当前位置:文档之家› 毫米波圆极化介质复合波导缝隙阵列 天线的HFSS设计

毫米波圆极化介质复合波导缝隙阵列 天线的HFSS设计

毫米波圆极化介质复合波导缝隙阵列 天线的HFSS设计
毫米波圆极化介质复合波导缝隙阵列 天线的HFSS设计

ANSYS 2011中国用户大会优秀论文

毫米波圆极化介质复合波导缝隙阵列天线的HFSS设计

刘吕昕]

[闫丕贤埇

[北京理工大学信息与电子学院,北京 100081]

[ 摘要 ] 本文利用ANSYS HFSS设计了一种工作于毫米波段的介质复合波导缝隙天线阵列,在介质覆铜板加工出缝隙并与波导槽复合形成辐射结构,利用HFSS软件仿真并分析缝隙导纳,泰勒加权

实现阵列综合。设计平面和差网络实现天馈系统一体化,利用介质覆铜板加工出圆极化栅,并

利用HFSS对整体天线进行了仿真调试。仿真结果与实物测试结果基本一致,验证了软件仿真

的准确性和设计的可行性。该天线成本低、一致性高、圆极化性能好,同时可以改善传统波导

缝隙天线成品率低、成本高和工作带宽窄的缺点,并将工作频带展宽至700MHz。

[ 关键词] ANSYS HFSS,毫米波,圆极化,波导缝隙天线

A Design of MMW Circular Polarization Dielectric

Complex Waveguide Slot Array Antenna in HFSS

[YAN Pixian, LIU Yong, LV Xin]

[School of Information and Electronics, Beijing Institute of Technology, Beijing 100081] [ Abstract ] In this paper, a dielectric complex waveguide slot array antenna was studied by ANSYS HFSS, working in MMW-band. The radiating structure was formed by etching a slot in the

copper which covered on the substrate composited with rectangular groove guide, then take

a simulation and analysis of the slot admittance by software, combined with the array

comprehension of HFSS. For the integration of antenna and feed network, compact

structure was designed with a sum-difference network includes a flat magic T, and circular

polarization grid machined with micro-strip substrate. Physical test results are basically

consistent with the simulation results. The antenna offered advantages such as low cost,

high consistency, circular polarization performance. It also improved the traditional

waveguide slot antenna from low yield and high cost.

[ Keyword ] ANSYS HFSS;MMW; circular polarization; waveguide slot array antenna

1前言

作为一种常用毫米波天线,波导缝隙天线加工成本高、成品率低。基于印刷缝隙的介质复合波导缝隙天线是将开缝的介质覆铜板复合到波导槽上,保有传统波导缝隙天线辐射效率的同时,还具有一致性好、生产工艺简单、成品率高、成本低等优点。有学者对覆介质的波导缝隙特性进行了一些辐射特性分析[1-2],加工实物的有单条复合缝隙阵[3]。本文

ANSYS 2011中国用户大会优秀论文

利用ANSYS HFSS 仿真软件的精确计算功能,设计仿真并制作一种毫米波圆极化介质复合波导缝隙天线,通过编写阵列加权算法进行激励分布计算[4],并主要利用仿真软件HFSS 对缝隙导纳进行提取并拟合曲线。基于天馈系统一体化、一维波束和差的目的,利用HFSS 设计了包含平面魔T 的一维和差网络。通过总结已有设计经验[5, 6],设计一种基于介质覆铜板的极化栅,可覆盖于天线表面实现圆极化。经过实物测试,天线于毫米波段工作性能良好:工作频带内水平维和波束副瓣电平低于-18dB ,俯仰维3dB 波束宽度超过±15°,差波束零深25dB ,右旋圆极化增益约22dBi ,3dB 波束范围内轴比小于5dB 。仿真结果与实测结果一致。

2 介质复合波导缝隙天线理论

2.1 天线结构

本文涉及一种介质复合波导天线,其辐射结构如图1所示,采用介质覆铜板加工缝隙

代替传统波导的开缝宽边。与传统波导宽边开缝的天线相比,介质复合波导相当于在缝隙表面覆盖一层介质,对于缝隙以及波导腔体结构都具有保护作用。

2.2 波导宽边纵缝单元分析

如图2(a)所示,波导宽边纵缝单元等效为并联的导纳,其导纳数值与波导尺寸、工作

频率、纵缝的偏置以及长度等参数有关。引入介质覆盖后,导纳公式相应改变,有文献对覆介质波导缝隙的导纳特性进行研究,但其计算繁复且仍需要仿真验证。本文直接采用HFSS 建立覆介质波导纵缝单元,通过仿真提取导纳并拟合曲线的方式对其对应关系进行研究。

3 利用HFSS 软件设计阵列天线

3.1 设计阵列

图1

介质复合波导结构

图 2 (a)单个波导宽边纵缝等效电路 图 2 (b)谐振式宽边缝隙阵等效电路

ANSYS 2011中国用户大会优秀论文

波导缝隙阵列是天线的核心,实现方向图的大多数特性。本文设计缝隙阵列工作频率

为Ka 波段,阵列规模为2×32排布,设计副瓣电平为-20dB ,增益为22dBi 。如图2(b)所示,选择阵列形式为谐振式波导宽边缝隙阵,其优点在于结构紧凑,工作性能较稳定。由于阵列定为2×32排布,计算缝隙等效导纳时需要考虑同一波导及两条波导间的缝隙互耦。

3.1.1 计算阵列加权

通过编写算法程序实现阵列的泰勒加权分布,对阵列的激励权值进行计算。为得到方

向图的一维和差,阵列采用对称式馈电结构。以副瓣电平-22dB 加权,得到各单元权值。

3.1.2 提取引入缝隙间互耦的导纳

HFSS 可以准确地对所建模型进行场的求解,使设计更加简便。利用HFSS 建立两条平

行波导的多个缝隙模型进行导纳分析,能对缝隙互耦进行计算,得到比单个缝隙模型以及单条波导模型更准确的缝隙导纳参数。仅激励单条波导时,另一条波导能量场耦合如图3(a)所示;两条波导同时激励时,场分布如图3(b)所示。缝隙耦合量级为-20dB~-30dB 。

通过调节缝隙的长度l 、宽度参数w 、缝隙偏置d ,使模型达到谐振状态并使缝隙互耦

尽量小,对缝隙的导纳参数进行提取。此时提取出的参数即为引入平行波导间缝隙互耦影响的结果,更接近实物。将提取出的导纳参数进行处理,拟合出导纳-偏置-缝长对应曲线,结合激励权值进行阵列设计。经过软件仿真,最终的缝隙阵列见图4。

3.2 平面和差网络设计

3.2.1 设计平面魔

T

图 3 (a)两平行波导间缝隙的能量耦合仿真 图 3 (b)两平行波导同时激励的能量分布仿真

图 4 波导缝隙阵列结构

ANSYS 2011中国用户大会优秀论文

考虑用金属一体加工出波导槽和馈电网络。因此利用HFSS 设计平面魔T 实现一维信

号的和差。在模型中,用易加工的金属台代替传统立体魔T 的锥台,如图5(a)所示。经过仿真,和差端口隔离度优于30dB ,插损小于0.3dB 。

3.2.2 设计和差网络

利用波导与平面魔T 组合成为和差网络,优化波导拐角以及长度,对两侧天线阵的激

励幅度和相位进行调节。最终模型见图5(b),最终两条馈电波导通过斜缝将能量耦合至辐射波导腔。

3.3 仿真整体天线

通过现有研究结果,以介质覆铜板为基础,利用HFSS 设计了毫米波圆极化栅。将圆

极化栅、天线阵列和和差网络组合成整体天线,如图6(a)所示,仿真整体天线模型并进行优化调试,天线的圆极化性能良好。

4 实物测试结果

天线实物照片见图6(b),仿真与实测方向图对比见图7。实测和差口驻波比曲线如图8

所示。

对比仿真与实测结果可见,仿真和差方向图与实测基本一致。利用HFSS 建立平行波

导缝隙模型并提取缝隙导纳,可以将缝隙的互耦影响计算在内,与传统电磁计算方法相比更精确且有效率。

图 5 (a)平面魔T 的HFSS 模型 图 5(b)波导与平面魔T 组成和差网络

图 6 (a)天线整体HFSS 模型 图 6 (b)实物照片

ANSYS 2011中国用户大会优秀论文

5 结论

本文利用HFSS 设计一种毫米波圆极化介质复合波导缝隙天线。通过建立模型仿真,

对缝隙导纳进行提取并拟合曲线。利用HFSS 设计一维和差网络以及基于介质覆铜板的极化栅,实现左/右旋圆极化。经过实物测试,天线于毫米波段工作性能良好:所设计的介质复合波导缝隙天线实现了一维波束和差,差波束零深25dB ;圆极化栅实现了右旋圆极化增益约22dBi ,3dB 波束范围内轴比小于5dB ;在保有传统波导缝隙天线辐射效率的同时,该复合天线将工作频带展宽至700MHz 。仿真结果与实测结果一致。

[参考文献]

[1] 夏克金,杨弃疾.敷介质波导缝隙特性的研究[J].应用科学学报,1989,7(2):115-123

[2] Pisti B Katehi. Dielectric-Covered Wave-guide Longitudinal with Finite Wave Thickness [J]. IEEE Trans on AP,1990,38(7):1039-1043.

[3] 尹雷,洪伟. 一种基于印刷工艺的新型毫米波波导缝隙天线[J].微波学报,2000, 16(1):85-88.

[4] Robert S Elliott, William R O’Loughlin. The design of slot arrays including internal mutual coupling [J]. IEEE Trans on AP, 1986, 34(9): 1149-1154.

[5] 徐善驾,张跃江.栅条形圆极化器性能的分析[J].电子学报,1996,42(3):53-55.

[6] Levkeel JR, et al. Scattering by an Infinite Two-Dimensional Periodic of Meander-Line Conductors

on a Dielectric Sheet. The Third International Conference on AP, Pt. I,1983, IcaP83:258-261

图 7 (a)实测水平维和差方向图 图 7 (b)仿真水平维和差方向图

图 8 和差口驻波比曲线

基于HFSS矩形微带贴片天线的仿真设计报告

.. .. .. 矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真 实验容:矩形微带天线仿真:工作频率7.55GHz 天线结构尺寸如表所示: 名称起点尺寸类型材料 Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.05 28.1,32,0.05 Box pec Patch -6.225,-8,0.794 12.45 , 16, 0.05 Box pec MSLine -3.1125,-8,0.794 2.49 , -8 , 0.05 Box pec Port -3.1125,-16,-0.05 2.49 ,0, 0.894 Rectangle Air -40,-40,-20 80,80,40 Box Vacumn 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File>>save as,输入0841,点击保存。 (2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。

(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。 (4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。 二、建立微带天线模型 (1)、插入模型设计 (2)、重命名

输入0841 (3)点击创建GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05 修改名称为GND, 修改材料属性为 pec, (4)介质基片:点击,:x:-14.05,y:-16,z:0。dx: 28.1,dy: 32,dz: 0.794, 修 改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。

基于HFSS的天线设计

一、实验目的 ?利用电磁软件An soft HFSS设计一款微带天线。 ?微带天线要求:工作频率为2.5GHz带宽(回波损耗S11<-10dB)大于5% ?在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、实验原理 1、微带天线简介 微带天线的概念首先是由Deschamps于1953年提出来的,经过20年左右的 发展,Munson和Howell于20世纪70年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分 组成。与天线性能相关的参数 包括辐射源的长度L、辐射源的宽度W介 质层的厚度h、介质的相对介电常数r和 损耗正切tan、介质层的长度LG和宽度WG 图1所示的微带贴片天线是 图1:微带天线的结构 采用微带天线来馈电的,本次将要设计的 矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线街头的内心线穿过参考地和介质层与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能,矩形贴片微带天线的工作主模式是TM10模,意味着电场在长度L方向上有g/2的 改变,而在宽度W方向上保持不变,如图2 (a)所示,在长度L方向上可以看做成有两个终端开路的缝隙辐射出电磁能量,在宽度W方向的边缘处由于终端开路,所以电压值最大电流值最小。从图 2 (b)可以看出,微带线边缘的电场可 以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。

波导缝隙天线的EBG的应用

波导缝隙天线的EBG 的应用 张运启 栗 曦 杨 林 (西安电子科技大学天线与电磁散射研究所,西安,710071) 摘 要:研究一种新型的EBG 结构在波导缝隙天线中的应用。这种新型的EBG 具有可以有效抑制表面波的特性,提出了在阵面缝隙单元间加载EBG 周期单元结构的方案,抑制波导缝隙天线之间的互耦。通过与传统的波导缝隙天线进行比较得出加载新型EBG 结构的波导缝隙天线在互耦上有很大改善。 关键词:波导缝隙阵列天线;Electromagnetic band-gap(EBG);互耦 The Waveguide Slot Array Antenna Above EBG Structure Zhang Yun-qi , Li Xi ,Yang Lin (National Laboratory of Antenna and Microwave Technology,Xidian university,Xi’an shaanxi,710071 ,China) Abstract :The performance of the waveguide slot array antenna above the electromagnetic band-gap(EBG) structure is investigated.The kind of EBG is able to control the surface wave.The project of control the 21S between the waveguide solt antenna by loading the periodic unit of EBG between the units has been lodged.It is found that the 21S improved in the waveguide slot array antenna through comparison. Key words : waveguide solt array antenna; EBG; couple 引 言 波导缝隙天线具有口面场分布容易控制,没有能量漏失、天线口径效率高、性能稳定、结构简单紧凑、强度高、安装方便、抗风力强等优点,而且容易实现窄波束、赋形波束、低副瓣乃至超低副瓣,所以波导缝隙天线已经成为新型雷达中天线的优选形式,被广泛应用于雷达和通讯领域。但这种形式的天线由于有比较大的金属地平面,存在强烈的TM 表面波和空间波耦合,以及地面边缘的多径干扰,这些因素都将影响天线阵列的性能。 电磁带隙结构(EBG )在电磁传输场和天线领域的应用研究越加广泛和深入,本文着重关注的Mushroom-like EBG 结构,具有有效的表面波抑制带隙和紧致的特征,这在通讯天线和阵列天线的应用中是非常重要的。 本文以此为切入点,将EBG 结构与金属波导缝隙阵列相结合,旨在利用EBG 结构对表面波的抑制特性,改善原天线的性能。 1 电磁带隙结构(EBG)单元 本文根据一种电磁带隙的快速分析方[2] 法进行建模仿真,电磁带隙(EBG )结构单元如图 1 图1 电磁带隙结构单元 仿真计算上述二端口波导的传输系数21S 的幅度,如图2所示。可以看出在00F F ?+:有带隙。由于该波导由一对理想电壁和理想磁壁组成,是一个TEM 波导,因此不存在截止频率。 图2 电磁带隙结构单元的21S 2 传统的波导缝隙阵列天线 我们建立波导缝隙阵列天线进行仿真,分析

用Sonnet Agilent HFSS设计微带天线概要

用Sonnet & Agilent HFSS设计微带天线 摘要:以一同轴线底馈微带贴片为题材,分别用Sonnet 软件及Agilent Hfss 软件进行Simulate,分析其特性。并根据结果对这两个软件作一比较。 天线模型: 天线为微带贴片天线,馈电方式为50Ω同轴线底馈,中心频率3GHz ξ=,尺寸56mm*52mm*3.175mm 基片采用Duroid材料 2.33 r Patch :30mm*30mm 馈电点距Patch中心7mm处。 参见下图。 一.Sonnet 参数设置如下图:

介质层按照天线指标予以设置: 画出Antenna Layout.

Top view Bottom view 其中箭头所指处为via,并在GND层加上via port. 即实现了对Patch的底馈。 至此,Circuit Edit完成。下一步对其进行模拟。Array模拟结果: S11,即反射系数图:

可见中心频率在3G附近,。 进一步分析电流分布: 在中心频率的附近,取3G,3.1G作表面电流分布图:

可见,在中心频率的电流分布较为对称。符合设计的要求。 远区场方向图: 选取了若干个频率点绘制远区场增益图。从中可以看到,中心频率的增益较边缘为大。 符合设计的要求。

二.Agilent Hfss Agilent Hfss (high frequency structure simulator)是AGILENT公司的一个专门模拟高频无源器件的软件。较现在广泛应用的ANSOFT HFSS功能类似,但操作简单明了。能在平面结构上建模天线不同,Agilent Hfss可以精确地定义天线的立体结构。并可将馈电部分考虑在模拟因素内,按要求设定辐射界面,等等。可能在本文的例子中,由于结构比较简单,并不能充分体现这一点,但也应可见一斑。 本例与HFSS HELP中所附带的例子较为类似,因此我参照HELP文件,在HFSS5.6环境下较为顺利的完成了模拟。 用HFSS模拟天线,主要分Draw Model、Assign Material、Define Boundary、Solve、Post Process 五个步骤: ⒈Draw Model: HFSS采用的是相当流行的AUTOCAD的ENGINE,因此绘制方法与AUTOCAD大同小异,这里不在赘述。我先分Air Box、Substrate Box、Coax Line、Patch几个部分画好模型。其中COAX LINE 包括内导体(圆柱)及外层介质及外导体(环柱);PATCH为一平面矩形,AIR BOX、SUBSTRATE BOX 为长方体。 同时,由于基板,同轴线之间会有重叠,所以应用3D OBJECTS 菜单中的Subtract命令将 重叠部分减去。

波导缝隙天线的设计和仿真

波导缝隙天线的设计和仿真 波导馈电的缝隙阵天线自第二次世界大战以后有很大发展。它广泛用于各种领域: 1、地面、舰载、机载雷达 2、导航雷达 3、气象雷达 4、雷达信标天线LL ……………………………… 特别最近十几年,随着对雷达抗干扰要求的提高、脉冲多普勒可视雷达的发展,要求天线应具有低副瓣或极低副瓣的性能,使波导缝隙天线成为此项要求的优选形式。同时随着各种计算机辅助技术的发展,如数控机床的使用,天线的整体焊接技术等,为波导缝隙天线的使用创造了基础。 波导缝隙构成的阵列主要有两种形式,即波导宽边开缝和波导窄边开缝,我们本次主要向大家介绍的是波导宽边开缝而构成的波导缝隙天线阵的设计与仿真。 波导宽边纵缝阵列天线不但具有口面效率高、副瓣电平低等优良的电气性能,而且还有厚度小、重量轻、结构紧凑、强度高、安装方便、抗风力强、功率容量大等特点,从而在机载火控雷达、导弹巡航等方面有着其它天线无法替代的优势。下面是几个波导宽边缝隙构成的阵列在实际中的应用实例。

主要讨论的内容: 1.波导缝隙天线的设计基础理论 2.波导缝隙行波线阵天线的设计和仿真 3.波导缝隙驻波线、面阵天线的设计和仿真 4.波导缝隙天线的Ansoft HFSS的实例设计和仿真(一)波导缝隙阵天线设计的基础理论 本章中您主要的目标是: 1.熟悉波导缝隙天线的基本概念。 2.了解波导缝隙的基本等效电路。 3.理解波导缝隙天线的基本电参数和缝隙阵列的构成。 4.知道波导缝隙天线的基本设计过程。

把一根波导放在自由空间,在波导输入端输入信号,波导终端接匹配负载。如果在波导宽边或窄边上切割一个窄的缝隙,此缝隙切断波导壁上的传导电流,在缝隙上将产生电场,且对波导内壁电流产生扰动,并从波导内耦合部分电磁能量向自由空间辐射。随着缝隙切割在波导壁的位置不同,形成不同的缝隙形式。

实验八 波导缝隙阵天线的设计与仿真

实验八波导缝隙阵天线的设计与仿真 一、实验目的 1.设计一个波导缝隙阵天线 2.查看并分析波导缝隙阵天线的 二、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 波导缝隙阵具有口面效率高、副瓣电平低等优良的性能。这里考虑宽边纵向谐振式驻波阵列,每个缝隙相距0.5λg ,距离波导宽边中心有一定偏移。Stevenson 给出宽边上纵向并联缝隙的电导为 ()a x g g π21sin = ()()g g b a g λλπλλ2cos 09.221= 其中,x 为待求的偏移,a 为波导内壁宽边长度,λg 为波导波长。在具体的设计中,可以利用HFSS 的优化功能来确定缝隙的谐振长度。首先确定在谐振缝隙设计中存在的几个变量,主要有缝隙偏移波导中心线的距离Offset ,缝隙的长度L ,缝隙的宽度W 等。一般可根据实际的加工确定出缝隙的宽度W ,应用HFSS 的优化功能得出缝隙的偏移量Offset 和缝隙长度Length 。如图1所示,在波端口的Y 矩阵参数可以等效于距检测端口的1/2个波导波长的缝隙中心的Y 矩阵参数,根据波导缝隙的基本设计理论,在谐振时缝隙的等效阻抗或导纳为实数。因此,当缝隙谐振时有Im(Y)=0。 单缝谐振长度优化示意图如下: 设计一个由20个缝隙组成的缝隙阵,采用Chebyshev 电流分布,前10个缝的电平分布如下: n 1 2 3 4 5 6 7 8 9 10 a n 0.33 0.29 0.39 0.5 0.62 0.73 0.83 0.91 0.97 1.0 根据电平分布进行归一化:∑==101212n n a K 短 路 波端口g λ41g λ2 1L

HFSS 天线设计实例

HFSS 天线设计实例 这是一种采用同轴线馈电的圆极化微带天线 切角实现圆极化 设计目标!(具体参数可能不精确,望大家谅解)主要讲解HFSS操作步骤! GPS微带天线:介质板:厚度:2mm,介电常数:2.2,大小:100mm*100mm 工作频率:1.59GHz,圆极化(左旋还是右旋这里不讲了哈),天线辐射在上半平面覆盖! 50欧同轴线馈电, 1、计算参数 首先根据经验公式计算出天线的基本参数,便于下一步建立模型。 贴片单元长度、宽度(正方形贴片长宽相等)、馈电点位置,分离单元长度.下表是经HFSS分析后选择的一组参数:

2、建立模型 首先画出基板50mm*50mm*2mm 的基板 起名为substrate 介电常数设置为如图2.2的,可以调整color颜色和transparent透明度便于观察 按Ctrl+D可以快速的使模型全可见!按住Ctrl+Alt键,拖动鼠标可以使3D模型自由旋转同理,我们画贴片:

1、在基板上画出边长65mm(假设用公式算出的是这么多)的正方形 2、起名为patch,颜色选绿色,透明度设为0。5 画切角是比较麻烦的 1、用画线条工具,画三线段,坐标分别是0.5.0, 5.0.0, 0.0.0 2、移动三角形,选中polyline1,选菜旦里edit\Arrange\move,先确定坐标原点或任一点为基准点,将三角形移动到左上角和贴片边沿齐平。 3、复制三角形,选中polyline1,选菜单里edit\arrange\duplicate\around axis,相对坐标轴复制,角度换成180,然后在右下角就出现了相对称的另一个三角形。 4、从patch上切掉对角上的分离单元polyline1和polyline1_1: 选中patch、polyline1和polyline1_1,选菜单里3D modeler\Boolean\Subtract 把polyline1和polyline1_1从patch上切掉最后剩下 先在介质板底面画一个100mm*100mm的正方形作为导电地板。起名为 ground 下面就是画馈源了:我们采用同轴线馈电,有两种建模方法: 1、在馈电点画一0.5mm的铜柱代表同轴线内导体,起名为feed 2、在介质板底面馈电点处画一1.5mm的圆,起名为port 3、复制port为port1,复制feed为feed1 4、复选port和feed1,执行菜单里3D Modeler\Boolean\Subtract,使port成为一个内径0.5mm外径1.5mm

实验八-波导缝隙阵天线的设计与仿真

实验八 波导缝隙阵天线的设计与仿真 一、实验目的 1.设计一个波导缝隙阵天线 2.查看并分析波导缝隙阵天线的 二、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 波导缝隙阵具有口面效率高、副瓣电平低等优良的性能。这里考虑宽边纵向谐振式驻波阵列,每个缝隙相距0.5λg ,距离波导宽边中心有一定偏移。Stevenson 给出宽边上纵向并联缝隙的电导为 ()a x g g π21sin = ()()g g b a g λλπλλ2cos 09.221= 其中,x 为待求的偏移,a 为波导内壁宽边长度,λg 为波导波长。在具体的设计中,可以利用HFSS 的优化功能来确定缝隙的谐振长度。首先确定在谐振缝隙设计中存在的几个变量,主要有缝隙偏移波导中心线的距离Offset ,缝隙的长度L ,缝隙的宽度W 等。一般可根据实际的加工确定出缝隙的宽度W ,应用HFSS 的优化功能得出缝隙的偏移量Offset 和缝隙长度Length 。如图1所示,在波端口的Y 矩阵参数可以等效于距检测端口的1/2个波导波长的缝隙中心的Y 矩阵参数,根据波导缝隙的基本设计理论,在谐振时缝隙的等效阻抗或导纳为实数。因此,当缝隙谐振时有Im(Y)=0。 单缝谐振长度优化示意图如下: 设计一个由20个缝隙组成的缝隙阵,采用Chebyshev 电流分布,前10个缝的电平分布如下: n 1 2 3 4 5 6 7 8 9 10 a n 0.33 0.29 0.39 0.5 0.62 0.73 0.83 0.91 0.97 1.0 根据电平分布进行归一化:∑==10 1 212n n a K 短路 波端口 g λ4 1g λ2 1L

波导缝隙天线的设计仿真

龙源期刊网 https://www.doczj.com/doc/d18107410.html, 波导缝隙天线的设计仿真 作者:蒋德富刘健 来源:《现代电子技术》2013年第20期 摘要:电磁仿真软件HFSS以其高精度,高可靠性在电磁仿真设计中得到了广泛的应用。但对于复杂天线的模型,其没有很好的方法简化建模操作,需要花费大量的设计时间。将HFSS提供的VBScript脚本语言功能作为接口,利用Matlab调用控制HFSS,从而协同HFSS 建立模型,达到快速建模的目的。提出了一套波导缝隙阵天线的设计方法,设计一个波导缝隙阵天线,运用Matlab协同HFSS建立天线模型,并进行仿真分析。结果验证了天线设计方法的准确性,以及运用Matlab调用HFSS建模的可行性。 关键词: HFSS; Matlab;波导缝隙天线;协同仿真 中图分类号: TN823.24?34 文献标识码: A 文章编号: 1004?373X(2013) 20?0014?03 波导缝隙阵列天线口径幅度易于控制,具有辐射效率高,方向性强,结构紧凑等特点,而且容易实现低副瓣乃至极低副瓣,因此在雷达和通信领域有着广泛的应用。高频仿真软件HFSS在电磁仿真领域有着广泛的应用,有着高仿真精度、高稳定性的特点。使用HFSS的3D 建模功能,可以很容易解决简单的模型创建问题,但是对于复杂天线结构模型的建立,没有特别有效的方法,使得建模过程十分繁琐耗时,而且容易出错。利用HFSS提供的VBScript脚本功能,可以对软件进行二次开发,以VBScript作为接口,利用Matlab调用HFSS协同建模仿真,可以简化模型建立的操作,节约设计时间。本文提出了一套波导缝隙天线的快速建模方法,设计了一个波导宽边裂缝阵列天线。并以此波导缝隙天线为例,应用Matlab协同HFSS建立模型仿真,对仿真结果进行了分析。 1 基本理论 波导缝隙天线是在波导宽壁或窄壁上开缝的天线,波导中传输的电磁波可以通过缝隙向外界进行辐射。通常有宽边偏置缝、宽边倾斜缝、窄边倾斜缝隙这几种开缝形式。根据波导终端的形式不同,波导缝隙阵天线可以分为行波阵和驻波阵。行波阵的波导终端接吸收负载,单元间距稍大或稍小于[λg2],驻波阵在距离终端[λg4]处接短路滑块,单元间距均为[λg2],本文设计的就是一个波导驻波阵天线。 1.1 波导缝隙天线理论分析 波导上的辐射缝隙向外界辐射能量,引起波导负载的变化,应用传输线理论分析波导的工作状态比较方便,将相应的缝隙等效成与传输线串联的阻抗或并联的导纳,再建立对应的等效电路模型,进而可以求出各个缝隙的等效阻抗或导纳。 Stevenson等效电路法,就是根据传输

波导缝隙天线的设计仿真方案详细教程

波导缝隙天线的设计仿真方案详细教程 1. 引言波导缝隙阵列天线口径幅度易于控制,具有辐射效率高,方向性强,结构紧凑等特点,而且容易实现低副瓣乃至极低副瓣,因此在雷达和通信领域有着广泛的应用。高频仿真软件HFSS在电磁仿真领域有着广泛的应用,有着高仿真精度、高稳定性的特点。使用HFSS 的3D建模功能,可以很容易解决简单的模型创建问题,但是对于复杂天线结构模型的建立,没有特别有效的方法,使得建模过程十分繁琐耗时,而且容易出错。利用HFSS 提供的VBScript脚本功能,可以对软件进行二次开发,以VBScript作为接口,利用Matlab调用HFSS协同建模仿真,可以简化模型建立的操作,节约设计时间。本文提出了一套波导缝隙天线的快速建模方法,设计了一个波导宽边裂缝阵列天线。并以此波导缝隙天线为例,应用Matlab协同HFSS建立模型仿真,对仿真结果进行了分析。 2.基本理论波导缝隙天线是在波导宽壁或窄壁上开缝的天线,波导中传输的电磁波可以通过缝隙向外界进行辐射。 通常有宽边偏置缝、宽边倾斜缝、窄边倾斜缝隙这几种开缝形式。根据波导终端的形式不同,波导缝隙阵天线可以分为行波阵和驻波阵。行波阵的波导终端接吸收负载,单元间距稍大或稍小于g /2 ,驻波阵在距离终端g /4 处接短路滑块,单元间距均为g /2 ,本文设计的就是一个波导驻波阵天线。 2.1 波导缝隙天线理论分析 波导上的辐射缝隙向外界辐射能量,引起波导负载的变化,应用传输线理论分析波导的工作状态比较方便,将相应的缝隙等效成与传输线串联的阻抗或并联的导纳,再建立对应的等效电路模型,进而可以求出各个缝隙的等效阻抗或导纳。Stevenson 等效电路法,就是根据传输线理论和波导模的格林函数导出矩形波导缝隙的计算公式。图1所示为波导宽边纵向偏置缝隙及其等效电路。 归一化等效谐振电导为:

基于HFSS的天线设计教材

图1:微带天线的结构 一、 实验目的 ●利用电磁软件Ansoft HFSS 设计一款微带天线。 ◆微带天线要求:工作频率为2.5GHz ,带宽 (回波损耗S11<-10dB)大于5%。 ●在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、 实验原理 1、微带天线简介 微带天线的概念首先是由Deschamps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。与天线性能相关的参数 包括辐射源的长度L 、辐射源的 宽度W 、介质层的厚度h 、介质 的相对介电常数r ε和损耗正切 δtan 、介质层的长度LG 和宽度 WG 。图1所示的微带贴片天线是采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线街头的内心线穿过参考地和介质层与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能,矩形贴片微带天线的工作主模式是TM10模,意味着电场在长度L 方向上有2/g λ的改变,而在宽度W 方向上保持不变,如图2(a )所示,在长度L 方向上可以看做成有两个终端开路的缝隙辐射出电磁能量,在宽度W 方向的边缘处由于终端开路,所以电压值最大电流值最小。从图2(b )可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。

【总结】波导缝隙阵带宽总结

波导缝隙阵带宽总结 一,改善波导缝隙天线带宽的方法: 波导裂缝阵列天线具有较高的功率容量、较低的交叉极化、较低的馈电损耗以及较高的效率等优点而被广泛应用于雷达和通信领域。波导缝隙天线虽然有很多优点,但是其也有固有的缺点,即工作频带很窄,相对带宽一般在1%-4%之间。但是随着需求的发展,目前一些应用对波导缝隙天线的带宽也提出了要求,例如高分辨率合成孔径雷达,同时在这些应用中对交叉极化抑制的要求也很高,因此对宽带和低交叉极化的波导缝隙阵的研究是具有非常现实的意义的。 波导缝隙天线阵包括两种,行波阵和谐振阵。前者波导辐射缝隙间距偏离半个波导波长,一端激励一端接匹配负载,电磁波在波导内成行波状态,通常应用与大型天线阵中。后者单元间距为半个波导波长,一端激励一端在离最后一个辐射缝隙四分之一波导波长处短路,波导内电磁波呈驻波状态,这种阵一般应用于小型阵列。前者频带宽些,但在大型阵中由于波导传输损耗及终端负载的吸收,效率较低。后者一般效率高些,但是带宽窄些。总之,工作频带都较窄。 早期人们采用串-并联缝隙,倾斜偏置缝或分别匹配每个缝隙的方法来展宽带宽,但是采用串-并联缝隙或倾斜偏置缝将带来另一计划分量增加的问题,而匹配每个缝隙对于天线阵设计来说是比较困难的事情。目前,常用的改善波导缝隙天线带宽的方法有三种:1将天线分成若干个子阵;2采用中间馈电的馈电方式;3用脊波导代替矩形波导。 二,具体实例 (1) 对于波导窄边开斜缝天线阵,由于缝隙倾斜引起较高的交叉极化电平。窄边非倾斜缝辐射单元形式。由于辐射电磁波的电场分量垂直于辐射细缝,而此种

辐射缝隙完全垂直于波导的轴线,排除了单元在垂直于波导纵向的电场分量,因此辐射电磁波只包含波导轴向分量,从而得到优越的交叉极化特性。所以用非倾斜缝隙作为辐射单元组成的天线将得到非常高的交叉极化抑制性能。本文提出一种非倾斜缝的新型激励方式,将一对切角矩形金属膜片置于缝隙两边,膜片紧贴于波导的宽边和上部窄边上,这种结构有利于天线阵的制作和增加可靠性。设计加工了一个x波段的16元侧射均匀直线阵,为了有效展宽工作带宽,将天线阵划分成4个谐振子阵,并由一个波导功分器馈电。测试结果验证了设计的可行性。 图1 波导窄边非倾斜缝结构 波导窄边的电流只有y分量,当在窄边沿y向开非倾斜细缝时,其切割的电流几乎忽略不计,在缝隙内不能激励起电磁场,因此对空间不能产生辐射。为了改变这一状况,此处采用一对切角矩形金属膜片置于缝隙两边(如图l所示),改变缝隙附近波导内的场分布,从而使波导窄壁上电流具有z分量,这样非倾斜缝就可以有效切割电流,在缝隙内激励起电磁场,进而向空间产生辐射。由于波导窄边尺寸较小,为了得到谐振长度,缝隙需要扩展到波导的宽边,切割到宽边的深度为h。为了改善因单元数较多限制天线阵工作带宽的因素,将天线阵分成4个子阵,并由一个波导功分器馈电。功分器如图2所示

hfss设计天线范例

第二章创建项目 本章中你的目标是: √保存一个新项目。 √把一个新的HFSS设计加到已建的项目 √为项目选择一种求解方式 √设置设计使用的长度单位 时间:完成这章的内容总共大约要5分钟。 一.打开HFSS并保存一个新项目 1.双击桌面上的HFSS9图标,这样就可以启动HFSS。启动后的程序工作环境如图:

图2-1 HFSS工作界面 1.打开File选项(alt+F),单击Save as。2.找到合适的目录,键入项目名hfopt_ismantenna。 图2-2 保存HFSS项目 二.加入一个新的HFSS设计 1.在Project菜单,点击insert HFSS Design选项。( 或直接点击图标。)一个新的工程被加入到hfopt_ismantenna项目中,默认名为HFSSModel n。

图2-3 加入新的HFSS设计 2.为设计重命名。在项目树中选中HFSSModel1,单击鼠标右键,再点击Rename项,将设计重命名为hfopt_ismantenna。 图2-4 更改设计名

三.选择一种求解方式 1.在HFSS菜单上,点击Solution Type选项. 2.选择源激励方式,在Solution Type 对话框中选中Driven Mode项。 图2-5 选择求解类型图2-6 选择源激励方式 四.设置设计使用的长度单位

1.在3D Modeler菜单上,点击Units选项. 2.选择长度单位,在Set Model Units 对话框中选中mm项。 图2-5 选择长度单位图2-6 选择mm作为长度单位 第三章构造模型 本章中你的目标是: √建立物理模型。 √设置变量。 √设置模型材料参数 √设置边界条件和激励源 √设置求解条件 时间:完成这章的内容总共大约要35分钟。

一种X波段波导缝隙天线的设计与仿真

一种X波段波导缝隙天线的设计与仿真 作者:李高升,卢中昊,刘锋,何建国 来源:《现代电子技术》2010年第21期 摘要:给出了波导缝隙天线设计步骤,设计一种X波段波导缝隙天线,计算了天线口径、波导数量、缝隙的单元数量、宽度、位置等参数,设计半高波导宽臂耦合谐振缝魔T和差器,在此基础上完成了天线设计。仿真结果表明,当中心频率为12 GHz时,和波束增益为28.9 dB,第一副瓣电平为-22.2 dB,所设计的天线形式可获得较好的和、差波束方向图、电压驻波比和增益等参数。 关键词:波导缝隙天线; 低副瓣; 辐射缝隙; 和差器 中图分类号:TN957.2-34文献标识码:A 文章编号:1004-373X(2010)21-0005-04 Design and Simulation of Waveguide Aperture Antenna Working in X-band LI Gao-sheng, LU Zhong-hao, LIU Feng, HE Jian-guo (College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China) Abstract: The procedures for designing a waveguide aperture antenna are presented. A waveguide aperture antenna working in X-band is designed. The aperture of antenna, number of waveguide, and parameters of aperture including number, width and location are calculated. A wide-arm coupling resonant aperture magic T comparator with half-height waveguide is designed, based on which the design of the antenna is finished. Simulation results indicate that gain of the sum beam is 28.9 dB and the first side lobe is -22.2 dB at 12 GHz. The antenna can attain good parameters such as sum and subtract pattern, voltage stand wave ratio and gain. Keywords: waveguide aperture antenna; low side lobe; radiation slot; comparator 0 引言 随着信息化水平的提高和无线电技术的发展,对高效率、低副瓣天线的需求日渐强烈,特别是弹载、机载搜索和跟踪天线,由于早年常用的抛物面天线固有的口径遮挡,难以在这两方面有大幅度提高,不能满足日益增长的需求。 波导缝隙天线在设计方面具有较大的灵活性,可调整和优化的参数多,较易实现高效率、超低副瓣和高增益,还具有承受功率高,结构紧凑等优点,得到了广泛的研究和应用[1-2]。

HFSS的天线课程设计(20201005041508).docx

一、实验目的 ●利用电磁软件Ansoft HFSS 设计一款微带天线。 ◆微带天线要求:工作频率为,带宽( 回波损耗 S11<-10dB)大于 5%。 ● 在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、实验原理 1、微带天线简介 微带天线的概念首先是由 Deschamps于 1953 年提出来的,经过 20 年左右的发展, Munson和 Howell 于 20 世纪 70 年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1 是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。与天线性能相关的参数 包括辐射源的长度L、辐射源的 宽度 W、介质层的厚度 h、介质 的相对介电常数r和损耗正切 tan、介质层的长度LG和宽度 WG。图 1 所示的微带贴片天线是图 1:微带天线的结构 采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈 电,也就是将同轴线街头的内心线穿过参考地和介质层与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能, 形贴片微带天线的工作主模式是TM10模,意味着电场在长度L方向上有 g / 2 矩 的 改变,而在宽度 W方向上保持不变,如图 2(a)所示,在长度 L 方向上可以看做 成有两个终端开路的缝隙辐射出电磁能量,在宽度W方向的边缘处由于终端开路,所以电压值最大电流值最小。从图 2(b)可以看出,微带线边缘的电场可以分解成 垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小 相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分 量相互抵消,辐射电场平行于天线表面。

HFSS天线设计实例

HFSS 天线设计实例这是一种采用同轴线馈电的圆极化微带天线 切角实现圆极化

设计目标!(具体参数可能不精确,望大家谅解)主要讲解HFSS操作步骤! GPS微带天线:介质板:厚度:2mm,介电常数:2.2,大小:100mm*100mm 工作频率:1.59GHz,圆极化(左旋还是右旋这里不讲了哈),天线辐射在上半平面覆盖! 50欧同轴线馈电, 1、计算参数 首先根据经验公式计算出天线的基本参数,便于下一步建立模型。 贴片单元长度、宽度(正方形贴片长宽相等)、馈电点位置,分离单元长度.下表是经HFSS分析后选择的一组参数: 2、建立模型 首先画出基板50mm*50mm*2mm 的基板 起名为substrate

介电常数设置为如图2.2的,可以调整color颜色和transparent透明度便于观察 按Ctrl+D可以快速的使模型全可见!按住Ctrl+Alt键,拖动鼠标可以使3D模型自由旋转 同理,我们画贴片: 1、在基板上画出边长65mm(假设用公式算出的是这么多)的正方形 2、起名为patch,颜色选绿色,透明度设为0。5 画切角是比较麻烦的 1、用画线条工具,画三线段,坐标分别是0.5.0, 5.0.0, 0.0.0 2、移动三角形,选中polyline1,选菜旦里edit\Arrange\move,先确定坐标原点或任一点为基准点,将

三角形移动到左上角和贴片边沿齐平。 3、复制三角形,选中polyline1,选菜单里edit\arrange\duplicate\around axis,相对坐标轴复制,角度换成180,然后在右下角就出现了相对称的另一个三角形。 4、从patch上切掉对角上的分离单元polyline1和polyline1_1: 选中patch、polyline1和polyline1_1,选菜单里3D modeler\Boolean\Subtract 把polyline1和polyline1_1从patch上切掉最后剩下 先在介质板底面画一个100mm*100mm的正方形作为导电地板。起名为ground 下面就是画馈源了:我们采用同轴线馈电,有两种建模方法: 1、在馈电点画一0.5mm的铜柱代表同轴线内导体,起名为feed 2、在介质板底面馈电点处画一1.5mm的圆,起名为port 3、复制port为port1,复制feed为feed1 4、复选port和feed1,执行菜单里3D Modeler\Boolean\Subtract,使port成为一个内径0.5mm外径1.5mm的圆环

(完整版)基于HFSS的微带天线设计毕业设计论文

烟台大学 毕业论文(设计) 基于HFSS的微带天线设计 Microstrip antenna design based on HFSS 申请学位:工学学士学位 院系:光电科学技术与信息学院

烟台大学毕业论文(设计)任务书院(系):光电信息科学技术学院

[摘要]天线作为无线收发系统的一部分,其性能对一个系统的整体性能有着重要影响。近年来内置天线在移动终端数量日益庞大的同时功能也日益强大,对天线的网络覆盖及小型化也有了更高的要求。由于不同的通信网络间的频段差异较大,所以怎样使天线能够覆盖多波段并且同时拥有足够小的尺寸是设计内置天线的主要问题。微带天线具有体积小,重量轻,剖面薄,易于加工等诸多优点,得到广泛的研究与应用。微带天线的带宽通常小于3%,在无线通信技术中,对天线的带宽有了更高的要求;而电路集成度提高,系统对天线的体积有了更高的要求。 随着技术的进步,在不同领域对于天线的各个要求越来越高,所以对微带天线的尺寸与性能的分析有着重要的作用。对此,本文使用HFSS 软件研究了微带天线的设计方法,论文介绍及分析了天线的基本概念和相关性能参数,重点对微带天线进行了研究。 本文介绍了微带天线的分析方法,并使用HFSS 软件的天线仿真功能,对简单的微带天线进行了仿真和分析。 [关键词] 微带天线设计分析HFSS [Abstract]Antenna as part of the wireless transceiver system, its performance important impact on the overall performance of a system. Internal antenna in recent years an increasingly large number of mobile terminals while also increasingly powerful, and also network coverage and miniaturization of the antenna Band differences between the different communication networks, cover band and also problem of the design built-in antenna. Microstrip antenna with small size, light weight, thin profile, easy to process many advantages, extensive research and application. Microstrip antenna bandwidth is typically less than 3% the bandwidth of the antenna in wireless communication technology; improve the integration of the circuit the size of the antenna. As technology advances in different areas for various requirements of the antenna important role. Article uses HFSS microstrip antenna design, the paper introduces and analyzes the basic concepts and performance parameters of the antenna, with emphasis on the microstrip antenna. This article describes the analysis of the microstrip antenna and antenna simulation in HFSS simulation and analysis functions, simple microstrip antenna. [Key Words]Microstrip antenna design analysis HFSS

波导裂缝阵列天线的结构设计

波导裂缝阵列天线的结构设计 张雪芹 (西安电子工程研究所 西安 710100) 【摘要】 简述了常规波导裂缝阵列天线的结构设计方法,同时以某些天线为例 强调了结构设计时主要考虑的几个因素。 关键词:波导裂缝阵列 框架 基准 Structural Design of Slotted Waveguide Array Antenna Zhang Xueqin (X i'an Electronic Engineering Resear ch Institute,X i'an710100) Abstract:This paper briefs the str uctural desig n of comm on slotted w aveg uide array antenna and presents several key factors w hich should be co nsidered during structur al design of this antenna. Keywords:slotted w aveguide array frame reference 1 引言 随着现代雷达技术的发展,波导裂缝阵列天线已被广泛应用于多种形式的雷达上。我所已有多个雷达产品采用裂缝阵列天线,鉴于波导裂缝阵列天线的特点,对其天线的结构设计提出了较高的要求。 波导裂缝阵列天线结构设计的合理与否,不仅影响该天线的加工工艺性以及天线的加工制造成本,更重要的是影响天线的电气性能。在此,以某些裂缝天线为例,对该种天线的设计方法做一简要的总结。 2 波导裂缝阵列天线的常规结构布局及组成 波导裂缝阵列天线从结构上可分为两大部分:第一部分为馈电网络部分,它主要包括功分器、移相器、裂缝波导等;第二部分为天线框架部分。其结构布局如图1。 第一部分是实现电磁波的收发功能,第二部分为第一部分的载体,其功能为支撑第一部分并安装与其有关的装置,如激励器等。 3 常规结构设计要求 a.外形几何尺寸:天线的外形主要取决于天线电气的要求及雷达总体要求,与天线的增益、功率和雷达总体架设、运输等因素有关。 本文于2000年9月10日收到 57

相关主题
文本预览
相关文档 最新文档