当前位置:文档之家› 成功检修电容漏电导致的主机板故障一例

成功检修电容漏电导致的主机板故障一例

成功检修电容漏电导致的主机板故障一例
成功检修电容漏电导致的主机板故障一例

成功检修电容漏电导致的主机板故障一例

雨后初晴 2007-06-19

使用在线维修测试仪检测电路板已有两年多的时间了,维修中用它的确检测出不少的器件故障,修好多少块电路板也是记不清了。不过总觉得这是理所当然的事,花了好几万买来的仪器,如果无用有谁会买它呢。不过几天前在维修测试中的一件小事情确使我感受颇丰。

上个月测试仪(北京天惠生产的HN2000DX/B)的生产厂家要升级测试软件,给了一个新的安装程序,并告知有几个测试功能都做了些改进,增加了一些新功能。安装后发现数字功能、网络提取测试的界面的确有不小的变化,ASA (VI)曲线动态查看测试中增加了显示电容、电感、电阻数值的测试功能。由于当时很忙,没有过多研究它。

前几天一位朋友拿来一块医疗设备上的电脑主机板,让帮忙给修修,故障是键盘与鼠标在使用中时有时无,而且越来越严重。朋友把键盘与鼠标都更换过故障还是一样,看来应该是主机板键盘与鼠标的接口部分有问题了。先对接口周围的电路仔细查看,没发现有接触不良的地方。用测试仪的ASA动态查看功能,在线测试接口周围的相关器件,观察各点VI曲线,当测试到供电电路上的滤波电容时,感觉测出的VI曲线有点不对劲,看它的标称容量为2700μF/6.3V,凭自己的测试经验,这么大的容量用在电脑主板的滤波电路上,VI曲线的两端是不应该有棱角的。参见图1-1。

图1-1

看来这个电容是要值得怀疑了,于是就把这个测试图抓下来了(图1-1)。经常测试已养成一个习惯,一旦发现可疑的地方,就先把图抓下来,供自己分析用,如要用ASA曲线的学习比较功能测试软件会自己保存曲线图。

想起厂家的新软件可测试电容的容量和泄漏电阻,在ASA动态查看功能的界面上也看到了电容测试选项(见图1-2)。正好可以试试这个新功能。

图1-2

当然测量电容的容量是要离线测试了。从主板取下这只电容,选择好测试参数,点开始,很快就显示出了测试结果(见图1-3)。

图1-3

标称为2700μF的容量还有2100多μF,但是漏电阻只有300多Ω,再看VI曲线是典型的电容并电阻的曲线特征,不用说是电容漏电了,容量也降了不少。因是第一次使用这个功能,心里没底,要找一只好电容比较验证一下。因手头没有2700μF电容,只好用一只2200μF 电容进行比较了,用同样的参数测试,结果显示电容容量略大于标称值,漏电阻大于4МΩ,VI曲线是典型的电容特征(见图1-4),看来这个功能太有实用价值了。

图1-4

把这只2200μF的电容更换在主板上,用ASA动态查功能在线测试这只电容,看它的VI 曲线(见图1-5),也符合供电电路上滤波电容的曲线特征。

图1-5

上机试用这块电脑主机板能够正常工作了,故障原因不用说也应该知道了,是电容漏电引起键盘与鼠标接口部分供电电压不稳造成的。

总结这次维修过程,感觉真不得小看这项电容测试功能了,非常实用,整个检修过程不到二十分钟。自己也有些其它维修测试设备,但测出电容漏电值还真是第一次。这台测试仪增加的功能虽小,这次却解决了大问题。在以往的维修中,经常会遇到由于电容引起的故障,特别是开关电源。如果是电容完全损坏还比较好查,但象电容漏电、容量下降的故障确实不好对付,走过的弯路太多了。

这款在线维修测试仪的生产厂家不断的开发进取,经常推出新测试功能,提高市场竞争能力;对于维修人员,生产厂家能提供更多实用的测试功能,可减少维修检测时间,提高电路板的故障检出率。当今社会技术、时间、效率就是金钱呀。

电容器的故障处理示范文本

文件编号:RHD-QB-K4229 (安全管理范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 电容器的故障处理示范 文本

电容器的故障处理示范文本 操作指导:该安全管理文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 1、电容器的常见故障。当发现电容器的下列情况之一时应立即切断电源。 (1)电容器外壳膨胀或漏油。 (2)套管破裂,发生闪络有为花。 (3)电容器内部声音异常。 (4)外壳温升高于55℃以上示温片脱落。 2、电容器的故障处理 (1)当电容器爆炸着火时,就立即断开电源,并用砂子和干式灭火器灭火。 (2)当电容器的保险熔断时,应向调度汇报,待取得同意后再拉开电容器的断路器。切断电源对其

进行放电,先进行外部检查,如套管的外部有无闪络痕迹,外壳是否变形,,漏油及接地装置有无短路现象等,并摇测极间及极对地的绝缘电阻值,如未发现故障现象,可换好保险后投入。如送电后保险仍熔断,则应退出故障电容器,而恢复对其余部分送电。如果在保险熔断的同时,断路器也跳闸,此时不可强送。须待上述检查完毕换好保险后再投入。 (3)电容器的断路跳闸,而分路保险未断,应先对电容器放电三分钟后,再检查断路器电流互感器电力电缆及电容器外部等。若未发现异常,则可能是由于外部故障母线电压波动所致。经检查后,可以试投;否则,应进一步对保护全面的通电试验。通过以上的检查、试验,若仍找不出原因,则需按制度办事工电容器逐渐进行试验。未查明原因之前,不得试投。

电容器损坏在开关电源中的故障现象与维修

电容器损坏在开关电源中的故障现象与维修 摘要本文主要是针对电容的作用、电容器损坏在开关电源出现的常见故障进行分析及维修方法。电容在开关电源中主要的作用是:滤波、旁路、去藕、储能等,其中起滤波与储能作用的电容最容易出故障,而且不容易判别电容器件质量的好与坏,维修不便,给我们的日常生活和生产带来诸多不便。因此本文就从这些角度出发,通过分析电容器的作用、故障产生的原因以及如何排除故障,进行阐述,希望对我们的日常生活和生产有所帮助。 关键词开关电源;电容;故障现象;维修方法 中图分类号TK94 文献标识码 A 文章编号1673-9671-(2012)071-0178-02 目前,开关电源已逐渐进入我们的日常生活和生产中,它以节能,环保,性价比高等优点,很快取代了以往传统的那种既笨重效率又低的“线性电源”,很快被人们所接受。而电容器在开关电源中是最重要且最容易产生故障的元器件之一,而且故障现象不容易判别,使维修较为困难。本文就针对电容器在开关电源中的作用阐述其原理,常见故障分析以及维修方法。 1 电容在开关电源中的作用 1.1 滤波 滤波是电容的作用中很重要的一部分。几乎所有的电源电路中都会用到。滤波电容好比“水池”,将电能转变成池中的水并能将水还原成电能。从理论上(即假设电容为纯电容)说,电容越大,阻抗越小,通过的频率也越高。但实际上大于1 uF的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。有时会看到有一个电容量较大电解电容并联了一个小电容,这时大电容通低频,小电容通高频。电容的作用就是通高阻低,通高频阻低频。电容越大低频越容易通过,电容越大高频越容易通过。具体用在滤波中,大电容(1000 uF)滤低频,小电容(20 pF)滤高频。 1.2 旁路 旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。这能够很好地防止输入值过大而导致的地电位抬高和噪声。 1.3 去藕 从电路来说,总是可以区分为驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作,这就是耦合作用。 1.4 储能 储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。电压额定值为40~450VDC、电容值在220~150000 uF之间的铝电解电容器(如EPCOS公司的B43504或B43505)是较为常用的。根据不同的电源要求,器件有时会采用串联、并联或其组合的形式,对于功率级超过10 KW 的电源,通常采用体积较大的罐形螺旋端子电容器。

电力电容器故障分析和处理

* 电力电容器保护配置 电容器保护配置有:过电压和欠电压保护,限时过电流的电流保护,防止电容器内部故障的电容器组专用保护。 * 硬件配置 该系统配置应有如下部分:电压、电流信号的检测电路,交流变直流的信号转换电路,模数转换电路,单片机及外围部分,信号的驱动放大电路,继电器等。 * 软件设计 软件应该包括主程序和子程序。主程序作必要的初始化;子程序须进行故障判断、故障处理等。还应该设计延时、清零等子程序。 * 电力电容器的故障和处理 一.电容器内部故障 电力电容器组是由电容器元件并联或串联组成。电容器内部故障时,内部电流增大,致使内部气体压力增大,轻者发生漏油或鼓肚现象,重者会引起爆炸。电力电容器保护应反映电容器组内部局部击穿与短路,并及时切除故障,防止故障扩大。 二.电容器外部故障 系统电压过高或过低可能危及电容器的安全运行。因电容器内部功耗与电压平方成正比,过电压时电容器因内部功耗增大使温度显著增高,将进一步损坏电容器内部绝缘介质。外部短路故障时,使电容器失压,但在电荷尚未释放时,可能在恢复供电时再次充电使电容器过压;另一种情况是恢复供电时,变压器与电容器同时投入,容易引起操作过电压和谐振过电压,从而使电容器过压。 各种故障的原因及处理情况如下: 1.电力电容器第一次投入电网后,发生运行异常 故障原因 对电力电容器没有认真检查和投入运行前的必要试验。 处理方法 (1)确认电力电容器的铭牌:电压、容量、环温、湿度和通风等应符合现场要求。 (2)对未投入运行的电力电容器做仔细的外观检查。 a.外部刷漆是否均匀,有无掉漆或碰撞的痕迹; b.各部件是否完好和齐全; c.有无渗油或漏油现象。 (3)用万用表测量电容器性能。

浅谈电气故障检修的技巧

浅谈电气故障检修的技巧 发表时间:2014-09-03T15:26:22.577Z 来源:《科学与技术》2014年第1期下供稿作者:朱峰 [导读] 同一类故障可能有不同的故障现象,不同类故障可能有同种故障现象,这种故障现象的同一性和多样性。 天津卓朗科技发展有限公司朱峰 摘要:电气设备容易产生各种各样的故障,而在正常运行过程中又不允许长时间停电检修,否则将使用户停电,造成直接或间接的经济损失。因此,需要熟练掌握排除故障的步骤及技巧,在很短时间内修复设备,使之正常运行。下面谈一下电气故障检修的一般步骤及技巧。 关键词:电气设备;故障检修;技巧一、分析电气故障现象及原因1、观察和调查故障现象。电气故障现象是多种多样的。例如,同一类故障可能有不同的故障现象,不同类故障可能有同种故障现象,这种故障现象的同一性和多样性,给查找故障带来复杂性。但是,故障现象是检修电气故障的基本依据,是电气故障检修的起点,因而要对故障现象进行仔细观察、分析,找出故障现象中最主要的、最典型的方面,搞清故障发生的时间、地点、环境等。 2、分析故障原因、初步确定故障范围、缩小故障部位。根据故障现象分析故障原因是电气故障检修的关键。分析的基础是电工电子基本理论,是对电气设备的构造、原理、性能的充分理解,是电工电子基本理论与故障实际的结合。某一电气故障产生的原因可能很多,重要的是在众多原因中找出最主要的原因。 3、确定故障部位、判断故障点。确定故障部位是电气故障检修的最终目的和结果。确定故障部位可理解成确定设备的故障点,如短路点、损坏的元器件等,也可理解成确定某些运行参数的变异,如电压波形、三相电压是否平衡等。确定故障部位是在对故障现象进行周密的考察和细致分析的基础上进行的。工作过程中实践经验的积累起着重要的作用。 二、电气故障检修技巧1、熟悉电路原理,确定检修方案。当一台电气设备发生故障时,不要急于动手拆卸,首先要了解该电气设备产生故障的现象、经过、范围、原因.熟悉该设备及电气系统的基本工作原理,分析各个具体电路.弄清电路中各级之间的相互联系以及信号在电路中的来龙去脉,结合实际经验,经过周密思考,确定一个科学的检修方案。 2、先机械,后电气。电气设备都以电气——机械原理为基础,特别是机电一体化的先进设备,机械和电气在功能上有机配合,是一个整体的两个部分。往往机械部分出现故障,影响电气系统,许多电气部件的功能就不起作用。因此不要被表面现象迷惑,电气系统出现故障并不全部都是电气本身问题,有可能是机械部件发生故障所造成的。因此先检修机械系统所产生的故障,再排除电气部分的故障,往往会收到事半功倍的效果。 3、先简单,后复杂。检修故障要先用最简单易行、自己最拿手的方法去处理,再用复杂、精确的方法。排除故障时,先排除直观、显而易见、简单常见的故障.后排除难度较高、没有处理过的疑难故障。 4、先检修通病,后攻疑难杂症。电气设备经常容易产生相同类型的故障就是“通病”。由于通病比较常见,如果工作中积累的经验较丰富,就可快速排除。这样就可以集中精力和时间排除比较少见、难度高、古怪的疑难杂症,简化步骤,缩小范围,提高检修速度。 5、先外部调试,后内部处理。外部是指暴露在电气设备外、密封件外部的各种开关、按钮、插口及指示灯。内部是指在电气设备外壳或密封件内部的印制电路板、元器件及各种连接导线。先外部调试,后内部处理,就是在不拆卸电气设备的情况下,利用电气设备面板上的开关、旋钮、按钮等调试检查,缩小故障范围。首先排除外部部件引起的故障,再检修机内的故障,尽量避免不必要的拆卸。 6、先不通电测量,后通电测试。首先在不通电的情况下,对电气设备进行检修,然后再在通电情况下,对电气设备进行检修。对许多发生故障的电气设备检修时,不能立即通电,否则会人为扩大故障范围,烧毁更多的元器件,造成不应有的损失。因此,在故障设备通电前.先进行电阻测量,采取必要的措施后,方能通电检修。 7、先公用电路,后专用电路。任何电气系统的公用电路出故障,其能量、信息就无法传送、分配到各具体专用电路,专用电路的功能、性能就不起作用。如一个电气设备的电源出故障,整个系统就无法正常运转,向各种专用电路传递的能量、信息就不可能实现。因此遵循先公用电路,后专用电路的顺序,就能快速、准确地排除电气设备的故障。 8、总结经验,提高效率。电气设备出现的故障五花八门、干奇百怪。任何一台有故障的电气设备检修完,应该把故障现象、原因、检修经过、技巧、心得记录在专用笔记本上,学习掌握各种新型电气设备、归纳机电理论知识、熟悉其工作原理、积累维修经验,将自己的经验上升为理论。在理论指导下,具体故障具体分析,才能准确、迅速地排除故障。只有这样才能把自己培养成为检修电气故障的行家里手。 三、电气故障检修的一般方法电气故障检修,主要是理论联系实际,根据具体故障作出具体分析,但也必须有根本的检修方法。 1、直观法。通过“问、看、听、摸、闻”来发现异常情况,从而找出故障电路和故障所在部位。 (1)问。向现场运行操作人员了解故障发生前后的情况。 如故障发生前是否过载、频繁启动和停止;故障发生时是否有异常声音及振动、有没有冒烟、冒火等现象。 (2)看。仔细察看各种电器元件的外观变化情况。如看触点是否烧融、氧化,熔断器熔体熔断指示器是否跳出,热继电器是否脱扣,导线和电缆是否烧焦,热继电器整定值是否合适.瞬时动作整定电流是否符合要求等。 (3)听。主要听有关电器在故障发生前后声音有否差异。 如听电动机启动时是否只“嗡嗡”响而不转;接触器线圈得电后是否噪声很大等。 (4)摸。故障发生后,断开电源,用手触摸或轻轻推拉导线及电器的某些部位,以察觉异常变化。如摸电动机、自耦变压器和电磁线圈表面,感觉湿度是否过高;轻拉导线,看连接是否松动;轻推电器活动机构,看移动是否灵活等。 (5)闻。故障出现后,断开电源,将鼻子靠近电动机、自耦变压器、继电器、接触器、绝缘导线等处,闻闻是否有焦味。 如有焦味,则表明电器绝缘层己被烧坏,主要原因则是过载、短路或三相电流严重不平衡等故障所造成。 2、状态分析法。状态划分得越细,对检修电气故障越有利。 对一种设备或装置,其中的部件和零件可能处于不同的运行状态,查找电气故障时必须将各种运行状态区分清楚。各部件虽然只有工作和不工作、接通和断开两种工作状态,但到底处于何种状态,必须进行具体分析。 3 图形变换法。电气图是用以描述电气装置的构成、原理、功能,提供装接和使用维修信息的工具。检修电气故障,常常需要将实物

电容器的故障处理参考文本

电容器的故障处理参考文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

电容器的故障处理参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1、电容器的常见故障。当发现电容器的下列情况之一 时应立即切断电源。 (1)电容器外壳膨胀或漏油。 (2)套管破裂,发生闪络有为花。 (3)电容器内部声音异常。 (4)外壳温升高于55℃以上示温片脱落。 2、电容器的故障处理 (1)当电容器爆炸着火时,就立即断开电源,并用砂 子和干式灭火器灭火。 (2)当电容器的保险熔断时,应向调度汇报,待取得 同意后再拉开电容器的断路器。切断电源对其进行放电, 先进行外部检查,如套管的外部有无闪络痕迹,外壳是

否变形,,漏油及接地装置有无短路现象等,并摇测极间及极对地的绝缘电阻值,如未发现故障现象,可换好保险后投入。如送电后保险仍熔断,则应退出故障电容器,而恢复对其余部分送电。如果在保险熔断的同时,断路器也跳闸,此时不可强送。须待上述检查完毕换好保险后再投入。 (3)电容器的断路跳闸,而分路保险未断,应先对电容器放电三分钟后,再检查断路器电流互感器电力电缆及电容器外部等。若未发现异常,则可能是由于外部故障母线电压波动所致。经检查后,可以试投;否则,应进一步对保护全面的通电试验。通过以上的检查、试验,若仍找不出原因,则需按制度办事工电容器逐渐进行试验。未查明原因之前,不得试投。 3、处理故障电容器时的安全事项。处理故障电容器应在断开电容器的断路器,拉开断路器两侧的隔离开关,并

几种常见的电容器故障的修理方法

几种常见的电容器故障的修理方法随着电子信息技术的日新月异,数码电子产品的更新换代速度越来越快,以平板电视(LCD和PDP)、笔记本电脑、数码相机等产品为主的消费类电子产品产销量持续增长,带动了电容器产业增长。 本文立创小编主要讲解两个电容器常见故障的修理方法。 一般电容故障现象:电容开路、击穿、漏电、通电后击穿 故障原因 1、元器件开路 电容器开路后,没有电容器的作用。不同电路中的电容器出现开路故障后,电路的具体故障现象不同。如滤波电容开路后出现交流声,耦合电容开路后无声等。 2、元器件击穿 电容器击穿后,失去电容器的作用,电容器两根引脚之间为通路,电容器的隔直作用消失,电路的直流电路出现故障,从而影响交流工作状态。 3、元器件漏电 电容器漏电时,导致电容器两极板之间绝缘性能下降,两极板之间存在漏电阻,有直流电流通过电容器,电容器的隔直性能变差,电容器的容量下降。当耦合电容器漏电时,将造成电路噪声大。这是小电容器中故障发生率比较高的故障,而且故障检测困难。 4、通电后击穿

电容器加上工作电压后击穿,断电后它又表现为不击穿,万用表检测时它不表现击穿的特征,通电情况下测量电容两端的直流电压为零或者很低,电容性能变坏。 修理方法 1、电容内部开路,换元器件;电容外部连线开路,重新焊好。 2、电容器击穿,换新。 3、电容器漏电,换新。 4、通电后击穿,换新。 二、电解电容器的检修 电解电容器是固定电容器中的一种,它的故障特征与固定电容故障特征有许多相似之处,由于电解电容器的特殊性,电解电容器的故障特征又有许多不同之处。在电路中,电解电容器的故障率较高。 故障现象:电容器两极短路 故障原因 1、未通电,击穿,电容器内部短路。 2、未通电正常,通电后击穿,电容器外部连线短路。 修理方法 1、更换新元器件。 2、电容器外部连线短路,检查短路点,断开。

电力电容器的常见故障及其预防措施

电力电容器的常见故障及其预防措施 摘要:电力电容器分为串联电容器和并联电容器,它们都改善电力系统的电压质量和提高输电线路的输电能力,是电力系统的重要设备。本文通过分析电容器损坏的几种常见原因得出其相应的预防措施。 1、电容器损坏的原因 电容器损坏的原因可能有如下几种:电容器质量缺陷造成损坏;正常损坏;熔断器不正常开断产生重燃过电压造成损坏。 电容器质量缺陷造成其运行过程中损坏通常表现为损坏率增长较快或损坏率较高,甚至批量损坏。而损坏的现象基本一致,有特定的损坏特征,有一定的规律可循。造成电容器质量缺陷的原因,一般有不合理的设计、不恰当的材料、甚至误用以及制造过程不恰当(例如卷制、引线连接、装配、真空处理等关键工序出现问题)。 电容器损坏一般分三个不同的区段:早期损坏区,偶然损坏区,老化损坏区。上述三个区段的年损坏率符合浴盆曲线的特征。 电容器存在一个与固有缺陷有关的早期损坏区,主要由材料和制造过程的不可控因素造成的,年损坏率一般应小于1%,且随时间呈下降的趋势,早期损坏区的时间为0~2年左右。由于绝缘试验只是一种预防性试验,而且绝缘的耐受电压服从威布尔分布,不管将试验电压值提高到多少,都有刚刚能通过试验的产品,但盲目提高试验电,可能会对电容器造成损伤,也是不可取的,因此电容器早期损坏是不可避免的。 在以后的10~15年时间内,电容器的年损坏率较低且损坏方式不固定,其原因主要是电介质材料存在弱点,当材料受电场和热的作用时,缺陷在弱点处发展的缘故。由于绝缘经过早期运行的老炼处理,在这一区间,损坏率低且稳定,其年损坏率一般应小于0.5%,时间区间通常为15年左右。

在老化损坏区,指电容器在温度和电场作用下,介质发生老化,电容器的各项性能逐渐劣化,从而导致电容器损坏,其年损坏率一般会大于1%且随时间在不断增大,进入老化损坏区的时间应为15年以上。 由于在实际电容器中的介质是不均匀的,介质的老化程度也是不均匀的,而寿命取决于最薄弱的部位,所以电容器寿命在时间上存在分散性,因此研究电容器的寿命要采用统计的方法。绝大多数电容器的寿命以其运行到临近失效的时间来估算,最小寿命指电容器开始出现批量损坏的时间(在此以前只发生电容器的个别击穿)。通过对以往设备运行状况的研究,并综合考虑电容器经济上和技术上各因素之间的配合关系,在工频电网中用来提高功率因数的90%的电容器最佳寿命通常应为20年,即在额定运行条件下运行20年后至少有90%的产品不发生损坏。 由于电容器的特殊性(工作场强高、极板面积大,在电网使用的量大、面广,以及要综合考虑其经济技术等方面的因素),不发生损坏是不现实的,一定的损坏率也是允许的,这种损坏一般被认为是正常损坏,但这种正常损坏的年损坏率必须在可接受的合理范围内。如果损坏率超出正常水平,说明产品存在明显的质量缺陷或者运行条件不符合要求。 正常损坏通常表现为:对于无内熔丝的电容器,元件击穿、电流增大、外熔断器正常动作使故障电容器退出运行。更换新的熔断器和电容器后,装置继续投入运行。对于内熔丝的电容器,个别元件击穿、内熔丝熔断、电容器电容量稍微下降(通常情况下,电容量减少不会超过额定电容5%),完好元件继续运行。由于电容下降流过电容器电流会减少,因此,电容器单元正常损坏情况下,外熔断器不会动作。如果发生套管表面闪烙放电、引线间短路、对壳击穿放电或者内熔丝失效电容器单元发生多串短路等故障,内熔丝对此不能发挥作用,此时外熔断器正常动作,使故障电容器退出运行。 熔断器不正常开断产生重燃过电压造成电容器损坏 出现熔断器群爆的现象,说明外熔断器动作的过程中,其开断性能不良。由于外熔断器的灭弧结构比较简单,且较容易受气候、安装、运行等状况的影响,其开断电容器故障电流的性能很难得到保证。从绍兴试验站的介绍情况表明(详见《电力电容器》2004年第2期的文章《单台并联电容器保护用熔断器试验情况及使用问题的分析》)[1],熔断器的开断可靠性是不高的。在外熔断器动作的过程中,如果其开断性能不良,就不能尽快的切除故障电流,会出现重燃[3]。熔断器重燃就相当于在电容器的剩余电压较高的情况下再次合闸,产生重燃过电压(熔断器重燃就相当于在电容器的剩余电压较高的情况下再次合闸,必定会产生过电压,这种过电压通常称为重燃过电压),多次重燃过电压的幅值可达3倍甚至5倍、7

电力电容器保护原理解释

电力电容器保护原理解 释 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

常见电力电容器保护类型: 电容器保护 1 保护熔丝 现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏。此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。 2 过电流保护 (电流取自线路TA) 过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸。电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。 为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到0.5s以上就可躲过涌流的影响。 3 不平衡电压保护 (电压取自放电TV二次侧所构成的开口三角型) 电容器发生故障后,将引起电容器组三相电容不平衡。电容器组的各种主保护方式都是从这个基本点出发来确定的。 根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。这两种保护,都是利用故障电容器被切

除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。这些保护方式各有优缺点,我们可以根据需要选择。 单星形接线的电容器组目前国内广泛采用开口三角电压保护。 对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸。 4 不平衡电流保护 这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的。常见的不平衡电流保护的方式有以下两种: 4.1 双星形中性点间不平衡电流保护 保护所用的低变比TA串接于双星型接线的两组电流器的中性线上,在正常情况下,三相阻抗平衡,中性点间电压差为零,没有电流流过中性线。如果某一台或几台电容器发生故障,故障相的电压下降,中性点出现电压,中性线有不平衡电流I0流过,保护采集到不平衡电流后即动作掉闸。

电气故障检修基本步骤

电气故障检修基本步骤 各种电气没备在运行中可能发生各种故障,严重的还会引起事故。这些故障主要可分为两大类:一类是有明显的外表特征并容易被发现的,例如电动机的绕组过热、冒烟,甚至发出焦臭味或产生火花等,在排除这类故障时,除更换损坏的电动机绕组或线圈外,还必须找出和排除造成上述故障的原因;另一类故障是没有外表特征的,例如在控制电路中由于元器件调整不当、动作失灵或小零件、损坏及导线断裂等原因引起的故障在机床电路中经常碰到,由于外、表没有明显的特征,常需要用较多的时间去寻找故障的原因,有时还需运用各类测量仪表和工具才能找出故障点,进行调整和修复,使电气设备恢复正常运行。因此,找出故障点是机床电气设备检修工作中的一个重要步骤。 ①观察和调研故障的觋象。电气故障的现象是多种多样的。例如,同一类故障可能有不同的故障现象,不同类故障可能有相同故障现象,这种故障现象的同一性和多样性,给查找故障带来复杂性。但是,

故障现象是检修电气故障的基本依据,是电气故障检修的起点,因此要对故障的现象进行仔细观察、分析。找出故障现象中最主要的、最典型的方而,搞清故障发生的时间、地点、环境等。 ②分析故障原因,初步确定故障范围、缩小故障部位。根据故障的现象分析故障原因是电气故障检修的关键。分析的基础是电工、电子基本理论,是对电气设备的构造、原理、性能的充分理解,是电工电子基本理论与故障实际的结合。某一电气故障产生的原因可能很多,重要的是在众多原因中找出最主要的原因。 ③确定故障的部位,判断故障点。确定故障部位是电气故障检修的最终目的和结果。确定故障部位可理解成确定设备的故障点,如短路点、损坏的元器件等,也可理解成确定某些运行参数的变异,如电压波动、三相电压不平衡等。确定故障部位是在对故障的现象进行周密的调研和仔细分析的基础上进行的。在这一过程中,往往采用多种手段和方法。 在完成上述工作过程中,实践经验的积累起着十分重要的作用。

并联电容器故障判断及处理(2020年)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 并联电容器故障判断及处理 (2020年) Safety management is an important part of production management. Safety and production are in the implementation process

并联电容器故障判断及处理(2020年) 1并联电容器的故障判断及原因分析 (1)渗漏油。并联电容器渗漏油是一种常见的现象,主要是由于产品质量不良,运行维护不当,以及长期运行缺乏维修导致外皮生锈腐蚀而造成的。 (2)电容器外壳膨胀。由于高电场作用,使得电容器内部的绝缘物游离,分解出气体或者部分元件击穿,电极对外壳放电,使得密封外壳的内部压力增大,导致外壳膨胀变形。 (3)电容器温升过高。主要原因是电容器过电流和通风条件差。例如,电容器室设计不合理造成通风不良;电容器长时间过电压运行造成电容器过电流;整流装置产生的高次谐波使电容器过电流等。此外,电容器内部元件故障,介质老化、介质损耗、介质损失角正弦值增大都可能导致电容器温升过高。电容器温升高将影响电容器的寿命,也可能导致绝缘击穿使电容器短路。

(4)电容器瓷瓶表面闪络放电。其原因是瓷绝缘有缺陷,表面脏污。 (5)声音异常。如果运行中,发现有放电声或其它不正常声音说明电容器内部有故障。 (6)电容器爆破。如果内部元件发生极间或对外壳绝缘击穿,与之并联的其它电容器将对该电容器释放很大的能量,从而导致电容器爆破并引起火灾。 2并联电容器的故障处理 (1)电容器外壳渗、漏油不严重时,可在外壳渗、漏处除锈、焊接、涂漆。 (2)电容器外壳膨胀则应更换。 (3)如室温过高,应改善通风条件;如因其它原因造成电容器温升过高,则应查明原因进行处理;如系电容器本身的问题则应更换电容器。 (4)电容器应定期检查、清扫。 (5)若电容器有异常声音应注意观察。严重时,应立即停止其运

补偿电容器故障原因分析

补偿电容器故障原因分 析 Revised by Petrel at 2021

补偿电容器故障原因分析 摘要:电容器被损坏的情况主要是电容器内部故障、熔丝动作和渗漏,其次是油箱鼓肚,绝缘不良。对造成电容器损坏进行了分析,不论从设计、安装、运行管理、产品质量等各个方面都存在一定问题,应引起重视。 关键词:补偿电容器;故障;分析 宜宾电业局从1997年开始在电网中投入补偿电容器,现在已有城中、竹海、叙南、吊黄楼、九都、方水、龙头等7个变电站共12组补偿电容器在网运行。几年来的运行情况其损坏是比较严重的,电容器损坏率在15%~20%,严重地影响电网的安全运行和造成较大的经济损失。电容器被损坏的情况主要是电容器内部故障、熔丝动作和渗漏,其次是油箱鼓肚,绝缘不良。究其原因,造成电容器损坏的原因大致有以下几个方面。 1?谐波的影响 宜宾电网的谐波问题是比较突出的,1990年电科院曾将宜宾电网列为全国的谐波监测点之一。一般认为三次谐波在变压器二次侧的三角形接线中流通,不会进入电容器组,因此,主要是抑制五次谐波及以上的谐波分量,由此而选用6%电容器组容抗量的串联电抗器。但实际运行中发现,变压器的三角形结线不能完全消除三次谐波,不能阻止三次谐波穿越变压器,主要是因为变压器电源侧三相谐波分量不平衡,其次是变压器二次侧除电容器外还带有谐波发生源的电力负荷,按前述所配置的6%串联电抗器对于三次谐波仍然呈容性,三次谐波进入电容器后将被放大,这对电容器组定有较大的影响。为此,为抑制三次谐波的一个办法,根据计算装设感抗为13%电容器容抗值的串联电抗器,加大串联电抗器的感抗,以阻止三次谐波进入电容器,但这将使电容器的端电压增高15%,这是正常运行所不允许的。由此必须更换更高耐受电压的电容器,这将增加较大投资。另一办法是装设三次谐波滤波器,它既可以减少谐波对电容器的影响又可以避免三次谐波侵入电网,同时使电网的电压质量得到改善。但是如果谐波来自变压器的电源侧电网,则三次谐波将穿越变压器,通过滤波器后使谐波放大,这对电网电压质量及对变压器运行带来不利影响。电容器允许的1.3(1.35)倍的额定电流下连续运行,如果电容器装有6%串联电抗器来限制了五次及以上的谐波分量,那电容器中只通过基波及三次谐波,电容器中电流的有效

变电站10kV电容器出现故障原因分析

变电站10kV电容器出现故障原因分析 摘要:电网规模为适应经济社会发展需要,也在不断发展扩大,电网系统无功电压的重要作用日益凸显,不断有新的无功补偿装置进入电网系统工作。随着无功电压系统的长时间运行,导致电容器组出现故障的情况屡有发生。因此,找出电容器组出现故障的原因,并提出相应解决措施十分有必要。 关键词:电容器故障原因分析 一、前沿 在电力系统中,由于无功功率不足,会使系统电压及功率因数降低,从而损坏用电设备,严重时会造成电压崩溃,使系统瓦解,造成大面积停电。另外,功率因数和电压的降低,还会使电器设备得不到充分利用,造成电能损耗增加,效率降低,限制了线路的送电能力,影响电网的安全运行及用户正常用电。 二、电容器故障原因 对出现故障的电容器进行综合检测分析,发现绝缘电阻、油色谱以及电容量均出现不同程度损坏情况。随后调取了部分相关信息,如保护信息、保护装置型号,对相关元件如电抗器与避雷器等进行测试分析,在现场实测谐波,发现电容器组损坏原因有以下几点: 1 电压未进行保护整定 变电站将不平衡电压标准均设定为5V,并未根据实际情况对非平衡电压标准进行设置,建议调整为3V相对合理。缩短动作时间,将时间改为0.2至0.5秒之间,这样即使出现故障三相仍能准确灵敏运行。建议在电压正常运行情况下再增加1V。就各变电站对电容器组的保护设置而言,其中有的变电站尚未设置非平衡电压保护,如电容器出现故障问题时,三相电压将失去平衡,因此电容器的保护内容应以非平衡电压的保护为主。此外,变电站保护的装置型号老旧、设置不完整,将造成故障进一步扩大,出现熔断器发生群爆情况。部分变电站的非平衡电压保护装置尚未投入使用,若出现异常情况将导致故障扩大升级,进而导致电容器组部分功能薄弱,无法进行有效保护。 2 开关选型不当 开关的型号选择不恰当,或者真空开关质量较低等原因,可能使开关损坏频率较大,导致开关重燃。根据实地调查情况来看,各变电站出现故障的电容器开关都未使用大型厂家生产的比较成熟的品牌,也未发现厂家关于出厂开关的相关试验报告。

电力电容器常见故障分析及预防处理

电力电容器常见故障的分析及预防处理摘要:电力电容器是电力系统中无功补偿极其重要的电器设备,由于电容器使用寿命短,内部结构加工精度较高,损坏后不便修复。因此,需要对电力电容器常见故障进行分析,及时了解和掌握电容器的运行情况,及时发现电容器缺陷并采取有效措施,保障电容器的安全运行。 关键词:电容器故障分析预防处理 前言:本文主要通过分析电力电容器的常见故障提出了预防处理的方法,希望对检修维护人员有所帮助。 电力电容器常见故障的分析和处理 电力电容器是实现无功潮流优化分配来提高电网安全运行,提高功率因数、调整电网电压、降低线路损耗以充分发挥发电、供电和用电设备的利用率,提高供电质量。电容器由于安装简单,运行维护方便以及有功损耗小(一般约占无功容量的0.3%~0.5%)等优点,所以,在电力系统中,尤其是在工业企业的供电网络中,得到十分广泛的应用。但是,由于电容器使用寿命短,内部结构加工精度较高,不便解体修复,且故障出现比较频繁。为了降低电容器的故障率和延长其使用寿命,有必要对电容器的各类故障进行分析,并采取有效措施,预防电容器的损坏。 一、电容器的常见故障分析 ㈠渗、漏油 电容器渗漏油是一种常见的异常现象,其原因是多方面的,主要是: 1、由于搬运方法不当,或提拿瓷套管致使其法兰焊接处产生裂缝;

2、接线时,因拧螺丝用力过大造成瓷套焊接处损伤; 3、产品制造过程中存在的一些缺陷,均可能造成电容器出现渗、漏油现象; 4、电容器投入运行后,由于温度变化剧烈,内部压力增加则会使渗、漏油现象更加严重; 5、由于运行维护不当,电容器长期运行缺乏维修导致外壳漆层剥落,铁皮锈蚀,也是造成运行中电容器渗、漏油的一个原因。 电容器渗、漏油的后果是使浸渍剂减少,元件上部容易受潮并击穿而使电容器损坏。因此,必须及时进行处理。 ㈡电容器外壳变形 由于电容器内部介质在高压电场作用下发生游离,使介质分解而析出气体,或者由于部分元件击穿,电容器电极对外壳接地放电等原因均会使介质析出气体。密封的外壳中这些气体将引起内部压力的增加,因而将引起外壳膨胀变形。所以,电容器外壳变形,是电容器发生故障或故障前的征兆。 ㈢保护装置动作 1、由于电容器组三相电容量不平衡,造成三相电流不平衡,使电容器组保护装置动作跳开电容器组断路器; 2、对于装有熔断器保护装置的电容器,因电容器内部异常、电容量变化、极对外壳接地、涌流过大和过电压等情况,使熔断器熔丝熔断; 3、运行操作不当,致使电容器运行电压超过规定值,使保护装置动作跳开断路器。 ㈣电容器瓷套表面闪络放电

电气维修常识

电气维修常识 1.先动口再动手对于有故障的电气设备,不应急于动手,应先询问产生故障的前后经过及故障现象。对于生疏的设备,还应先熟悉电路原理和结构特点,遵守相应规则。拆卸前要充分熟悉每个电气部件的功能、位置、连接方式以及与四周其他器件的关系,在没有组装图的情况下,应一边拆卸,一边画草图,并记上标记。2.先外部后内部应先检查设备有无明显裂痕、缺损,了解其维修史、使用年限等,然后再对机内进行检查。拆前应排队周边的故障因素,确定为机内故障后才能拆卸,否则,盲目拆卸,可能将设

备越修越坏。3.先机械后电气只有在确定机械零件无故障后,再进行电气方面的检查。检查电路故障时,应利用检测仪器寻找故障部位,确认无接触不良故障后,再有针对性地查看线路与机械的运作关系,以免误判。4.先静态后动态在设备未通电时,判定电气设备按钮、接触器、热继电器以及保险丝的好坏,从而判定故障的所在。通电试验,听其声、测参数、判定故障,最后进行维修。如在电动机缺相时,若测量三相电压值无法着判别时,就应该听其声,单独测每相对地电压,方可判定哪一相缺损。5.先清洁后维修对污染较重的电气设备,先对其按钮、接线点、接触点进行清洁,检查外部控制键是否失灵。许多故障都是由脏污及

导电尘块引起的,一经清洁故障往往会排除。6.先电源后设备电源部分的故障率在整个故障设备中占的比例很高,所以先检修电源往往可以事半功倍。7.先普遍后非凡因装配配件质量或其他设备故障而引起的故障,一般占常见故障的50左右。电气设备的非凡故障多为软故障,要靠经验和仪表来测量和维修。8.先外围后内部先不要急于更换损坏的电气部件,在确认外围设备电路正常时,再考虑更换损坏的电气部件。9.先直流后交流检修时,必须先检查直流回路静态工作点,再交流回路动态工作点。10.先故障后调试对于调试和故障并存的电气设备,应先排除故障,再进行调试,调试必须在电气线路速的前提下进行。二.检

电容器的故障现象

电容器的故障现象 电容器在电子线路中被广泛用于调情、耦合、旁路、隔直等.电容器一旦损坏就会出现一定的故障现象.了解电容器的故障和检测是对电子设备故障快速进行维修的基础。 一、电容器的故障现象 1.电容器的开路故障。不同电路中电容器开路之后.电路中的故障现象有所不同.但共同的故障特点是只影响交流信号.不影响电路的直流工作状态。 2.电容器断续开路故障。电容器时断时续的转换过程中会出现大噪音现象。这主要是电容器的引脚内部接触不良引起。 3.电容器击穿故障。当电容器击穿(两根引脚之间为通路)时电容器不起隔直作用。不同电路中电容器击穿后电路的具体故障现象有所不同。但共同点是电路的直流工作状态不正常.从而影响到电路的交流工作状态。 4.电容器漏电故障。当电容器漏电时(电容器两极之间绝缘性能下降).两极之间存在漏电阻.将有一部分直流电流通过电容器(电容器的隔直性能变弱).同时电容器的容量下降。当耦合电容器漏电时,将造成电路噪声大:当滤波电容器漏电时.电源电路的直流输出电压下降.同时滤波效果明显变弱(漏电严重时的故障现象同电容器击穿时差不多)。对于轻微漏电故障往往造成电路的软故障(这种故障很难发现)。电容器漏电故障主要出现在一些工作频率比较高的电路中。 5.电容器软击穿故障.一些电容器的击穿故障表现为加上工作电压后电容器m 穿.在断电后又不表现为击穿.这称为电容器的软击穿故障.、这种故障用万用表检测时不一定表现出.击穿的特征.此时若在通电情况卜测量电容器两端的直流电压为0v(成很低)。电容器的这种故障是很难发现的。 综上可知一般情况下.在工作电压较高场合下使用的电容器比较容易出现击穿故障。工作在高频状态下的电容器容易出现漏电故障。 二、检测方法 1.替代检查法.当怀疑电路中某一电容器有故障时.可用一只质量好的电容器代替。若替代后电路的故障现象不变.说明电容器正常.若替代后的故障现象消失.则说明故障部位确为该电容器。该方法在具体实施中分两种情况。(1)若怀疑某电容器存在开路故障(或容量不足).可在电路中直接并联一只好的电容器,通电检验,若故障现象消失,说明该电容开路。(2)若怀疑某电容器存在短路或漏电,则不能采取上述方法.而要先断开所怀疑电容器的一根引脚(或卸下该电容器).然后接入一好的电容器(因为电容器短路或漏电后.该电容器两引脚之间不再绝缘。若直接并联电容器.则该电容器不起作用)。

框架式电力电容器常见故障问题

框架式电力电容器常见故障问题 发表时间:2017-10-24T17:05:28.740Z 来源:《电力设备》2017年第16期作者:吕强 [导读] 但在实际的应用中,由于人为因素和环境等各方面的影响,电容器在运行中频繁的出现故障,影响到正常的工作。本文主要针对框架电力电容器常见的故障进行了分析,提出了解决问题的方法。 (广东电网有限责任公司清远供电局 511500) 摘要:电力电容器作为一种无功补偿装置,是电力系统中重要的电气设备。正常运行时,可以向电力系统提供无功功率,进而改善电能的质量。但在实际的应用中,由于人为因素和环境等各方面的影响,电容器在运行中频繁的出现故障,影响到正常的工作。本文主要针对框架电力电容器常见的故障进行了分析,提出了解决问题的方法。 关键词:框架式电力电容器;常见故障; 电力电容器在提高设备利用率以及改善电能质量方面都具有十分重要的作用。但是在长期的工作运行中,由于所处环境和人为方面等等因素的影响,电力电容器经常会出现故障,严重的影响电力输送的同时,还威胁着电力系统的运行。 目前,电力电容器普遍分为框架式电力电容器和集合式电力电容器。集合式电容器由于单体油量较大,一般要设置油池,因此适合于户外安装。而框架式电容器由于可以户内、户外安装,具有单个电容器体积小,现场接线简单,维护检修更换方便,造价低等优点,得到更广泛的应用。 框架式电力电容器常见故障有保险熔断、瓷绝缘子闪络放电、本体膨胀、异常声响、喷油起火甚至电容器爆炸等,现将上述故障进行归纳分类,将故障判断和处理方法总结如下。 1、电容器保险熔断 运行中电容器保险熔断,其原因为: ①电容器内部故障造成的保险熔断; ②熔断器安装不规范或保险质量不良,造成保险过热熔断; ③电容器保险选择不合理; ④电网高次谐波引起过电流造成保险熔断。 处理方法: ①对相关电容器做好维护检查,不查明原因,不准更换保险后强行送电; ②注意熔断器安装规范性,选择质量合格的保险; ③电容器保险应按电容器额定电流的 1.37 一 1.50 倍选择,检查现有保险是否符合要求; ④增加站内消谐装置,查找谐波产生的原因,并加以改进。 2、电容器瓷绝缘子闪络放电 运行中电容器瓷绝缘子表面闪络放电,其原因为瓷绝缘子绝缘有缺陷或瓷绝缘子表面脏污。在干燥条件下,污秽物质往往对运行的危害并不显著,但在一定湿度条件下,这些污秽物质溶解在水中,形成电解质覆盖膜,或是有导电性质的化学气体包围着瓷绝缘子,就会使瓷绝缘子的绝缘性能大大降低,使绝缘子表面泄漏电流增加,当泄漏电流达到一定数值时,导致闪络事故发生。 处理方法: ①定期进行清扫检查,在污秽地区避免安装室外电容器; ②采用各种防污闪涂料保护绝缘子; ③增加各种防雨罩保护绝缘子等。 3、电容器本体膨胀 运行中的电容器本体膨胀,其原因为电容器内部的绝缘物游离分解出气体或部分元件击穿电极对外壳放电等,使得电容器的密封外壳内部压力增大,导致电容器的外壳膨胀变形。 处理方法:及时更换电容器,防止故障蔓延扩大引发爆炸、火灾等事故。 4、电容器异常声响 电容器在正常运行情况下无任何声响,因电容器是一种静止电器,又无励磁部分,不应该有声音。如果在运行中,发现有放电声或其他异常声音,则说明电容器内部有故障。 处理方法:应立即停止运行,通知检修人员进行检查,查明原因,必要时更换电容器。 5、电容器喷油、起火及爆炸 运行中电容器喷油、起火及爆炸是一种恶性事故,不易发生,但发生后危害严重。一般是因为内部元件发生极间或外壳绝缘击穿时,与之并联的其他电容器将对该电容器释放很大的能量,从而导致电容器喷油起火以致爆炸等。 处理方法: ①发生此类故障或事故后,更换电容器; ②选择质量可靠的电容器,做好日常运行维护,发现问题及时处理。 最后,在日常运行中,应注意以下情况: ①电容器组母线电压超过电容器组额定电压 1.1倍,或通过规定的短时间允许的过电压,以及通过电容器组的电流超过电容器组额定电流的 1.3倍时,应立即停运电容器组。 ②电容器组断路器跳闸后不准强送电,须查明原因进行处理后方可送电。 ③检修人员在进行电容器维护前,必须将电容器单元逐个多次放电。 6、结束语 综上所述,对于电容器的故障排除还需要注意很多安全方面的问题。在实际工作中,我们应该考虑到多方面的影响因素,尽量减少不

相关主题
文本预览
相关文档 最新文档