当前位置:文档之家› 外文翻译--结构钢的焊接性-精品

外文翻译--结构钢的焊接性-精品

外文翻译--结构钢的焊接性-精品
外文翻译--结构钢的焊接性-精品

附录1

英文原文

Lecture 2.6: Weldability of Structural Steels

The lecture briefly discusses the basics of the welding process and then examines the factors governing the weldability of structural steels.

SUMMARY

The fundamental aspects of the welding process are discussed. The lecture then focuses on the metallurgical parameters affecting the weldability of structural steels. A steel is considered to exhibit good weldability if joints in the steel possess adequate strength and toughness in service.

Solidification cracking, heat affected zone - liquation cracking, hydrogen-induced cracking, lamellar tearing, and re-heat cracking are described. These effects are detrimental to the performance of welded joints. Measures required to avoid them are examined.

1. INTRODUCTION

1.1 A Brief Description of the Welding Process

Welding is a joining process in which joint production can be achieved with the use of high temperatures, high pressures or both. In this lecture, only the use of high temperatures to produce a joint is discussed since this is, by far, the most common method of welding structural steels. It is essentially a process in which an intense heat source is applied to the surfaces to be joined to achieve local melting. It is common for further "filler metal" to be added to the molten weld pool to bridge the gap between the surfaces and to produce the required weld shape and dimensions on cooling. The most common welding processes for structural steelwork use an electric arc maintained between the filler metal rod and the workpiece to provide the intense heat source.

If unprotected, the molten metal in the weld pool can readily absorb oxygen and nitrogen from the atmosphere. This absorption would lead to porosity and brittleness in the solidified weld metal. The techniques used to avoid gas absorption in the weld pool vary according to the welding process. The main welding processes used to join structural steels are considered in more detail below.

1.2 The Main Welding Processes

a. Manual Metal Arc welding (MMA)

In this process, the welder uses a metal stick electrode with a fusible mineral coating, in a holder connected to an electrical supply. An arc is struck between the electrode and the weld area which completes the return circuit to the electricity supply. The arc melts both the electrode and the surface region of the workpiece. Electromagnetic forces created in the arc help to throw drops of the molten electrode onto the molten area of the workpiece where the two metals fuse to form the weld pool.

The electrode coating of flux contributes to the content of the weld pool by direct addition of metal and by metallurgical reactions which refine the molten metal. The flux also provides a local gaseous atmosphere which prevents absorption of atmospheric gases by the weld metal.

There are many types of electrodes. The main differences between them are in the flux coating. The three main classes of electrode are shown below:

1. Rutile: General purpose electrodes for applications which do not require strict control of mechanical properties. These electrodes contain a high proportion of titanium oxide in the flux coating.

2. Basic: These electrodes produce welds with better strength and notch toughness than rutile. The electrodes have a coating which contains calcium carbonate and other carbonates and fluorspar.

3. Cellulosic: The arc produced by this type of electrode is very penetrating. These electrodes have a high proportion of combustible organic materials in their coating.

b. Submerged Arc Welding (SAW)

This process uses a bare wire electrode and a flux added separately as granules or powder over the arc and weld pool. The flux protects the molten metal by forming a layer of slag and it also stabilises the arc.

The process is used mainly in a mechanical system feeding a continuous length of wire from a coil whilst the welding lead is moved along the joint. A SAW machine may feed several wires, one behind the other, so that a multi-run weld can be made. Submerged arc welding produces more consistent joints than manual welding, but it is not suitable for areas of difficult access.

c. Gas shielded welding

In this process, a bare wire electrode is used and a shielding gas is fed around the arc and weld pool. This gas prevents contamination of the electrode and weld pool by air. There are three main variations of this process as shown below:

1. MIG (metal-inert gas) welding - Argon or helium gas is used for shielding. This process is generally used for non-ferrous metals.

2. MAG (metal-active gas) welding - Carbon dioxide (usually mixed with argon) is used for shielding. This process is generally used for carbon and carbon-manganese steels.

3. TIG (tungsten-inert gas) - Argon or helium gas is used for shielding and the arc struck between the workpiece and a non-consumable tungsten electrode. This process is generally used for thin sheet work and precision welding.

1.3 Welded Joint Design and Preparation

There are two basic types of welded joints known as butt and fillet welds [1]. Schematic views of these two weld types are shown in Figure 1. The actual shape of a weld is determined by the preparation of the area to be joined. The type of weld preparation depends on the welding process and the fabrication procedure. Examples of different weld preparations are shown in Figure 2. The weld joint has to be located and shaped in such a way that it is easily accessible in terms of both the welding process and welding position. The detailed weld shape is designed to distribute the available heat adequately and to assist the control of weld metal penetration and thus to produce a sound joint. Operator induced defects such as lack of penetration and lack of fusion can be difficult to avoid if the joint preparation and design prevent good access for welding.

1.4 The Effect of the Welding Thermal Cycle on the Microstructure

The intense heat involved in the welding process influences the microstructure of both the weld metal and the parent metal close to the fusion boundary (the boundary between solid and liquid metal). As such, the welding cycle influences the mechanical properties of the joint.

The molten weld pool is rapidly cooled since the metals being joined act as an efficient heat sink. This cooling results in the weld metal having a chill cast microstructure. In the welding of structural steels, the weld filler metal does not usually have the same composition as the parent metal. If the compositions were the same, the rapid cooling could result in hard and brittle phases, e.g. martensite, in the weld metal microstructure. This problem is avoided by using weld filler metals with a lower carbon content than the parent steel.

The parent metal close to the molten weld pool is heated rapidly to a temperature which depends on the distance from the fusion boundary. Close to the fusion boundary, peak temperatures near the melting point are reached, whilst material only a few millimetres away may only reach a few hundred degrees Celsius. The parent material close to the fusion boundary is heated into the austenite phase field. On cooling, this region transforms to a microstructure which is different from the rest of the parent material. In this region the cooling rate is usually rapid, and hence there is a tendency towards the formation of low temperature transformation structures, such as bainite and martensite, which are harder and more brittle than the bulk of the parent metal. This region is known as the heat affected zone (HAZ).

The microstructure of the HAZ is influenced by three factors:

The chemical composition of the parent metal.

The heat input rate during welding.

The cooling rate in the HAZ after welding.

The chemical composition of the parent metal is important since it determines the hardenability of the HAZ. The heat input rate is significant since it directly affects the grain size in the HAZ. The longer the time spent above the grain coarsening temperature of the parent metal during welding, the coarser the structure in the HAZ. Generally, a high heat input rate leads to a longer thermal cycle and thus a coarser HAZ microstructure. It should be noted that the heat input rate also affects the cooling rate in

the HAZ. As a general rule, the higher the heat input rate the lower the cooling rate. The value of heat input rate is a function of the welding process parameters: arc voltage, arc current and welding speed. In addition to heat input rate, the cooling rate in the HAZ is influenced by two other factors. First, the joint design and thickness are important since they determine the rate of heat flow away from the weld during cooling. Secondly, the temperature of the parts being joined, i.e. any pre-heat, is significant since it determines the temperature gradient which exists between the weld and parent metal.

1.5 Residual Welding Stresses and Distortion

The intense heat associated with welding causes the region of the weld to expand. On cooling contraction occurs. This expansion and subsequent contraction is resisted by the surrounding cold material leading to a residual stress field being set up in the vicinity of the weld. Within the weld metal the residual stress tends to be predominantly tensile in nature. This tensile residual stress is balanced by a compressive stress induced in the parent metal [2]. A schematic view of the residual stress field obtained for longitudinal weld shrinkage is shown in Figure 3. The tensile residual stresses are up to yield point in magnitude in the weld metal and HAZ. It is important to note that the residual stresses arise because the material undergoes local plastic strain. This strain may result in cracking of the weld metal and HAZ during welding, distortion of the parts to be joined or encouragement of brittle failure during service.

Transverse and longitudinal contractions resulting from welding can lead to distortion if the hot weld metal is not symmetrical about the neutral axis of a fabrication [2]. A typical angular rotation in a single V butt weld is shown in Figure 4a. The rotation occurs because the major part of the weld is on one side of the neutral axis of the plate, thus inducing greater contraction stresses on that side. This leads to a distortion known as cusping in a plate fabrication, as shown in Figure 4b. Weld distortion can be controlled by pre-setting or pre-bending a joint assembly to compensate for the distortion or by restraining the weld to resist distortion. Examples of both these methods are shown in Figure 5. Distortion problems are most easily avoided by using the correct weld preparation. The use of non-symmetrical double sided welds such as those shown in Figure 2e and 2i accommodates distortion. The distortion from the small side of the weld (produced first) is removed when the larger weld is put on the other side. This technique is known as balanced welding.

It is not possible to predict accurately the distortion in a geometrically complicated fabrication, but one basic rule should be followed. This rule is that welding should

preferably be started at the centre of a fabrication and all succeeding welds be made from the centre out, thus encouraging contractions to occur in the free condition.

If distortion is not controlled, there are two methods of correcting it; force and heat. The distortion of light sections can be eliminated simply by using force, e.g. the use of hydraulic jacks and presses. In the case of heavier sections, local heating and cooling is required to induce thermal stresses counteracting those already present.

1.6 Residual Stress Relief

The most common and efficient way of relieving residual stresses is by heating. Raising the temperature results in a lower yield stress and allows creep to occur. Creep relieves the residual stresses through plastic deformation. Steel welded components are usually heated to a low red heat (600 C) during stress reli e ving treatments. The heating and cooling rates during this thermal stress relief must be carefully controlled otherwise further residual stress patterns may be set up in the welded component. There is a size limit to the structures which can be thermally stress relieved both because of the size of the ovens required and the possibility of a structure distorting under its own weight. It is possible, however, to heat treat individual joints in a large structure by placing small ovens around the joints or by using electric heating elements.

Other methods of stress relief rely on thermal expansion providing mechanical forces capable of counteracting the original residual stresses. This technique can be applied in-situ but a precise knowledge of the location of the compressive residual stresses is vital, otherwise the level of residual stress may be increased rather than decreased. Purely mechanical stress relief can also be applied provided sufficient is available to accommodate the necessary plastic deformation.

2. THE WELDABILITY OF STRUCTURAL STEELS

2.1 Introduction

If weld preparation is good and operator induced defects (e.g. lack of penetration or fusion) are avoided, all the common structural steels can be successfully welded. However, a number of these steels may require special treatments to achieve a satisfactory joint. These treatments are not convenient in all cases. The difficulty in producing satisfactory welded joints in some steels arises from the extremes of heating, cooling and straining associated with the welding process combined with microstructural changes and environmental interactions that occur during welding. It is not possible for

some structural steels to tolerate these effects without joint cracking occurring. The various types of cracking which can occur and the remedial measures which can be taken are discussed below.

2.2 Weld Metal Solidification Cracking

Solidification of the molten weld pool occurs by the growth of crystals away from the fusion boundary and towards the centre of the weld pool, until eventually there is no remaining liquid. In the process of crystal growth, solute and impurity elements are pushed ahead of the growing interface. This process is not significant until the final stages of solidification when the growing crystals interlock at the centre of the weld. The high concentration of solute and impurity elements can then result in the production of a low freezing point liquid at the centre of the weld. This acts as a line of weakness and can cause cracking to occur under the influence of transverse shrinkage strains. Impurity elements such as sulphur and phosphorus are particularly important in this type of cracking since they cause low melting point silicides and phosphides to be present in the weld metal [3]. A schematic view of solidification cracking is shown in Figure 6.

Weld metals with a low susceptibility to solidification cracking (low sulphur and phosphorous) are available for most structural steels, but cracking may still arise in the following circumstances:

a. If joint movement occurs during welding, e.g. as a result of distortion. A typical example of this is welding around a patch or nozzle. If the weld is continuous, the contraction of the first part of the weld imposes a strain during solidification of the rest of the weld.

b. If contamination of the weld metal with elements such a sulphur and phosphorus occur. A typical example of this is the welding of articles with a sulphur rich scale, such as a component in a sulphur containing environment.

c. If the weld metal has to bridge a large gap, e.g. poor fit-up. In this case the depth to width ratio of the weld bead may be small. Contraction of the weld results in a large strain being imposed on the centre of the wel

d.

d. If the parent steel is not suitable in the sense that the diffusion of impurity elements from the steel into the weld metal can make it susceptible to cracking. Cracking susceptibility depends on the content of alloying element with the parent metal and can be expressed in the following equation:

Hot cracking susceptibility =

Note: The higher the number, the greater the susceptibility.

Solidification cracking can be controlled by careful choice of parent metal composition, process parameters and joint design to avoid the circumstances previously outlined.

2.3 Heat Affected Zone (HAZ) Cracking

2.3.1 Liquation cracking (burning)

The parent material in the HAZ does not melt as a whole, but the temperature close to the fusion boundary may be so high that local melting can occur at grain boundaries due to the presence of constituents having a lower melting point than the surrounding matrix. Fine cracks may be produced in this region if the residual stress is high. These cracks can be extended by fabrication stresses or during service [3]. A schematic view of liquation cracking is shown in Figure 7.

In steels the low melting point grain boundary films can be formed from impurities such as sulphur, phosphorus, boron, arsenic and tin. As with solidification cracking, increased carbon, sulphur and phosphorous make the steel more prone to cracking.

There are two main ways of avoiding liquation cracking. First, care should be taken to make sure that the sulphur and phosphorus levels in the parent metal are low. Unfortunately, many steel specifications permit high enough levels of sulphur and phosphorus to introduce a risk of liquation cracking. Secondly, the risk of liquation cracking is affected by the welding process used. Processes incorporating a relatively high heat input rate, such as submerged arc or electroslag welding, lead to a greater risk of liquation cracking than, for example, manual metal arc welding. This is the case since the HAZ spends longer at the liquation temperature (allowing greater segregation of low

melting point elements) and there is a greater amount of thermal strain accompanying welding.

译文:

演讲2.6 :结构钢的焊接性

演讲简要讨论焊接工艺的基础,然后测试决定结构钢焊接性的因素。

摘要

焊接的基本过程方面在这里被讨论。然后把重点放在冶金参数对结构钢的焊接性的影响。一种钢如果被认为有良好的焊接性,如果焊接处有足够的强度和韧性。

凝固裂纹,热影响区液化开裂氢致开裂,层状撕裂,再热裂解在这里被描述。这些是焊点不利影响的表现。采取的减少这些影响的措施被测试。

1 .导言

1.1焊接工艺简介

焊接是材料加入过程,焊缝可以通过高温、高压或两者共同产生。在本文中,只讨论高温产生焊缝。因为这是到目前为止最常用焊接结构钢的方法。这基本上是这样一个过程:激烈的热源用于工件表面以实现熔化。同时将“料”添加到熔融熔池,以连接之间的缝,生产所需的焊缝形状和尺寸并冷却。最常见的焊接工艺为钢结构使用电弧,保持焊棒和工件产生强烈的热源。

如果得不到很好的保障,熔融金属在熔池随时可以接触大气中中的氧气和氮气,这样会导致凝固焊缝金属中间有孔和脆性。这种技术被用于避免融池吸收空气,主要用于焊接工艺加入结构钢在下面更详细的介绍。

1.2主要焊接工艺

A.手动材料电弧焊接

在这个过程中,焊机采用了金属电极棒与熔矿物涂层,在持有人连接到电力供应。一个电弧在电极和焊点区域产生,形成回路,电极表面区域和工件都是电弧熔

体。电磁力产生电弧,帮助失液电极上熔融面积工件的情况下两个金属保险丝,形成熔池。

电极涂层的焊剂贡献直接熔池,防止了金属反应,其中完善熔化金属。焊剂也提供了一个气态的气氛阻止吸收大气中的气体由焊缝金属。

有有很多类型的电极。主要不同点是在焊剂涂层。三个主要类别的电极如下所示:

1.金红石型:通用电极,应用在不需要严格控制的机械性能的场合。这

些电极含有高比例的二氧化钛在焊剂涂层。

2.基本型:这些电极产生比金红石型焊缝更好的强度和韧性。电极有一

个涂层,其中包含碳酸钙和其他碳酸盐岩和萤石。

3.纤维素型:这种的电极类型所产生的电弧是非常精确的。这些电极在

他们的涂层有很高比例的可燃有机材料。

B.埋弧焊(saw)

这个过程中采用了裸丝电极和焊剂的补充分被加入以颗粒或粉末状态加入电弧和熔池。焊剂保护熔融金属形成一层炉渣和它也使电弧稳定。

这一过程主要是用于一个机械系统的焊接连续长度的焊丝从一个线圈,而焊接铅是沿着焊缝,一个埋弧焊机可以吃几条焊丝。一个接着另一个,所以一个多线运行焊缝可以做出。埋弧焊比手工焊接产生更一致的焊点,但它是不适合难以进入的领域。

C.气体保护焊

在这个过程中,裸丝电极被使用,保护气体充满电弧和熔池周围。这种气体,防止由空气污染电极和熔池。这个工艺过程中有三个主要变化,如下所示:

1.MIG(金属惰性气体)焊接,氩气或氦气用来作为屏蔽气体。这种工艺

一般用于废铁结束的焊接。

2.MAG(金属活性气体)焊接,二氧化碳(通常是混合氩)用来作为屏

蔽气体。这种工艺一般用于碳钢和碳锰钢。

3.TIG(钨惰性气体)焊接,氩气或氦气用于屏蔽气体以及电弧之间工

件和非消耗品钨电极。这个工艺一般用于薄板的工作和精密焊接。

1.3焊接缝的设计与准备

有两个基本类型的焊接缝称为对接焊接缝和角焊缝[1]。这两个焊缝类型,如图1所示。实际焊缝的形状是由将要结合的形状决定的。焊缝准备的类型,要看焊接的工艺个制作的工艺。例如不同的焊接准备工作正在如图2所示;该焊缝要设置形成这样一种方式:这是方便双方的焊接工艺和焊接位置。详细的焊缝形状的设计可用热充分分配,并协助控制焊缝金属的渗透,从而产生一个完善的焊缝。操作者导致的缺陷,如缺乏渗透与融合,这些难以避免。如果焊缝筹备和设计良好的焊接条件可以防止这些。

1.4焊接热循环对微观结构的影响

焊接过程中所涉及激烈的热,影响焊缝金属及原金属和接近融合的边界的微观结构(边界之间的固体和液体金属)。因此,焊接周期影响焊缝的力学性能。

熔融熔池迅速冷却,由于金属被加入作为一个有效率的散热片。这冷却的结果,在焊缝金属中有一个冷铸态组织。在焊接结构钢中,焊接钎料通常不具有与母材料金属相同的成分。如果成分相同,快速冷却可能会导致硬脆阶,如马氏体,在焊缝金属的微观结构。这个问题的避免方法是采用焊接钎料碳含量比较母质底。

母板金属接近熔化的熔池迅速加热到达一个由融合边界决定的温度。接近融合的边界,定点温度接近熔点或已经到达熔点。而材料,只有几毫米的距离,可能只能达到几百摄氏度。母质接近融合边界加热到奥氏体相场。由于冷却,这一地区的变换到一个不同于其余的母材微观结构。在这一区域的冷却速度通常是快速,因此有一种向低温结构转型倾向,如贝氏体,马氏体,这比大部份的母金属更硬,更脆。这一区域被称为热影响区(HAZ.)

焊接热影响区的微观结构受以下三个因素影响:

1母质金属的化学成分

2焊接的热输入速率

3热影响区在焊后的冷却速率

母质金属的化学成分是很重要的,因为它决定了焊接热影响区的淬透性。热输入速率的影响也是显著的,因为它直接影响焊接热影响区的晶粒尺寸。一般来说,高热烈输入速率导致较长的热循环,从而使焊接热影响区的显微结构粗化。应该指出的是,热输入速率,也影响到焊接热影响区的冷却速率。一般规则是,热输入速率越高冷却速度越低。热输入率的价值是他是一个焊接工艺的参数:电弧电压,电弧电流和焊接速度。此外,焊接热影响区的热输入速率,冷却速率是受另外两个因素影响的。第一,焊缝的设计和厚度是重要的,因为他们确定热流远离焊缝冷却过程中的速率。其次,被焊接部分的温度,即任何原先已有的热量,具有重要意义,因为它决定了焊缝和母材之间存在的温度梯度。

1.5焊接残余应力和变形

焊接过程中焊接区域吸收强热扩张,冷却过程中收缩发生。这中扩张和收缩被周围的冷物质抵制,导致了在焊缝附近有残余应力场存在。焊缝金属的残余应力主要是拉伸性质的,发生在冷却收缩。这拉伸残余应力时平衡的这在母质金属上诱导了一个压应力。[2].一幅鉴于纵向焊缝收缩残余应力场的示意图。如图3所示。

铸铁零件的常用焊接方法

铸铁零件的常用焊接方法 由于铸铁的一些优点,在汽车制造材料中占有很大的比重。铸铁零件大多是加工精度高、价格昂贵的基础零件,如气缸体、气缸盖、变速器壳体等。铸铁零件在制造及使用过程中,经常会出现裂纹、气孔、损坏等情况。据统计,汽车在正常使用情况下,这类零件达到磨损极限时,其尺寸变化只有0.08 %?0.40 %,质 量损失只有0.1 %?1.8 %,此时将零件报废,无疑是非常浪费的。因此,研究和利用先进的修理经验,合理地修复铸铁零件是十分必要地。焊接就是一种非常有效地修复铸铁零件的方法。 铸铁含炭量高、杂质多,并具有塑性低、焊接性差、对冷却速度敏感等特性,焊补后容易出现白口组织和产生裂纹。为改善铸铁零件的焊补质量,可采取以下方法。 1 .热焊法焊前将工件整体或局部预热到600?700C,补焊过程中不低于400C,焊后缓慢冷却至室温。采用热焊法可有效减小焊接接头的温差,从而减小应力,同时还可以改善铸件的塑性,防止出现白口组织和裂纹。 常用的焊接方法是气焊和焊条电弧焊。气焊常用铸铁气焊丝,如HS401 或 HS402配用焊剂CJ201,以去除氧化物。气焊预热方法适于补焊中小型薄壁零件。焊条电弧焊选用铸铁芯铸铁焊条Z248或钢芯铸铁焊条Z208,此法主要用于补焊厚度较大(大于10mm )的铸铁零件。 热焊法的焊接设备主要有加热炉、焊炬、电炉(油炉或地炉)等,焊接工艺如下: 1)焊前准备和预热:清除缺陷周围的油污和氧化皮,露出基体的金属光泽:开坡口,一般坡口深度为焊件壁厚的2/3,角度为70°?120°;将焊件放入炉中缓慢加热至600?700C (不可超过700C)。 2)施焊:采用中性焰或弱碳化焰(施焊过程中不要使铁水流向一侧),待基体金属熔透后,再熔入焊条金属;发现熔池中出现白亮点时,停止填入焊条金属,加入适量焊剂,用焊条将杂物剔除后再继续施焊;为得到平整的焊缝,焊接后的焊缝应稍高出铸铁件表面,并将溢在焊缝外的熔渣重新熔化,待降温到半熔化状态时,用焊丝沿铸件表面将高出部分刮平。 3)焊后冷却:一般应随炉缓慢冷却至室温(一般需48h以上),也可用石 棉布(板)或炭灰覆盖,使焊缝形成均匀的组织,同时防止产生裂纹。 2.冷焊法 此方法是焊前不对工件进行预热,或预热温度不超过300C。常用焊条 电弧焊进行铸铁冷焊。根据铸铁工件的要求,可选用不同的铸铁焊条,如补焊一般灰铸铁零件非加工面选用Z100焊条,补焊高强度灰铸铁及球墨铸铁零件选用Zll6 或 Z117 焊条。

浅谈超高层建筑钢结构加工与安装技术

浅谈超高层建筑钢结构加工与安装技术 发表时间:2019-06-11T15:18:48.083Z 来源:《建筑模拟》2019年第14期作者:李小弟 [导读] 钢结构本身就以其刚度大等特点被应用在众多建筑工程中,尤其是现在的超高层建筑中应用的比较多。 李小弟 身份证号:4600041987****001X 摘要:钢结构本身就以其刚度大等特点被应用在众多建筑工程中,尤其是现在的超高层建筑中应用的比较多。超高层的钢结构安装技术有很大的难度,而且施工工艺也比较复杂,对施工技术有很大的要求,在施工的时候要综合考虑到建筑结构特点、施工单位技术水平以及施工现场各种施工环境,然后再制定科学的施工设计。由于施工难度大,所以在加工制造和安装的时候都要控制好施工技术,确保建筑的稳定性。本文分析了超高层建筑中钢结构在制造和安装技术上的相关问题。 关键词:超高层建筑;钢结构;加工技术;安装技术 引言: 近年来,以钢结构为主要原料的建筑,凭借其在环境保护、节约能源、工业生产等方面明显优于砖混结构的优势,在房屋建筑中的利用率越来越高。如具有良好的抗震性和空间感、超快的施工速度、能源消耗量低、可重复利用以及较小的占地面积等特点。虽然是一种比较新兴的建筑体系,但是目前高层建筑钢结构的发展愈发成熟,有不断成为主流结构的总体趋势,同时也是以后超高层建筑的一个发展方向。 1、超高层建筑的定义及钢结构应用现状 1.1超高层建筑的定义 通常情况下,超高层建筑是指高度在 100 米以上,层数在 40层以上的建筑。超高层建筑是现代科技的产物,将钢结构应用于超高层建筑中,有利于超高层建筑的标准整体结构强度要求的实现。 1.2超高层建筑钢结构应用现状 在发达国家中,运用钢结构完成超高层建筑施工已经成为一种普遍现象。钢结构建筑在日本的建筑总量中占据了 50% 的比例。近年来,我国的钢结构产业的发展速度较快,2012 年,我国钢结构的总产量达到了 3000 万吨。但目前我国钢结构的加工技术和安装技术水平相对较低,人们对钢结构的认识较少。与发达国家相比,我国的超高层钢结构应用存在着较大的发展空间。但我国的钢材规格不齐全,使用率相对较低,超高层建筑中可以选择的钢的种类较少。在钢板加工等方面的技术相对较为薄弱,并且在某些方面存在着一些质量问题。为了将钢结构更好地运用到超高层建筑施工中,需要对以上问题进行解决。 2、超高层建筑钢结构的加工技术解析 超高层建筑中要求要有比较高的钢结构加工技术。如在钢结构的内部,需要对结构件的表面粗糙程度、具体材质以及影响到材料的气密性的相关内容等进行严格的各种检测。而且超高层建筑有不同于一般建筑的特点,在建筑的结构件的加工、选材等众多方面要求更高且需要注意的事项更多。 2.1 构件加工制作的整体流程 钢结构高层建筑工程有很大的工作量。钢结构构件有多种结构形式,主要表现为箱型构件、T 型构件和 H 型构件等。构件的焊接工序非常繁琐,同时要求也很严,体现在:焊接要有较大的变形、很多的熔透焊位置以及高质量的焊缝等。一般而言箱型构件由于其内隔板很少,在焊接过程中非常容易发生扭曲和变形。为了确保焊接的最终质量和变形程度、构件的尺寸精细合理以及避免层状性撕裂出现,有效的焊接工艺指标和措施尤为重要,这也是此类建筑工程加工技术中面临的难题。钢结构高层建筑工程中的许多主要构件大多是在工厂里面加工制作而成,基本的加工流程如下:做好技术上的准备→采购与复验材料→钢材的前期加工→对杆件进行加工→整体节点的组装→进行涂装→最终运输。 2.2 工程焊接 焊接的方法选择应考虑整体工艺流程和钢柱的结构等,优先选用有先进配置的焊接方法和设备装置。如对于加劲板和内部的隔板的焊接,宜采用二氧化碳气体保焊法。需要注意的是,要保证保焊焊丝应符合国家的相关规定,且二氧化碳气体的纯度和含水量不能异于一定指标。 3、超高层建筑钢结构的安装技术 3.1预埋件的安装。施工本工程预埋件是由钢板、预埋螺栓和矩形短柱构成的一种长方形结构,总质量为10.8t,总长度为6.9m,最大埋件截面积为1200mm×1200mm×50mm。由于一些埋件的质量很大,需要使用塔吊来进行施工。在安装过程中需要做好以下几方面的控制。 3.2标准节框架的安装。超高层钢结构标准节框架的施工一定情况下代表着超高层钢结构框架施工的主动权,其安装方法通常分为节间综合安装法和按构件分类大流水安装法。前者节间综合安装法是选择一个区间作为标准区间,安装4根钢柱构成空间标准间,按照施工进程逐渐扩大框架,最终完成施工。 3.3特殊节框架的安装。特殊节框架指不用于标准节的框架,如底层大厅和屋顶花园层等等,由于超高层建筑中建筑和结构的特殊要求,施工技术方案也应有所不同。对于网架结构,由于内部结构跨度较大且多位于高层建筑或旁边,施工难度较大,一般采用“地面拼装,整体提升”“搭设平台,高空散装”的安装方法。 3.4钢柱的安装。管柱安装应在分析下层杯口偏离网络线的位置数据后,确定管柱的偏移和倾斜数据,据此数据进行安装。根据钢管柱截面高度变化形式及钢柱的分节长度,每3层浇筑一次,浇筑高度约为12.3m。混凝土采用立式高位抛落无振捣法,利用混凝土下落时产生的动能达到振实混凝土的目的。当浇捣至8.3m高度时,上端4m范围采用振捣器内部振捣振实。一次抛落的混凝土量最好在0.7m 3 左右,用料斗装填或设置浇筑漏斗,料斗的下口尺寸应比钢管内径小100~ 200mm,以便混凝土下落时,排出管内空气。现场利用1.2m 3 吊斗进行浇筑,并在拟浇筑混凝土的钢柱顶部布置高500m,边长lm的漏斗进行下料,漏斗下口边长为160~ 180mm,进入钢柱内的斗口高度约200mm。 3.5安装钢梁。由于本项目中需要安装的钢梁数量非常多,则需随钢柱一起进行安装。临近钢柱安装好以后,将钢梁和钢柱连接到一起

复合板SQR的焊接工艺评定

复合板S Q R的焊接工 艺评定 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

复合板S11348+Q245R的焊接工艺评定 摘要 本文介绍S11348+Q245R复合板的焊接性试验和焊接工艺评定,提供了焊接工艺参数。根据该焊接工艺评定制定的产品焊接工艺,其产品经焊后检测符合技术要求。 关键词:复合板S11348+Q245R;焊接工艺评定;焊接性能分析 第一节前言 1焊接工艺评定概念 焊接工艺评定工作是整个焊接工作的前期准备。焊接工艺评定工作是验证所拟定的焊件及有关产品的焊接工艺的正确性而进行的试验过程和结果评价。它包括焊前准备、焊接、试验及其结果评价的过程。焊接工艺评定也是生产实践中的一个重要过程,这个过程有前提、有目的、有结果、有限制范围。所以焊接工艺评定要按照所拟定的焊接工艺方案进行焊前准备、焊接试件、检验试件、测定试件的焊接接头是否具有所要求的使用性能的各项技术指标,最后将全过程积累的各项焊接工艺因素、焊接数据和试验结果整理成具有结论性、推荐性的资料,形成“焊接工艺评定报告”。 2焊接工艺评定的意义 焊接工艺评定是保证锅炉、压力容器和压力管道焊接质量的一个重要环节。焊接工艺评定是锅炉、压力容器和压力管道焊接之前技术准备工作中一项不可缺少的重要内容,是国家质量技术监督机构进行工程审验中必检的项目,是保证焊接工艺正确和合理的必经途径,是保证焊件的质量,焊接接头的各项性能必须符合产品技术条件和相应的标准要求的重要保证,因此,必须通过相应的实验即焊接工艺评定加以验证焊接工艺正确性和合理性,焊接工艺评定和还能够在保证焊接接头质量的前提下尽可能提高焊接生产效率和最大限度的降低生产成本,获取最大的经济效益。 3焊接工艺评定的目的 (1)是锅炉、压力容器和压力管道及设备制造、安装、检修等生产过程和焊工培训教学应遵循的技术文件。 (2)是焊接质量管理所要执行的关键环节或重要措施。 (3)是反映一个单位施焊能力和技术水平高低的重要标志。 (4)是行业和国家相关的规程所做规定的必须进行的项目。 第二节S11348+Q245R复合板的焊接性试验和焊接工艺评定不锈钢复合板是由碳钢或低合金钢和不锈钢复合轧制而成的双层金属材料。基层为碳钢或低合钢,保证其钢板的结构强度、刚度和韧性;复层为不锈钢,满足介质对耐蚀性能的要求,具有经济、技术性能优越等特点。2011年我厂新接手了一台分馏塔顶油气分离器设备,(编号A097),此台设备主体材质为S11348+Q245R (3mm+ 28 mm)。为了保证焊接质量,我们进行了此材料的焊接性试验和焊接工艺评定。 1 焊接性分析 焊接不锈钢时,如果焊接工艺不当或焊接材料选用不正确,会产生一系列的缺陷。这些缺陷主要有耐蚀性的下降和焊接裂纹的形成,这将直接影响焊接

钢结构设计图中的焊接符号标注大全(图)

建筑钢结构设计图中的焊接符号 ..

..

..

表中所示说明如下: 1.凡是符号中未注焊缝尺寸要求的,如序号1的角焊缝和序号4的双面坡口焊缝,表示要求 焊缝与母材等强。省去了对坡口尺寸或焊脚要求的标注。反之符号中标有数字的焊缝就表示要按数字的要求进行,不代表等强与否,如序号2、3、6。 在此需要指出的是现在对等强焊缝有个误区,即认为要与母材等强,焊缝必须是熔透焊。本文中对角焊缝和部分熔透焊所说的等强,主要是指它的有效焊缝厚度等于或大于母材板厚。强度指标包括抗拉、抗弯和冲击功等,对于等强的角焊缝或部分熔透焊缝有些性能是大于全熔透焊缝的,因熔透焊焊缝接头的应力集中性较大,它的抗弯和某些抗裂性还不如角焊缝和部分熔透焊缝。 2. 带钝边的坡口焊缝按传统的理解不是全熔透焊缝,但在实际上现在随着碳弧气刨的使用增多,和坡口间隙的调整,越来越多的全熔透焊缝都采用带钝边的坡口焊缝。特别是T形接头,利用钝边有许多优点,一是定位准确,收缩变形小,二是在加强首道打底焊熔透性前提下,钝边大了,熔敷金属量减少,带来生产效率提高,变形减少等一系列好处。 但在现在的图纸中往往是把全坡口的焊缝才认定为全熔透焊缝,而带钝边的坡口焊都往往按部分熔透焊对待,有的也按全熔透焊,但在尾部加编号,另用图解说明。 由于在现有的国标中没有对符号的熔透与否有具体说明,只在GB/T50105-2001《建筑结构制图标准》中对熔透角焊缝有一个标注符号。但笔者认为该符号并不值得推广,因为把一个实心圆放在引出线的折转处,至少它直接影响了周围焊与相同焊标记的表示。 所以随着图纸中熔透焊要求的增多,有必要对一些符号中加上熔透焊的表记。为了方便符号的使用,使它更直接,省事,好记,认为符号尾部的编号标注宜尽可能的不用或少用,符号要简易好懂。所以对不易区别的全熔透焊缝在符号的横的基准线上,在上下坡口的中间部位以涂黑的圆圈为标记。见表中序号15、16、20、21。 3. 对背面带衬垫的全熔透焊缝,由于国标中未有该方式的符号表示,所以编制了序号14、24、25的图形表示。 4. 序号17、19、26、27,表示的是背面封底焊,该图形基本是按GB/T324-2008《焊缝符号表示法》中表A.3 补充符号的标注示例中序号1的图形。 5. 序号17、18、19表示的是全熔透焊,虽是单面带钝边的坡口,但焊缝符号上没有数字,表示为等强焊缝,所以可以按全熔透来定义,且如中心位置也标上涂黑的圆圈,就影响了背面焊缝形状的表示了。而序号15、16由于是板中部的钝边,标注涂黑的圆圈更能醒目和直观是全熔透焊。 6. 序号232、23是背面带垫板的全熔透焊,不管它是否带纯边,见到带垫板的应是全熔透的是无疑的。 7. 序号28为电渣焊,因国标中没有,是补充。有的图纸中以类同塞焊的形状表示,但它容易和塞焊符号混淆。所以以在基准线取中的方框来表示较好。 8. U形坡口是厚板焊接的理想坡口,是今后的发展方向,所以也列在其中,便于以后使用。 9. 其它焊接符号,辅助符号仍按国家标准中的规定实行。 设计详图中的焊接符号标注是广大钢结构设计人员很费精力的工作,有一套简捷、直观、好记、合理、先进的焊接符号是我国钢结构事业发展的需要。本文所表示的一些符号,旨在为推动我国焊缝符号标准的进步起一个抛砖引玉的作用。大家都来参与其修改与完善,争取我国焊接符号标准的早日换版,为我国钢结构事业的进步而努力。 ..

钢结构英文翻译对照

Steel structure 面积:area 结构形式:framework 坡度:slope 跨度:span 柱距:bay spacing 檐高:eave height 屋面板:roof system 墙面板:wall system 梁底净高: clean height 屋面系统: roof cladding 招标文件: tender doc 建筑结构结构可靠度设计统一标准: unified standard for designing of architecture construction reliablity 建筑结构荷载设计规范: load design standard for architecture construction 建筑抗震设计规范: anti-seismic design standard for architecture 钢结构设计规范: steel structure design standard 冷弯薄壁型钢结构技术规范: technical standard for cold bend and thick steel structure 门式钢架轻型房屋钢结构技术规范: technical specification for steel structure of light weight building with gabled frames 钢结构焊接规程: welding specification for steel structure 钢结构工程施工及验收规范: checking standard for constructing and checking of steel structure 压型金属板设计施工规程: design and construction specification for steel panel 荷载条件:load condition 屋面活荷载:live load on roof 屋面悬挂荷载:suspended load in roof 风荷载:wind load 雪荷载:snow load 抗震等级:seismic load 变形控制:deflect control 柱间支撑X撑:X bracing 主结构:primary structure 钢架梁柱、端墙柱: frame beam, frame column, and end-wall column 钢材牌号为Q345或相当牌号,大型钢厂出品:Q345 or equivalent, from the major steel mill 表面处理:抛丸除锈Sa2.5级,环氧富锌漆,两底两面,总厚度为125UM。表面喷涂防火材料,防火等级为:柱2小时,梁1.5小时 surface treatment: shot blasting to Sa2.5,zinc rich epoxy paint. 2primer paint and 2 finish paint .total dry film thickness 125um. Spraying fireproof painting on surface, for column 2hours and beam 1.5hours. 次结构包括:屋面檩条、围梁、门窗开口加强等,工厂轧制成C型、Z型截面,工厂预冲孔。Secondary structure included purlins, girts, roof opening and wall opening reinforcement, prepunched and rolled to C or Z section on factory machine. 材质:热浸镀锌卷材,Q345或相当牌号,大型钢厂出品或进口。Material : hot-dipped galvanized steel coil, Q345 or equivalent, from the major domestic steel mills or imported.

焊接工艺评定方案word版本

焊接工艺评定方案 1.引用标准 2.项目主要焊接接头,焊接方式及焊接材料3.焊接工艺评定 4.所属焊接工艺评定项目及覆盖范围5.焊缝试件外观质量和焊缝内部质量检验6.焊接工艺指导书 1.引用标准:

2 项目主要焊接接头,焊接方式及焊接材料 编号焊接 方法 母材规格焊接材料 适用范 围 焊接位置接头形式 1.GMAW 气保焊 10mm加垫 16mm加垫 Q345B 平角焊平焊F 2 GMAW 气保焊 12mm 16mm Q345B 平角焊平焊F 3 GMAW 气保焊 16mm加垫Q345B 立缝立焊V 4 SAW 埋弧自动 焊 8mm Q345B 平角焊平焊F 5 GMAW 气保焊 8mm 14mm 16mm Q345B 平缝平焊F

2.焊接工艺评定 a)焊接接工艺评定应以可靠的钢材焊接性能为 依据,并在生产制作之前完成。 b)焊接工艺评定一般过程是: i.拟定焊接工艺指导书 ii.施焊试件 iii.无损检测、制取试样、测定焊接接头是否具有所要求的使用性能 iv.提出焊接工艺评定报告对拟定的焊接工艺指导书进行评定。 c)焊接工艺评定所用设备、仪表应处于正常工 作状态。 d)焊接环境,当焊接环境出现下列情况时,必 须采取有效防护措施,否则禁止施焊 i.风速:气体保护焊时大于2m/s,其它焊接方 法大于8m/s ii.相对湿度大于90% iii.雨, 冰,雪环境; iv.当低合金钢焊件低于50℃、普通碳素钢焊件温度低于0℃时,应在始焊接表面各方向大于或等于2倍钢板厚度 且不小于100mm范围内预热到20℃以上,且在焊接过程中均不 应低于这一温度 e)焊接工艺评定所用材料 评定所用材料应有合格的质量证明书 f)焊接工艺评定的焊接试件由本单位和本项目的技能熟练,并具有相应合 格项位的焊接人员担任。 g)焊工必须严格按焊接工艺指导书施焊。 h)无损检测人员应具备相应资格。 i)试样的性能试验单位应具有相应资质 j)焊接工艺评定结果不合格时,应分析原因,制订新的评定方案,按原步骤重新评定,直至合格为止。

土木工程外文文献翻译

专业资料 学院: 专业:土木工程 姓名: 学号: 外文出处:Structural Systems to resist (用外文写) Lateral loads 附件:1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文 抗侧向荷载的结构体系 常用的结构体系 若已测出荷载量达数千万磅重,那么在高层建筑设计中就没有多少可以进行极其复杂的构思余地了。确实,较好的高层建筑普遍具有构思简单、表现明晰的特点。 这并不是说没有进行宏观构思的余地。实际上,正是因为有了这种宏观的构思,新奇的高层建筑体系才得以发展,可能更重要的是:几年以前才出现的一些新概念在今天的技术中已经变得平常了。 如果忽略一些与建筑材料密切相关的概念不谈,高层建筑里最为常用的结构体系便可分为如下几类: 1.抗弯矩框架。 2.支撑框架,包括偏心支撑框架。 3.剪力墙,包括钢板剪力墙。 4.筒中框架。 5.筒中筒结构。 6.核心交互结构。 7. 框格体系或束筒体系。 特别是由于最近趋向于更复杂的建筑形式,同时也需要增加刚度以抵抗几力和地震力,大多数高层建筑都具有由框架、支撑构架、剪力墙和相关体系相结合而构成的体系。而且,就较高的建筑物而言,大多数都是由交互式构件组成三维陈列。 将这些构件结合起来的方法正是高层建筑设计方法的本质。其结合方式需要在考虑环境、功能和费用后再发展,以便提供促使建筑发展达到新高度的有效结构。这并

不是说富于想象力的结构设计就能够创造出伟大建筑。正相反,有许多例优美的建筑仅得到结构工程师适当的支持就被创造出来了,然而,如果没有天赋甚厚的建筑师的创造力的指导,那么,得以发展的就只能是好的结构,并非是伟大的建筑。无论如何,要想创造出高层建筑真正非凡的设计,两者都需要最好的。 虽然在文献中通常可以见到有关这七种体系的全面性讨论,但是在这里还值得进一步讨论。设计方法的本质贯穿于整个讨论。设计方法的本质贯穿于整个讨论中。 抗弯矩框架 抗弯矩框架也许是低,中高度的建筑中常用的体系,它具有线性水平构件和垂直构件在接头处基本刚接之特点。这种框架用作独立的体系,或者和其他体系结合起来使用,以便提供所需要水平荷载抵抗力。对于较高的高层建筑,可能会发现该本系不宜作为独立体系,这是因为在侧向力的作用下难以调动足够的刚度。 我们可以利用STRESS,STRUDL 或者其他大量合适的计算机程序进行结构分析。所谓的门架法分析或悬臂法分析在当今的技术中无一席之地,由于柱梁节点固有柔性,并且由于初步设计应该力求突出体系的弱点,所以在初析中使用框架的中心距尺寸设计是司空惯的。当然,在设计的后期阶段,实际地评价结点的变形很有必要。 支撑框架 支撑框架实际上刚度比抗弯矩框架强,在高层建筑中也得到更广泛的应用。这种体系以其结点处铰接或则接的线性水平构件、垂直构件和斜撑构件而具特色,它通常与其他体系共同用于较高的建筑,并且作为一种独立的体系用在低、中高度的建筑中。

常用不锈钢焊接方法对不锈钢最常用的焊接方法是手工焊

常用不锈钢焊接方法对不锈钢最常用的焊接方法是手工焊(MMA),其次是金属极气体保护焊(MIG/MAG)和钨极惰性气体保护焊(TIG).虽然这些焊接方法对不锈钢工业的大多数人而言是熟悉的,但是我们认为这个领域值得深入探讨. 1、手工焊(MMA):手工焊是一种非常普遍的、易于使用的焊接方法.电弧的长度靠人的手进行调节,它决定于电焊条和工件之间缝隙的大小.同时,当作为电弧载体时,电焊条也是焊缝填充材料. 这种焊接方法很简单,可以用来焊接几乎所有材料.对于室外使用,它有很好的适应性,即使在水下使用也没问题.大多数电焊机可以TIG焊接.在电极焊中,电弧长度决定于人的手:当你改变电极与工件的缝隙时,你也改变了电弧的长度.在大多数情况下,焊接采用直流电,电极既作为电弧载体,同时也作为焊缝填充材料.电极由合金或非合金金属芯丝和焊条药皮组成.这层药皮保护焊缝不受空气的侵害,同时稳定电弧.它还引起渣层的形成,保护焊缝使它成型.电焊条即可是钛型焊条,也可是缄性的,这决定于药皮的厚度和成分.钛型焊条易于焊接,焊缝扁平美观.此外,焊渣易于去除.如果焊条贮存时间长,必须重新烘烤.因为来自空气的潮气会很快在焊条中积聚. 2、MIG/MAG焊接:这是一种自动气体保护电弧焊接方法.在这种方法中,电弧在保护气体屏蔽下在电流载体金属丝和工件之间烧接.机器送入的金属丝作为焊条,在自身电弧下融化.由于MIG/MAG焊接法的通用性和特殊性的优点,至今她仍然是世界上最为广泛的焊接方法.它使用于钢、非合金钢、低合金钢和高合金为基的材料.这使得它成为理想的生产和修复的焊接方法.当焊接钢时,MAG可以满足只有0.6mm厚的薄规格钢板的要求.这里使用的保护气体是活性气体,如二氧化碳或混合气体.唯一的限制是当进行室外焊接时,必须保护工件不受潮,以保持气体的效果. 3、TIG焊接:电弧在难熔的钨电焊丝和工件之间产生.这里使用的保护气体是纯氩气,送入的焊丝不带电.焊丝既可以手送,也可以机械送.也有一些特定用途不需要送入焊丝.被焊接的材料决定了是采用直流电还是交流电.采用直流电时,钨电焊丝设定为负极.因为它有很深的焊透能力,对于不同种类的钢是很合适的,但对焊缝熔池没有任何“清洁作用”. TIG焊接法的主要优点是可以焊接大材料范围广.包括厚度在0.6mm及其以上的工件,材质包括合金钢、铝、镁、铜及其合金、灰口铸铁、普通干、各种青铜、镍、银、钛和铅.主要的应用领域是焊接薄的和中等厚度的工件,在较厚的

如何做好焊接工艺评定-评定的程序

如何做好焊接工艺评定-评定的程序 焊接工艺评定的程序是:编制和下达焊接工艺评定任务书—编制焊接工艺评定方案—焊制试件和检验试件—编制焊接工艺评定报告—根据焊接工艺评定报告编制焊接作业指导书(或称焊接工艺卡) 一、编制和下达焊接工艺评定任务书 任务书的主要作用是下达评定任务,因此,其主要的内容应为:评定目的、评定指标、评定项目和承担评定任务的部门及人员的资质条件等。 (一)评定指标的确定 根据规程和钢材的理论基础知识(焊接性)等,确定各项技术指标。按照《焊接工艺评定规程》 DL/T869的规定,要求焊缝金属的化学成分和力学性能(强度、塑性、韧性等指标)应与母材相当或不低于母材相应规定值的下限。 (二)评定项目的确定 根据工程的实际工作情况要求,按规程适用范围做好项目的相关覆盖,确定好评定项目。 焊接工艺评定的项目确定应从以下几方面来考虑: 1.钢材 焊接工程应用的钢材品种和规格繁多,如每种均进行“评定”,不但复杂且数量很多,为减少评定数量,且又能取得可靠的工艺,将钢材按其化学成分、冶金性能、焊后热处理条件、力学性能、规格、设计和使用条件等因素综合考虑.划分成类级别进行评定。按规程要求可以进行替代覆盖。 (1)钢材类级别划分 电力工业火力发电厂常用钢材按类级别划分,它们的划分方法是:按用途划分成A、B、C 等三个类别,而级别则以力学性能、化学成分和组织类型综合划分为I、Ⅱ、Ⅲ三个级别。几个规程钢材类别划法已统一,具体是: 1)碳素钢及普通低合金钢为一类,代号为“A”。其级别为: 碳素钢(含碳量≤0.35%)代号为:A I。 普通低合金钢(6 s≤400MPa)代号为:AⅡ。

钢结构术语中英文对照

钢结构术语中英文对照 强度strength 承载能力load-carrying capacity 脆断brittle fracture 强度标准值characteristic value of strength 强度设计值design value of strength 一阶弹性分析first order elastic analysis 阶弹性分析second order elastic analysis 屈曲buckling 腹板屈曲后强度post-buckling strength of web plate 通用高厚normalizde web slenderness 整体稳定overall stability 有效宽度effective width 有效宽度系数effective width factor 长细比slenderness ratio 换算长细比equivalent slenderness ratio 支撑力nodal bracing force 无支撑纯框架unbraced frame 强支撑框架frame braced with strong bracing system 弱支撑框架frame braced with weak bracing system 摇摆柱leaning column 柱腹板节点域panel zone of column web 球形钢支座spherical steel bearing 橡胶支座couposite rubber and steel support 主管chord member 支管bracing member 隙节点gap joint 搭接节点overlap joint 平面管节点uniplanar joint 空间管节点multiplanar joint 组合构件built-up member 钢与混凝土组合梁composite steel and concrete beam A acceptable quality 合格质量 acceptance lot 验收批量 aciera 钢材 against slip coefficient between frictionsurface of high-strength bolted connection 高强度螺栓摩擦面抗滑移系数 allowable ratio of height to sectionalthickness of masonry wall or column 砌体墙、柱容许高厚比 allowable slenderness ratio of steel member 钢构件容许长细比

金属材料的焊接性能

金属材料的焊接性能 (2014.2.27) 摘要:对各种常用金属材料的焊接性能进行研究,通过参考各类焊接丛书及焊接前辈多年的经验总结,对常用金属材料的焊接工艺可行性起指导作用。 关键词:碳当量;焊接性;焊接工艺参数;焊接接头 1 前言 随着中国特种设备制造业的不断发展,我们在制造产品时所用到的金属材料种类也在不断增加,相应地所必须掌握的各种金属材料的焊接性能也在不断研究和更新中,为了实际产品制造的焊接质量,熟悉金属材料的焊接性能,以制定正确的焊接工艺参数,从而获得优良的焊接接头起到至关重要的指导作用。 2 金属材料的焊接性能 2.1 金属材料焊接性的定义及其影响因素 2.1.1 金属材料焊接性的定义 金属材料的焊接性是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的能力。一种金属,如果能用较多普通又简便的焊接工艺获得优良的焊接接头,则认为这种金属具有良好的焊接性能金属材料焊接性一般分为工艺焊接性和使用焊接性两个方面。 工艺焊接性是指在一定焊接工艺条件下,获得优良,无缺陷焊接接头的能力。它不是金属固有的性质,而是根据某种焊接方法和所采用的具体工艺措施来进行的评定。所以金属材料的工艺焊接性与焊接过程密切相关。 使用焊接性是指焊接接头或整个结构满足产品技术条件规定的使用性能的程度。使用性能取决于焊接结构的工作条件和设计上提出的技术要求。通常包括力学性能、抗低温韧性、抗脆断性能、高温蠕变、疲劳性能、持久强度、耐蚀性能和耐磨性能等。例如我们常用的S30403,S31603不锈钢就具有优良的耐蚀性能,16MnDR,09MnNiDR低温钢也有具备良好的抗低温韧性性能。

超高层钢结构工程安装施工的重点难点及对策

超高层钢结构工程安装施工的重点难点及对策

论高层超高层钢结构工程安装施工的重点、难点及对策 摘要:高层超高层钢结构工程的安装施工控制是一项艰巨而复杂的技术。对工程的质量和进度有很大的影响。本文从国内外高塔学习、实践(迪拜塔/700米;广州新电视塔/610米等等)进行了总结,对塔吊选择、布置及装拆、吊装、测量控制、焊接技术、安全施工等为高层超高层钢结构工程安装施工控制中的重点、难点及对策等进行了全面分析与总结。 关键词:塔吊选择测量控制高塔 1.前言 当今世界高层与超高层钢结构安装工程方兴未艾,大有“欲与天公试比高”之势。迪拜塔高700米;广州新电视塔高度为610米;台北101大楼高度509米;上海环球金融中心高度492米;上海东方明珠塔高度468米;马来西亚国家石油大厦(双峰塔)高度452 米;广州双子塔高度430米;上海金茂大厦高度421米;广州中信广场高度391米;深圳地王大厦高度384米;台湾高雄85大楼高度378米;东北地区大连双子塔最高263米;安徽国际金融中心242米;厦门洪文世界山庄188.51米。国内外高层与超高层钢结构工程的出现是人类美好愿望、社会需求、科技进步和经济发展的完美结合。我国现有高层建筑162000多栋,其中超过100米的超高层建筑就有1500余栋,多数为钢结构。如上海:超高层建筑达400多栋,建筑数量已经远远超过中国香港,成为全球高楼建筑数量第一的城市。又如广州:18层以上建筑有7000多座。重庆高层建筑达10754座。超高层建筑能有效解决城市空间问题,对于“寸土寸金”的上海来说,超高层建筑的建造是适合城市发展需要的。高层与超高层钢结构一般都具备结构新颖独特、技术要求高、工期紧、吊装、焊接与连接工程量大、施工难度大、危险性大、安全防护困难等特点。但是,在发展超高层建筑的过程中,要在经济效益与城市环境、当前需求与可持续发展之间找到平衡点。 2.塔吊的选择 塔吊是高层超高层钢结构工程安装施工的核心设备,其选择与布置要根据钢结构体系的特点、外形尺寸、场地的布置、现场条件、安装施工队伍的技术力量及钢结构的重量等因素综合考虑,并保证塔吊装拆的安全、方便、可靠。并且有专项装拆方案。 塔吊有内爬塔和附着式自升外爬塔两种,按照塔吊使用安全、经济、方便、可靠的原则,建议优先选用内爬塔。因内爬塔有如下优点: (1)有效施工能力大。内爬式塔式起重机安装在建筑物内部(电梯井

钢结构制作焊接工艺评定方案

. 钢结构制作焊接工艺评定方案 编制:________ 审核:________ 批准:________

汇隆杭萧钢构 一、总则 1、本焊接工艺评定方案针对汇隆杭萧钢构生产工艺评定。 2、焊接工艺评定执行标准 GB 50661-2011 钢结构焊接规 GB50205-2001 《钢结构工程施工质量及验收规》 GB/T 1591-94 《低合金结构钢》 YB4104-2000 《高层建筑结构用钢板》 GB/T 5118-95 《低合金钢焊条》 GB/T14957-94 《熔化用钢丝》 GB/T12470-90 《低合金钢埋弧焊用焊剂》 GB/T 8110-95 《气体保护电弧焊用碳钢、低合金钢焊丝》 GB 3323-87 《钢熔化焊对接接头射线照相和质量分级》

GB 11345-89 《钢焊缝手工超声波探伤方法和探伤结果分级》 GB 2650-89 《焊接接头冲击试验方法》 GB 2651-89 《焊接接头拉伸试验方法》 GB 7032-86 《焊接接头弯曲及压扁试验方法》 GB 7032-86 《T 型角焊接头弯曲试验方法》 GB 228-87 《金属拉伸试验方法》 GB 232-88 《金属弯曲试验方法》 二、工程概况 1.生产使用的主要材料材质包括Q235B、Q345B等,材质的类型主要是钢板。工程 钢材由本公司统一采购: 表一:现用钢材Q235、Q345规格 2.焊接材料的使用及匹配: 1)表二:二氧化碳气体保护焊选用焊丝型号(GMAW) 工厂所使用的保护气体(纯度99.9%)(市雄风气体)

2 Q345B JM-70Z ER50-6 GB/T8110 Ф1.2 唐钢唐银钢 铁钢板对接及T 型角接 2)表三:自动埋弧焊选用焊丝、焊剂型号(SAW) 序号钢材牌 号 焊丝 焊剂符合标准 厂 家 用途牌号 直径 (mm) 1 Q235B H08MnA Ф4SJ301 GB/T5293 唐钢唐 银钢铁钢板对接及T型角 接 2 Q345B H08MnA Ф4SJ301 GB/T529 3 唐钢唐 银钢铁钢板对接及T型角 接 3.本次焊接工艺评定报告的命名方式为HLHX-HP-XXXXXX。表四:焊接坡口形式: 序 号焊接方法坡口形式 坡口尺 寸 焊接 位置 母材 材质 母材 板厚 适用 厚度 备 注 1 GMAW α=60°; t=10; p=3; b=2; 平焊 Q235 B 10 3~20

钢结构符号

GJ钢架 GL钢架梁或GJL钢架梁 GZ钢架柱或GJZ钢架柱 XG系杆 SC水平支撑 YC隅撑 ZC柱间支撑 LT檩条 TL托梁 QL墙梁 GLT刚性檩条 WLT屋脊檩条 GXG刚性系杆 YXB压型金属板 SQZ山墙柱 XT斜拉条 MZ门边柱 ML门上梁 T拉条 CG撑杆 HJ桁架 FHB复合板 YG:压杆或是圆管(从材料表中分别)XG:系杆 LG:拉管 QLG:墙拉管 QCG:墙撑管 GZL直拉条 GXL斜拉条 GJ30-1跨度为30m的门式刚架,编号为1号

4 钢结构 4.1.1 常用型钢的标注方法应符合表4.1.1中的规定。 4.2 螺栓、孔、电焊铆钉的表示方法 4.2.1 螺栓、孔、电焊铆钉的表示方法应符合表4.2.1中的规定。

4.3 常用焊缝的表示方法 4.3.1 焊接钢构件的焊缝除应按现行的国家标准《焊缝符号表示法》(GB 324)中的规定外,还应符合本节的各项规定。 4.3.2 单面焊缝的标注方法应符合下列规定: 1 当箭头指向焊缝所在的一面时,应将图形符号和尺寸标注在横线的上方(图4.3.2a);当箭头指向焊缝所在另一面(相对应的那面)时,应将图形符号和尺寸标注在横线的下方(图4.3.2b)。 2 表示环绕工作件周围的焊缝时,其围焊焊缝符号为圆圈,绘在引出线的转折处,并标注焊角尺寸K(图4.3.2c)。 4.3.3 双面焊缝的标注,应在横线的上、下都标注符号和尺寸。上方表示箭头一面的符号和尺寸,下方表示另一面的符号和尺寸(图4.3.3a);当两面的焊缝尺寸相同时,只需在横线上方标注焊缝的符号和尺寸(图4.3.3b、c、d)。

钢结构的应用前景外文翻译

外文资料(英文) Steel system because of their own with the light weight, high strength, the construction of such advantages, and the reinforced concrete structure, the more "high, light," the development of three unique advantages. Along with the country's economic construction, the long concrete and masonry structure dominate the market situation is changing. Steel products in the large-span space structure, lightweight steel gantry structure, multi-storey and high-rise residential areas of increasing construction, Application areas are expanding. From the West-East Gas sent, the West-East power transmission and-north water diversion project, the Qinghai-Tibet Railway, the 2008 Olympic venues and facilities, residential steel, development of the western region construction practice, the development of a steel construction industry and the market momentum is emerging in our country. 1: the steel market development trend of the past 20 years of reform and opening up and economic development, Steel has to create a system of highly favorable environment for development. (1) from the development of the main steel material foundation : Steel is the development of steel a key factor in development. To meet the needs of the construction market, steel varieties will toward complete standardization of materials direction. Domestic steel for construction steel, in terms of quantity, variety and quality have developed rapidly and hot-rolled H-beam, a color plate, Cold steel production increased significantly, the development of steel to create important conditions. Other steel-Steel, Coated Steel Plate and there has been a marked growth, product quality has been greatly improved. Refractory, weathering steel, hot-rolled thin number of H-beam steel has started a new project in the application, Steel to create the conditions for development. (2) from design, production, construction, professional level look : steel industry after years of development, Steel professional design quality in the practice of continually improving. A number of characteristics with the strength of professional institutes, research and design institutes continuously developed steel design software and new technologies. Currently, many domestic steel design software have been brought forth, they can adapt to light steel structure, the network structure, high-rise steel structures, Thin arched structure design needs. With computer technology in the engineering design of the universal application of steel structure design of the software is getting more sophisticated, To help designers complete structural analysis and design, construction mapping provides a great convenience. Steel manufacturers in the country blossom everywhere, and creating a number of strong leading enterprises. Annual output reaching 10 -- 20 million tons of size alone, more than 10 enterprises that the large domestic steel project mission, They fully equipped with the industry and international enterprises to compete on equal strength. At present, some foreign investment, joint ventures, private sector steel manufacturing enterprises in the fierce market competition winners. From the computer design, mapping, digital control, automated processing and manufacturing industries are in the lead, its products range from the traditional building structures, machinery and equipment, non-standard components, and turnkey facilities

相关主题
文本预览
相关文档 最新文档