当前位置:文档之家› 结晶学实际晶体结构

结晶学实际晶体结构

高中化学选修三_晶体结构与性质

晶体结构与性质 一、晶体的常识 1.晶体与非晶体 得到晶体的途径:熔融态物质凝固;凝华;溶质从溶液中析出 特性:①自范性;②各向异性(强度、导热性、光学性质等) ③固定的熔点;④能使X-射线产生衍射(区分晶体和非晶体最可靠的科学方法) 2.晶胞--描述晶体结构的基本单元.即晶体中无限重复的部分 一个晶胞平均占有的原子数=1 8×晶胞顶角上的原子数+1 4×晶胞棱上的原子+1 2×晶胞面上的粒子数+1×晶胞体心内的原子数 思考:下图依次是金属钠(Na)、金属锌(Zn)、碘(I 2)、金刚石(C)晶胞的示意图.它们分别平均含几个原子? eg :1.晶体具有各向异性。如蓝晶(Al 2O 3·SiO 2)在不同方向上的硬度不同;又如石墨与层垂直方向上的电导率和与层平行方向上的电导率之比为1:1000。晶体的各向异性主要表现在( ) ①硬度 ②导热性 ③导电性 ④光学性质 A.①③ B.②④ C.①②③ D.①②③④ 2.下列关于晶体与非晶体的说法正确的是( ) A.晶体一定比非晶体的熔点高 B.晶体一定是无色透明的固体 C.非晶体无自范性而且排列无序 D.固体SiO 2一定是晶体 3.下图是CO 2分子晶体的晶胞结构示意图.其中有多少个原子?

二、分子晶体与原子晶体 1.分子晶体--分子间以分子间作用力(范德华力、氢键)相结合的晶体 注意:a.构成分子晶体的粒子是分子 b.分子晶体中.分子内的原子间以共价键结合.相邻分子间以分子间作用力结合 ①物理性质 a.较低的熔、沸点 b.较小的硬度 c.一般都是绝缘体.熔融状态也不导电 d.“相似相溶原理”:非极性分子一般能溶于非极性溶剂.极性分子一般能溶于极性溶剂 ②典型的分子晶体 a.非金属氢化物:H 2O、H 2 S、NH 3 、CH 4 、HX等 b.酸:H 2SO 4 、HNO 3 、H 3 PO 4 等 c.部分非金属单质::X 2、O 2 、H 2 、S 8 、P 4 、C 60 d.部分非金属氧化物:CO 2、SO 2 、NO 2 、N 2 O 4 、P 4 O 6 、P 4 O 10 等 f.大多数有机物:乙醇.冰醋酸.蔗糖等 ③结构特征 a.只有范德华力--分子密堆积(每个分子周围有12个紧邻的分子) CO 2 晶体结构图 b.有分子间氢键--分子的非密堆积以冰的结构为例.可说明氢键具有方向性 ④笼状化合物--天然气水合物

第一章晶体结构和倒格子

第一章 晶体结构和倒格子 1. 画出下列晶体的惯用元胞和布拉菲格子,写出它们的初基元胞基矢表达式,指明各晶体的结构及两种元胞中的原子个数和配位数。 (1) 氯化钾 (2)氯化钛 (3)硅 (4)砷化镓 (5)碳化硅 (6)钽酸锂 (7)铍 (8)钼 (9)铂 2. 对于六角密积结构,初基元胞基矢为 → 1a =→→+j i a 3(2 →→→+-=j i a a 3(22 求其倒格子基矢,并判断倒格子也是六角的。 3.用倒格矢的性质证明,立方晶格的[hkl]晶向与晶面(hkl )垂直。 4. 若轴矢→→→c b a 、、构成简单正交系,证明。晶面族(h 、k 、l )的面间距为 2222) ()()(1c l b k a h hkl d ++= 5.用X 光衍射对Al 作结构分析时,测得从(111)面反射的波长为1.54?反射角为θ=19.20 求面间距d 111。 6.试说明:1〕劳厄方程与布拉格公式是一致的; 2〕劳厄方程亦是布里渊区界面方程; 7.在图1-49(b )中,写出反射球面P 、Q 两点的倒格矢表达式以及所对应的晶面指数和衍射面指数。 8.求金刚石的几何结构因子,并讨论衍射面指数与衍射强度的关系。 9.说明几何结构因子S h 和坐标原点选取有关,但衍射谱线强度和坐标选择无关。 10. 能量为150eV 的电子束射到镍粉末上,镍是面心立方晶格,晶格常数为3.25×10-10m,求最小的布拉格衍射角。 附:1eV=1.602×10-19J, h=6.262×10-34J ·s, c=2.9979×108m/s 第二章 晶体结合 1.已知某晶体两相邻原子间的互作用能可表示成 n m r b r a r U +-=)( (1) 求出晶体平衡时两原子间的距离; (2) 平衡时的二原子间的互作用能; (3) 若取m=2,n=10,两原子间的平衡距离为3?,仅考虑二原子间互作用则离解能为4ev ,计算a 及b 的值; (4) 若把互作用势中排斥项b/r n 改用玻恩-梅叶表达式λexp(-r/p),并认为在平衡时对互作 用势能具有相同的贡献,求n 和p 间的关系。 2. N 对离子组成的Nacl 晶体相互作用势能为 ??????-=R e R B N R U n 024)(πεα

高中化学选修三选修物质结构与性质第三章第章常见晶体结构晶胞分析归纳整理总结

个六元环共有。每个六元环实际拥有的碳原子数为 ______个。C-C键夹角:_______。C原子的杂化方式是______ SiO2晶体中,每个Si原子与个O原子以共价键相结合,每个O原子与个Si 原子以共价键相结合,晶体中Si原子与O原子个数比为。晶体中Si原子与Si—O键数目之比为。最小环由个原子构成,即有个O,个Si,含有个Si-O键,每个Si原子被个十二元环,每个O被个十二元环共有,每个Si-O键被__个十二元环共有;所以每个十二元环实际拥有的Si原子数为_____个,O原子数为____个,Si-O键为____个。硅原子的杂化方式是______,氧原子的杂化方式是_________. 知该晶胞中实际拥有的Na+数为____个 Cl-数为______个,则次晶胞中含有_______个NaCl结构单元。 3. CaF2型晶胞中,含:___个Ca2+和____个F- Ca2+的配位数: F-的配位数: Ca2+周围有______个距离最近且相等的Ca2+ F- 周围有_______个距离最近且相等的F——。 4.如图为干冰晶胞(面心立方堆积),CO2分子在晶胞中的位置为;每个晶胞含二氧化碳分子的个数为;与每个二氧化碳分子等距离且最近的二氧化

碳分子有个。 5.如图为石墨晶体结构示意图, 每层内C原子以键与周围的个C原子结合,层间作用力为;层内最小环有 _____个C原子组成;每个C原子被个最小环所共用;每个最小环含有个C原子,个C—C键;所以C原子数和C-C键数之比是_________。C原子的杂化方式是__________. 6.冰晶体结构示意如图,冰晶体中位于中心的一个水分子 周围有______个位于四面体顶角方向的水分子,每个水分子通过 ______条氢键与四面体顶点上的水分子相连。每个氢键被_____个 水分子共有,所以平均每个水分子有______条氢键。 7.金属的简单立方堆积是_________层通过_________对 _________堆积方式形成的,晶胞如图所示:每个金属阳离子的 配位数是_____,代表物质是________________________。 8.金属的体心立方堆积是__________层通过 ________对________堆积方式形成的,晶胞如图: 每个阳离子的配位数是__________.代表物质是 _____________________。

第一章-晶体结构

第一章 P4 问题 对14种布拉菲点阵中的体心立方,说明其中每一个阵点周围环境完全相同 答:①单看一个结晶学单胞可知,各个顶点上的阵点等价,周围环境相同。 ②将单个结晶学单胞做周期性平移后可知,该结晶学单胞中的体心阵点亦可作为其他结晶学原胞的顶点阵点,即体心阵点与顶点阵点也等价,周围环境也相同。 综上所述,体心立方中每一个阵点周围环境完全相同。 问题 在二维布拉菲点阵中,具体说明正方点阵的对称性高于长方点阵。 答:对称轴作为一种对称要素,是评判对称性高低的一种依据。正方点阵有4条对称轴而长方点阵只有两条对称轴,故正方点阵的对称性高于长方点阵。 P9 问题 晶向族与晶面族概念中,都有一个“族”字。请举一个与族有关的其他例子,看看其与晶向族、晶面族有无相似性? 答:“上班族”、“追星族”… 它们与晶向族、晶面族的相似性在于同一族的事物都有某一相同的性质。 问题 几年前一个同学问了这样的问题:() 2πe 晶面该怎么画?你如何看待他的问题?应该指出,这位同学一定是动了脑筋的!结论是注重概念 答:晶面无意义、不存在。晶向是晶面的法向量,相同指数的晶面与晶向是一一对应的。在晶体中原子排布规则中,各阵点是以点阵常数为单位长度构成的离散空间,阵点坐标值均为整数,晶向指数也应为整数,因此晶面指数应为整数时晶面才有意义。(晶体学的面与数学意义下的面有区别,只有指数为整数的低指数面才有意义。) 问题 说明面心立方中(111)面间距最大,而体心立方中(110)面间距最大。隐含了方法 答:①面心立方中有晶面族{100}、{110}、{111},它们的面间距分别为 因此面心立方中{111}面间距最大。 ②体心立方中有晶面族{100}、{110}、{111},其面间距分别为 因此体心立方中{110}面间距最大。 (密排面的晶面间距最大)

高中化学选修三——晶体结构与性质.doc

晶体结构与性质 一、晶体的常识1.晶体与非晶体 晶体与非晶体的本质差异 晶体非晶体 自范性 有(能自发呈现多面体外形)无(不能自发呈现多面体外形) 微观结构 原子在三维空间里呈周期性有序排列 原子排列相对无序 晶体呈现自范性的条件:晶体生长的速率适当 得到晶体的途径:熔融态物质凝固;凝华;溶质从溶液中析出特性:①自范性;②各向异性(强度、导热性、光学性质等)③固定的熔点;④能使X-射线产生衍射(区分晶体和非晶体最可靠的科学方法)2.晶胞--描述晶体结构的基本单元,即晶体中无限重复的部分 一个晶胞平均占有的原子数=8×晶胞顶角上的原子数+4×晶胞棱上的原子+2×晶胞面上的粒子数+1×晶胞体心内的原子数 思考:下图依次是金属钠(Na)、金属锌(Zn)、碘(I2)、金刚石(C)晶胞的示意图,它们分别平均含几个原子? 1 1 1

eg:1.晶体具有各向异性。如蓝晶(Al2O3·SiO2)在不同方向上的硬度不同;又如石墨与层垂直方向上的电导率和与层平行方向上的电导率之比为1:1000。晶体的各向异性主要表现在() ①硬度②导热性③导电性④光学性质 A.①③ B.②④ C.①②③ D.①②③④ 2.下列关于晶体与非晶体的说法正确的是() A.晶体一定比非晶体的熔点高 B.晶体一定是无色透明的固体 C.非晶体无自范性而且排列无序 D.固体SiO2一定是晶体 3.下图是CO2分子晶体的晶胞结构示意图,其中有多少个原子? 二、分子晶体与原子晶体 1.分子晶体--分子间以分子间作用力(范德华力、氢键)相结合的晶体注意:a.构成分子晶体的粒子是分子 b.分子晶体中,分子内的原子间以共价键结合,相邻分子间以分子间作用力结合 ①物理性质 a.较低的熔、沸点 b.较小的硬度 c.一般都是绝缘体,熔融状态也不导电 d.“相似相溶原理”:非极性分子一般能溶于非极性溶剂,极性分子一般能溶于极性溶剂 ②典型的分子晶体 a.非金属氢化物:H2O、H2S、NH3、CH4、HX等 b.酸:H2SO4 、HNO3、

几种常见晶体结构分析

几种常见晶体结构分析文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

几种常见晶体结构分析 河北省宣化县第一中学 栾春武 邮编 075131 栾春武:中学高级教师,张家口市中级职称评委会委员。河北省化学学会会员。市骨干教师、市优秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。 联系电话: E-mail : 一、氯化钠、氯化铯晶体——离子晶体 由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。离子的配位数分析如下: 离子数目的计算:在每一个结构单元(晶胞)中,处于不同位置的微粒在该单元中所占的份额也有所不同,一般的规律是:顶点上的微粒属于该 单元中所占的份额为18,棱上的微粒属于该单元中所占的份额为1 4,面上 的微粒属于该单元中所占的份额为1 2,中心位置上(嚷里边)的微粒才完 全属于该单元,即所占的份额为1。 1.氯化钠晶体中每个Na +周围有6个Cl -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的Cl -围成的空间构型为正八面体。每个Na +周围与其最近且距离相等的Na +有12个。见图1。 图1 图2 NaCl

晶胞中平均Cl-个数:8×1 8 + 6× 1 2 = 4;晶胞中平均Na+个数:1 + 12×1 4 = 4 因此NaCl的一个晶胞中含有4个NaCl(4个Na+和4个Cl-)。 2.氯化铯晶体中每个Cs+周围有8个Cl-,每个Cl-周围有8个Cs+,与一个Cs+距离最近且相等的Cs+有6个。 晶胞中平均Cs+个数:1;晶胞中平均Cl-个数:8×1 8 = 1。 因此CsCl的一个晶胞中含有1个CsCl(1个Cs+和1个Cl-)。 二、金刚石、二氧化硅——原子晶体 1.金刚石是一种正四面体的空间网状结构。每个C 原子以共价键与4个C原子紧邻,因而整个晶体中无单 个分子存在。由共价键构成的最小环结构中有6个碳原 子,不在同一个平面上,每个C原子被12个六元环共用,每C—C键共6 个环,因此六元环中的平均C原子数为6× 1 12 = 1 2 ,平均C—C键数为 6×1 6 = 1。 C原子数: C—C键键数= 1:2; C原子数: 六元环数= 1:2。 2.二氧化硅晶体结构与金刚石相似,C被Si代替,C与C之间插 氧,即为SiO 2晶体,则SiO 2 晶体中最小环为12环(6个Si,6个O), 图3 CsCl 晶 图4 金刚石晶

专题08 分子结构与晶体结构

专题八分子结构与晶体结构 ★双基知识 1.几个基概念 化学键:相邻的两个或多个原子间强烈的相互作用 共价键:原子间通过共用电子对所形成的相互作用 离子键:阴、阳离子通过静电作用所形成的化学键 极性键:由不同元素的原子所形成的共价键 非极性键:由相同元素的原子所形成的共价键 金属键:金属阳离子与自由电子之间较强烈的作用叫金属键。 氢键: 范德华力(分子间作用力) 极性分子非极性分子 离子晶体分子晶体 原子晶体金属晶体 2.常见几种晶体的结构分析(点、线、面、体) (1)氯化钠晶体(2)氯化铯晶体(3)二氧化碳晶体(4)白磷分子的结构(5)C n的结构(6)金刚石晶体(7)二氧化硅晶体(8)石墨晶体 ★巧思巧解 (1)异类晶体:原子晶体(离子晶体)分别大于分子晶体

一般地,原子晶体>离子晶体>分子晶体 (2)同种类型晶体:构成晶体质点间的作用力大,则熔、沸点高,反之则小。 ①离子晶体:离子所带的电荷数越高,离子半径越小,离子键越强,则熔、沸点越高。 ②分子晶体:对于组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越大,则熔、沸点越高。 在同分异构体中,一般地,支链越多,熔、沸点越低。 ③原子晶体:原子半径越小,键长越短、键能越大,则熔、沸点越高 ④金属晶体:金属阳离子半径越小,离子所带的电荷越多,则金属键越强,金属熔、沸点越高 ★例题精析 [例1]:下列性质中,可以证明某化合物内一定存在离子键的是:( ) A .可以溶于水 B.具有较高的熔点 C .水溶液能导电 D.熔融状态能导电 [例2]:下列化合物中阴离子半径和阳离子半径之比最大的是: A .LiI B. NaBr C. KCl D. CsF [例3]:食盐晶体如右下图所示。在晶体中●表示Na +,○表示Cl - ,已知食盐的密度为ρg/cm 3, NaCl 的摩尔质量为M g/mol ,阿佛加得罗常数为N ,则在食盐晶体是Na +离子和Cl - 离子的 间距大约是: A . B. 3 2N M C. D. [例4]:根据石墨晶体结构示意图及提供的数据计算(保留三位有效数值)。有关公式、数据见框图。⑴12 g 石墨中,正六边形的数目有多少? ⑵求石墨密度。 ⑶求12克石墨的体积。

第二章晶体结构与晶体中的缺陷

第二章晶体结构与晶体中的缺陷 内容提要:通过讨论有代表性的氧化物、化合物和硅酸盐晶体结构, 用以掌握与本专业有关的各种晶体结构类型。介绍了实际晶体中点缺陷分 类;缺陷符号和反应平衡。固熔体分类和各类固熔体、非化学计量化学化 合物的形成条件。简述了刃位错和螺位错。 硅酸盐晶体结构是按晶体中硅氧四面体在空间的排列方式为孤岛状、组群状、链状、层装和架状五类。这五类的[SiO4]四面体中,桥氧的数目也依次由0增加到4, 非桥氧数由4减至0。硅离子是高点价低配位的阳离子。因此在硅酸盐晶体中,[SiO4] 只能以共顶方式相连,而不能以共棱或共面方式相连。表2-1列出硅酸盐晶体结构类型及实例。 表2-1 Array硅酸 盐晶 体的 结构 类型

真实晶体在高于0K的任何温度下,都或多或少地存在着对理想晶体结构的偏离,即存在着结构缺陷。晶体中的结构缺陷有点缺陷、线缺陷、面缺陷和复合缺陷之分,在无机材料中最基本和最重要的是点缺陷。 点缺陷根据产生缺陷的原因分类,可分为下列三类: (1)热缺陷(又称本征缺陷) 热缺陷有弗仑克儿缺陷和肖特基缺陷两种基本形式。 弗仑克儿缺陷是指当晶格热震动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗仑克儿缺陷。 肖特基缺陷是指如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,而在原正常格点上留下空位,这种缺陷称为肖特基缺陷。 (2)杂质缺陷(非本征缺陷) (3)非化学计量化学化合物 为了便于讨论缺陷反应,目前广泛采用克罗格-明克(Kroger-Vink)的点缺陷符号(见表2-2)。 表2-2 Kroger-Vink缺陷符号(以M2+X2-为例)

分子结构与晶体结构完美版

第六章分子结构与晶体结构 教学内容: 1.掌握杂化轨道理论、 2.掌握两种类型的化学键(离子键、共价键)。 3.了解现代价键理论和分子轨道理论的初步知识,讨论分子间力和氢键对物质性质的影响。 教学时数:6学时 分子结构包括: 1.分子的化学组成。 2.分子的构型:即分子中原子的空间排布,键长,键角和几何形状等。 3.分子中原子间的化学键。 化学上把分子或晶体中相邻原子(或离子)之间强烈的相互吸引作用称为化学键。化学键可 分为:离子键、共价键、金属键。 第一节共价键理论 1916年,路易斯提出共价键理论。 靠共用电子对,形成化学键,得到稳定电子层结构。 定义:原子间借用共用电子对结合的化学键叫做共价键。 对共价键的形成的认识,发展提出了现代价键理论和分子轨道理论。 1.1共价键的形成 1.1.1 氢分子共价键的形成和本质(应用量子力学) 当两个氢原子(各有一个自旋方向相反的电子)相互靠近,到一定距离时,会发生相互作用。每个H原子核不仅吸引自己本身的1s电子还吸引另一个H原子的1s电子,平衡之前,引力>排斥力,到平衡距离d,能量最低:形成稳定的共价键。 H原子的玻尔半径:53pm,说明H2分子中两个H原子的1S轨道必然发生重叠,核间形成一个 电子出现的几率密度较大的区域。这样,增强了核间电子云对两核的吸引,削弱了两核间斥力,体系能量降低,更稳定。(核间电子在核间同时受两个核的吸引比单独时受核的吸引要小,即位能低,∴能量低)。

1.1.2 价键理论要点 ①要有自旋相反的未配对的电子 H↑+ H↓ -→ H↑↓H 表示:H:H或H-H ②电子配对后不能再配对即一个原子有几个未成对电子,只能和同数目的自旋方向相反的未成对电子成键。如:N:2s22p3,N≡N或NH3 这就是共价键的饱和性。 ③原子轨道的最大程度重叠 (重叠得越多,形成的共价键越牢固) 1.1.3 共价键的类型 ①σ键和π键(根据原子轨道重叠方式不同而分类) s-s :σ键,如:H-H s-p :σ键,如:H-Cl p-p :σ键,如:Cl-Cl π键, 单键:σ键 双键:一个σ键,一个π键 叁键:一个σ键,两个π键 例:N≡N σ键的重叠程度比π键大,∴π键不如σ键牢固。 σ键π键 原子轨道重叠方式头碰头肩并肩 能单独存在不能单独存在 沿轴转180O符号不变符号变 牢固程度牢固差 含共价双键和叁键的化合物的重键容易打开,参与反应。

结晶化学简介

结晶学 结晶学是研究晶体的发生成长、外部形貌、化学成分、晶体结构、物理性质 以及它们的相互关系的学科。晶体广泛存在,从自然界的冰雪和矿物,到日常生 活中的食盐和食糖,陶瓷和钢材,多种固态药品及试剂等,都是晶体。结晶学的 知识被广泛用于地质、冶金、化工、材料科学、工农业生产和尖端科学技术中。 一、结晶学主要研究内容 结晶学包括如下分支: ①晶体生长学。研究晶体发生、成长的机理和晶体的人工合成,用以追溯自 然界晶体形成的环境和指导晶体的人工制备。 ②几何结晶学。研究晶体外形的几何规律,是结晶学的经典内容和基础。 ③晶体结构学。研究晶体中质点排布的规律及其测定。晶体结构资料为阐释 晶体的一系列现象和性质提供依据。 ④晶体化学。研究晶体化学成分与结构的关系,成分、结构与晶体性能、形 成条件的关系,其理论用于解释晶体的一系列现象和性质,指导发现或制备具有 预期特性的晶体。 ⑤晶体物理学。研究晶体的物理性能及其产生机理,对于晶体的利用有重要 指导意义。 晶体是具有格子构造的固体,也就是说,格子构造是一5于晶体格于构造所 决定的,并为所有一切晶体所共有的性质,晶体的基本性质是晶体的共性,是指 晶体所共有的性质,性、均一性、异向性、对称性和稳定性。 二、晶体的特征 陨体所必备的条件。凡是由称之为晶体的基本性质。归纳起来共有五种: 即L1限是指所有的晶体均具有自发地形成封闭的几何多面体外形能力的性 质。晶面就是晶体格子构造中最外层的而网所在,晶棱是最外层面网相交的公共 行列,而角顶则是结点的所在。由于一切晶体都具有格子构造,所以,必然能自 发地形成几何多面体的外形,把它们自身封闭起来。晶面,晶棱和角顶与格子构 造中的面网、行列及结点是相对应的,它们之间的关系见田I—10。但应该指出,

合金的晶体结构与结晶过程

第八节合金的晶体结构与结晶过程 一、基本概念 ●组成合金最基本的、独立的物质称为组元。 ●由两种或两种以上的组元按不同比例配制而成的一系列不同化学成分的所有合金,称为合金系。 ●相是指在一个合金系统中具有相同的物理性能和化学性能,并与该系统的其余部分以界面分开的部分。 ●组织是指用金相观察方法,在金属及其合金内部看到的涉及晶体或晶粒的大小、方向、形状、排列状况等组成关系的构造情况。 二、合金的晶体结构 根据合金中各组元之间的相互作用,合金中的晶体结构可分为固溶体、金属化合物及机械混合物三种类型。 (一)固溶体 ●合金在固态下一种组元的晶格内溶解了另一种原子而形成的晶体相,称为固溶体。 根据溶质原子在溶剂晶格中所占位置的不同,可将固溶体分为置换固溶体和间隙固溶体。 1.置换固溶体 ●溶质原子代替一部分溶剂原子,占据溶剂晶格的部分结点位置时,所形成的晶体相,称为置换固溶体。 按溶质溶解度的不同,置换固溶体又可分为有限固溶体和无限固溶体。 a) 置换固溶体 b) 间隙固溶体 图1-32 固溶体的类型 2.间隙固溶体 ●溶质原子在溶剂晶格中不占据溶剂晶格的结点位置,而是嵌入溶剂晶格的各结点之间的间隙内时,所形成的晶体相,称为间隙固溶体。 无论是置换固溶体,还是间隙固溶体,异类原子的插入都将使固溶体晶格发生畸变,增加位错运动的阻力,使固溶体的强度、硬度提高。这种通过溶入溶质原子形成固溶体,使合

金强度、硬度升高的现象称为固溶强化。固溶强化是强化金属材料的重要途径之一。 a)间隙固溶体 b)置换固溶体(大溶质原子) c)固溶体(小溶质原子) 图1-33 形成固溶体时产生的晶格畸变 (二)金属化合物 ●金属化合物是指合金中各组元之间发生相互作用而形成的具有金属特性的一种新相。 金属化合物具有与其构成组元晶格截然不同的特殊晶格,熔点高,硬而脆。 (三)机械混合物 ●由两相或两相以上组成的多相组织,称为机械混合物。 在机械混合物中各组成相仍保持着它原有晶格的类型和性能,而整个机械混合物的性能则介于各组成相的性能之间,并与各组成相的性能以及相的数量、形状、大小和分布状况等密切相关。 三、合金结晶过程 合金的结晶过程与纯金属一样,也是晶核形成和晶核长大两个过程。同时结晶时也需要一定的过冷度,结晶后形成由多晶体。合金的结晶过程中具有如下特点: (1)纯金属的结晶是在恒温下进行,只有一个结晶温度。而绝大多数合金是在一个温度范围内进行结晶的,一般结晶的开始温度与终止温度是不相同,一般有两个结晶温度。 (2)合金在结晶过程中,在局部范围内相的化学成分(即浓度)有差异,当结晶终止后,整个晶体的平均化学成分与原合金的化学成分相同。 (3)合金结晶后一般有三种情况:第一种情况是形成单相固溶体;第二种情况是形成单相金属化合物或同时结晶出两相机械混合物(如共晶体);第三种情况是结晶开始时形成单相固溶体,剩余液体又同时结晶出两相机械混合物(如共晶体)。 四、合金结晶冷却曲线 合金结晶过程比纯金属复杂得多,但其结晶过程仍可用结晶冷却曲线来描述。一般合金的结晶冷却曲线有以下三种形式:

分子结构与晶体结构

第七章分子结构与晶体结构 第一节离子键 一、离子键的形成和特征 1、离子键的形成 电负性I1或Y1(KJ/mol) 电离能很小的金属原子:Na 0.9 496 K 0.8 419 电子亲合能很大的非金属原子:Cl 3.0 -348.8 O 3.5 -141 电负性相差大的元素相遇,一失电子,一得电子,它们之间以静电引力相结合,形成离子键。 ④:阳阴离子间具有静电引力,两原子的电子云间存在排斥力,两原子核间存在相互排斥力,当两原子接近到一定距离,引力=斥力,(此时整个体系能量最低),形成离子键。 2、离子键的特征 ① 本质:阴、阳离子间的静电引力 ② 无方向性、饱和性 只要空间允许,尽可能多地吸引带相反电荷的离子(任何方向,尽可能多)。但总体来说,有一定比例。 二、离子的特性 1、离子的电荷 离子化合物AmBn:A n+,B m- +n﹥+3,很少见 2、离子的电子层结构 简单阴离子的电子构型,一般与同周期希有气体原子电子层构型相同。 简单的阳离子构型:

3、离子半径 将阴阳离子看成是保持着一定距离的两个球体。 d = r+ + r-单位:pm(10-12m) 规律: ①同一元素: 负离子半径>原子半径>正离子半径 低价负离子半径>高价负离子半径 低价正离子半径>高价正离子半径 例: ②同一周期 从左到右,阳离子:正电荷数↑,半径↓ 阴离子:负电荷数↓,半径↓ ③同一主族 电荷数基本相同,从上到下,半径↑(∵电子层增加) 离子半径↓,离子间引力↑,离子键强度↑,熔、沸点↑,硬度↑ 第二节共价键理论 1916年,路易斯提出共价键理论。 靠共用电子对,形成化学键,得到稳定电子层结构。 定义:原子间借用共用电子对结合的化学键叫作共价键。 对共价键的形成的认识,发展提出了现代价键理论和分子轨道理论。

晶体晶胞结构讲解-共17页

物质结构要点 1、核外电子排布式 外围核外电子排布式价电子排布式 价电子定义:1、对于主族元素,最外层电子 2、第四周期,包括3d与4S 电子 电子排布图 熟练记忆 Sc Fe Cr Cu 2、S能级只有一个原子轨道向空间伸展方向只有1种球形 P能级有三个原子轨道向空间伸展方向有3种纺锤形 d能级有五个原子轨道向空间伸展方向有5种 一个电子在空间就有一种运动状态 例1:N 电子云在空间的伸展方向有4种 N原子有5个原子轨道 电子在空间的运动状态有7种 未成对电子有3个 ------------------------结合核外电子排布式分析 例2 3、区的划分 按构造原理最后填入电子的能级符号 如Cu最后填入3d与4s 故为ds区 Ti 最后填入能级为3d 故为d区 4、第一电离能:同周期从左到右电离能逐渐增大趋势(反常情况:S2与P3 半满或全 满较稳定,比后面一个元素电离能较大) 例3、比较C、N、O、F第一电离能的大小 --------------- F >N>O>C 例4、某元素的全部电离能(电子伏特)如下:

回答下列各问: (1)I6到I7间,为什么有一个很大的差值?这能说明什么问题? _________________________ (2)I4和I5间,电离能为什么有一个较大的差值_________________________________ (3)此元素原子的电子层有 __________________层。最外层电子构型为 ______________ 5、电负性:同周期从左到右电负性逐渐增大(无反常)------------F> O >N >C 6、对角线规则:某些主族元素与右下方的主族元素的性质有些相似,被称为“对角线规则”如:锂 和镁在空气中燃烧的产物,铍和铝的氢氧化物的酸碱性以 及硼和硅的含氧酸酸性的强弱 7、共价键:按原子轨道重叠形式分为:σ键和π键 (具有方向性和饱和性) 单键 -------- 1个σ键 双键------1个σ键和1个π键 三键---------1个σ键和2个π键 8、等电子体:原子总数相等,价电子总数相等----------具有相似的化学键特征 例5、N2 CO CN-- C22-互为等电子体 CO2 CS2 N2O SCN-- CNO-- N3- 互为等电子体 从元素上下左右去找等电子体,左右找时及时加减电荷,保证价电子相等。 9、应用VSEPR理论判断下表中分子或离子的构型。

分子结构与晶体结构

第2~3章 分子结构与晶体结构 1、已知下列表中数据,求KCl 晶格能 2、写出氯酸根离子 ClO 3- 的路易斯结构式. Cl 原子的电负性小于O 原子,意味着不存在 O -O 之间的键合. 合理的排布应该如下所示: ClO 3-离子中价电子总数等于26(四个原子的价电子数相加再加1), 扣除3个单键的6个电子,余下的20个电子以孤对方式分配给四个原子, 使它们均满足八隅律的要求. 3、判断 OF 2、XeF 4分子的基本形状. 写出路易斯结构式, 并读出中心原子周围价电子对的总数:中心原子价层有4对电子. 4 对价电子的理想排布方式为正四面体, 但考虑到其中包括两个孤对, 所以分子的实际几何形状为角形, 相当于 AB 2E 2 型分子. E D I S H U U E D I S H -+++?-=∴-+-++ +=?21 )()(2 1 θf θf Cl O O O Cl O O O F — O —

XeF4中心原子价层有6 对电子. 理想排布方式为正八面体, 但考虑到其中包括两个孤对, 所以分子的实际几何形状为平面四方形, 相当于AB4E2 型 分子. 苯、二氧化碳、臭氧、碳酸根分子的化学键(1)、苯分子中的p-p大π键苯分子中碳原子采用sp2杂化,3个杂化轨道分别用于形成3个σ键,故苯分子有键角为120 °的平面结构的σ骨架,苯分子的每个碳原子尚有一个未参加杂化的p轨道,垂直于分子平面而相互平行,6 个“肩并肩”的平行p轨道上共有6个电子在一起形成弥散在整个苯环的p-p大π键,符号为π 6 6(2)、二氧化碳分子里的大π键 分子中碳原子采用sp杂化,形成直线型的分子σ骨架O-C- O ,每个碳原子尚有二个未参加杂化的p轨道,其空间取向为相互垂直且与sp杂化轨道的 轴呈正交关系。形成两套3原子4电子符号为π 3 4的p-p大π键(3)、臭氧中的大π键 分子的中心氧原子采用sp2杂化,形成平面三角形,中心氧原子尚有一个未参加杂化的p轨道,垂直于分子平面,端位的2个氧原子也各有一个垂直于 分子平面的p轨道,“肩并肩” 形成符号为π 3 4的p-p大π键(4)、碳酸根中的大π键分子中碳原子采用sp2杂化,形成平面三角形,碳原子尚有一个未参加杂化的p轨道,垂直于分子平面,端位的3个氧原子也各有一个垂直于分子 平面的p轨道,“肩并肩” 形成符号为π 46的p-p大π键(1)CO 2 、CNS-、NO 2 +、N 3-通式AX 2 ,价电子数16,直线型,2个л4 3 (2)CO 3 2-、NO 3 -、SO 3 通式AX 3,总价电子数24,平面三角形,1个л6 4 (3)SO 2 、O 3 、NO 2 -通式 AX 2 ,价电子数18,V字型, (4)SO 42-、PO 4 3-通式AX 4 ,价电子数32,正四面体(5)PO 3 3-、SO 3 2-、 ClO 3-通式AX 3 ,价电子数26,三角锥型

结晶化学考试试卷

1 桂林理工大学2012-2013学年《结晶化学与晶体材料》考试试卷 (考试时间120分钟,满分100分) 一、选择题(每题2分,共20分) 1.发现X-射线的科学家是 ( ) A. 阿羽衣 B. 伦琴 C. 布拉格 D. 劳埃 2. 下面哪一种物质不是单晶 ( ) A. 红宝石 B. 冰糖 C. 玻璃 D. 水晶 3. 下面哪一项不属于晶体的基本特征 ( ) A. 对称性 B. 均一性 C. 异项性 D. 各向同性 4. 关于乌尔夫网结构,以下说法正确的是 ( ) A. 视点即南极或北极投影于圆周上。 B .乌尔夫网圆周或基圆为球面上垂直于投影面的直立小圆的投影。 C .两个直径为两个相互垂直且垂直于投影面的大圆的投影。 D .小圆弧相当于投影球上水平大圆。 5. 下列各项中不属于宏观对称操作的是 ( ) A. 对称轴 B. 对称面 C. 倒转轴 D. 平移轴 6. 下列对称轴次哪一种不可能出现 ( ) A. 2 B. 4 C. 5 D. 6 7. 二次轴(L 2 )和对称面(P)的组合可以获得 ( ) A. L 2 P B .L 2 2P C .L 2 4P D .L 2 6P 8. 正交晶系的几何结构特点是 ( ) A. a = b = c ,α = β = γ = 90? B .a = b ≠ c , α = β = γ = 90? C .a ≠ b ≠ c , α = β = γ = 90? D .a ≠ b ≠ c ,α ≠ β ≠ γ 9. NaCl 晶体属等轴晶系,为m3m 点群,该点群符号表明 ( ) A. 垂直于体对角线(a+b+c)的方向有对称面:标为“m”。 B . 平行于面对角线(a+b)有3次对称轴:标为“3”。 C 垂直于面对角线方向有对称面“m”。标记为“m”。 C . m3m 没有完全包含必要对称元素,不能操作出该晶系了。 10. 下面哪个数据库和晶体学没有关系 ( ) A . The Cambridge structural Database (CSD) B . The Inorganic Crystal Structure Database (ICSD) C . The Protein Data Bcmk (PDB) D . Spectral Database for Organic Compounds (SDBS) 二、填空题(每空1分,共20分) 1.晶体是指 ; 非晶体是指 ; 准晶是指 。 2.通过集合晶体内部所有对称元素,可以获得 种点群, 种布拉维格子, 种空间群。 3.微观对称元素只能在 中出现,它 和宏观对称元素的区别在于 。 4. 请写出布拉格方程的简明公式 。 5. 面角守恒定律是指 。 6. 按照在晶体中分布的几何状态,晶体中的缺陷类型可以分为: 、 、 、 。 7. 写出两种晶体生长理论的名称: 、 。 8. 写出两种可以用于做半导体的晶体材料 、 。 9. 写出两种常见的压电晶体 、 。 三、判断题(每题2分,共20分) 1.对于同种晶体而言,对应晶面的夹角是可以变化的。 ( )

第一章 结晶学基础

第一章 结晶学基础 例 题 1-1 作图阐明表示晶面符号的Miller 指数。 解: 图1-2的晶体,晶面XYZ 在三个结晶轴上的截距依次为OX 、OY 、OZ 。已知轴率为a : b : c 。该晶面在结晶轴上的截距系数为2a 、3b 、6c 。根据Miller 指数的含意则: h :k :l =OX a :OY b :OZ c =a a 2:b b 3:c c 3=3:2:1 因此,该晶面的晶面符号为(321)。 图1-2 例题1-1附图 1-2 在面心立方和体心立方中,最密排的平面的Miller 符号是什么? 解:在面心立方堆积中,有(100)、(010)和(001)三个面的对角线所所构成的平面是最密排的面。 因此,它的Miller 符号为(111)。 在体心立方堆积中,由(001)面的对角线和c 轴构成的平面是最密排的面。因此,它的Miller 符号 为(110)。(答案是否唯一?) 1-3 金属铝为面心立方结构,晶胞参数为0.4049nm 求d (200)和d (220)各为多少?(d (200)为(200)面 之间的距离)。 解:d (200)为(200)面之间的距离,根据米氏符号的定义d (200)应为21 d (100)。因为铝是立方结构,因 此d (100)即为晶胞参数0.4049nm 。所以d (200)=0.2025 nm 。 同理,(100))200(d 21 d =。在立方体中,d (100) 为(001)面对角线的1/2 。根据几何关系可得: )100(d 2 =0.4049nm 所以d (100)=0.2863nm ,则(220)d d (220)=0.1432nm 。 1-4 为何等轴晶系有原始、面心、体心格子,而没有单面心格子? 解:如果等轴晶系总存在单面心格子,那么等轴晶系所特有的4L 3对称要素将不再存在。因此单面心

分子结构与晶体结构

分子结构与晶体结构 ★双基知识 几个基概念 化学键:相邻的两个或多个原子间强烈的相互作用 共价键:原子间通过共用电子对所形成的相互作用 离子键:阴、阳离子通过静电作用所形成的化学键 极性键:由不同元素的原子所形成的共价键 非极性键:由相同元素的原子所形成的共价键 金属键:金属阳离子与自由电子之间较强烈的作用叫金属键。 氢键: 范德华力(分子间作用力) 极性分子非极性分子 离子晶体分子晶体 原子晶体金属晶体 2.常见几种晶体的结构分析(点、线、面、体) (1)氯化钠晶体(2)氯化铯晶体(3)二氧化碳晶体(4)白磷分子的结构 (5)Cn的结构(6)金刚石晶体(7)二氧化硅晶体(8)石墨晶体★巧思巧解 2.四种晶体的比较

晶体类型离子晶体原子晶体分子晶体金属晶体 存在粒子 粒子间作用 熔、沸点 硬度 溶解性 导电性 实例 3.晶体熔、沸点比较 (1)异类晶体:原子晶体(离子晶体)分不大于分子晶体 一样地,原子晶体>离子晶体>分子晶体 (2)同种类型晶体:构成晶体质点间的作用力大,则熔、沸点高,反之则小。 ①离子晶体:离子所带的电荷数越高,离子半径越小,离子键越强,则熔、沸点越高。 ②分子晶体:关于组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越大,则熔、沸点越高。 在同分异构体中,一样地,支链越多,熔、沸点越低。 ③原子晶体:原子半径越小,键长越短、键能越大,则熔、沸点越高 ④金属晶体:金属阳离子半径越小,离子所带的电荷越多,则金属键越强,金属熔、沸点越高 ★例题精析 [例1]:下列性质中,能够证明某化合物内一定存在离子键的是:()A.能够溶于水 B.具有较高的熔点 C.水溶液能导电 D.熔融状态能导电 [例2]:下列化合物中阴离子半径和阳离子半径之比最大的是: A.LiI B. NaBr C. KCl D. CsF [例3]:食盐晶体如右下图所示。在晶体中●表示Na+,○表示Cl-,已知食盐的密度为ρg/cm3,NaCl的摩尔质量为M g/mol,阿佛加得罗常数为N,则在食盐晶体是Na+离子和Cl-离子的间距大约是:

第一章晶体学基础

第一章晶体学基础 注:本教案中相关图片均可点击放大显示。 第一节晶体和点阵的定义 1.1 晶体及其基本性质 晶体的定义 ?晶体是原子或者分子规则排列的固体; ?晶体是微观结构具有周期性和一定对称性的固体; ?晶体是可以抽象出点阵结构的固体; ?在准晶出现以后,国际晶体学联合会在 1992年将晶体的定义改为:“晶体是能够给出明锐衍射的固体。” 下图为晶体的电子衍射花样,其中图a为一般晶体的电子衍射花样,而图b则是一种具有沿[111]p方向具有六倍周期的有序钙钛矿的电子衍射花样,由这些衍射花样可以看出来,无论是无序还是有序晶体,其倒空间都具有平移周期对称的特点(相应的正空间也应该具有平移对称的特点)。事实上在准晶发现以前,平移周期对称被当作晶体在正空间中的一个本质的特点,晶体学中的点群和空间群就是以晶体的平移对称为基础推导出来的。 晶体的分类 从成健角度来看,晶体可以分成: ?离子晶体; ?原子晶体; ?分子晶体; ?金属晶体。

面角守衡定律:(由丹麦的斯丹诺于1669年提出) 在相同的热力学条件下,同一物质的各晶体之间比较,相应晶面的大小、形状和个数可以不同,但相应晶面间的夹角不变,一组特定的夹角构成这种物质所有晶体的共同特征。 下图是自然界存在的具有规则外形的几种常见的晶体,分别是方解石、萤石、食盐和石英,它们的面角关系完全符合面角守衡定律。事实上,自然界中的晶体,当其形成条件比较接近平衡条件时,它们往往倾向于长成与其晶体对称性相应的外形。 非晶体的定义 非晶体是指组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体。它没有一定规则的外形,如玻璃、松香、石蜡等。它的物理性质在各个方向上是相同的,叫“各向同性”。它没有固定的熔点。所以有人把非晶体叫做“过冷液体”或“流动性很小的液体”。 准晶的定义 准晶是准周期晶体的简称,它是一种无平移周期性但有位置序的晶体;也有人将其定义为具有非公度周期平移对称的晶体。准晶可以具有一般晶体禁止出现的五次、八次、十次和十二次旋转对称,但非公度周期平移对称才是其本质特点。下图中为准晶的电子衍

晶体结构及相结构部分试题与答案

名词解释:相、固溶体、中间相、超结构、电子浓度、正常价化合物、电子化合物、间隙相、间隙化合物; 1、说明间隙固溶体,间隙相,间隙化合物之间的区别 溶质原子分布于溶剂晶格间隙而形成的固溶体为间隙固溶体,形成间隙固溶体的溶质原子通常是原子半径小于0.1nm 的非金属元素,如H ,B ,C ,N ,O 等。间隙固溶体保持母相溶剂的晶体结构,成分可在一定固溶度极限内波动,不能用分子式表示。间隙相和间隙化合物属于原子尺寸因素占主导地位的中间相,它们也是原子半径较小的非金属元素占据晶格间隙,然而间隙相,间隙化合物的晶格与组成它们的任一组员晶格都不相同;它们的成分可在一定范围内波动,但是组元具有一定的原子比组成,可用化学分子式表示。当r B /r A <0.59时,形成间隙相,结构为简单晶体结构,具有极高的熔点和硬度;当r B /r A 》0.59时,形成间隙化合物,结构为复杂的晶体结构。 2、体心立方结构中八面体及四面体间隙半径分别为0.154r 和0.291r (r 为原子半径),说明为什么间隙原子处在八面体间隙而不是四面体间隙中。 八面体间隙在各个方向的尺寸是不等同的,在<100>方向和两个溶剂原子接触,尺寸为0.154r ,而在<110>方向和4 个溶剂原子接触,在这个方向间隙中心距原子中心的距离为 2, 0.633r r r -=-=,显然在此方向的尺寸比四面体间隙尺寸大得多。综合两个方向的尺寸知,溶质间隙原子处在八面体间隙时只有 一个方向的畸变,其它两个方向的畸变要比处在四面体时小得多,所以溶质原子都处在八面体间隙中。 3、β’黄铜的结构为简单立方。如图所示。如果Cu 和Zn 原子半径分别为0.13nm 和0.14 nm ,试估计其密度(已知Cu 和Zn 的相对原子质量分别为63.54及65.38)。 4、测得X Au =40%的Cu-Au 固溶体点阵常数a=0.3795nm ,密度为14.213g/cm 3 ,计算说明该合金是什么类型固溶体?(已知Cu 和Au 的相对原子质量分别为63.54及197) 利用Cu Au (X X ) Cu Au A n M M VN ρ+= ,得出n=3.95≈4,故为置换固溶体

相关主题
文本预览
相关文档 最新文档