关于泰勒公式的应用初探
- 格式:pdf
- 大小:367.90 KB
- 文档页数:19
《高等数学》课程中泰勒公式的应用泰勒公式是数学中的一种重要工具,它可以将一个可导函数在某个点附近展开成一个无限项的多项式,从而方便于研究函数的性质和行为。
在《高等数学》课程中,泰勒公式的应用非常广泛,涉及到数值逼近、极限计算、函数性质的研究等方面。
泰勒公式可以用于数值逼近。
我们知道,实际中很多函数的精确计算是非常困难的,特别是在计算机上进行数值计算时。
我们常常使用泰勒公式来近似计算函数的值。
泰勒公式展开后的多项式可以截断成一定项数,从而得到函数在某个点的近似值。
这样的逼近方法在实际应用中非常重要,比如在科学计算、工程设计、物理模拟等方面都有广泛的应用。
泰勒公式还可以用于函数的极限计算。
我们可以将一个函数在某个点附近进行泰勒展开,然后通过取极限的方式来研究函数在该点处的性质。
我们可以利用泰勒公式来求解不定形式的极限,如0/0、∞/∞、1^∞等形式的极限。
通过适当的泰勒展开和计算,我们可以得到这些极限的具体值或者给出它们的一些性质。
泰勒公式还可以用于研究函数的性质。
我们知道,泰勒公式展开后的多项式包含了函数的各阶导数信息,通过研究这些导数可以得到函数的一些特征。
通过观察函数的高阶导数可以判断函数的单调性、凹凸性、拐点等性质。
泰勒公式还可以用于研究函数的最值,通过求取泰勒多项式的导数信息,可以确定函数的最大值或最小值,并找到最值点的坐标。
泰勒公式还有一些特殊的应用。
在微积分学中,我们常常遇到一些复杂的函数,难以直接进行求导或积分。
而泰勒公式则可以将这些函数近似表示成一个多项式,从而使得计算和研究变得简便。
泰勒公式还可以用于构造一些特殊的函数,比如常用的三角函数、指数函数、对数函数等。
泰勒公式在《高等数学》课程中有着广泛的应用。
它不仅可以用于数值逼近和极限计算,还可以用于研究函数的性质和解决一些数学问题。
对于学习数学的学生来说,理解和掌握泰勒公式的应用,对于深入理解和掌握微积分学的基本原理和方法具有重要意义。
泰勒公式高中数学应用泰勒公式是数学中一种重要的数值逼近方法,常应用于高等数学、物理学等科学领域中。
它的基本思想是通过泰勒级数将一个函数在一些点处展开成无穷级数,从而在该点的邻域内用该级数来逼近原函数的值,从而简化计算或研究问题。
下面将介绍泰勒公式的原理以及在高中数学应用中的具体例子。
泰勒公式的原理:泰勒公式是将一个函数在其中一点的邻域内用无穷级数来表示的方法。
它利用函数在该点处的导数以及所有高阶导数来进行级数展开。
对于光滑函数f(x),在特定点a处的泰勒级数展开可以表示为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...这里f(a)为函数在点a处的函数值,f'(a)为一阶导数在点a处的函数值,f''(a)为二阶导数在点a处的函数值,依此类推。
可以看出,泰勒级数展开的每一项都是原函数在a点的一些导数乘以(x-a)的幂和阶乘的商。
泰勒级数展开常常会被截断为有限项,这样就得到了泰勒公式:f(x)≈f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...+f^n(a)(x-a)^n/n!这里n为截断的项数。
在高中数学中,泰勒公式主要应用于以下几个方面:1.函数逼近:在一些情况下,一些函数无法直接求出解析表达式,但是可以通过泰勒公式对其进行逼近计算。
比如,对指数函数exp(x)在x=0处进行泰勒级数展开:exp(x) = 1 + x + x^2/2! + x^3/3! + ...然后,可以通过截断泰勒级数并选取合适的项数,来逼近计算exp(x)的值。
这种方法同样适用于对三角函数、对数函数等的逼近计算。
2.函数极值:在高中数学的最优化问题中,经常需要求取函数的极值点。
泰勒公式可以辅助求解函数的极值点。
泰勒公式在高中数学命题中的应用
泰勒公式是一种非常重要的数学工具,它可以将任意函数表示为一个无限级数的形式。
在高中数学中,泰勒公式通常被用来解决一些比较复杂的命题。
具体应用如下:
1. 求函数的导数
利用泰勒公式,我们可以将一个函数表示为无限级数的形式。
如果我们知道这个函数的级数展开式,那么我们就可以轻松地求出它的各阶导数。
这对于一些比较复杂的函数而言是非常有用的。
比如说,如果我们需要求一些高阶导数的值,那么利用泰勒公式就可以省去很多繁琐的计算。
2. 求函数在某点处的近似值
泰勒公式还可以用来求函数在某点处的近似值。
我们可以选择一个比较小的正实数 h,然后利用泰勒公式来求出函数在 x+h 处的值。
这个值就是函数在 x 点的一个近似值。
当 h 越来越小的时候,这个近似值也就越来越接近函数在 x 点的真实值。
3. 求函数的极值
泰勒公式还可以用来求函数的极值。
我们可以利用泰勒公式求出函数在某个点的导数,然后再求出导数的零点。
这些零点就是函数的极值点。
通过这种方式,我们可以比较容易地求出函数的极值。
4. 求函数的泰勒级数
最后,泰勒公式还可以用来求函数的泰勒级数。
这个级数可以用来表示函数在某个点附近的所有信息。
通过求解这个级数,我们可以
了解函数在这个点附近的各种性质,比如连续性、可导性、高阶导数的连续性等等。
这些性质对于分析函数的行为非常有帮助。
初数数学公式解析泰勒公式泰勒公式是数学中常用的公式之一,它可以将一个函数在某一点附近展开成一个无穷级数,从而更加方便地进行计算和近似。
在初等数学中,我们经常会遇到需要使用泰勒公式的情况,下面我们就来详细解析泰勒公式及其应用。
一、泰勒公式的形式泰勒公式是根据函数在某点附近的函数值和其各阶导数的值来进行展开的。
对于一个光滑的函数f(x),在某一点a处,我们可以将其泰勒展开为以下形式:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ...其中,f'(a)表示f(x)在x=a处的一阶导数,f''(a)表示f(x)在x=a处的二阶导数,以此类推。
二、泰勒公式的应用1. 近似计算通过泰勒公式展开,我们可以将一个复杂的函数转化为一个无穷级数,从而实现对该函数的近似计算。
在实际应用中,我们通常只取前几项,即保留到某个阶数的导数,从而得到一个近似值。
这种方法在数值计算和工程问题中具有重要的意义。
2. 函数图像的分析通过泰勒公式展开,我们可以更好地理解函数在某一点附近的性质。
例如,通过计算函数的导数可以确定函数在某点的增减性、凹凸性以及极值点的位置等。
3. 解析函数的求导对于一些复杂的函数,直接对其进行求导可能比较困难。
但通过使用泰勒公式展开后,我们可以较为方便地求出函数的导数。
这对于解析函数的微积分问题有很大的帮助。
三、泰勒公式的局限性需要注意的是,泰勒公式只能在某一点的附近作近似,其近似程度与展开阶数相关。
当阶数较低时,近似效果可能并不理想。
另外,对于非光滑函数或者在某一点处不光滑的函数,泰勒公式无法应用。
四、例题分析我们通过一个例题来进一步说明泰勒公式的应用。
例题:计算函数f(x) = sin(x)在x=0处的泰勒展开式,保留到二阶导数。
解:首先,我们计算出函数f(x) = sin(x)的一、二阶导数:f'(x) = cos(x)f''(x) = -sin(x)然后,根据泰勒公式的形式,展开式为:f(x) ≈ f(0) + f'(0)(x-0) + f''(0)(x-0)^2/2!化简后得到:f(x) ≈ 0 + 1(x) + (-sin(0))(x^2)/2即:f(x) ≈ x - (1/2)x^2这样,我们就得到了f(x) = sin(x)在x=0处的二阶泰勒展开式。
泰勒公式的应用超强总结泰勒公式(Taylor series)是一种用来近似表示函数的方法,它将一个光滑的函数表示为多项式的形式。
在实际应用中,泰勒公式有着广泛的应用,包括物理、工程、经济等领域。
以下是泰勒公式的一些超强应用总结。
1.函数逼近:泰勒公式可以将一个复杂的函数逼近成一个多项式,用来简化计算。
这在数值计算和科学建模中广泛应用。
比如,在物理学中,我们可以使用泰勒公式将一个非线性运动的函数逼近成一个线性函数,从而简化计算。
2.误差估计:通过泰勒公式,我们可以对近似函数的误差进行估计。
在实际计算中,我们通常使用有限项的泰勒公式近似计算,而丢弃高阶项将会引入误差。
通过估计误差,我们可以更好地控制近似结果的精度,从而提高计算效率。
3.求解无解析解的问题:有些函数在数学上没有解析解,即无法用一个简单的表达式表示。
泰勒公式可以帮助我们近似求解这些问题。
比如,在微积分中,我们可以使用泰勒公式近似求解一些复杂的微分方程,从而得到数值解。
4.数值积分:泰勒公式可用于数值积分的近似计算。
在实际计算中,我们通常使用数值积分方法来计算曲线下面积或求解积分方程。
泰勒公式可以将被积函数展开成无穷级数,再通过对级数进行近似计算来求解积分。
5.精确度改善:通过对泰勒公式进行适当的变换和近似,可以提高计算结果的精度。
在数值计算中,我们经常会遇到舍入误差和近似误差等问题,通过泰勒公式的应用可以对这些误差进行修正和改善,从而得到更精确的计算结果。
6.其他应用领域:泰勒公式还可以应用于信号处理、图像处理、优化问题等领域。
例如,在信号处理中,泰勒公式可以用来进行信号的近似重构和滤波。
在优化问题中,泰勒公式可以用来近似目标函数,并帮助我们求解最优化问题。
总之,泰勒公式在科学和工程中具有广泛的应用。
通过对函数的逼近和近似,我们可以简化计算、提高精度、解决无解析解的问题,以及在数值计算、积分、优化等领域中得到更好的结果。
因此,掌握泰勒公式的应用是非常重要的,可以帮助我们更好地理解和解决实际问题。
泰勒公式及其应用泰勒公式是微积分中的一个基础公式,用于将一个函数在某个点处展开成幂级数的形式。
泰勒公式在物理,工程和数学等领域中至关重要,因为它提供了一个计算一些复杂函数的函数值的便捷方法。
本文将介绍泰勒公式的基本原理及其在各个领域中的应用。
泰勒公式的基本原理在数学中,泰勒公式是利用函数在某一点的导数展开成无限级数的公式。
假设给定一个函数 $f(x)$,我们希望将其在 $x=a$ 处展开成幂级数的形式。
此时,根据泰勒公式,我们可以得到:$$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^n$$其中,$f^{(n)}(a)$ 表示函数 $f(x)$ 在 $x=a$ 处的 $n$ 阶导数。
公式中展开成无限级数的所有$n$ 阶导数都被合并到一个系数中,即 $(x-a)^n$ 剩下的就是阶乘算法。
一般来说$=\frac{d^{n} f}{dx^{n}}$,就是将$f$求导$n$次例如,如果我们要将函数 $y=\sin x$ 在 $x=0$ 处展开为幂级数的形式,我们可以使用泰勒公式:$$\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots $$这个级数的每一项都根据 $n$ 的变化而变化,这确定了它的无限和。
通过泰勒公式,我们得到了一个幂级数的形式,使我们能够计算不同的 $x$ 值的函数值。
泰勒公式的应用范围泰勒公式的应用范围非常广泛。
下面我们将重点介绍泰勒公式在物理,工程和数学等领域中的应用。
1. 物理学应用泰勒公式在物理学中的应用非常广泛。
例如,当我们研究两个物体之间的吸引力时,我们可以使用牛顿万有引力定律:$$F = G\frac{m_1m_2}{r^2}$$其中,$F$ 是物体之间的引力,$m_1$ 和 $m_2$ 是两个物体的质量,$r$ 是两个物体之间的距离,$G$ 是宇宙引力常数。
泰勒公式在极限中的几种应用泰勒公式在解决具体的数学问题的时候有着重要的作用,它的一般形式为()()20000000()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x R x n '''=+-+-++-+其中()n R x 为拉格朗日余项()(1)10()()1!n n f x x n ξ++-+或皮亚若余项()()n x x ο-[1].在求极限的过程中就有好几种形式可以借助于泰勒公式来解决,本文主要介绍泰勒公式在极限中的几种具体的应用。
1、利用泰勒展开求极限在求极限的过程中可以将其中一项进行泰勒展开,将原问题转化为多项式的形式求极限。
例1[2] 求21lim ln 1x x x x →∞⎡⎤⎛⎫-+⎪⎢⎥⎝⎭⎣⎦解 根据泰勒展开式 ()231111ln 123n x x x x xο⎛⎫+=-+++ ⎪⎝⎭ , 在本题中,x 的指数最高为2,因此可以展开至2阶就可以了, 原极限222111lim 2x x x x xx ο→∞⎡⎤⎛⎫⎛⎫=-⋅-+⎢⎥ ⎪⎪⎝⎭⎝⎭⎣⎦()1lim 12x x x ο→∞⎡⎤=-++⎢⎥⎣⎦12=. 2、求满足泰勒公式的θ的极限例2 已知()f x '在D 上连续,()0f x ''≠,对0x h D +∈有()()()()00001f x h f x hf x h θθ'+=++<<,求0lim h θ→. 解 已知()()()000f x h f x hf x h θ'+=++则利用泰勒公式有()()()()20000112f x h f x hf x f x h h θ'''+=+++ 两式相减得到 ()()()2000112hf x h hf x f x h h θθ''''+-=+ 即()()()000112f x h f x f x h h θθ''+-''=+()()()()000100011limlim 22h h f x h f x f x h f x h θθ→→''+-''''=+= 又因为 ()()000limh f x h f x hθ→''+-()()()00000limlim h h f x h f x f x hθθθθ→→''+-''=⋅=⋅最终得到 01lim 2h θ→=. 同样的,若已知()()()()2000012f x h f x hf x f x h h θ'''+=+++ 则利用泰勒公式有()()()()()230000011126f x h f x hf x f x h f x h h θ''''''+=++++两式相减可以得到 ()()()223000113f x hh f x h f x h h θθ'''''''+-=+ 即()()()000113f x h f x f x h h θθθθ''''+-'''⨯=+()()()0001001limlim 3h h f x h f x f x h hθθθθ→→''''+-'''⨯=+ 得到 ()()00001lim lim3h h f x f x θ→→''''''= 最终得到 01lim 3h θ→=. 3、泰勒公式在变上限积分的等价无穷小替换中的应用在变上限积分()()x f t dt ϕ⎰中,如果()0x ϕ→,那么该变上限积分就是一个无穷小,对被积函数()f t 进行泰勒展开,则()200000000()()()()()()()()(())2!!n n n f t f t f t f t f t t t t t t t t t n ο'''=+-+-++-+-我们可以展开2阶得到000()()()()f t f t f t t t '≈+- 则()()()()()()()()()20000001()2x x f t dt f t f t t t dt f t x f t x ϕϕϕϕ''≈+-≈+⎡⎤⎣⎦⎰⎰又因为()()()()()()200()lim12x x f t dtf t x f t x ϕϕϕϕ→'+⎰()()()()()()()000limx f x x f t x f t x x ϕϕϕϕϕϕ→'⎡⎤⎣⎦='''+()()()()()000limx f x f t f t x ϕϕϕ→⎡⎤⎣⎦='+1=得到 ()()()()()20001()2x f t dt f t x f t x ϕϕϕ'+⎰例如()0sin x tdt ϕ⎰中,当()0x ϕ→时,我们可以取00t =,得到()()201sin ~2x tdt x ϕϕ⎰同理得到()()201tan ~2x tdt x ϕϕ⎰;()()201arcsin ~2x tdt x ϕϕ⎰;()()201arctan ~2x tdt x ϕϕ⎰;()()()2011~2x te dt x ϕϕ-⎰; ()()()201ln 1~2x t dt x ϕϕ+⎰; ()()()3011cos ~6x t dt x ϕϕ-⎰;()()()20[11]~2x t dt x ϕααϕ+-⎰. 例3求()21cos 0arctan lim1x xx tdt dt-→⎰⎰解: 在2arctan x tdt ⎰中,()2x x ϕ=,当0x →时,根据公式,2401arctan ~2x tdt x ⎰;在)1cos 01xdt -⎰中,()1cos x x ϕ=-,当0x →时,根据公式得)()1cos 240111~1cos ~416xdt x x --⎰;极限()2401cos 0041arctan 2limlim 81116x xx x x tdtdt x -→→==⎰⎰. 除了在极限中,泰勒公式在求导数、定积分的证明、不等式的证明、级数敛散性判断、求近似值等一系列题型中都有着广泛的应用。
泰勒公式的证明及推广应用泰勒公式是一种用于近似计算函数的工具,它将函数表示为无穷级数的形式。
这个公式是由英国数学家布鲁诺·泰勒(Brook Taylor)在18世纪提出的。
在本文中,我们将简要介绍泰勒公式的证明,并探讨一些关于泰勒公式的推广应用。
证明泰勒公式的一种常用方法是使用数学归纳法。
我们可以根据函数的导数逐次展开来得到一般形式的泰勒公式。
假设函数f(x)的n次导数在区间[a,b]内连续,以及f(x)的(n+1)次导数在区间[a,b]内存在。
我们可以得到以下泰勒公式的一般形式:f(x)=f(a)+f'(a)(x-a)/1!+f''(a)(x-a)²/2!+...+fⁿ(a)(x-a)ⁿ/n!+Rⁿ(x)其中,Rⁿ(x)是余项,它可以表示为(fⁿ⁺¹(z)(x-a)ⁿ⁺¹)/(n+1)!,其中a<z<x。
余项Rⁿ(x)可以用于估计泰勒级数的误差,并在实际应用中对所得近似值进行修正。
泰勒公式可以应用于各种数学和物理问题中。
下面是一些泰勒公式的推广应用的例子:1.近似计算:泰勒公式可以用于近似计算复杂函数的值。
通过截断级数,我们可以得到一个有限项的泰勒多项式,用于计算函数在其中一点的近似值。
2.数值积分:通过将函数展开为泰勒级数,并对级数进行求和,我们可以将函数的积分转化为级数的求和。
这种方法广泛应用于数值积分的算法中。
3.近似求解微分方程:很多微分方程难以找到解析解,但可以使用泰勒公式来近似求解。
通过将微分方程转化为泰勒级数,并截断级数至有限项,我们可以得到一个逼近解。
4.反函数的泰勒展开:泰勒公式不仅适用于函数的展开,也适用于反函数的展开。
通过将函数和它的逆函数展开为泰勒级数,并对级数进行求和,我们可以得到函数的反函数的泰勒展开。
在实际应用中,泰勒公式的推广应用不仅局限于以上几个领域。
它可以使用在各种数学和物理问题中,包括信号处理、金融工程、计算机图形学等。
泰勒公式及其应用探索摘要:文章主要对泰勒公式在广义积分敛散性中的应用关于界的估计、和泰勒公式展开的唯一性问题做了简单系统的介绍和分析,从而体现泰勒公式式在微分学中占有很重要的地位。
关键词:泰勒公式一、引言近代微积分的蓬勃发展,促使几乎所有的数学大师都致力于相关问题的研究,特别是泰勒,笛卡尔,费马,巴罗,沃利斯等人作出了具有代表性的工作。
泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒在微积分学中将函数展开成无穷级数而定义出来的。
泰勒将函数展开成级数得到泰勒公式,对于一般函数,设它在点存在直到阶的导数,由这些导数构成一个次多项式:称为函数在点处的泰勒多项式,若函数在点存在直至阶导数,则有即:称为泰勒公式。
众所周知,泰勒公式是数学分析中非常重要的内容,它的理论方法已经成为研究函数极限和估计误差等方面不可缺少的数学工具,集中体现了微积分“逼近法”的精髓。
在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,并能满足很高的精确度要求,在微积分的各个方面都有重要的应用。
泰勒公式在分析和研究数学问题中有着重要作用,它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。
这篇主要在于探索泰勒公式及其应用的新方法,借助泰勒公式的广泛应用,将泰勒公式的知识应用到数学解题的各个方面和领域中去,得出泰勒公式在数学各方面的应用和求解方法的简便性。
二、泰勒公式的应用2.1利用泰勒公式解经济学问题我们知道泰勒公式在解定积分中有着广泛的应用,而定积分在经济学中是不可缺的,在这里将以定积分为平台,利用泰勒公式去解决经济学问题。
例1:完全竞争行业中某厂商的成本函数为STC=,假设产品的价格为66元,求:(1)由于竞争市场供求发生变化,由此决定新的价格为30元,在心的价格下,厂商是否会发生亏损,如果会,最小的亏损额是多少?解:(1)由于市场供求发生变化,新的价格为27元,厂商是否发生亏损仍需要根据P=MC所决定的均衡产量计算利润为正还是为负,不论利润最大还是亏损最小,均衡条件都是P=MC,成本函数为STC=,令=由泰勒公式我们知道,……所以,STC=,又因为P=MC,即27=,所以。
泰勒公式毕业论文摘要泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆。
但一般高数教材中仅介绍了如何用泰勒公式展开函数,而对泰勒公式的应用方法并未深入讨论,在教学过程中学生常因学用脱离而难以理解。
本文论述了泰勒公式的一些基本内容,并着重介绍了它在数学分析中的一些应用。
泰勒公式是数学分析中的重要知识,在某些题目中运用泰勒公式会达到快速解题的目的。
本文主要从不同的方面对泰勒公式进行综合论述:利用泰勒公式求极限,求无穷远处极限,证明中值公式,中值点的极限,证明不等式,导数的中值,关于界的估计,方程中的应用,用泰勒公式巧解行列式。
对于泰勒公式如何更广泛的应用于高等代数中这一问题,还在进一步的研究中。
关键字:泰勒公式极限函数不等式函数方程ABSTRACTTaylor formula is a very important concept in advanced mathematics. It divides complicated functions into polynomial functions. It have became a powerful leverage when we analysis and research other mathematics problem because of its simplicity. However, normal advanced mathematic textbooks only introduce how to use Taylor formula to expand the functions and never get into the applications of Taylor formula, The students are always hard to use it because we teach it detached from use in teaching process .This paper discusses some of Taylor's formula for the basic content, and focused on mathematical analysis in some applications. Taylor's formula is the mathematical analysis of the important knowledge, the use of certain topics in Taylor formulato reach the purpose of solving problems quickly. In this paper, different aspects from the Taylor formula for a comprehensive discussion: the use of Taylor's formula for the limit, for infinite distance limit, the proof of the value of the formula in the limit point to prove that inequality in the value of derivatives, it is estimated that the estimates on the sector, equations, using Taylor formula determinant clever solution.Taylor formula for how the wider use of Advanced Algebra with the problem, still further study.Key Words:Taylor formula limit function inequality function equation大连交通大学2012届本科生毕业论文目录一、Taylor公式简介 (1)(一)Taylor公式的基本形式 (1)(二)Taylor公式余项类型 (2)(三)Taylor公式的定理 (5)二、Taylor公式的证明 (6)(一)Taylor公式证明初探 (6)(二)证明Taylor公式 (6)三、Taylor公式的应用 (7)(一)利用Taylor公式求极限 (8)(二)利用Taylor公式判断函数的极值 (9)(三)利用Taylor公式判定广义积分敛散性 (10)(四)利用Taylor公式证明中值定理 (11)(五)利用Taylor公式求行列式的值 (13)(六)Taylor公式在关于界的估计的应用 (14)谢辞............................................... 错误!未定义书签。
论文提要泰勒公式是数学分析中的重要组成部分,它的理论方法已成为研究函数极限和估计误差等方面的不可或缺的工具集中体现了微积分“逼近法”的精髓,它是微积分中值定理的推广,亦是应用高阶导数研究函数性态的重要工具,它的用途很广泛,本文论述了泰勒公式的一些基本内容,并着重介绍了它在数学分析中的一些应用。
即应用泰勒公式求极限,利用泰勒公式证明中值公式,判断函数敛散性,证明不等式,判断函数的极值,求幂级数展开式,进行近似计算,求高阶导数在某些点的数值。
浅谈泰勒公式及其应用摘 要: 本文介绍了泰勒公式及几个常见函数的展开式,针对泰勒公式的应用讨论了八个问题.即应用泰勒公式求极限,利用泰勒公式证明中值公式,判断函数敛散性,证明不等式,判断函数的极值,求幂级数展开式,进行近似计算,求高阶导数在某些点的数值.关键词:泰勒公式泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明.1 预备知识定义 1.1 若函数f 在点0x 存在直至n 阶导数,则有()()()n n f x T x T x ==+()0no x x +,即()()()()()()()()()().!!2000200000n n n x x o x x n x f x x x f x x x f x f x f -+-+⋯+-''+-'+=为⑴式.⑴式称为函数f 在点0x 处的泰勒公式,()()()x T x f x R n n -=称为泰勒公式的余项,形如()nx x o 0-的余项称为佩亚诺型余项.所以⑴式又称为带有佩亚诺余项的泰勒公式.当00=x 时,得到泰勒公式:()()()()()()()n n x o n f x f x f f x f ++⋯+''+'+=!0!20002.它也称为(带有佩亚诺余项的)麦克劳林公式.定义1.2 若函数f 在[]b a ,上存在直至n 阶的连续导函数,在()b a ,内存在()1+n 阶导函数,则对任意给定的x ,[]b a x ,0∈,至少存在一点()b a ,∈ξ,使得()()()()()()()()()()()()()100100200000!1!!2++-++-+⋯+-''+-'+=n n n n x x n x fx x n x f x x x f x x x f x f x f 为⑵式.⑵式同样称为泰勒公式,它的余项为()()()()()()()()1001!1++-+=-=n n n n x x n x f x T x f x R , ()00x x x -+=θξ ()10<<θ,称为拉格朗日型余项.所以⑵式又称为带有拉格朗日型余项的泰勒公式.当00=x 时,得到泰勒公式()()()()()()()()()112!1!0!2000+++++⋯+''+'+=n n n n x n x f x n f x f x f f x f θ.它也称为(带有拉格朗日余项的)麦克劳林公式. 常见函数的展开式:⑴()n xx xx o n n x e ++⋯+++=!!221; ⑵()()m m m x o m x x x x x 212153)!12(1!5!3sin +--+⋯++-=--;⑶()()12242)!2(1!4!21cos ++-+⋯++-=m m m x o m xx x x ;⑷()()()n nn x o nx x x x x +-+⋯++-=+-1321321ln ; ⑸()()()n nax o x n n a a a a a axx ++-⋯-+⋯+++=+!)1()1(!2111; ⑹()n n x o x x x x++⋯+++=-2111.2.泰勒公式的应用2.1利用泰勒公式求极限为了简化极限运算,有时可用某项的泰勒展开式来代替该项,使得原来函数极限转化为类似多项式有理式的极限,就能简捷地求出.例2.1 求 0lim→x xx x x 3sin )cos (sin -. 证 设()()x x f sin =, ()x x g cos =用泰勒公式在0=x 处展开 它们的导数是有规律的分别按x cos ,x sin -,x cos -,x sin 和x sin -,x cos -,x sin , x cos 循环.f 在0=x 处的1,2,……阶导数分别为1,0,1-,0,1……(循环);g 在0=x 处的1,2,……阶导数分别为1,0,1-,0,1……(循环);()()⋯⋯-+-+=-+=∑∞=!5!3!10!0)0(0sin 530x x x i f x f x i i i()()⋯⋯-+-=-+=∑∞=!4!21!0)0(0cos 420x x i g x g x i i ii f ,i g , f ,g 为i 的阶导数代入所求式中原式0lim x →= ⎥⎦⎤⎢⎣⎡⋯⋯+-⎥⎦⎤⎢⎣⎡⋯⋯+---32353!31!11)!51!41()!31!21()(x x x x 20231111()()2!3!4!5!lim 111!3!x x x →⎡⎤---+⋯⋯⎢⎥⎣⎦=⎡⎤-+⋯⋯⎢⎥⎣⎦()112!3!=- 13=2.2 利用泰勒公式证明中值公式例2.2 设)(x f 在[]b a ,上三次可导,试证:∃(,)c a b ∈使得3)())((241)(2)()(a b c f a b b a f a f b f n -+-⎪⎭⎫⎝⎛+'+= ①证(待定常数法)设k 为使下式成立的实数0)(241)(2)()(3=---⎪⎭⎫⎝⎛+'--a b k a b b a f a f b f ② 这时,我们的问题回归为证明:),(b a c ∈∃使得)(c f k '''= ③令 3)(241))(2()()()(a x k a x x a f a f x f x g ---+'--= ④ 则0)()(==b g a g根据罗尔定理,),(b a ∈∃ξ,使得,0)(='ξg 有④式,即:()028222)(2=--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+''-⎪⎭⎫ ⎝⎛+'-'ξξξξξk a a f a f f ⑤这是关于k 的方程,注意到()ξf '在点2ξ+a 处的泰勒公式; ()2221222⎪⎭⎫⎝⎛-'''-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+''+⎪⎭⎫ ⎝⎛+'='a f a a f a f f ξξξξξ ⑥其中()b a c ,∈,比较⑤,⑥可得③式证毕2.3利用泰勒公式判断函数敛散性当要求判断极限的敛散性且条件出现有二阶和二阶以上导数时,考虑用泰勒公式展开判断极限敛散性.例2.3设)(x f 在点0=x 的某一邻域内具有二阶连续导数,且()0lim=→xx f x .证明:级数)1(1∑∞=n nf 绝对收敛. 分析:可以先用泰勒公式求出)(x f 在点0=x 处的二阶导数,利用二阶导数判断0→x 时)(x f 的趋势.证 由()0lim=→xx f x ,又)(x f 在0=x 的邻域内具有二阶连续导数,可以推出0)0(=f ,0)0(='f .将)(x f 在0=x 的邻域内展开成一阶泰勒公式:=)(x f ()()2221!21)0()0(x f x f f f ξξ''=''+'+,其中ξ在0与x 之间. 由于题设,()x f ''在邻域内包含原点的一个小闭区间上连续,因此,0>∃M 使得M x f ≤'')(,于是:222)(21)(x M x f x f ≤''=ξ. 令n x 1=,则212)(n M x f ⋅≤.因为∑∞=121n n 收敛,所以∑∞=1)1(n n f 绝对收敛.2.4 利用泰勒公式证明不等式当所要证明的不等式是含有多项式和初等函数的混合物,不妨作一个辅助函数并用泰勒公式代替,往往使证明方便简捷.例2.4 当0≥x 时,证明≥x sin -x 361x . 证 取()x f 361sin x x x +-=, 00=x ,则 ()00=f ,()00='f , ()00=''f , ()='''0f x cos 1-, ()0)(n f ≥0.带入泰勒公式,其中3=n ,得()3!3cos 1000x x x f θ-+++=,其中10<<θ. 故 当0≥x 时,≥x sin 361x x -.2.5利用泰勒公式判断函数的极值例2.5(极值的第二充分条件)设f 在0x 的某邻域()δ;0x U 内一阶可导,在=x 0x 处二阶可导,且()00='x f , ()00≠''x f . (ⅰ)若()00<''x f ,则f 在0x 取得极大值. (ⅱ)若()00>''x f ,则f 在0x 取得极小值.证 由条件,可得f 在0x 处的二阶泰勒公式()()()()()()()22002000!2o x x o x x x fx x x f x f x f -+-+-'+= .由于()00='x f ,因此()()=-0x f x f ()()()20012x x o x f -⎥⎦⎤⎢⎣⎡+''. ① 又因()00≠''x f ,故存在正数δδ≤',当x ()δ'∈;0x U 时,()021x f ''与 ()()1210o x f +'' 同号.所以,当()00<''x f 时,①式取负值,从而对任意()δ'∈;0o x U x 有 ()()00<-x f x f , 即 f 在0x 取极大值.同样对()00>''x f ,可得f 在0x 取极小值. 2.6 利用泰勒公式求初等函数的幂级数展开式利用基本初等函数的幂级数展开式,通过加减乘等运算进而可以求得一些比较复杂的初等函数的幂级数展开式.例2.6 求函数x e x -1在0=x 处的幂级数展开式,并确定它收敛于该函数的区间.解 由于()=++⋯+++=n xx xx o n n x e !!221∑∞=0!n nn x ()+∞∞-∈,x 而=-x11∑∞=0n nx()1,1-∈x ,则=-xe x1=∑∞=0nn!x n n n x n ∑∞=⎪⎭⎫ ⎝⎛+⋯+++0!1!21!111 ()1,1-∈x , 2.7 利用泰勒公式进行近似计算利用泰勒公式可以得到函数的近似计算式和一些数值的近似计算,利用()x f 麦克劳林展开得到函数的近似计算式为()()()()()()nn x n f x f x f f x f !0!20002+⋯+''+'+≈,其误差是余项()x R n .例2.7 计算8.1ln 2.1ln +, 误差小于001.0.8.1ln 2.1ln +()()2.012.01ln -+= ()04.01ln -=()--=04.0()()⋯--+-304.0204.032由于第二项已经001.0<,所以只取前两项即可 结果是0408.00008.004.0-=--.2.8利用泰勒公式求高阶导数在某些点的数值如果)(x f 泰勒公式已知,其通项中的加项n x x )(0-的系数正是)(!10)(x f n n ,从而可反过来求高阶导数数值,而不必再依次求导.例2.8求函数x e x x f 2)(=在1=x 处的高阶导数)1()100(f .解 设1+=u x ,则e e u e u u g xf u u ⋅+++==+2)1(2)1()1()()(,)0()1()()(n ug f =, 0=u e u 在的泰勒公式为)(!100!99!9811001009998u o u u u u e u++++⋯++=, 从而))(!100!99!981)(12()(10010099982u o u u u u u u e u g ++++⋯++++=, 而)(u g 中的泰勒展开式中含100u的项应为()100100!100)0(u g ,从)(u g 的展开式知100u 的项为100)!1001!992!981(u e ++,因此 ())!1001!992!981(!100)0(100++=e g ,()10101)0(100⋅=e g ,()().10101)0()1(100100e g f ==本文主要介绍了泰勒公式以及它的八个应用,使我们对泰勒公式有了更深一层的理解.怎样应用泰勒公式解题有了更深一层的认识,只要在解题训练中注意分析,研究题设条件及其形式特点并把握上述处理规则,就能比较好地掌握利用泰勒公式解题的技巧.参考文献[1]华东师范大学数学系,数学分析(第三版)[M]高等教育出版社1981.[2]陈传章金福林:《数学分析》(下)北京:高等教育出版社,1986.[3]张子兰崔福菊:《高等数学证题方法》陕西:陕西科学出版社,1985.[4]王向东:《数学分析的概念和方法》上海:上海科学技术出版社,1989[5]同济大学数学教研室主编:高等数学[M].北京:人民教育出版社,1999.[6]刘玉琏傅沛仁:数学分析讲义[M].北京:人民教育出版社,2000.。
泰勒展开公式及其应用泰勒展开公式,又称为泰勒级数,是数学中的一种重要工具,用于将一个函数在某个点附近展开为无穷级数的形式。
它的应用范围极为广泛,从物理学到工程学等各个领域都能见到它的身影。
本文将介绍泰勒展开公式的背景和基本原理,并探讨其实际应用。
一、泰勒展开公式的背景和原理泰勒展开公式是17世纪英国数学家布鲁诺·泰勒提出的,它是一种用简单的多项式来逼近复杂函数的方法。
通过将一个函数在某个点附近展开为无穷级数的形式,我们可以用这个级数来逼近原函数。
泰勒展开公式的一般形式如下:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ...这里,f(x)是要展开的函数,f(a)是函数在展开点a处的值,f'(a)是函数在展开点a处的导数,依此类推。
展开后的每一项都包含了更高阶的导数。
二、泰勒展开公式的应用1.函数逼近泰勒展开公式的最主要应用就是函数逼近。
当我们用简单的多项式来代替复杂的函数时,泰勒展开公式提供了一种有效的方法。
通过截断级数,在展开点附近取有限的项数,我们可以得到一个较为精确的逼近值。
这对于计算机模拟和数值计算非常有用,因为计算机只能处理有限项。
2.误差分析泰勒展开公式还可以用于误差分析。
通过比较函数的泰勒展开式与函数本身,在展开点附近的差异,我们可以得到逼近误差的上界。
这对于实际应用中的误差控制和精度估计非常重要。
例如,在数值计算中,我们经常需要估计舍入误差或截断误差的大小,以保证最终结果的准确性。
3.计算复杂函数的近似值对于一些复杂的函数,我们往往很难直接得到其精确值。
但是,通过使用泰勒展开公式,我们可以将这些函数在某个点处展开为一个多项式,并利用多项式的性质进行计算。
这种方法在物理学中特别常见,如利用泰勒展开公式来计算无穷小量近似值。
三、泰勒展开公式的局限性虽然泰勒展开公式在很多场景中非常有用,但是它也有一些局限性。
泰勒公式及其应用泰勒公式是数学中常用的一种近似函数的方法,它可以将一个函数表示为无穷级数的形式,使得在一些点附近的函数值可以用这个级数来近似。
首先,我们先来介绍一下泰勒多项式。
泰勒多项式是一种以无穷级数形式表示的多项式。
具体来说,对于函数f(x),如果它在一些点a处具有n阶导数,则它的泰勒多项式可以表示为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)²/2!+f'''(a)(x-a)³/3!+...+fⁿ(a)(x-a)ⁿ/n!+...其中,f'(a)表示f(x)在x=a处的一阶导数,f''(a)表示f(x)在x=a处的二阶导数,f'''(a)表示f(x)在x=a处的三阶导数,以此类推,fⁿ(a)表示f(x)在x=a处的n阶导数,n!表示n的阶乘。
而泰勒公式则是一种将函数表示成泰勒多项式的方法。
具体来说,对于一个函数f(x),它在一些点a处具有无穷阶导数,则它的泰勒公式可以表示为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)²/2!+f'''(a)(x-a)³/3!+...+fⁿ(a)(x-a)ⁿ/n!+...泰勒公式的应用非常广泛,它在数学、物理、工程等领域中都有着重要的作用。
以下是一些常见的应用:1.函数的近似计算:泰勒公式可以将一个复杂的函数近似为一个简单的多项式。
通过截断级数,我们可以使用较低阶的泰勒多项式来近似函数,从而使得计算更加高效。
这在科学计算和数值分析中有着重要的应用。
2.函数的极值点和拐点:通过泰勒公式展开,我们可以计算函数在一些点附近的极值点和拐点。
这对于优化问题和函数图像的研究非常重要。
3.函数的积分和微分计算:泰勒公式可以用来计算函数的积分和微分。
通过求导和积分的性质,我们可以通过泰勒公式的展开式来对函数进行微分和积分的计算。
泰勒公式及其应用泰勒公式是数学中一种用于近似函数值的方法,它可用来在其中一个点附近的小区间内用多项式来表示一个函数。
泰勒公式可以用于求解函数的近似值、研究函数的性质以及优化算法等方面的应用。
泰勒公式的一般形式如下:设函数f(x)处处可导,且规定x为实数。
若在开区间(a,b)内有无限次可导的函数f(x)则对于(a,b)内的任意实数x及正整数n,有:f(x)=f(x0)+f'(x0)(x-x0)+f''(x0)(x-x0)^2/2!+...+f^n(x0)(x-x0)^n/n!+Rn(x)其中,x0为(a,b)内的任意固定点,Rn(x)为用(x-x0)^n的余项,且满足lim Rn(x)=0。
泰勒公式的应用广泛,以下介绍几个常见的应用:1.近似计算:泰勒公式可以用于计算函数在其中一点附近的近似值。
通过截取泰勒级数的前几项,可以用一个简单的多项式代替原函数,从而简化计算。
例如,可以用泰勒公式来近似计算指数函数、三角函数等复杂函数在其中一点附近的函数值,从而简化计算过程。
2.函数展开:泰勒公式可以将一个任意函数在其中一点附近展开成多项式的形式,从而研究函数的性质。
通过观察和分析泰勒展开式的形式,可以推导出函数的导数、极值、拐点等重要性质,进一步理解函数的行为特征。
3.数值优化:泰勒公式可以用于求解优化问题中的极值。
通过将目标函数在极值点展开为泰勒级数,可以通过近似的方式来确定极值点的位置。
这种方法常用于计算机算法中的数值优化问题,例如梯度下降法等。
4.工程应用:泰勒公式在工程中有广泛的应用。
例如,在电子电路设计中,可以使用泰勒公式来近似计算非线性元件的响应特性,从而简化电路的分析和设计。
在物理学中,泰勒公式可以用于解析力学、电磁学等领域的问题,通过近似计算来简化复杂的数学模型。
总结起来,泰勒公式是数学中一个重要的工具,它可以用于近似计算、函数展开、数值优化和工程应用等多个方面。
在实际问题中,泰勒公式的应用可以帮助我们理解和求解复杂的函数及其性质,进而提供了有效的计算和分析方法。
泰勒公式及泰勒级数的应用泰勒公式和泰勒级数是数学中非常重要的概念,它们在各个领域的应用非常广泛。
本文将详细介绍泰勒公式及其应用,以及泰勒级数的定义和相关应用。
一、泰勒公式泰勒公式是一个关于函数在一些点附近的展开式。
给定一个函数$f(x)$和一个点$a$,泰勒公式可以表示为:$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 +\frac{f'''(a)}{3!}(x-a)^3 + \cdots$$其中,$f'(a)$表示函数$f(x)$在点$a$处的导数,$f''(a)$表示二阶导数,$f'''(a)$表示三阶导数,依次类推。
这个展开式可以一直延伸下去,是一个无穷级数。
泰勒公式是在一个点的附近进行的展开,因此只在局部范围内有效。
当取$a=0$时,泰勒公式变成了麦克劳林级数。
泰勒公式的应用非常广泛,特别是在近似计算和数值分析中。
通过泰勒公式,我们可以用低阶导数来近似计算高阶导数的值,从而简化复杂的计算过程。
二、泰勒级数泰勒级数是指将函数在其中一点进行泰勒展开后的无穷级数表示。
具体而言,给定一个函数$f(x)$和一个点$a$,泰勒级数可以表示为:$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 +\frac{f'''(a)}{3!}(x-a)^3 + \cdots$$不同于泰勒公式,在泰勒级数中,展开点$a$可以是任意点。
泰勒级数包含了函数在该点附近的无穷阶导数信息,在一些条件下,可以用级数的有限项来逼近原函数的值。
泰勒级数的应用涵盖了许多领域,下面我们分别介绍一些常见的应用。
1.函数逼近泰勒级数可以用来逼近一个函数在其中一点的值。
通过截取级数的有限项,就可以得到原函数在该点的一个近似值。