实际上就是依靠控制驱动力F 使小车在水平面上做与倒立摆运动相关的特定运动。为了简化模型以利于仿真,假设小车与导轨以及摆杆与小车铰链之间的摩擦均为0。 2.单级倒立摆系统的数学模型 令小车的水平位移为x ,运动速度为v ,加速度a 。 小车的动能为212kc E Mx =,选择特定的参考平面使得小车的势能为0。 摆杆的长度为L ,某时刻摆角为θ,在摆杆上与固定连接点距离为q (0

一级倒立摆控制方法比较

一级倒立摆控制方法比较 摘要:倒立摆系统是一个典型的多变量、非线性、强耦合和快速运动的自然不稳定系统。针对一级倒立摆系统,首先利用牛顿力学的知识建立了数学模型,然后利用Simulink 及其封装功能建立倒立摆的仿真模型,使模型更具灵活性,给仿真带来很大方便。根据状态方程判断系统的能控、能观性。通过LQR控制算法和极点配置设计控制器使系统达到稳定状态,分析两种方法的优缺点,并利用Matlab仿真加以证实。 关键词:倒立摆; LQR ;极点配置 ;Matlab DISCUSSION ON CONTROLOF INVERTED PENDULUM Abstract:the inverted pendulum system is a typical multi-variable, nonlinear, strong coupling and rapid movement of the natural unstable system. According to the level of inverted pendulum system, firstI make use of Newtonian mechanics knowledge to establishthe mathematical model, and use the Simulink and packaging function to establish inverted pendulum simulation model.The model is more flexibility, bringing a lot of convenience for simulation. By the equation of state, controllability and observablityof system can be sure. Designing the LQR control algorithm and pole-place makes the system stable state, analyzes the advantages and disadvantages of two methods confirmed through the simulation of MATLAB. Key words:Inverted pendulum ;LQR ;pole-place ;Matlab 0引言 倒立摆系统作为研究控制理论的一种典型的实验装置,具有成本低廉,结构简单,物理参数和结构易于调整的优点。研究倒立摆系统具有很强的理论意义,同时也具有深远的实践意义。许多抽象的控制概念如稳定性、能控性和能观性,都可以通过倒立摆系统直观地表现出来。希望对倒立摆的研究能够加深对控制理论的了解,为后面学习奠定坚实的基础。 倒立摆[1]的稳定控制主要可分为线性控制和智能控制两大类,下面分别对其归纳介绍。 1)线性理论控制方法 应用线性控制方法的基本前提是倒立摆处在平衡点附近,偏移很小时,系统可以用

自动控制原理课程设计-倒立摆系统控制器设计

1 引言 支点在下,重心在上,恒不稳定的系统或装置的叫倒立摆。倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。 1.1 问题的提出 倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。 倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。 1.2 倒立摆的控制方法 倒立摆系统的输入来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。为了使杆子摆动或者达到竖直向上的稳定,

需要给小车一个控制力,使其在轨道上被往前或朝后拉动。 本次设计中我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型,然后通过开环响应分析对该模型进行分析,并利用学习的古典控制理论和Matlab /Simulink仿真软件对系统进行控制器的设计,主要采用根轨迹法,频域法以及PID(比例-积分-微分)控制器进行模拟控制矫正。 2 直线倒立摆数学模型的建立 直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一,直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件。 系统建模可以分为两种:机理建模和实验建模。实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。这里面包括输入信号的设计选取,输出信号的精确检测,数学算法的研究等等内容。 鉴于小车倒立摆系统是不稳定系统,实验建模存在一定的困难。因此,本文通过机理建模方法建立小车倒立摆的实际数学模型,可根据微分方程求解传递函数。 2.1 微分方程的推导(牛顿力学方法) 微分方程的推导在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示。做以下假设: M小车质量m摆杆质量 b小车摩擦系数I 摆杆惯量

倒立摆姿态控制模型

倒立摆 倒立摆百度文库解释: 倒立摆系统的输入为小车的位移(即位置)和摆杆的倾斜角度期望值,计算机在每一个采样周期中采集来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。 倒立摆系统简介 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。 倒立摆分类

倒立摆控制系统设计报告.doc

控制系统综合设计 倒立摆控制系统 院(系、部): 组长: 组员 班级: 指导教师: 2014年1月2日星期四

目录 摘要----------------------------------------------------------------------------------3 引言----------------------------------------------------------------------------------3 一、整体方案设计--------------------------------------------------------------3 1、需求-----------------------------------------------------------------------------3 2、目标-----------------------------------------------------------------------------3 3、概念设计----------------------------------------------------------------------3 4、整体开发方案设计---------------------------------------------------------3 5、评估----------------------------------------------------------------------------4 二、系统设计--------------------------------------------------------------------4 (一)系统设计-----------------------------------------------------------------4 1、功能分析----------------------------------------------------------------------4 2、设计规范和约束------------------------------------------------------------6 3、详细设计----------------------------------------------------------------------7 (二)机械系统设计-----------------------------------------------------------8 三、理论分析---------------------------------------------------------------------9 1、控制系统建模----------------------------------------------------------------9 2、时域和频域分析------------------------------------------------------------13 3、设计PID或其他控制器---------------------------------------------------21 四、元器件、设备选型--------------------------------------------------------30

倒立摆系统的控制器设计

倒立摆系统的控制器设计

摘 要 倒立摆是一种典型的非线性,多变量,强耦合,不稳定系统,许多抽象的控制概念如系统的稳定性、可控性、系统的抗干扰能力等都可以通过倒立摆直观的反应出来;倒立摆的控制思想在实际中如实验、教学、科研中也得到广泛的应用;在火箭飞行姿态的控制、人工智能、机器人站立与行走等领域有广阔的开发和利用前景。因此,对倒立摆系统的研究具有十分重要的理论和实践意义。 本文首先将直线倒立摆抽象为简单的模型以便于受力分析进行机理建模,然后通过牛顿力学原理进行分析,得出相应的模型,进行拉氏变化带入相应参数得出摆杆角度和小车位移、摆杆角度和小车加速度、摆杆角度和小车所受外界作用力、小车位移与小车所受外界作用力的传递函数,其中摆杆角度和小车加速度之间的传递函数为: 02()0.02725()()0.01021250.26705s G s V s s Φ==- ………… (1) 即我们在本次设计中主要分析的系统的传递函数。 然后从时域角度着手,分析直线一级倒立摆的开环单位阶跃响应和单位脉冲响应,利用Matlab 中的Simulink 仿真工具进行仿真,得出结论该系统的开环响应是发

散的。 最后分别利用根轨迹分析法,频域分析法和PID 控制法对倒立摆系统进行校正。 针对目标一:调整时间0.5(2%)s t s =误差带,最大超调量%10%≤p σ,选取参数利用根轨迹法进行校正,得出利用超前校正环节的传递函数为: 135.1547( 5.0887) ()135.1547c s G s s +=+ ………………………… (2) 针对目标二:系统的静态位置误差常数为10;相位裕量为 50 ;增益裕量等于或大于10 分贝。通过频域法得出利用超前校正环节的传递函数为: 1189.6(8.15) ()99.01c s G s s +=+ …………………………… ……………………(3) 针对目标三: 调整时间误差带)%2(2s t s =,最大超调量,%15%≤p σ,设计或调整PID 控制器参数,得出调整后的传递函数为: 150()21020c G s s s =++ ………………………………………. .(4)

一阶倒立摆控制系统

一阶直线倒立摆系统 姓名: 班级: 学号:

目录 摘要 (3) 第一部分单阶倒立摆系统建模 (4) (一)对象模型 (4) (二)电动机、驱动器及机械传动装置的模型 (6) 第二部分单阶倒立摆系统分析 (7) 第三部分单阶倒立摆系统控制 (11) (一)内环控制器的设计 (11) (二)外环控制器的设计 (14) 第四部分单阶倒立摆系统仿真结果 (16) 系统的simulink仿真 (16)

摘要: 该问题源自对于娱乐型”独轮自行车机器人”的控制,实验中对该系统进行系统仿真,通过对该实物模型的理论分析与实物仿真实验研究,有助于实现对独轮自行车机器人的有效控制。 控制理论中把此问题归结为“一阶直线倒立摆控制问题”。另外,诸如机器人行走过程中的平衡控制、火箭发射中的垂直度控制、卫星飞行中的姿态控制、海上钻井平台的稳定控制、飞机安全着陆控制等均涉及到倒立摆的控制问题。 实验中通过检测小车位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC)完成。实验将借助于“Simulink封装技术——子系统”,在模型验证的基础上,采用双闭环PID控制方案,实现倒立摆位置伺服控制的数字仿真实验。实验过程涉及对系统的建模、对系统的分析以及对系统的控制等步骤,最终得出实验结果。仿真实验结果不仅证明了PID方案对系统平衡控制的有效性,同时也展示了它们的控制品质和特性。 第一部分单阶倒立摆系统建模

(一) 对象模型 由于此问题为”单一刚性铰链、两自由度动力学问题”,因此,依据经典力学的牛顿定律即可满足要求。 如图1.1所示,设小车的质量为0m ,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向上的力为F ,1O 为摆杆的质心。 图1.1 一阶倒立摆的物理模型 根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其重心的转动方程为 sin cos y x l F J F l θθθ=-&& (1-1) 2)摆杆重心的水平运动可描述为 2 2(sin )x d F m x l dt θ=+ (1-2) 3)摆杆重心在垂直方向上的运动可描述为 2 2(cos )y d F mg m l dt θ-= (1-3) 4)小车水平方向运动可描述为 202x d x F F m dt -= (1-4)

倒立摆校正装置的设计

自动控制原理课程设计报告 倒立摆系统的控制器设计 指导教师:谢昭莉 学生:冯莉 学号: 20095099 专业:自动化 班级: 2009 级 3 班 设计日期: 2011.12.12—2011.12.23 重庆大学自动化学院 2011年12月

重庆大学本科学生课程设计任务书

目录 1倒立摆系统的研究背景和意义 (1) 2小车倒立摆系统模型的假设 (1) 3符号说明 (2) 4模型的建立 (2) 4.1牛顿力学法系统分析 (2) 4.2拉氏变换后实际系统的模型 (6) 5开环响应分析 (7) 6根轨迹法设计超前校正装置函数 (9) 6.1校正前倒立摆系统的闭环传递函数的析 (9) 6.2系统稳定性分析 (9) 6.3期望闭环极点的确定 (10) 6.4 超前校正装置传递函数的设计 (11) 6.4.1校正参数计算 (11) 6.4.2控制器的确定 (13) 6.4.3校正装置的改进 (13) 6.4.4Simulink仿真 (15)

7直线一级倒立摆频域法设计 (17) 7.1系统频域响应分析 (17) 7.2频域法控制器设计 (19) 7.2.1控制器的选择 (19) 7.2.2系统开环增益的计算 (19) 7.2.3校正装置的频率分析 (20) 7.2.4控制器转折频域和截止频域的求解 (22) 7.2.5校正装置的确定 (22) 7.2.6Simulink仿真 (24) 8直线一级倒立摆的PID控制设计 (25) 8.1PID简介 (25) 8.2PID控制设计分析 (25) 8.3PID控制器的参数测定 (26) 9总结与体会 (29) 9.1总结 (29) 9.2体会 (29) 10参考文献 (30)

控制系统课程设计---直线一级倒立摆控制器设计

控制系统课程设计---直线一级倒立摆控制器设计

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:控制系统设计课程设计 设计题目:直线一级倒立摆控制器设计 院系: 班级: 设计者: 学号: 指导教师:罗晶周乃馨 设计时间:2013.9.2——2013.9.13

哈尔滨工业大学课程设计任务书 姓名:院(系):英才学院 专业:班号: 任务起至日期:2013 年9 月 2 日至2013 年9 月13 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5 Kg ;m摆杆质量0.2 Kg ;b小车摩擦系数0.1 N/m/sec ;l摆杆转动轴心到杆质心的长度0.3 m ;I摆杆惯量0.006 kg*m*m ;T采样时间0.005 秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab 进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒;

(2)稳态时摆杆与垂直方向的夹角变化小于0.1 弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为:(1)摆杆角度θ和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)θ的超调量小于20度(0.35弧度) (4)稳态误差小于2%。 工作量: 1. 建立直线一级倒立摆的线性化数学模型; 2. 倒立摆系统的PID控制器设计、MATLAB仿真及 实物调试; 3. 倒立摆系统的极点配置控制器设计、MATLAB仿 真及实物调试。

倒立摆的H∞控制-文献综述

引言 近三十年来,随着控制理论技术和航空航天技术的迅猛发展,一种典型的系统在控制理论的领域中一直成为被关注的焦点,即倒立摆系统。 倒立摆的特点为支点在下,重心在上,是一种非常快速并且不稳定的系统。但正由于它本身所具有的这种特性,许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等等,都可以通过倒立摆系统实验直观的表现出来。因此在欧美等许多发达国家的高等院校中,倒立摆系统已经成为必备的控制理论教学实验设备。学生们可以通过倒立摆系统实验来验证所学的控制理论和算法,非常的直观、简便,更容易对课程加深理解。 倒立摆装置被公认为自动控制理论中的典型实验设备,也是控制理论教学中不可多得的典型物理模型。它深刻揭示了自然界的一种基本规律,即一个自然不稳定的被控对象,运用控制手段可使之具有良好的稳定性。由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象[1-4]。通过对倒立摆系统的研究,不仅可以解决控制中的理论问题,还能将控制理论所涉及的三个基础学科:力学、数学和电学(含计算机)有机的结合起来,在倒立摆系统中进行综合应用。在多种控制理论与方法的研究与应用中,特别是在工程实践中,也存在一种可行性的试验问题,将其理论和方法得到有效的经验,倒立摆为此提供了一个从控制理论通往实践的桥梁。所以,研究倒立摆系统对以后的教育研究领域具有非常深远的影响。 本文为建立倒立摆系统的数学研究模型,在熟悉线性系统的基本理论和非线性系统线性化的基本方法的基础上确定研究的系统方案和实施的控制方法,通过MATLAB软件对其进行编程,以达到完成倒立摆的仿真实验,实现了倒立摆的平衡控制。

单级倒立摆控制系统设计及MATLAB中仿真

单级倒立摆控制系统设计及simulink仿真 摘要:倒立摆系统是一个典型的多变量、非线性、强藕合和快速运动的自然不稳定系统。因此倒立摆在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果己经应用到航天科技和机器人学等诸多领域。单级倒立摆系统是一种广泛应用的物理模型。控制单级倒立摆载体的运动是保证倒立摆稳定性的关键因素。为了避免常用的物理反馈分析方法和运动轨迹摄像制导控制方法的某些缺点,本文从力学的角度提出对倒立摆的运动进行纯角度制导分析,完成了对倒立摆载体的角度制导运动微分方程的数学建模,设计了该模型的模糊控制系统,并利用Matlab\simulink软件工具对倒立摆的运动进行了计算机仿真。实验表明,这种模糊控制配合代数解析方法的运算速度和计算机仿真的效果均较物理反馈制导控制方法有了一定的提高。该方法可以有效地改善单级倒立摆控制系统的性能。本论文的主要工作是研究了直线一级倒立摆系统的模糊控制问题,用Matlab和Simulink对一级倒立摆模糊控制系统进行了仿真,验证了设计的可行性。本文论述了一级倒立摆数学建模方法,推导出他们的微分方程,以及线性化后的状态方程。讨论了单级倒立摆系统的模糊控制方法和操作步骤。用Simulink实现了单级倒立摆模糊控制仿真系统,分别给出一级倒立摆系统控制量的响应曲线。通过仿真说明控制器的有效性和实现性。关键词:单级倒立摆;仿真;模糊控制;运动;建模;Simulink Design of single stage inverted pendulum control system and Simulink simulation Abstract: inverted pendulum system is unstable system with a typical multi variable, nonlinear, strong coupled and fast motion. So the research on the attitude adjustment of the double foot robot and the attitude adjustment of the rocket launching process and the helicopter flight control field have practical,significance. The related scientific research achievements have been applied to many fields such as aerospace science and robotics. Single inverted pendulum system is a widely used physical model. Controlling the movement of the single inverted pendulum is the key factor to guarantee the stability of the inverted pendulum. In order to avoid some shortings of mon physical feedback analysis method and motion trajectory camera guidance control method, this paper presents a pure angle guidance analysis on the motion of the inverted pendulum, and designs the

最新倒立摆系统的控制器设计

目录 摘要.......................................................................................................................................... - 5 - 1 倒立摆系统概述................................................................................................................................ - 6 - 1.1倒立摆的种类......................................................................................................................... - 6 - 1.2系统的组成............................................................................................................................. - 6 - 1.3工程背景................................................................................................................................. - 6 - 2 数学模型的建立................................................................................................................................ - 7 - 2.1牛顿力学法系统分析............................................................................................................. - 7 - 2.2拉氏变换后实际系统的模型............................................................................................... - 10 - 3 开环响应分析.................................................................................................................................. - 11 - 4 根轨迹法设计.................................................................................................................................. - 13 - 4.1校正前倒立摆系统的闭环传递函数的分析....................................................................... - 13 - 4.2系统稳定性分析................................................................................................................... - 13 - 4.3 根轨迹设计.......................................................................................................................... - 14 - 4.4 SIMULINK仿真..................................................................................................................... - 17 - 5 直线一级倒立摆频域法设计........................................................................................................ - 18 - 5.1 系统频域响应分析.............................................................................................................. - 18 - 5.2频域法控制器设计............................................................................................................... - 19 - 5.2.1控制器的选择........................................................................................................... - 19 - 5.2.2系统开环增益的计算............................................................................................... - 20 - 5.2.3校正装置的频率分析............................................................................................... - 20 - 5.3 Simulink仿真..................................................................................................................... - 24 - 6 直线一级倒立摆的PID控制设计................................................................................................ - 25 - 6.1 PID简介............................................................................................................................... - 25 -

单级倒立摆经典控制系统

单级倒立摆经典控制系统 摘要:倒立摆控制系统虽然作为热门研究课题之一,但见于资料上的大多采用现代控制方法,本课题的目的就是要用经典的方法对单级倒立摆设计控制器进行探索。本文以经典控制理论为基础,建立小车倒立摆系统的数学模型,使用PID控制法设计出确定参数(摆长和摆杆质量)下的控制器使系统稳定,并利用MATLAB软件进行仿真。 关键词:单级倒立摆;经典控制;数学模型;PID控制器;MATLAB 1绪论 自动控制理论是研究自动控制共同规律的技术科学。它的发展初期,是以反馈理论为基础的自动调节原理,并主要用于工业控制。 控制理论在几十年中,迅速经历了从经典理论到现代理论再到智能控制理论的阶段,并有众多的分支和研究发展方向。 1.1经典控制理论 控制理论的发展,起于“经典控制理论”。早期最有代表性的自动控制系统是18世纪的蒸汽机调速器。20世纪前,主要集中在温度、压力、液位、转速等控制。20世纪起,应用范围扩大到电压、电流的反馈控制,频率调节,锅炉控制,电机转速控制等。二战期间,为设计和制造飞机及船用自动驾驶仪、火炮定位系统、雷达跟踪系统及其他基于反馈原理的军用装备,促进了自动控制理论的发展。

至二战结束时,经典控制理论形成以传递函数为基础的理论体系,主要研究单输入-单输出、线性定常系统的分析问题。经典控制理论的研究对象是线性单输入单输出系统,用常系数微分方程来描述。它包含利用各种曲线图的频率响应法和利用拉普拉斯变换求解微分方程的时域分析法。这些方法现在仍是人们学习控制理论的入门之道。 1.2倒立摆 1.2.1倒立摆的概念 图1 一级倒立摆装置 倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。如杂技演员顶杆的物理机制可简化为一级倒立摆系统,是一个复杂、多变量、存在严重非线性、非自治不稳定系统。

单级倒立摆稳定控制实验

单级倒立摆稳定控制实验 一.实验目的 1.了解单级倒立摆的原理与数学模型的建立; 2.掌握LQR控制器的设计方法; 3.掌握基于LQR控制器的单级倒立摆稳定控制系统的仿真方法。 二.实验内容 图1 一级倒立摆原理图 一级倒立摆系统的原理框图如上所示。系统包括计算机、运动控制卡、伺服机构、倒立摆本体和光电码盘几大部分,组成了一个闭环系统。光电码盘1将连杆的角度、角速度信号反馈给伺服驱动器和运动控制卡,摆杆的角度、角速度信号由光电码盘2反馈回控制卡。计算机从运动控制卡中读取实时数据,确定控制决策,并由运动控制卡来实现该控制决策,产生相应的控制量,驱动电机转动,带动连杆运动,保持摆杆的平衡。 在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图2所示。 图2 直线一级倒立摆系 统

其中: M 小车质量 m 摆杆质量 b 小车摩擦系数 l 摆杆转动轴心到杆质心的长度 I 摆杆惯量 F 加在小车上的力 x 小车位置 φ 摆杆与垂直向上方向的夹角 θ 摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下) 下图是系统中小车和摆杆的受力分析图。其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。 注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。 图3 (a )小车隔离受力图; (b ) 摆杆隔离受力图 分析小车水平方向所受的合力,可以得到以下方程: Mx F bx N =--&&& (1) 由摆杆水平方向的受力进行分析可以得到下面等式: ()2 2sin d N m x l dt θ=+ (2) 即:2cos sin N mx ml ml θθθθ=+-&&&&&

小车倒立摆系统开题报告

开题报告填表说明 1.开题报告是毕业设计(论文)过程规范管理的重要环节,是培养学生严谨务实工作作风的重要手段,是学生进行毕业设计(论文)的工作方案,是学生进行毕业设计(论文)工作的依据。 2.学生选定毕业设计(论文)题目后,与指导教师进行充分讨论协商,对题意进行较为深入的了解,基本确定工作过程思路,并根据课题要求查阅、收集文献资料,进行毕业实习(社会调查、现场考察、实验室试验等),在此基础上进行开题报告。 3.课题的目的意义,应说明对某一学科发展的意义以及某些理论研究所带来的经济、社会效益等。 4.文献综述是开题报告的重要组成部分,是在广泛查阅国内外有关文献资料后,对与本人所承担课题研究有关方面已取得的成就及尚存的问题进行简要综述,并提出自己对一些问题的看法。 5.研究的内容,要具体写出在哪些方面开展研究,要突出重点,实事求是,所规定的内容经过努力在规定的时间内可以完成。 6.在开始工作前,学生应在指导教师帮助下确定并熟悉研究方法。 7.在研究过程中如要做社会调查、实验或在计算机上进行工作,应详细说明使用的仪器设备、耗材及使用的时间及数量。 8.课题分阶段进度计划,应按研究内容分阶段落实具体时间、地点、工作内容和阶段成果等,以便于有计划地开展工作。 9.开题报告应在指导教师指导下进行填写,指导教师不能包办代替。 10.开题报告要按学生所在系规定的方式进行报告,经系主任批准后方可进行下一步的研究(或设计)工作。 一、课题的目的意义: 倒立摆系统作为一个实验装置,形象直观,结构简单,构件组成参数和形状易于改变,成本低廉;作为一个被控对象,它又相当复杂,就其本身而言,是一个高阶次、不稳定、多变量、非线性、强耦合系统,只有采取行之有效的控制方法方能使之稳定。 理论是工程的先导,倒立摆的研究具有重要的工程背景。机器人行走类似倒立摆系统,尽管第一台机器人在美国问世以来已有几十年的历史,但机器人的关键技术至今仍未很好解决。由于倒立摆系统的稳定与空间飞行器控制和各类伺服云台的稳定有很大相似性,也是日常生活中所见到的任何重心在上、支点在下的控制问题的抽象。因此,倒立摆机理的研究又具有重要的应用价值,成为控制理论中经久不衰的研究课题。 文献综述(分析国内外研究现状、提出问题,找到研究课题的切入点,附主要参考文献,约2000字): 倒立摆系统的最初分析开始于二十世纪五十年代,是一个比较复杂的不稳定,多变量,带有强耦合特性的高阶机械系统。倒立摆系统存在严重的不确定性,一方面是系统的参数的不确定性,一方面是系统受到不确定因素的干扰。其控制方法和思路在处理一般工业过程中有很广泛的用途,此外,其相关的研究成果也在航天科技和机器人学习方面得到了大量的应用,如机器人行走过程中平衡控制,火箭发射中的垂直度控制和卫星飞行中的姿态控制等,因此,倒立摆系统是进行控制理论研究的理想平台。 倒立摆是机器人技术﹑控制理论﹑计算机控制等多个领域﹑多种技术的有机结合,其被控

相关主题
文本预览
相关文档 最新文档