当前位置:文档之家› 分子蒸馏技术综述论文

分子蒸馏技术综述论文

分子蒸馏技术综述论文
分子蒸馏技术综述论文

分子蒸馏技术

摘要:分子蒸馏又称短程蒸馏,是一种新型的液-液分离技术,与常规蒸馏相比具有许多优点,是近几十年发展起来的一种先进的液液分离技术。本文从基本概念、基本理论(原理)、特点、应用范围和应用实例及研究现状等方面对分子蒸馏技术作一全面综述。

关键词:分子蒸馏技术;特点;设备;应用;展望

蒸馏是实现分离的一种最基本的方法,可实现固体和液体或液体和液体混合物的分离。常规蒸馏的过程中,对较易分离或分离要求不高的物系,可采用简单蒸馏;对温度不敏感、粘度适中较难分离的物系,可采用精馏或特殊精馏;而对于热敏性、高沸点、高粘度物质的分离或浓缩,受热温度和停留时间是影响其热分解(热聚合)的2 个决定性因素;King 研究发物质的热分解程度与受热温度成指数关系,与受热区停留时间成正比。由克劳修斯-克拉伯龙方程得知,物质的沸点随外压的降低而降低;因此,可通过降低蒸馏操作压力以降低物料的操作温度,即所谓的真空蒸馏(减压蒸馏)。但由于蒸馏单元内大量液体产生的静压差以及蒸馏单元与冷凝器间的管道效应等原因,阻碍了蒸馏单元内压力的进一步降低。但是,对于沸点高、热不稳定、粘度高或容易爆炸的物质,并不适宜使用普通减压蒸馏法,于是,一种新的分离技术—分子蒸馏技术也相应产生。

分子蒸馏技术(Molecular Distillation,MD)最早可以追溯到第二次世界大战

以前,伴随真空技术和真空蒸馏技术发展起来的一种液-液分离技术。它属于一种特殊的高真空蒸馏技术,其最著显的特点是蒸馏物料分子由蒸发面到冷凝面的行程不受分子间碰撞阻力的影响,蒸发面与冷凝面之间的距离小于蒸馏物质分子在该条件下的分子运动平均自由程。Hickman 博士是最早的发明人之一,早在1920年,他就利用分子蒸馏设备做过大量的小试实验,并将该方法发展到中试规模。当时的实验装置非常简单:在一块平板上将欲分离物质涂成薄层使其在高真空下蒸发,蒸气在周围的冷表面上凝结。操作时使蒸发面与冷凝面的距离小于气体分子的平均自由程,从而气体分子彼此发生碰撞的几率远小于气体分子在冷凝面上凝结的几率。因此,这种简单的蒸馏方法在美国首先以“分子蒸馏”的概念出现,并沿用至今。20 世纪的30 年代至60 年代,是分子蒸馏技术的研发

时代,至60 年代末,德、日、英、美及前苏联均有多套大型工业化装置投入工业化应用。但由于相关技术的发展还很落后,致使当时分子蒸馏技术及装备在总体上还不够完善。例如,分子蒸馏蒸发器的分离效率还有待提高,密封及真空获得技术还有待改进、应用领域还有待拓展,分离成本还有待降低等。所有这些都是后来的研究者改进的方向。从20 世纪60 年代至今的40 多年来,各国研究者均十分重视这一领域的研究,不断有新的专利和文献出现。同时,也出现了一些专业的技术公司专门从事分子蒸馏器的开发制造,使分子蒸馏技术的工业应用得到了进一步发展。目前,世界各国应用分子蒸馏技术纯化分离的产品达150 余种,特别是对于一些高难度物质的分离方面,该项技术显示了十分理想的效果。我国对分子蒸馏技术的研究开始得比较晚。20 世纪60 年代,樊丽秋首次在国内进行了分子蒸馏相关研究[1];70 年代末,余国琮、樊丽秋发表了对降膜式分子蒸馏研究的相关论文;80 年代,国内才有分子蒸馏器方面相关专利出现,随后又引进了几套国外的分子蒸馏装置,用于硬脂酸单甘酯的生产。近年来,我国许多高校及科研单位对分子蒸馏技术进行了广泛的研发。特别是90 年代以来,随着人们对天然物质的亲睐以及全球回归自然潮流的兴起,特别是中药现代化、国际化进程的迫近,分子蒸馏技术在高沸点、热敏性天然物质的分离方面得到了迅速的发展。目前,分子蒸馏技术在石油、医药、食品、精细化工和油脂等行业得到了广泛的应用。

1.分子蒸馏基本概念:

1.1分子蒸馏是在高真空度下进行的非平衡蒸馏技术(真空度可达

0.01Pa),是气体扩散为主要形式、利用不同物质分子运动自由程的差异来实现混合物的分离。由于蒸发面和冷凝面的间距小于或等于被分离物料的蒸气分子的平均自由程,所以也称短程蒸馏。

1.2分子有效直径:分子在碰撞过程中,两分子质心的最短距离,即

发生斥离的质心距离。

1.3分子运动自由程:指一个分子与其他气体分子相邻两次分子碰撞

之间所走的路程。

1.4分子运动平均自由程:在一定的外界条件下,不同物质中各个分

子的自由程各不相同。就某一种分子来说,在某时间间隔内自由程的平均

值称为平均自由程。

2. 分子蒸馏基本原理

分子蒸馏的分离是建立在不同物质挥发度不同的基础上,其操作是在低于物质沸点下进行,当冷凝表面的温度与蒸发物质的表面温度有差别时就能进行分子蒸馏。根据分子运动理论,液体混合物中各个分子受热后会从液面逸出,不同种类的分子,由于其有效直径不同,逸出液面后直线飞行距离是不相同的。轻分子的平均自由程大,重分子的平均自由程小,若在离液面小于轻分子平均自由程而大于重分子平均自由程处设置一冷凝面,使得轻分子落在冷凝面上被冷凝,而重分子则因达不到冷凝面,返回原来液面,这样就将混合物分离了,分子平均自由程是分子蒸馏基本理论的核心,分子蒸馏原理如图1 所示。

2.1.1 分子运动自由程

2.1.1.1 分子碰桂

分子与分子之间存在着相互作用力。当两分子离得较远时,分子之间的作用力表现为吸引力、但当两分子接近到一定程度后,分子之间的作用力会改变为排斥力,并随其接近距离的减小,排斥力迅速增加。当两分产接近到一定程度时,排斥力的作用使两分子分开。这种由接近而至排斥分离的过程,就是分子的碰撞过秤。

2.1.1.2 分于有效支径

分于在碰撞过程中,两分于质心的最短距离的质心距离)称为分子柯效盲径。

2.1.1.3 分于运动自由程

一个分子在相邻两次分子碰撞之间所经过的路程称为分子运动自由程。

2.1.1.4 分子运动平均自由程

任一分子在运动过程中都征不断变化自由程外界条件下,不同物质的分f其自由积各个相同隔内自由程的平均值称为平均自由程。

式中: λ是分子平均自由程;

d 是分子有效直径;

T是分子所处环境温度;

P 是分子所处环境压强;

K是波尔兹曼常数;

R 是气体常数, 为8 .314 ;

N A 是阿佛加德罗常数, 为6 .02 ×1023 .

从上式可以看出, 不同的分子由于有着不同的分子有效直径, 故它们的平均自由程也不相同。分子蒸馏技术就是利用不同物质分子受热逸出液面后的平均自由程大小的不同, 来实现分离提纯的。具体方法是在液面上方大于重分子平均自由程而小于轻分子平均自由程处设置一冷凝面, 使得重分子达不到冷凝面而返回液面, 保持原有的平衡;而轻分子则不断地在冷凝面上冷凝, 从而破坏了轻分子的动态平衡, 结果是混合液中的轻分子不断从液相逸出, 最终达到分离的目的[ 2 -3] 。

3.分子蒸馏技术的过程及特点

3.1.1 分子蒸馏分离过程

根据分子蒸馏器设计原则,低沸点组分首先获得足够的能量从液膜表面蒸发,径直飞向中间冷凝器并被冷凝成液相,并在重力作用下沿冷凝器

壁面向下流动,进入馏出组分接收瓶,未能到达冷凝面的重组分沿加热面

流下,进入残留组分接收瓶,即分子蒸馏过程主要分为5 个步骤:

(1)分子从液相主体向蒸发面扩散。通常,液相中的扩散速度是控制分子

蒸馏速率的主要因素,在设备设计时,应尽量减薄液层厚度并强化液层的流动。

(2)分子从蒸发面上自由蒸发。分子在高真空远低于沸点的温度下进行蒸发。蒸发速率随着温度的升高而上升,但分离效率有时却随着温度的升高而降低,所以应以被加工物质的热稳定性为前提,选择经济合理的蒸馏温度。

(3)分子从蒸发面向冷凝面飞射,在飞射过程中,可能与残存的空气分子

碰撞,也可能相互碰撞。要有合适的真空度,使蒸发分子的平均自由大于或等于蒸发面与冷凝面之间的距离即可。

(4)分子在冷凝面上冷凝,冷凝面形状合理且光滑,从而完成对该物质分

子的分离提取。

(5)馏出物和残留物的收集。由于重力作用,馏出物在冷凝器底部收集。

没有蒸发的重组分和返回到加热面上的极少轻组分残留物由于重力或离心力作用,滑落到加热器底部或转盘外缘。

3.1.2 分子蒸馏的特点

(1)分子蒸馏的操作真空度高、操作温度低。由于分子蒸馏是依据分子

运动平均自由程的差别将物质分开,因而可在低于混合物的沸点下将物质

分离。加之其独特的结构形式决定了其操作压强很低,一般为0.13~1.33 Pa,这又进一步降低了物质的沸点,因此分子蒸馏可在远低于混合物沸点的温

度下实现物质的分离。一般来说,分子蒸的分离温度比传统蒸馏的操作温

度低50~100℃[3]。

(2)受热时间短。在分子蒸馏器中,受热液体被强制分布成薄膜状,膜

厚一般为0.5mm 左右,设备的持液量很小,因此,物料在分子蒸馏器内的停留时间很短,一般几秒至十几秒,使物料所受的热损伤极小。这一特点

很好地保护了被处理物料的颜色和特性品质,使得用分子蒸馏精制的产品

在品质上优于传统真空蒸馏法生产的产

(3)分离程度高。分子蒸馏比常规蒸馏有更高的相对挥发度,分离效率

高。这使聚合物可与单体及杂质进行更有效的分离。

(4)工艺清洁环保。分子蒸馏技术不使用任何有溶剂,不产生任何污染,被认为是一种温和的绿色操作工艺。

3.1.3 分子蒸馏设备及其特点

分子蒸馏器的发展历程主要经历了4 种类形:从最初的罐式分子蒸馏器、降膜式分子蒸馏器,再到目前应用较为广泛的刮膜式分子蒸馏器和离心式分子蒸馏器,其结构形式不断完善,物料操作温度进一步降低,受热时间进一步缩短。分子蒸馏器的蒸发表面有凸面和凹面2 种形式,当蒸发圆筒的直径小于15~20cm 时,多用凸面设计[6~9]。

1 间歇釜式分子蒸馏器

该类形蒸馏器出现最早,结构最简单,由蒸馏釜和内置冷凝器组成,类似于简单蒸馏实验装置;其特点是有一个静止不动的水平蒸发表面。间歇釜式分子蒸馏器分离能力低、分离效果差,物料停留时间长,热分解危险性大,目前已经不再采用(淘汰)。

2 降膜式分子蒸馏器

降膜式分子蒸馏器在实验室及工业生产中有广泛应用。它由具有圆柱形蒸发面的蒸发器和与之同轴且距离很近的冷凝器组成,物料靠重力在蒸发表面流动时形成一层薄膜。与间歇釜式分子蒸馏器相比,其优点是液膜的厚度小,停留时间短,热分解几率大大降低,蒸馏过程可连续进行,生产能力大。但其液膜厚度不均匀,液体流动时常发生翻滚现象,容易形成过热点使组分发生分解,所产生的雾沫也常溅到冷凝面上;液膜呈层流流动,传质和传热阻力大,降低了分离效率。

3 刮膜式分子蒸馏器

刮膜式蒸发器是降膜分子蒸馏器的一个特例,在降膜分子蒸馏装置内设置一个转动的刮膜器,当物料在重力作用下沿加热面向下流动时,借助刮膜器的机械作用将物料迅速刮成厚度均匀、连续更新的液膜分布在加热面上,从而强化传热和传质过程,提高了蒸发速率和分离效率。物料的停留时间短,成膜更均匀,热分解可能性小,生产能力大,蒸馏过程可以连续进行,在工业上应用较广。刮膜器有刷膜式、刮板式、滑动式和滚筒式等多种型式,刮板式是在旋转轴上安装有刮板,外缘与蒸发器表面维持定

的空隙,轴的旋转带动刮板沿蒸发面作圆周运动;刮板的作用是使物料在蒸发面形成极薄的液膜,强化热量和质量传递,有Buss、Sambay和Smith3 种类型。滚筒式是将若干个圆柱形滚筒呈一定角度安装在与主轴平行的滚轴上,滚筒与主轴间有一定的空隙;当主轴转动时,离心力作用下滚筒在液膜表面同时作圆周运动和滚动,对液膜表面流体不断分布和更新。研究发现,采用滚筒式刮膜器时,物料的停留时间最短、脱尾现象最轻,较其他几种刮膜器表现出了不可比拟的优越性。

4 离心式分子蒸馏器

离心式分子蒸馏装置是将物料输送到高速旋转的转盘中央,并在旋转面扩展形成液膜,同时加热蒸发使之在对面的冷凝面上冷凝。该装置由于离心力的作用,液膜分布均匀且薄,分离效果好,停留时间更短,处理量更大,可处理热稳定性很差的混合物,是目前较为理想的一种装置型式。

与其他方法相比,由于有高速旋转的圆盘,真空密封技术要求更高。

5 其它型式的分子蒸馏器

Kawala 研究了一种结构较为复杂的高真空薄膜蒸发器,水平圆筒中带有10 个蒸发圆盘以增加单位体积的蒸发面积,考察了圆筒蒸发面积及圆筒

间距离对蒸发速率的影响,并将DBP 的蒸发过程划分为3 个等级,即分子蒸馏、平衡蒸馏和介于两者间的蒸馏。研究结果表明,装置的气体出口面积对有效蒸发速率的影响比较大,该横截面越大越有利于气体到达冷凝面;当圆盘间的距离为3~4cm时,更有利于气体流动和蒸发速率的提高。当被蒸馏物料中含有大量的易挥发组分(如溶解气体和有机溶剂)时,这些物质一旦进入蒸发器便会产生飞溅现象,使得被蒸馏物料呈液滴状沿冷凝面流下,从而影响馏出物料品质。针对这种现象,Luti?an 在蒸发面和冷凝面之间设置一夹带分离器,使易挥发气体不断在分离器中被捕集。利用该装置对DBP 和DBS 二元物系的一维和二维流动进行了研究,结果表明,分离器虽阻碍了气相分子到达冷凝面,降低了蒸馏速率,但分离效率却大大提高了,并稳定了馏出液组成。随着分子蒸馏技术的发展,对降膜式和离心式的究比较成熟,不同类型的分子蒸馏器也相继出现,如E 型、V 型、M 型、擦膜式和立式等;目前人们对刮膜分子蒸馏器的研究却相对

较少,这是由于刮膜器机械作用的介入,使得液膜流动、传质和传热过程更加复杂。刮膜式分子蒸馏器是目前使用范围最广、性能较为完善的一种分子蒸馏装置。翟志勇等人又根据分子蒸馏器的形式,将蒸馏分为简单蒸馏型和精密蒸馏型[8]。

4分子蒸馏的特点

归纳起来,分子蒸馏设备主要有以下特点:

(1)采用了能适应不同黏度物料的布料结构,使液体分布均匀,有效地避免了返混,显著提高了产品质量;

(2)独创性地设计了离心力强化成膜装置,有效减少了液膜厚度,降低了液膜的传质阻力,从而大幅度提高了分离效率与生产能力,并节省了能源。

(3)成功解决了液体飞溅问题,省去了传统的液体挡板,减少了分子运动的行程,提高了装置的分离效率;

(4)设计了独特新颖的动、静密封结构,解决了高温、高真空下密封变形的补偿问题,保证了设备高真空下能长期稳定运行的性能;

(5)开发了能适应多种不同物料温度要求的加热方式,提高了设备的调节性能及适应能力;

(6)彻底解决了装置运转下的级间物料输送及输入输出的真空泄漏问题,保证了设备的连续性运转;

(7)优化了真空获得方式,提高了设备的操作弹性,避免了因压力波动对设备正常操作性能的干扰;

(8)设备运行可靠,产品质量稳定;

(9)适应多种工业领域,可进行多种产品生产,尤其对于高沸点、对热敏感及易氧化物料的分离有传统蒸馏方法无可比拟的优点[9]。

5分子蒸馏应用及实例

(1)改进传统工艺,进行清洁生产废润滑油的回收,传统工艺除去重杂质

的方法为硫酸法,该方法对环境污染很大,发达国家均已经禁止,而采用分子蒸馏技术则可防止污染,变废为宝。

(2)优化产品的合成工艺,提高产品的质量。

比如烷基多苷的精制,在烷基多苷合成生产中,由于缩醛化反应是可逆的,烷基多苷合成工艺中,脂肪醇过量有利于合成反应,因此正常情况下反

应物中有大量未反应的高碳醇,这些高碳醇必须要蒸掉,否则就会影响产品纯度和质量。如果没有有效的脱除醇的方法,前面合成过程中的醇的用量就受到极大的限制,这样就难以合成出聚合度低而又分布窄的产品。若采用分子蒸馏技术进行脱醇,则不必限制合成过程中醇的过量情况,从而促进了产品合成工艺的优化,提高了产品质量。

(3)脱除产品中的重物质及颜色。乳酸精制精细

化学品中常常有一些重分子物质、甚至金属离子等难以分离, 往往需要采用分子蒸馏技术,其它如亚油酸、亚麻酸、二聚酸、芥酸酰胺、硬脂酸单甘酯、高碳醇等的精脱色, 也需要采用分子蒸馏技术。

(4)有效地脱除热敏性物质中轻分子物质。在工业产品的提纯中,大量采

用溶剂萃取法,而其后果是产品中残存溶剂(绝大多数是有毒有机溶剂)。而采用常规蒸馏法清除这些溶剂时,又面临着因操作温度高、受热时间长而使产品在高温下分解或聚合的危险,因此给清除残留溶剂带来困难。由于常用的有机溶剂相对于大多数产品是轻分子物质,用分子蒸馏法很容易将其彻底清除。

(5)高沸点物质的蒸馏。芥酸酰胺的分离与纯化合成的芥酸酰胺粗品反应

后生成的混合物中,不仅含有低沸点杂质,如脂肪腈、低碳脂肪酸酰胺、水等,而且含有脂肪酸、一些聚合产物和色素等。由于芥酸酰胺的分子量大、沸点高、热敏性强,采用常规蒸馏难以蒸出。若采用溶剂结晶法则能耗大、成本高、环境污染严重。而采用分子蒸馏技术生产出的产品不仅纯度高,而且色泽好。

6.结论

分子蒸馏技术的特点决定了它是一项值得大力推广的分离技术, 尤其是在与人们吃、穿和用关系密切相关方面, 可被广泛应用。国外分子蒸馏技术的应用已十分广泛, 利用分子蒸馏技术生产的产品在100 种以上, 我国在工业应用上的推广也充分显示了该项技术的巨大作用。目前, 正在不断开发的日用化工产品中, 如表面活性剂类产品月桂酸单甘酯、芥酸酰胺和硬脂酸单甘酯等的精制与提取;香精香料类产品, 特别是天然香精香料和天然色素等的提取; 化妆品类产品的羊毛醇及二十八碳醇等的纯化等, 都离不开分子蒸馏技术。其他如洗涤用品、

食品添加剂等方面也有许多应用分子蒸馏技术的范例。特别是我国加入WTO 之后, 面临着产品市场及产品质量的国际化竞争, 而许多日化产品若不经过分子蒸馏精制, 将无法达到产品的国际标准,也难以参与国际竞争。从这个意义讲, 分子蒸馏技术在日化中的推广应用迫在眉睫。相信该项技术在我国日用化工的发展中将会起到极大地推动作用。

参考文献:

[1] 樊丽秋.分子蒸馏的研究[D].天津:天津大学,1964.

[2] 邓朝霞,叶代勇等.分子蒸馏及其在精细化工上的应用[J].广州代工,2006,34(2):6-10.

[3] 应安国,刮膜分子蒸馏技术的应用及其过程模型的研究[D].天津:天津大学,2005.

[4] 陈文伟,陈钢,高荫榆,分子蒸馏的应用研究进展[J].西北粮油科技,2003,(5):35-37.

[5] 龚春晖.分子蒸馏技术及其在油脂工业中的应用[J].西部粮油科技,2000,25(6):23-26.

[6] 向爱双,刮膜式分子蒸馏精制3-羟基丙腈及其蒸发液膜流场的CFD 模拟[D].天津:天津大学,2005

[7] 时钧.化学工程手册(第三卷)[M]·北京:化学工业出版社,2002

[8] 江和源.段文华,尉蕊仙.分子蒸馏科技,28(6):4l-43.

[9] Oshimoto Ouishi, Proc. of the 15th int. Symp. On Rarefied

Gas Dynamics, B.G. Teubner, Stuttgart,1986,p.251

[10] 祝顺琴,谈锋.分子蒸馏技术在天然产物中的应用[J].精

细化工,2004,2l(1):46-50.

分子生物学综述

基于特定引物PCR的DNA分子标记技术研究进展 摘要: PCR是一种选择性体外扩增DNA的方法,分子标记是继形态标记、细胞标记和生化标记之后发展起来的一种比较理想的遗传标记技术。SSR、SCAR、SRAP 和TRAP是四种最新发展的基于特定引物PCR的新型DNA分子标记技术,具有简便、高效、重复性好等优点,已在遗传育种的种质资源等各个方面得到广泛应用。介绍了这四种分子标记的基本原理和特点,综述了它们在分子生物学研究中的应用。 关键词:分子标记SSR SCAR SRAP TRAP DNA分子标记技术的研究始于1980年,本质上是指能反映生物个体或种群间基因组某种差异的特异性DNA片段,DNA分子标记大多以电泳谱带的形式表现生物个体之间DNA差异,通常也称DNA的指纹图谱。与其他几种遗传标记相比具有的优越性有:大多数分子标记为显性,对隐性的农艺形状的选择十分便利;基因组变异及其丰富,分子标记的数量几乎是无限的;在生物发育的不同阶段,不同组织的DNA都可用于标记分析;分子标记揭示来自DNA的变异;表现为中性,不影响目标形状的表达,与不良性状无连锁;检测手段简单、迅速。目前DNA分子标记技术已有数十种,主要可分为4大类:基于分子杂交的DNA 分子标记技术;基于随机/特定引物PG R的DNA分子标记技术;基子限制性酶切与PCR技术的分子标记技术;基于芯片技术的DNA分子标记技术。概述新型的基于特定引物PCR的DNA分子标记技术,包括SSR,SCAR,SRAP和TRAP。目前这些I3;VA分子标记技术的应用仍具有相当的局限性,如何将它们有效地利用于分子生物学研究是函待解决的问。 1序列特异扩增区域SCAR 1. 1 SCAR标记的原理 序列特异扩增区域(sequence characterised am-plifiedreginn)简称SCAR标记,是1993年Paran和Michelma记[1]]建立的一种可靠、稳定、可长期利用的RAPD 标记技术。SCAR标记的基本流程:先用随机引物进行RAPD筛选,获取特异的RAPD标记,然后对标记进行克隆和测序,根据测定RADII标记两末端的序列设计一对引物,此引物通常包含有原来的RAPD引物序列,多为20-24,再用该引物对所研究的基因组DNA进行PCR扩增,这样就可以把与原来的RAPI3片段相对应的单一位点鉴定出来。 1. 2 SCAR标记的特点 SCAR标记方便、快捷、可靠,适合于大量个体的快速检测,结果稳定性好,重复性高。由干SCAR标记使用的引物长,因而试验的可重复性高,它克服了RAPD重复性欠佳的弱点,同时具有STS标记的优点,因此比RAPn及其他利用随机引物的方法在基因定位和作图中的应用要好,在分子标记辅助育种、种质资源鉴别等方面有着潜在的应用前景,SCAR标记是共显性遗传的。待检DNA间的差异可直接通过有无扩增产物来显示,这甚至可省却电泳的步骤。由于RAPD 扩增过程中错配几率较高,RAPD标记片段同源性高导致SCAR标记的转化成功

分子印迹聚合物 翻译文献.doc

分子印迹技术的研究进展及发展前景 摘要:如今分子印迹技术发展十分迅猛。本文总结了该技术目前的研究现状,并展望了分子印迹技术未来的发展趋势。 关键词:聚合物,分子印迹,模板,分子识别 1.引言 分子印迹技术60多年以来发展很快,特别是过去五年里,人们对这一领域的兴趣激增,并且据估计全球有超过100个与此相关的学术和工业研究小组。目前,有500多篇关于分子印迹技术研究的文章和综述公开发表,并且有相当多的专利已被申请。直到现在,每年相关文章的发表已不是以前的用少数可计算的了。但是,随着有机聚合物作为二氧化硅基质的另一选择的引入以及非共价方法的广泛应用,其发表率更是狂飙(如表一)。1997年就有近80篇文章发表,并且当年召开了第一次关于分子印迹技术的专门研讨会并成立了分子印迹技术协会(SMI)。1998年这种趋势继续延续着。 分子印迹技术在许多优秀的文章中已有深入讨论,ACS也有专题文献。本文目的不是重述此技术,而是为读者提供最新的研究情况。文章后部分主要介绍该技术研究现状以及今后将遇到的挑战和潜在的应用领域。 图1 以年为变量的分子印迹出版物量(来源:分子印迹科学)。(1998年的数据为估计 值)。 2.分子印迹:艺术王国 分子印迹技术是创造具有选择性分子识别功能的大分子模型的通用方法。这些印

迹分子简单,制备成本低,并且性质稳定。如果通过合理的设计或从生物资源中获得,它们能够成为分子识别实体最理想的替代物或对应物,比如抗体。如今,分子印迹聚合物主要应用于四个领域:(1)特异选择分离,(2)抗体结合模板,(3)酶模型和(4)生物模拟传感器。这四个方向将继续成为人们研究的重点。 2.1 特异选择性分离 目前,特异选择性分离是分子印迹聚合物最大的应用领域。在这篇文章中,它是高效液相色谱法(HPLC)中的固定相,但它也有明显的缺陷:容纳力小以及结合位点不均匀。高效液相色谱中固定相的应用是评价一种新的印迹协议有效性最方便的方法之一。除了高效液相色谱法的应用,显然分子印迹聚合物作为具有选择性的固相分离媒介(SPE)也正在流行。这很可能是我们将来看到其在商业领域的首个应用。在特异选择性分离领域中的其他关键分支应用包括细胞膜和毛细管电泳(CE)。 2.2抗体结合模拟 实验证明分子印迹聚合物与被分析物相比,在结合的选择性和强度上的优势是显而易见的。甚至比抗体和抗原的效果更好。在应用方面,这些模拟结合抗体提供了一个快速而又低廉的途径进入稳定而又强有力的分子识别模型。它们预示着在不溶的情况下应用抗体这一技术成为可能,比如免疫亲和色谱法,免疫传感器和免疫分析。现在一些相关的免疫分析研究已专注于发展新的试验模式,而不再依赖于放射性配体,如荧光和电化学试验。 2.3模拟酶 许多致力于研究分子印迹技术的研究者们设想研制出一种模仿自然酶的活跃的印迹聚合物“塑料酶”。这个重任当然需要投入大量的研究,并且就目前报道的结果来看,它也确实反映了这个事实。一些不同的有机反应运用分子印迹聚合物作催化剂已成功反应,包括醛缩合,酯氧化,Diels-Alder反应和β-消去反应。虽然分子印迹聚合物现在就增强催化速率而言还比不过催化酶,但是它们也有一些不同于酶的特性,比如能较好的溶于有机溶剂,并且耐高温。因此,把它们作为酶的补充,比起作其替代物显得更有用,至少就目前来看是这样的。 2.4生物模拟传感器 一段时间以来,人们多次尝试把印迹聚合物应用到生物传感器中去。这种想法当然是为了取代“精细的”基于生物分子印迹聚合物的分子识别实体。虽然生物传感器领域非常具有竞争力,但有一点我们可以相信分子印迹聚合物以其许多独特的优势也将极其具有竞争力。分子印迹技术在实验规模显示出许多潜在的应用,但还没发现其有任何市场应用,也许这并不让人感到奇怪,毕竟这个技术还相当稚嫩。 3分子印迹技术现状 在过去的一年左右,大部分发表的论文代表着在科技上的进步。许多新的功能单体

先进制造技术 论文

先进制造技术论文 学院:xxx 班级:xxx 姓名:xxx 学号:xxx

目录 概述 (3) 一、先进的工程设计技术 (3) 二、先进制造工艺技术 (3) 三、制造自动化技术(又可说成计算机控制自动化技术) (4) 四、先进生产管理技术、制造哲理与生产模式 (5) 五、发展 (7) 主要参考文献 (9)

概述 摘要:随着我国制造业的的不断发展,先进制造技术得到越来越广泛的应用。介绍了先进制造技术和先进制造模式的内容和发展情况,从两种角度解释其结构特征和关系,并从各种不同角度展望先进制造技术和先进生产模式的发展前景及其趋势特征。 先进制造技术AMT(Advanced Manufacturing Tecnology)是在传统制造的基础上,不断吸收机械、电子、信息、材料、能源和现代管理技术等方面的成果,将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称,也是取得理想技术经济效益的制造技术的总称。 当前的金融危机也许还会催生新的先进制造制造技术,特别在生产管理技术方面。先进制造技术不是一般单指加工过程的工艺方法,而是横跨多个学科、包含了从产品设计、加工制造、到产品销售、用户服务等整个产品生命周期全过程的所有相关技术,涉及到设计、工艺、加工自动化、管理以及特种加工等多个领域,并逐步融合与集成。 可基本归纳为以下五个方面: 一、先进的工程设计技术 二、先进制造工艺技术 三、制造自动化技术 四、先进生产管理技术、制造哲理与生产模式 五、发展。 一、先进的工程设计技术 先进的工程设计技术包括众多的现代设计理论与方法。包括CAD、CAE、CAPP、CAT、PDM、模块化设计、DFX、优化设计、三次设计与健壮设计、创新设计、反向工程、协同产品商务、虚拟现实技术、虚拟样机技术、并行工程等。 (1)产品(投放市场的产品和制造产品的工艺装备(夹具、刀具、量检具等))设计现代化。以CAD为基础(造型,工程分析计算、自动绘图并提供产品数字化信息等),全面应用先进的设计方法和理念。如虚拟设计、优化设计、模块化设计、有限元分析,动态设计、人机工程设计、美学设计、绿色设计等等; (2)先进的工艺规程设计技术与生产技术准备手段。在信息集成环境下,采用计算机辅助工艺规程设计、即CAPP,数控机床、工业机器人、三坐标测量机等各种计算机自动控制设备设备的计算机辅助工作程序设计即CAM等。 二、先进制造工艺技术 (1)高效精密、超精密加工技术,包括精密、超精密磨削、车削,细微加工技术,纳米加工技术。超高速切削。精密加工一般指加工精度在10~0.1μm (相当于IT5级精度和IT5级以上精度),表面粗糙度Ra值在0.1μm以下的加工方法,如金刚车、金刚镗、研磨、珩磨、超精研、砂带磨、镜面磨削和冷压加工等。用于精密机床、精密测量仪器等制造业中的关键零件加工,如精密丝杠、精密齿轮、精密蜗轮、精密导轨、精密滚动轴承等,在当前制造工业中占有极重

网络安全技术论文

考查课论文 课程名称:网络安全技术 论文题目:虚拟平台在网络攻击与防御中的应用 系别: 专业: 班级: 姓名: 学号: 任课老师: 指导教师: 日期:

摘要:随着信息产业的高速发展,众多企业、单位都利用互联网建立了自己的信息系统,以充分利用各类信息资源。但是我们在享受信息产业发展带给我们的便利的同时,也面临着巨大的风险。我们的系统随时可能遭受病毒的感染、黑客的入侵,这都可以给我们造成巨大的损失。对网络安全的威胁主要表现在:非授权访问,冒充合法用户,破坏数据完整性,干扰系统正常运行,利用网络传播病毒,线路窃听等方面。这以要求我们与Internet互连所带来的安全性问题予以足够重视。本文主要介绍了信息系统所面临的技术安全隐患,并利用虚拟平台进行有效的解决方案。 关键词:网络安全攻击防御模拟应用虚拟平台 Abstract:With the rapid development of information industry, many enterprises and units have established their own information system to make full use of all kinds of information resources. But we are enjoying the convenience of the development of the information industry, but also faces a huge risk. Our system may suffer from the virus infection, the hacker's invasion at any time, this can cause the huge loss to us. The network security threats mainly displays in: unauthorized access, posing as legitimate users, destruction of data integrity, interfere with the normal operation of the system, using the network to spread the virus, wiretap etc.. This requires that we have to pay enough attention to the security problems caused by the Internet interconnection. This paper mainly introduces the technical security risks faced by the information system, and puts forward the effective solutions. Key words: Network security Attack defense Simulation application Virtual platform 1前言 随着社会的进步,时代的发展,计算机网络在人们的生活中变得越来越重要,人们使用网络也越来越频繁,这是时代的潮流。网络在不断的发展,更新,进步,一些机密信息将变得相当重要,信息战已经打响,网络安全技术的研究刻不容缓! 2 计算机网络安全简介 计算机网络安全不仅包括组网的硬件、管理控制网络的软件,也包括共享的资源,快捷的网络服务,所以定义网络安全应考虑涵盖计算机网络所涉及的全部内容。参照ISO给出的计算机安全定义,认为计算机网络安全是指:“保护计算机网络系统中的硬件,软件和数据资源,不因偶然或恶意的原因遭到破坏、更改、泄露,使网络系统连续可靠性地正常运行,

分子生物学课程论文

分子生物学课程论文

PCR技术发展与应用的研究进展 王亚纯 09120103 摘要:聚合酶链式反应(polymerase chain reaction,PCR)是最常用的分子生物学技术之一,通过变性、退火和延伸的循环来完成核酸分子的大量扩增.定量PCR技术是克服了原有的PCR技术存在的不足,能准确敏感地测定模板浓度及检测基因变异等,快速PCR技术快速PCR在保证PCR反应特异性、灵敏性和保真度的前提下,在更短时间内完成对核酸分子的扩增.mRNA 差异显示PCR技术是在基因转录水平上研究差异表达和性状差异的有效方法之一.近年来已经开展了许多这三方面的研究工作,本文就定量PCR技术、快速PCR技术、mRNA差异显示PCR技术作一综述,以便更好地理解及应用这项技术。 关键字:定量PCR;荧光PCR;快速PCR;DNA聚合酶;mRNA差异显示PCR 0 前言 聚合酶链反应(polymerase chain reaction,PCR)技术由于PCR简便易行、灵敏度

高等优点,该技术被广泛应用于基础研究。但是,由于传统的PCR技术不能准确定量,且操作过程中易污染而使得假阳性率高等缺点,使其在临床上的应用受到限制[1]。鉴于此,对PCR产物进行准确定量便成为迫切的需要。几经探索,先后出现了多种定量PCR (quantitative PCR,Q-PCR)方法,其中结果较为可靠的是竞争性PCR和荧光定量PCR(fluorescence quantitative PCR,FQ-PCR)。 随着生命科学和医学检测的不断发展,人们越来越希望在保证PCR反应特异性、灵敏性、保真度的同时,能够尽量缩短反应的时间,即实现快速PCR(Rapid PCR or Fast PCR)。快速PCR 技术不仅可使样品在有限的时间内可以尽快得到扩增,而且可以显著增加可检测的样品数量,显然,在大批量样本检测和传染病快速诊断等方面将会有重要的应用前景。例如,快速PCR在临床检测中可大大加快疾病的诊断效率;在生物恐怖袭击时能有效帮助快速鉴定可疑物中有害生物的存在与否;同时,由于PCR已经渗入到现代生物学研究的各个方面,快速PCR的实现必然可以使许多科学研究工作的进展显著加快,最终影

分子印迹技术及其在环境分析中的应用

分子印迹技术及其在环境分析中的应用 摘要:分子印迹是近十年发展起来的新技术.本文阐述了分子印迹技术的原理与 分子印迹聚合物的制备方法,介绍了该技术在环境领域中的若干应用,提出了分子印迹技术将为环境领域的科学研究开辟一条新路等观点。 关键词:分子印迹;分子印迹聚合物;环境领域 分子印迹技术是指为获得在空间结构和结合位点上与某一分子完全匹配的聚合物的实验制备技术。它最初源于20世纪40年代的免疫学。1972年首次成功制备出分子印迹聚合物(molecular imprinted polymers,简称MIPs),这项技术才逐渐为人们所认识。近10年来分子印迹技术得到了飞速发展,并在医药、食品、军事、化工和环境等领域显示出广泛的应用前景。 分子印迹技术原理以及分子印迹聚合物的制备方法 分子印迹技术是制备分子印迹聚合物的技术,其制备过程包括三个步骤:一是使目标分子(即印迹分子,模板分子)与特定功能单体通过共价或非共价作用形成复合物;二是在复合物中加入交联剂,使其在复合物周围与功能单体聚合,形成刚性的高分子聚合材料;三是用物理或化学方法将模板分子从聚合物中取出,该聚合物即分子印迹聚合物,简称MIps,便产生与模板分子的形状、大小和官能团的固定排列相匹配的印迹孔穴。对模板分子具有“记忆”能力由于用不同的模板分子制备的MIPs具有不同的结构和性质,一种MIPs只能与一种分子结合,也即MIPs对该模板分子具有选择性结合作用。 根据印迹分子与功能单体间作用力的性质。通常将MIPs分为共价结合型(预组装型)、非共价结合型(自组装型)和综合型。共价结合型印迹过程单体和模板分子间的作用力强,形成的复合物稳定。所得的印迹聚合物对模板分子具有高的选择性,但印迹过程比较复杂,从聚合物中除去目标模板分子较为困难。而且结合与解离速度缓慢,不利于分离。目前。用此法已获得一些酯、酮、醛、糖类及其衍生物、甘油酸及其衍生物、氨基酸及其衍生物、铁转移蛋白酶、联辅酶和西佛碱等化合物的MIPs。非共价结合型印迹技术主要是利用较弱的分子间作用力来形成复合物,印迹过程较为简单,可在温和的条件下除去模板分子。但易导致所得的空穴对模板分子的亲和力不均一。这种类型的MIPs包括一些染料、酸、胺类、维生素、氨基酸及其衍生物、多肽、苄眯、激素、除草剂、金属、核酸和蛋白质等。综合型印迹技术是将以上两种技术结合起来。得到兼有共价型亲和性强、选择性高以及非共价型操作条件温和等特点。早期研究中制备的分子印迹聚合物是块状的,使用时研成细末。近年来的MIPs主要有四种形态,其制备技术也有所不同,如图

先进制造技术结课论文

先进制造技术课程论文 学院:机电学院 专业:机械设计制造及其自动化 姓名: 学号: 2014年4月20

自动化立体仓库的基本设施与特点 摘要:自动化立体仓库又称自动化高架仓库和自动存储系统。它是一种基于高层货架、采用电子计算机进行控制管理、采用自动化存储输送设备自动进行存取作业的仓储系统。自动化立体仓库是实现高效率物流和大容量的关键系统,在自动化生产和商品流通中具有举足轻重的作用。 自动化立体仓库系统最早在美国诞生。20世纪50年代初美国开发了世界上第一个自动化立体仓库,并在60年代即采用计算机进行自动化立体仓库的控制和管理。日本在1967年制造出第一座自动化立体仓库,并在此后的20年间使这一技术得到广泛应用。进入20世纪80年代,自动化立体仓库在世界各国发展迅速,使用的范围涉及几乎所有行业。 关键字:自动化;立体仓储;发展;高效率; 正文: 一、自动化立体仓库的概述 (一)、自动化立体仓库的发展 随着现代工业发展的发展,柔性制造系统、计算机集成制造系统和工厂自动化对自动化仓库提出更高的要求,搬运存储技术要具有更可靠更实时的信息,工厂和仓库中的物流必须伴随着并行的信息流。无线数据通信、条形码技术和数据采集越来越多的应用于自动化立体仓库系统。 在自动化立体仓库发展过程中,经历了自动化、集约化、集成化和智能化几个发展过程。自动化时期主要在20世纪60到70年代,随着计算机技术的发展,自动化立体仓库得到了迅猛发展。在1967到1977年 10年中,日本建设超过了8000套自动化立体仓库系统。集约化发展是伴随大规模生产需求而发展的。其 规模曾经发展到超过100个巷道,货位数超过20万个。但事实表明,大型自动化立体仓库系统已不再是发展方向。美国Hallmark公司安装的多达120个巷道的系统已经达到巅峰。为了适应工厂发展的新趋势,出现了规模更小,反应速度更快,用途更广的自动化仓库系统。它结合先进的控制技术,应用到分段输送和按预定线路输送方面保持了高度的柔性和高生产率,满足了工业库存搬运的需要。儿大规模的立体仓库系统一般应用于大型配送中性。集成化的标志是随着信息系

先进制造技术综述

先进制造技术综述 Prepared on 22 November 2020

先进制造技术产生的背景 摘要 随着科学的发展与技术的进步,先进的制造技术越来越成为在科技竞争中成功的一个重要条件。先进制造技术是制造业为了适应现代生产环境及市场的动态变化,在传统制造技术基础上通过不断吸收科学技术的最新成果而逐渐发展起来的一个新兴技术群。本文主要在社会经济发展、科学技术发展、可持续发展战略等几个方面分析了先进制造技术产生的背景。 关键词先进制造技术背景社会发展科学技术可持续发展 1 制造技术的进步与发展 制造技术 制造技术是制造业所使用的一切生产技术的总称,是将原材料和其它生产要素经济合理地转化为可直接使用的具有较高附加值的成品、半成品和技术服务的技术群[1][2]。制造技术的发展是由社会、政治、经济等多方面因素决定的。 制造技术的发展时期 ⑴工场式生产时期 18世纪后半叶,蒸汽机和工具机的发明,揭开了近代工业的历史,促成了制造企业的雏形——工场式生产的出现,标志着制造业以完成从手工作坊式向以机械加工和分工原则为中心的工厂式的艰难转变。 ⑵工业化规模生产时期 19世纪电气化技术的发展,开辟了电气化新时代,制造业得到了飞速发展,出现了大批量生产的局面。 ⑶刚性自动化发展时期 20世纪初内燃机的发明、泰勒科学管理方法的应用、福特公司的流水生产线,引起了制造业的革命,降低了生产成本。然而,这也仅仅适用于单一品种的大批量生产的自动化。 ⑷柔性自动化发展时期 二次大战之后,计算机、微电子、信息和自动化技术有了迅速的发展,推动了生产模式由中大批量生产向多品种小批量柔性生产自动化转变。期间形成了一批新型的柔性制造的技术,如数控技术(CNC)、FMC、FMS等。同时,现代化的生产管理模式开始应用到生产中,如JIT 、TQM 等。 ⑸综合自动化发展时期

可信计算技术综述论文

可信计算技术综述 08网络工程2班龙振业0823010032 摘要:可信计算是信息安全研究的一个新阶段,它通过在计算设备硬件平台上引入安全芯片架构,通过其提供的安全特性来提高整个系统的安全性。本文简要介绍了可信计算的起源和发展,阐述了可信性的起源与内涵。着重介绍了各种高可信保障技术,并对目前的应用现状做了总结。最后,探讨了可信计算的发展趋势。 关键字:可信性;可信计算;可信计算系统;可信计算应用 1.可信计算系统的起源和发展 计算机和通信技术的迅猛发展使得信息安全的地位日益显得重要。目前的信息安全技术主要依靠强健的密码算法与密钥相结合来确保信息的机密性、完整性,以及实体身份的惟一性和操作与过程的不可否认性。但是各种密码算法都并非绝对安全,而且很多用户并不清楚这些密码保护机制如何设置,更重要的是,这些技术虽然在一定程度上可以阻挡黑客和病毒的攻击,但是却无法防范内部人员对关键信息的泄露、窃取、篡改和破坏。 常规的安全手段只能是以共享信息资源为中心在外围对非法用户和越权访问进行封堵,以达到防止外部攻击的目的;对共享源的访问者源端不加控制;操作系统的不安全导致应用系统的各种漏洞层出不穷;恶意用户的手段越来越高明,防护者只能将防火墙越砌越高、入侵检测越做越复杂、恶意代码库越做越大。从而导致误报率增多、安全投入不断增加、维护与管理更加复杂和难以实施以及信息系统的使用效率大大降低。于是近年来信息安全学界将底层的计算技术与密码技术紧密结合,推动信息安全技术研究进入可信计算技术阶段。 1999年10月,为了提高计算机的安全防护能力,Intel、微软、IBM、HP和Compaq共同发起成立了可信计算平台联盟(Trusted Computing Platform Alliance,TCPA),并提出了“可信计算”(t rusted computing)的概念,其主要思路是增强现有PC终端体系结构的安全性,并推广为工业规范,利用可信计算技术来构建通用的终端硬件平台。2003年4月,TCPA重新改组,更名为可信计算集团(Trusted Computing Group,TCG),并继续使用 TCPA 制定的“Trusted Computing PlatformSpecifications”。2003年10月,TCG推出了TCG1.2技术规范。到2004年8月TCG组织已经拥有78个成员,遍布全球各大洲。 2. 可信计算的概念 “可信计算”的概念由 TCPA 提出,但并没有一个明确的定义,而且联盟内部的各大厂商对“可信计算”的理解也不尽相同。其主要思路是在计算设备硬件平台上引入安全芯片架构,通过其提供的安全特性来提高系统的安全性。可信计算终端基于可信赖平台模块(TPM),以密码技术为支持,安全操作系统为核心。计算设备可以是个人计算机,也可以是 PDA、手机等具有计算能力的嵌入式设备。 “可信计算”可以从几个方面来理解:(1)用户的身份认证,这是对使用者的信任;(2)平台软硬件配置的正确性,这体现了使用者对平台运行环境的信任;(3)应用程序的完整性和合法性,体现了应用程序运行的可信;(4)平台之间的可验证性,指网络环境下平台之间的相互信任。

分子生物学课程论文

生物芯片研究进展 摘要:生物芯片是便携式生物化学分析器的核心技术。通过对微加工获得的微米结构作生物化学处理能使成千上万个与生命相关的信息集成在一块厘米见方的芯片上。采用生物芯片可进行生命科学和医学中所涉及的各种生物化学反应,从而达到对基因、抗原和活体细胞等进行测试分析的目的。生物芯片发展的最终目标是将从样品制备、化学反应到检测的整个生化分析过程集成化以获得所谓的微型全分析系统(micro total analytical system)或称缩微芯片实验室(laboratory on a chip)。生物芯片技术的出现将会给生命科学、医学、化学、新药开发、生物武器战争、司法鉴定、食品和环境卫生监督等领域带来一场革命。 关键词:生物芯片,缩微芯片实验室,疾病诊断,基因表达 正文:人们利用人类基因组计划中所发现的已知基因对其功能进行研究,把已知基因的序列与功能联系在一起的功能基因组学研究。另外,与疾病相关的研究已从研究疾病的起因向探索发病机理方面转移,并从疾病诊断向疾病易感性研究转移。由于所有上述这些研究都与DNA结构、病理和生理等因素密切相关,因此许多国家现已开始考虑在后基因组时期,研究人员是否能用有效的硬体技术来对如此庞大的DNA信息以及蛋白质信息加以利用。为此,先后已有多种解决方案问世,如DNA的质谱分析法、荧光单分子分析法、阵列式毛细管电泳、杂交分析等。 但到目前为止,在对DNA和蛋白质进行分析的各种技术中,发展最快和应用前景最好看的技术当数以生物芯片技术为基础的亲和结合分析、毛细管电泳分析法和质谱分析法。此外,在此基础上,通过与采用生物芯片技术和样品制备方法(芯片细胞分离技术和生化反应方法(如芯片免疫分析和芯片核酸扩增)相结合,许多研究机构和工业界都已开始构建所谓的缩微芯片实验室。 建立缩微芯片实验室的最终目的是将生命科学研究中的许多不连续的分析过程,如样品制备,化学反应和分离检测等,通过采用象集成电路制作过程中的半导体光刻加工那样的缩微技术,将其移植到芯片中并使其连续化和微型化。用这些生物芯片所制作的具有不同用途的生化分析仪具有下述一些主要优点,即分析全过程自动化、生产成本低、防污染(芯片系一次性使用)、分析速度可获得成千上万倍的提高、同时,所需样品及化学药品的量可获得成百上千倍的减少、极高的多样品处理能力、仪器体积小、重量轻、便于携带。 一.生物芯片的微加工制备 生物芯片的加工借用的是微电子工业和其他加工工业中比较成熟的一些微细加工工艺,在玻璃、塑料、硅片等基底材料上加工出用于生物样品分离、反应的微米尺寸的微结构,如过滤器、反应室、微泵、微阀门等微结构。然后在微结构上施加必要的表面化学处理,再在微结构上进行所需的生物化学反应和分析。 生物芯片中目前发展最快的要算亲和结合芯片(包括DNA和蛋白质微阵列芯片)。它的加工除了用到一些微加工工艺以外,还需要使用机器人技术。现在有四种比较典型的亲和结合芯片加工方法。一种是Affymetrix公司开发出的光学光刻法与光化学合成法相结合的光引导原位合成法。第二种方法是Incyte pharmaceutical公司所采用的化学喷射法,它的原理是将事先合成好的寡核苷酸探针喷射到芯片上指定的位置来制作DNA芯片的。第三种是斯坦福大学所使用的接触式点涂法。该方法的实现是通过使用高速精密机械手所带的移液头与玻璃芯片表面接触而将探针定位点滴到芯片上的[11]。第四种方法是通过使用四支分别装有A、T、G、C核苷的压电喷头在芯片上作原位DNA探针合成的。

分子印迹技术综述论文资料

分子印迹技术基本原理及应用 [摘要]:分子印迹是制备具有分子特异识别功能聚合物的一种技术.本文介绍了分子印迹技术的基本原理和特点,综述了该技术在色谱、固相萃取、药物分析、生化分离、生物传感器技术以及生物催化方面的研究与应用,具体介绍该技术的几个应用实例。 [关键词]分子印迹技术;基本原理;特点;综述;应用实例 目录 分子印迹技术基本原理及应用 (1) [摘要] (1) 1.分子印迹技术的基本概念、基本原理和特点 (1) 1.1分子印迹技术的基本概念 (1) 1.2分子印迹技术的基本原理 (2) 1.3分子印迹技术的特点 (2) 2.分子印迹技术的应用范围和应用实例介绍 (4) 2.1分子印迹在色谱分离技术中的应用 (5) 2.2分子印迹技术在固相萃取中的应用 (8) 2.3 分子印迹技术在药物分析中的应用 (9) 2.4 分子印迹技术在模拟酶催化中的应用 (9) 2.5 分子印迹技术在传感器中的应用 (10) 3.总结 (11) 参考文献 (12) 1.分子印迹技术的基本概念、基本原理和特点 1.1分子印迹技术的基本概念 分子印迹,又称为分子烙印(molecular imprinting),是源于高分子化学、材料化学、生物化学等学科的一门交叉学科技术。 分子印迹技术(molecular imprinting technique,MIT)也叫做分子模版技术,属于超分子化学研究范畴,是指某以特定的目标分子(模版分子、印迹分子或烙

印分子)为模版,植被对该分子具有特异选择性的聚合物的过程,通常被描述为制备与识别“分子钥匙”的人工“锁”技术。[1] 1.2分子印迹技术的基本原理 分子印迹技术原理如图1所示。当印迹(模版)分子与聚合物单体接触时会形成多重作用点,通过聚合过程这种作用就会被记下来,当印迹分子去除后,聚合物就形成与印迹分子空间构型相匹配的、具有多重作用点的空穴,这样的空穴就对印迹分子极其类似物具有选择性特性。 图1 分子印迹技术原理 MIPs的制备过程主要由以下三步构成: ①在适当的介质中,具有适当功能基的功能单体通过与印迹分子间的相互作用聚集在印迹分子周围,形成主客体配合物; ②通过功能单体与交联剂共聚,将主客配合物固定; ③通过一定的物理或化学方法洗脱印迹分子,得到印迹聚合物,其中含有与印迹分子形状和功能基团排列相匹配的空穴。这个三位空穴可以选择性的重新与印迹分子结合,即对印迹分子具有专一性识别功能。这个三维空穴的空间结构和功能单体的种类是由印记分子的结构和性质决定的。[1] 1.3分子印迹技术的特点 1.3.1分子印迹技术具有以下特点: 一是预定性,即它可以根据不同的目的制备出不同的MIPs,以满足不同的需要. 二是识别专一性,即MIPs是根据模板分子定做的,可专一地识别印迹分子. 三是实用性,即它可以与天然的生物分子识别系统如酶与底物、抗体与抗原相比拟.但由于它是由化学合成的方法制备的,因此又有天然分子识别系统所不

先进制造技术论文

随着科学技术的飞速发展和市场竞争日益激烈,越来越多的制造企业开始将大量的人力、财力和物力投入到先进的制造技术和先进的制造模式的研究和实施策略之中。改革开放以来,我国制造科学技术有日新月异的变化和发展,确立了社会主义市场经济体制,但与先进的国家相比仍有一定差距,为了迎接新的挑战,必须认清制造技术的发展趋势,缩短与先进国家的差距,使我国的产品上质量、上效率、上品种和上水平,以增强市场竞争力,因此,对制造技术及制造模式的研究和实施是摆在我们面前刻不容缓的重要任务,以实现我国机械制造业跨入世界先进行列。 一.先进制造技术的概念 (1)先进制造技术的内涵 目前对先进制造技术尚没有一个明确的、一致公认的定义,经过近年来对发展先进制造技术方面开展的工作,通过对其特征的分析研究,可以认为:先进制造技术是制造业不断吸收信息技术和现代管理技术的成果,并将其综合应用于产品设计、加工、检测、管理、销售、使用、服务乃至回收的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称。 (2)先进制造技术的特点 先进制造技术最重要的特点在于,它首先是一项面向工业应用,具有很强实用性的新技术。先进制造技术相对传统制造技术在应用范围上的一个很大不同点在于,传统制造技术通常只是指各种将原材料变成成品的加工工艺,而先进制造技术虽然仍大量应用于加工和装配过程,但由于其组成中包括了设计技术、自动化技术、系统管理技术,因而则将其综合应用于制造的全过程。并且传统制造技术的学科、专业单一独立,相互间的界限分明;先进制造技术由于专业和学科间的不断渗透j交叉、融合,界线逐渐淡化甚至消失,技术趋于系统化、集成化、已发展成为集机械、电子、信息、材料和管理技术为一体的新型交叉学科。随着微电子、信息技术的引入,使先进制造技术还能驾驭信息生成、采集、传递、反馈、调整的信息集成过程。先进制造技术是可以驾驭生产过程的物质流、能量流和信息流的系统工程。为确保生产和经济效益持续稳步的提高,能对市场变化做出更灵捷的反应,以及对最佳技术效益的追求,提高企业的竞争能力,先进制造技术比传统的制造技术更加重视技术与管理的结合,更加重视制造过程组织和管理体制的简化以及合理化,从而产生了一系列先进的制造模式。随着世界自由贸易体制的进一步完善,以及全球交通运输体系和通信网络的建立,制造业将形成全球化与一体化的格局,新的先进制造技术也必将是全球化的模式。 先进性作为先进技术的基础——制造技术,必须是经过优化的先进工艺。因此,先进制造技术的核心和基础必须是优质、高效、低耗、清洁的工艺。它从传统工艺发展起来,并与新技术实现了局部或系统集成。通用性先进制造技术不是单独分割在制造过程的某一环节,它覆盖了产品设计、生产设备、加工制造、维修服务、甚至回收再生的整个过程。系统性随着微电子、信息技术的引入,先进制造技术能驾驭信息生成、采集、传递、反馈、调整的信息流动过程。先进制造技术能驾驭生产过程的物质流、能源流和信息流的系统工程。集成性先进制造技术由于专业、学科间的不断渗透、交叉、融合,界限逐渐淡化甚至消失,技术趋于系统化,已发展成为集机械、电子、信息、材料和管理技术于一体的新兴交叉学科,因此有人称其为制造工程。技术与管理的更紧密结合对市场变化做出更敏捷的反应及对最佳经济效益的追求,使先进制造技术十分重视生产过程的

分子印迹技术原理及其在分离提纯上的应用

. . 生物分离的新技术——分子印迹 —创新论坛—工业生物技术专家报告会 2008级生命学院3班微生物与生化药学专业 2008001243 宋汉臣

目录 1分子印迹技术的原理与方法 (3) 1.1 MIP的制备过程 (3) 1.2制备MIP的方法 (3) 1.2.1预组装法——共价键作用 (4) 1.2.2自组装法——非共价作用 (4) 1.2.3 共价作用与非共价作用联合法 (5) 2 分子印迹技术在分离上的应用 (5) 2.1 MIP作为固定相的分离技术 (6) 2.1.1MIP作为固定相分离天然产物 (6) 2.1.2MIP作为固定相检测食品中药物的残留 (7) 2.2分子印迹膜(MIM)分离技术 (7) 3问题与展望 (8) 4 参考文献 (9)

摘要:分子印迹技术[1](Molecular Imprinting technique,MIT)是一种新的、很有发展潜力的分离技术。由于其具有选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用围广等优点,分子印迹聚合物已广泛应用于生物工程、临床医学、环境监测及食品工业等众多领域,在分离提纯、免疫分析、酶模型以及生物模拟传感器等许多方面显示出良好的应用前景,引起了人们的广泛关注,其有望在三聚氰胺的快速痕量检测上发挥作用。 关键字:分子印迹生物分离分子印迹聚合物

前言: 分子印迹技术最初出现源于 20世纪 40年代的免疫学,当时Pauling[3]首次提出抗体形成学说为分子印迹理论的产生奠定了基础, 1993年Mosbach等人有关茶碱分子印迹聚合物的研究报道,使这一技术在生物传感器、人工抗体模拟及色谱固相分离等方面有了新的发展,得到世界注目并迅速发展。基于该技术制备的分子印迹聚合物具有亲和性和选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用围广等特点,因此分子印迹技术在许多领域,如色谱分离、固相萃取、仿生传感、模拟酶催化、临床药物分析、膜分离等领域得到日益广泛的研究和开发,有望在生物工程、临床医学、天然药物、食品工业、环境监测等行业形成产业规模化的应用。目前,全世界[3]至少有包括瑞典、日本、德国、美国、中国、澳大利亚、法国在的 10多个国家、100个以上的学术机构和企事业团体在从事分子印迹聚合物的研究和开发。

数据库安全综述论文

数据库安全综述 摘要:数据库技术是目前应用最广泛的一门计算机技术,其安全性越来越重要。该文讲述了数据库安全含义,数据库存在的安全威胁,常用攻击方法,安全控制策略以及分析了历年发生的几大典型数据泄密事件。 关键字:数据库安全,数据库攻击,安全控制,数据库加密。 随着信息化建设的发展,各种信息系统不断出现,其中数据库扮演者重要角色,其担负着存储和管理数据信息的任务。这些数据一旦泄露或被破坏,将会对国家或单位造成巨大损失。 目前,很多的信息系统采用的都是Oracle或者SQL Server数据库系统,为了保证数据的安全性、准确性以及一致性,这些数据库系统采用一些技术手段,比如:访问控制、实体和引用完整性控制、值域约束、并发控制和恢复等技术。但是,对于Oracle或者SQL Server数据库系统来说,仍然存在很多安全隐患,面临着许多攻击。因此,如何保证与加强数据库的安全性以及保密性,已成为当前迫切需要解决的热门课题。 一、数据库安全含义 于数据库安全的定义,国内外有不同的定义。国外以C. P. Pfleeger “Security in Computing –Database Security.PTR,1997”中对数据库安全的定义最具有代表性,被国外许多教材、论文和培训所广泛应用。他从以下方面对数据库安全进行了描述: (1)物理数据库的完整性:数据库中的数据不被各种自然的或物理的问题而

破坏,如电力问题或设备故障等。 (2)逻辑数据库的完整性:对数据库结构的保护,如对其中一个字段的修改不应该破坏其他字段。 (3)元素安全性:存储在数据库中的每个元素都是正确的。 (4)可审计性:可以追踪存取和修改数据库元素的用户。 (5)访问控制:确保只有授权的用户才能访问数据库,这样不同 的用户被限制在不同的访问方式。 (6)身份验证:不管是审计追踪或者是对某一数据库的访问都要经过严格的身份验证。 (7)可用性:对授权的用户应该随时可进行应有的数据库访问。 本文采用我国GB17859-1999《计算机信息系统安全保护等级划分准则》中的《中华人民共和国公共安全行业标准GA/T 389-2002》“计算机信息系统安全等级保护数据库管理系统技术要求”对数据库安全的定义:数据库安全就是保证数据库信息的保密性、完整性、一致性和可用性。保密性指的是保护数据库中的数据不被泄露和未授权的获取;完整性指的是保护数据库中的数据不被破坏和删除;一致性指的是确保数据库中的数据满足实体完整性、参照完整性和用户定义完整性要求;可用性指的是确保数据库中的数据不因人为的和自然的原因对授权用户不可用。 当数据库被使用时,应确保合法用户得到数据的正确性,同时要保护数据免受威胁,确保数据的完整性。数据库不仅储存数据,还要为使用者提供信息。应该确保合法用户应当在一定规则的控制和约束下使用数据库,同时应当防止入侵者或非授权者非法访问数据库。数据库的安全主要应由数据库管理系统

现代分子生物学小论文

中国因大豆最新研究进展报告(专题三) 摘要:大豆是重要的油料作物和饲料作物,也是人类的主要食用蛋白和工业原料的来源。而转基因是一种将人工分离和修饰过的基因导入到生物体基因组中,由于导入基因的表达,引起生物体的性状的可遗传的修饰的现代技术。目前,越来越多的转基因技术运用到食品医药行业当中。大豆的转基因研究是国内外植物分子生物学研究的热点之一,通过将目的基因整合到大豆基因中,可获得抗虫大豆,其出油率也高于普通大豆。转基因大豆已成为世界大豆主产国大豆产业发展的主要动力。本文概述转基因大豆依据的主要理论,目前国内研究进展,转基因大豆的现状及其安全问题等等。 关键词:转基因大豆食品安全研究进展外源基因现状 前言:大豆是重要的油料作物和高蛋白粮饲兼用作物,含有丰富的蛋白质、脂肪和多种人体有益的生理活性物质。随着基因工程研究的升入,用转基因来改变大豆的性状已被广泛应用。转基因大豆最早的报道是1984年De Bloke等和Horsch 等的研究结果。1988年,McCabe和Hinchee分别用基因枪轰击大豆未成熟胚生长点和用农杆菌侵染大豆子叶节的方法获得转基因植株。1994年5月,美国孟山都公司培育的抗草甘膦除草剂转基因大豆首先获准在美国商业化种植。1997年,杜邦公司获得美国食品药物管理局批准推广种植高油酸转基因大豆。1998年AgrEvo公司研制的抗草丁膦大豆被批准进行商业化生产。转基因大豆品种的育成和推广是世界大豆科技史上具有里程碑意义的重大突破,已成为世界大豆发展生产的主流趋势。 1转基因大豆简介 转基因大豆最早来源于美国,1996年春,美国伊利诺伊西部许多农场主种植了一种大豆新品种,这种大豆是移植了矮牵牛的一种基因。这个新大豆品种可以抵抗杀草剂——草甘膦(毒滴混剂)。草甘膦会把普通大豆植株与杂草一起杀死。这是人类历史上第一次成功培育转基因大豆。 转基因大豆包括抗草胺膦转基因大豆,抗磺酰脲类除草剂转基因大豆,抗草甘膦转基因大豆等等。目前以抗草甘膦为目标而创制出的抗除草剂作物占绝对优势,其中尤以抗草甘膦大豆在世界范围内种植面积最广。 2转基因大豆的主要理论 2.1 转基因技术理论

相关主题
文本预览
相关文档 最新文档