当前位置:文档之家› 霍尔效应的应用实验报告

霍尔效应的应用实验报告

霍尔效应法测量空间的磁场

实验者:沐俊峰 同组实验者:周俊汀 指导教师:尹会听 (班级:A12储运1 学号:120701113 联系号:180********)

【摘要】 通过对利用霍尔效应测磁场实验的原理、过程、及实验数据的处理进行分析,得

出本实验误差的主要来源,并对减小误差提出切实可行的方法及注意事项,其中重点介绍利用对称测量法处理数据以减小误差的方法。

【关键词】霍尔效应 误差分析 对称测量法

一、 引言

自1879年霍尔效应被发现以来,它在测量方向得到了广泛的应用,其中测螺线管轴线上的磁场是十分重要的一个方面。但是在测量中,总会产生各种各样的副效应,这些副效应带来了一定的测量误差,有些副效应的影响可与实测值在同一数量级,甚至更大。因此在实验中如何消除这些副效应成为很重要的问题。本文分析了霍尔效应测磁场的误差来源,并提出了减小误差应采取的措施及一些注意事项。

二、 设计原理 ①、实验目的

1.了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量并绘制试样的V H -I S 和V H -I M 曲线。

3.确定试样的导电类型、载流子浓度以及迁移率。 ②、实验仪器

1.TH -H 型霍尔效应实验仪,主要由规格为>3.00kGS/A 电磁铁、N 型半导体硅单晶切薄片式样、样品架、I S 和I M 换向开关、V H 和V σ(即V AC )测量选择开关组成。

2.TH -H 型霍尔效应测试仪,主要由样品工作电流源、励磁电流源和直流数字毫伏表组成。 ③、实验原理

霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。对于图(1)(a )所示的N 型半导体试样,若在X 方向的电极D 、E 上通以电流Is ,在Z 方向加磁场B ,试样中载流子(电

子)将受洛仑兹力:

(1)

(a ) (b )

图(1) 霍尔效应示意图

B

v g e F

则在Y 方向即试样A 、A′电极两侧就开始聚积异号电荷而产生相应的附加电场---霍尔电场。电场的指向取决于试样的导电类型。对N 型试样,霍尔电场逆Y 方向,P 型试样则沿

Y 方向,其一般关系可表示为

显然,该霍尔电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力 eE H 与洛伦兹力

F E 相等时,样品两侧电荷的积累就达到平衡,此时有

F E =eE H (2)

其中E H 为霍尔电场强度,是载流子在电流方向上的平均漂移速率。

设试样的宽度为b ,厚度为d ,载流子浓度为n ,则

(3) 由(2)、(3)两式可得

(4)

在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的A 、A ′两电极之间的电压并不等于真实的V H 值,而是包含着各种副效应引起的附加电压,因此必须设法消除。根据副效应产生的机理可知,采用电流和磁场换向的对称测量法,基本上能够把副效应的影响从测量的结果中消除,具体的做法是Is 和B 的大小不变,并在设定电流和磁场的正、反方向后,依次测量由下列四组不同方向的Is 和B 组合的两点之间的电压V 1、V 2、V 3、和V 4 ,即 +Is ,+B ,V 1 +Is ,-B ,V 2 -Is ,-B ,V 3 -Is ,+B ,V 4

然后求上述四组数据V 1、V 2、V 3和V 4 的代数平均值,可得:

(5) 通过对称测量法求得的V H ,虽然还存在个别无法消除的副效应,但其引入的误差甚小,可以略而不计。

由式(4)可知霍尔电压VH (A 、A ′电极之间的电压)与IsB 乘积成正比,与试样厚度d 成反比。比例系数 称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。只要测出V H (V )以及知道Is (A )、B (T )和d (m )可按下式计算R H 霍尔系数

H S V d

I B

=

H R (6) 根据R H 可进一步确定以下参数:

(1)由R H 的符号(或霍尔电压的正、负)判断试样的导电类型。判断的方法是按图(1)所示的Is 和B 的方向,若测得的V H =V AA '<0,(即点A 的电位低于点A ′的电位)则R H 为负,样品属N 型,反之则为P 型。

(mV)4

V V V V V 4

321H -+-=bd

v ne Is =d B I b V S

H H S H R d B

I 1E ==

=ned e

n 1

R H

=

(2)求载流子浓度。由n e

=

H 1R 可求出载流子浓度。应该指出,这个关系式是假定所有

的载流子都具有相同的漂移速率得到的,如果考虑载流子的漂移速率服从统计分布规律,需引入修正因子3π/8。

(3)结合电导率的测量,求载流子的迁移率μ。电导率σ可以通过图(a )所示的A 、C 电极进行测量。设A 、C 间的距离L=3.00mm,样品的横截面积为S=bd,流经样品的电流为Is ,在零磁场下,若测得A 、C 间的电位差为V σ,可由下式求得σ,

V S

σσ=

s I L

(7) 电导率σ与载流子浓度n 以及迁移率μ之间有如下关系: σ=n e μ (8)

即μ=|R H |σ,通过实验测出σ值即可求出μ。

根据上述可知,要得到大的霍尔电压,关键是要选择霍尔系数大(即迁移率μ高、电阻率ρ亦较高)的材料。因|R H |=μρ,就金属导体而言,μ和ρ均很低,而不良导体ρ虽高,但μ极小,因而上述两种材料的霍尔系数都很小,不能用来制造霍尔器件。半导体μ高,ρ适中,是制造霍尔器件较理想的材料,由于电子的迁移率比空穴的迁移率大,所以霍尔器件都采用N 型材料,又由于霍尔电压的大小与材料的厚度成反比,因此,薄膜型的霍尔器件的输出电压较片状要高得多。就霍尔元件而言,其厚度是一定的,所以实用上采用

(9)

来表示霍尔元件的灵敏度,K H 称为霍尔元件灵敏度。

三、 实验方案

(1) 按图(2)连接测试仪和实验仪之间相应的Is 、V H 和I M 各组连线,Is 及I M 换向开关投向上方,表明Is 及I M 均为正值(即Is 沿X 方向,B 沿Z 方向),反之为负值。V H 、V σ切换开关投向上方测V H ,投向下方测V σ(样品各电极及线包引线与对应的双刀开关之间连线已由制造厂家连接好)。

图(2) 霍尔效应实验仪示意图

d

e n 1

K H =

接线时严禁将测试仪的励磁电源“I M 输出”误接到实验仪的“Is 输入”或“V H 、V σ输出”处,否则一旦通电,霍尔元件即遭损坏!

(2)对测试仪进行调零。将测试仪的“Is 调节”和“ I M 调节”旋钮均置零位,待开机数分钟后若V H 显示不为零,可通过面板左下方小孔的“调零”电位器实现调零,即“0.00”。

(3)测绘V H -Is 曲线。将实验仪的“V H 、V σ”切换开关投向V H 侧,测试仪的“功能切换”置V H 。保持I M 值不变(取I M =0.4A ),测绘V H -Is 曲线。

(4) 测绘V H -Im 曲线。实验仪及测试仪各开关位置同上。保持Is 值不变,(取Is =2.00mA ),测绘V H -Is 曲线。

(5)测量V δ值。将“V H 、V σ”切换开关投向V δ侧,测试仪的“功能切换”置在零磁场下,取Is =2.00mA ,测量V δ。注意:Is 取值不要过大,以免V σ太大,毫伏表超量程(此时首位数码显示为1,后三位数码熄灭)。

(6)确定样品的导电类型。将实验仪三组双刀开关均投向上方,即Is 沿X 方向,B 沿Z 方向,毫伏表测量电压为V AA ′。取Is =2mA ,I M =0.6A ,测量V H 大小及极性,判断样品导电类型。

四、 数据记录与处理 1.实验条件

室温=15℃ N 型霍尔片的厚度d=0.10mm; 线径=0.67mm 线圈匝数N=1500T; U O =-0.2mV S H =12mV/mA*KG; R in =148Ω R out =154Ω;

2.实验数据参考表

(1)测绘V H -I S 曲线,数据记录如下

Is

(mA) V1(mV ) V2(mV ) V3(mV ) V4(mV ) +Is ﹑+B +Is ﹑-B

-Is ﹑-B -Is 、+B 0.00 0.03 -0.02 0.04 -0.01 0.25 0.50 0.83 -0.87 0.89 -0.81 0.85 1.00 1.65 -1.75 1.76 -1.63 1.70 1.50 2.47 -2.62 2.63 -2.49 2.55 2.00

3.29

-3.50

3.50

-3.26

3.39

其中电流范围:I M =0.4A

(mV)

4

V V V V V 4

321H -+-=

图形如下(横坐标为I S /mA,纵坐标为V H /mV)

(2)绘测V H -I M 曲线,数据记录如下 I M (A) V1(mV) V2(mV ) V3(mV ) V4(mV ) +Is ﹑+B +Is ﹑-B -Is ﹑-B -Is 、+B

0.000 0.1 -0.2 0.1 0.0 0.1 0.200 1.6 -1.9 1.8 -1.6 1.7 0.400 3.3 -3.6 3.5 -3.3 3.4 0.600 5.0 -5.3 5.2 -5.0 5.1 0.800 6.7 -7.0 6.9 -6.7 6.8 1.000 8.3 -8.6 8.6 -8.4 8.5 0.800 6.7 -7.0 6.9 -6.7 6.8 0.600 5.0 -5.3 5.2 -5.0 5.1 0.400 3.3 -3.6 3.5 -3.3 3.4 0.200 1.6 -1.9 1.8 -1.6 1.7 0.000

0.1

-0.2

0.1

0.0

0.1

其中电流范围:Is =2.00mA

图形如下(横坐标为I M /mA,纵坐标为V H /mV)

(mV)

4

V V V V V 4

321H -+-=

五、思考分析

1、如何精确测量霍尔电压?本实验采用什么办法消除各种附加电压?

答:多次测量取平均值。本实验通过对称测量法求的霍尔电压。

2、磁场不恰好与霍尔片的法线一致,对测量效果有什么影响?

答:磁场与霍尔片的法线不一致,会造成有效磁场变小,则对应测得霍尔系数变大。

3、能否用霍尔片元件测量交变磁场?若能,怎么测量?

答:可以,因为霍尔效应建立的时间极短,使用交流磁场时,所得的霍尔电压也是交变的,此时的I M和V H应理解为有效值,上下板交替累积载流子无稳定的电势差。

4、本实验的主要误差有哪些,这些误差对实验有何影响?

答:产生霍尔效应的同时,伴随着多种副效应,以导致实验测得的A、A’两级之间的电压并不等于真实的V H值,而是包含了各种副效应引起的附加电压。本实验采取了对称测量法,基本上能够把副效应的影响从测量的结果中消除。虽然还存在个别无法消除的副效应,但其引入的误差甚小,可忽略不计。

六、实验结论

1. 当励磁电流MI=0时,霍尔电压不为0,且随着霍尔电流的增加而增加,通过作图发现二者满足线性关系。说明在霍尔元件内存在一不等位电压,这是由于测量霍尔电压的两条接线没有在同一个等势面上造成的。

2.当励磁电流保持恒定,改变霍尔电流时,测量得到的霍尔电压随霍尔电流的增加而增加,通过作图发现二者之间满足线性关系。

3.当霍尔电压保持恒定,改变励磁电流时,测量得到的霍尔电压随励磁电流的增加而增加,通过作图发现二者之间也满足线性关系

参考文献

[1] 竺江峰,芦立娟,鲁晓东.大学物理实验[M].中国科学技术出版社.2005.9:212—219

[2] 钱锋,潘人培. 大学物理实验(修订版)[M]. 2005,高等教育出版社,2006. 191-202

[3]《大学物理实验》编写组,大学物理实验,厦门大学出版社 2000, 223-230

相关主题
文本预览
相关文档 最新文档