当前位置:文档之家› 加氢脱氮反应研究进展

加氢脱氮反应研究进展

加氢脱氮反应研究进展
加氢脱氮反应研究进展

催化加氢总结

催化加氢学习知识总结 一、概述 催化加氢是石油馏分在氢气的存在下催化加工过程的通称。 ?炼油厂的加氢过程主要有两大类: ◆加氢处理(加氢精制) ◆加氢裂化 ?加氢精制/ 加氢处理 ◆产品精制 ◆原料预处理 ◆润滑油加氢 ◆临氢降凝 ?加氢裂化 ◆馏分油加氢裂化 ◆重(渣)油加氢裂化 ?根据其主要目的或精制深度的不同有: ◆加氢脱硫(HDS) ◆加氢脱氮(HDN) ◆加氢脱金属(HDM) 加氢精制原理流程图 1-加热炉;2-反应器;3-分离器; 4-稳定塔;5-循环压缩机 ◆加氢裂化:在较高的反应压力下,较重的原料在氢压及催化剂存在下进行裂解和加 氢反应,使之成为较轻的燃料或制取乙烯的原料。可分为: ●馏分油加氢裂化 ●渣油加氢裂化 加氢精制与加氢裂化的不同点:在于其反应条件比较缓和,因而原料中的平均分子量和分子的碳骨架结构变化很小。 二、催化加氢的意义

1、具有绿色化的化学反应,原子经济性。 催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。 2、产品收率高、质量好 普通的加氢反应副反应很少,因此产品的质量很高。 3、反应条件温和; 4、设备通用性 三、国内外几家主要公司的馏分油加氢裂化催化剂 四、加氢过程的主要影响因素 1 反应压力 反应压力的影响往往是通过氢分压来体现的,系统的氢分压取决于操作压力、氢油比、循环氢纯度和原料的汽化率等 ①汽油加氢精制 ?氢分压在2.5MPa~3.5PMa后,汽油加氢精制反应的深度不受热力学控制,而是取 决于反应速度和反应时间。 ?在气相条件下进行,提高反应压力使汽油的反应时间延长,压力对它的反应速度影 响很小,因此加氢精制深度提高。 ?如果压力不变,通过氢油比来提高氢分压,则精制深度下降。 ②柴油加氢精制 ?在精制条件下,可以是气相也可是气液混相。 ?处于气相时,提高反应压力使汽油的反应时间延长,因此加氢精制深度提高。 ?但在有液相存在时,提高压力将会使精制效果变差。氢通过液膜向催化剂表面扩散

氮化物作为催化剂的研究进展

氮化物作为催化剂的研究进展 内容摘要:近年来,被誉为“准铂催化剂”的过渡金属氮化物因其优良的催化活性已受到世界各国学者的广泛关注。大量的研究表明,过渡金属氮化物在氨的合成与分解、加氢精制等许多涉氢反应中都表现出良好的催化活性。过渡金属氮化物的制备方法有高温法和程序升温氮化法, 程序升温氮化法的显著优点是可以制备出高比表面积的金属氮化物。研究人员不仅对金属氮化物催化剂的制备方法进行了大量的研究,并且发现负载型金属氮化物具有负载量低、比表面积大等优点。因此, 金属氮化物的负载化研究正成为目前的研究热点。 关键词:过渡金属、氮化物、催化剂、结构、性能、工业 Nitride as a catalyst research progress Grade: grade 09 Applied Chemistry Specialty Name: Hong Huaiyong number: 122572009003 Abstract:In recent years, known as the" Platinum" transition metal nitride because of its excellent catalytic activity has been subjected to extensive concern of scholars all over the world. A large number of studies show that, transition metal nitride in ammonia synthesis and decomposition, hydrogenation and so many wading hydrogen reaction showed good catalytic activity. Preparation of transition metal nitride has high temperature method and temperature-programmed nitridation, temperature-programmed nitridation method has the advantages of preparation of high specific surface area of the metal nitride. The researchers not only on the metal nitride catalyst preparation method was studied, and found that the load type metal nitride having load low, large specific surface area and other advantages. Therefore, a metal nitride load research is becoming the research hotspot at present. Key word:Transition metal, nitride, catalyst, structure, performance, industry 引言 过渡金属氮化物是元素N插入到过渡金属晶格中所生成的一类金属间充型化合物,它兼具有共价化合物、离子晶体和过渡金属三种物质的性质,从而表现出优良的物理和化学性能。它作为一类具有很高硬度、良好热稳定性和抗腐蚀特性的新型功能材料,已经在各种耐高温、耐磨擦和耐化学腐蚀分机械领域得到应用。而且它在氨合成与分解、加氢脱硫/脱氮(HDS/HDN)、F-T合成等许多涉氢反应都具有优良的催化活性,不逊色于Pt和Rh等贵金属催化剂的性能,被誉为“准铂催化荆”。过渡金属氮化物作为一种有应用前景的新型加氢精制催化剂已引起人们的广泛关注,成为国际催化荆新材料领域的研究热点。本章概述了这一催化新材料的最新研究进展。 1.过渡金属氮化物的结构和电子特征 过渡金属氮化物是一种间充化合物,是由于氮原子填隙似的融进过渡金属的晶格中形成的,它们倾向于形成组成可在一定范围内变动的非计量间隙化合物。其固态化学特征类似于纯金属,具有简单的晶体结构特征。其中的金属原子形成

污水生物脱氮技术研究现状

污水生物脱氮技术研究现状 摘要:概述了传统生物脱氮技术原理及传统的生物脱氮技术,分析了传统生物脱氮工艺的不足,并介绍了同时硝化反硝化、短程硝化反硝化、厌氧氨氧化等几种生物脱氮新技术的机理、特点和研究现状。最后对生物脱氮技术的今后的发展趋势进行了展望及建议,指出高效、低能耗的可持续脱氮工艺是污水处理的发展方向。 关键词:生物处理;生物脱氮;短程硝化反硝化;同步硝化反硝化;厌氧氨氧化Research Status of Biological Removal of Nitrogen from Wastewater Abstract:Summarizes the conventional biodenitrification technology principle and conventional biological removal of nitrogen technology, analyzes the deficiencies of conventional biological removal of nitrogen, and introduces nitration denitrification, shortcut nitrification and denitrification anaerobic ammonium oxidation ,and the features, the mechanism and the current research status of the several biological new technologies,. Finally have a outlook and Suggestions of the new technologies , points out that high efficiency, low energy consumption is the development direction of removal of nitrogen in sewage treatment. Keywords:biological disposal;nitrogen removal;shortcut nitrification;Simultaneous nitrification and denitrifieation;anaerobic ammonium

新型生物脱氮工艺

新型生物脱氮工艺 摘要介绍六种新型生物脱氮工艺的基本原理和研究现状。随后介绍新型生物脱氮工艺 的原理和特征及工艺的发展前景。 关键词SHARON工艺;ANAMMOX工艺;SHARON-ANAMMOX组合工艺;OLAND 工艺;CANON工艺; 随着现代工业的不断发展、化肥的普遍应用及大量生活污水的排放,废水中的氮污染日益严重。各种水体富营养污染事件频繁爆发,破坏了水体原有的生态平衡,严重污染了周围环境。我国作为水资源十分短缺的国家,严格控制脱氮污水的超标排放是十分必要的。对于氮素污染的治理,国内外常见的工程技术有空气吹脱法、选择性离子交换法、折点氯化法、磷酸铵镁沉淀法、生物脱氮法等。其中,生物脱氮法使用范围广,投资及运转成本低,操作简单,无二次污染,处理后的废水易达标排放,已成为脱氮常用处理方法。 1 传统生物脱氮工艺 传统生物脱氮一般包括硝化和反硝化两个阶段,分别由硝化菌和反硝化菌完成。硝化反应是由一类化能自养好样的硝化细菌完成,主要包括两个步骤:第1步称为亚硝化过程,由亚硝酸菌将氨态氮转化为亚硝酸盐;第2步称为硝化过程,由硝酸菌将亚硝酸盐进一步氧化为硝酸盐。 反硝化作用是在厌氧或缺氧条件下反硝化菌把硝酸盐转化为氮气排除。该转化过程有许多中间产物,如HNO2、NO2和N2O。反硝化菌多数是兼性厌氧菌,在无分子态氮存在 的环境下,利用硝酸盐作为电子受体,有机物作为碳源和电子供体提供能量并被转化为CO2、H2O。 传统生物脱氮工艺在废水脱氮方面起到了一定的作用,但任存在以下问题[1]: (1)在低温冬季硝化菌群增殖速度慢且难以维持较高的生物浓度。造成系统总水力停留时间(HRT)长,有机负荷较低,增加了基建投资和运行费用。 (2)硝化过程是在有氧条件下完成的,需要大量的能耗; (3)反硝化过程需要一定的有机物,废水中的COD经过曝气有一大部分被去除,因此反硝化时往往要另外加入碳源; (4)系统为维持较高生物浓度及获得良好的脱氮效果,必须同时进行污泥回流和硝化液回流,增加了动力消耗及运行费用; (5)抗冲击能力弱,高浓度氨氮和亚硝酸盐进水会抑制硝化菌的生长;

第五章催化加氢催化剂 1催化加氢过程包括哪几个过程 包括加氢

第五章催化加氢催化剂 1.催化加氢过程包括哪几个过程? 包括加氢处理过程和加氢裂化过程。 2.加氢处理过程中发生的主要化学反应有哪些? 加氢脱硫反应、加氢脱氮反应、加氢脱氧反应和加氢脱金属反应。 3.烃类加氢反应主要涉及哪两类反应? 主要涉及两类反应,一是有氢气直接参与的化学反应,如加氢裂化和不饱和键的加氢饱和反应,此过程表现为耗氢;二是在临氢条件下的化学反应,如异构化反应,此过程表现为,虽然有氢气存在,但过程不消耗氢气,实际过程中的临氢降凝是其应用之一。 4.加氢催化剂按加氢作用分为哪几类? 按其加氢的作用分为加氢精制(处理)催化剂和加氢裂化催化剂。 5.加氢精制催化剂常用的载体是什么? 常用的活性氧化铝和硅酸铝载体。 6.加氢精制催化剂的活性组分的主要作用是什么?常用的活性组分是什么? 催化加氢的活性主要来源于加氢金属组分,金属组分主要提供加氢活性及能够加速C-N键氢解的弱酸性,由VlB族或Ⅷ族的金属。即:非贵金属组分和贵金属组分。非贵金属组分有:W、Mo、Cr、Fe、Co、Ni、Zn、Ti、V、Mn等。 7.加氢精制催化剂的助剂的作用是什么?常用的助剂是什么? 改善加氢精制催化剂某一方面的性能,如活性,选择性、寿命、热稳定性或强度等,常常添加一些助剂。常用的助剂有P2O5、SiO2、B2O3、TiO2等。 8.选择加氢精制催化剂首先考虑哪些因素? 选择催化剂首先应考虑是选择活性高、选择性好、稳定性好、寿命长的催化剂。 9.柴油馏分加氢精制的目的是什么? 柴油加氢精制的目的是脱除柴油中的硫、氮等杂质,饱和烯烃和饱和芳烃,生产清洁的柴油燃料。 10.直馏煤油加氢精制的目的是什么?对直馏煤油加氢精制催化剂的要求是什么? 直馏煤油加氢精制,其目的是脱除煤油中的硫和氮,并饱和部分芳烃,改善其燃烧性能,提高油品的热稳定性,降低酸度,生产合格的喷气燃料或灯用煤油。要求催化剂具有优良加氢脱硫、脱氮活性同时具有优良的芳烃饱和性能。 11.加氢裂化的作用是什么?

关于催化裂化汽油非加氢脱硫技术的研究

关于催化裂化汽油非加氢脱硫技术的研究 本文以催化裂化汽油非加氢脱硫技术的研究为出发点,首先介绍了本文研究的背景,接着对各种催化裂化汽油非加氢脱硫技术进行了简单介绍,供读者参考。 标签:催化裂化汽油;非加氢脱硫技术 1 研究背景 随着社会的发展和人类科学技术的进步,汽车已经成为人类日常出行的主要代步工具之一,汽车的发展为人类社会的进步和社会经济效益的提高做出了不可磨灭的贡献。但是,近几年来社会对环境问题的关注度越来越高,节能与环保问题已经成为各个国家社会发展面临的主要问题之一,而汽车作为人类社会能源的主要消耗者和环境污染物的主要排放者之一,汽车尾气排放质量已经成为了当今衡量汽车品质的重要指标之一。西方国家在二零零九年就提出了关于汽车排放的严格标准,我国一些一线城市也紧跟西方国家的步伐,纷纷提出了我们国家的汽车排放控制标准。因此,汽车排放控制已经成为了很多汽车生产企业的工作重心,汽车排放中的硫类污染物中有百分之九十都来自催化裂化汽油,所以,催化裂化汽油的脱硫技术将会是本文的论述重点,笔者根据自身工作经验以及对相关技术的研究发现,我国的催化裂化汽油脱硫技术主要集中在加氢脱硫技术方面,这种脱硫技术会在一定程度上降低汽油的辛烷值,从而在控制排放的同时降低了汽油的使用性能,除此之外,加氢脱硫的投资成本比较高,使用操作比较复杂,然而,非加氢脱硫技术具有使用操作简单、投资成本低、工作稳定性强等显著特点,已经成为了国内外的关注重点,因此,本文以下内容将展开对催化裂化汽油非加氢脱硫技术的研究。 2 非加氢脱硫技术 2.1 吸附脱硫技术 吸附脱硫技术具有其他脱硫技术所不具有的突出优点,相比于其他脱硫技术,吸附脱硫技术能够在不影响汽油使用品质的前提之下达到对汽油的脱硫目的,除此之外,吸附脱硫技术的脱硫率比较高,脱硫率甚至达到了百分之九十,而且,吸附脱硫技术的投资费用比较低,脱硫过程比较简单,十分符合我国国情之下的汽油脱硫技术要求。吸附脱硫技术的主要工作原理是化学吸附,吸附脱硫技术利用可重复利用的选择性吸附剂,通过对汽油当中的硫、氮、氧化合物进行选择性吸附,来达到对汽油的非加氢脱硫目的,吸附脱硫技术相比于加氢脱硫技术,可以降低脱硫成本百分之五十以上,目前国内关于吸附脱硫技术的研究还处于起步阶段,具有广阔的研究前景。 2.2 生物脱硫技术 生物脱硫技术的主要工作原理是利用一些好氧和厌氧微生物来对汽油当中

加氢催化剂的研究进展2详解

加氢催化剂的研究进展 化工12-4 金贞顺 06122533 摘要 综述石油工业中各类加氢催化剂的研究进展,包括汽、柴油加氢催化剂,加氢裂化、加氢异构催化剂, 重油加氢催化剂等。以及加氢过程的各种基本反应(如加氢脱氮、加氢脱硫、烯烃加氢和芳烃饱和等)的热力学研究、基本反应动力学及与催化剂组成及结构特征间的关系、活性组分与载体间的相互作用、反应物分子平均扩散半径与催化剂空间结构的匹配、结焦失活的机理及其抑制措施等。 关键词: 加氢催化剂结焦失活载体 引言 随着环保法规和清洁柴油标准的日益严格,清洁油品的生产将是全球需要解决的重要问题。现有炼油工艺不断改进,创新并开发出一些先进技术以满足生产清洁柴油的需求。加氢裂化技术具有原料适应性强、产品方案灵活、液体产品收率高、产品质量好等诸多优点,催化剂则是加氢裂化技术的核心。重油加氢裂化分散型催化剂主要分为3大类:固体粉末添加剂、有机金属化合物及无机化合物。本文分别对加氢催化剂及载体的研究进展进行简要介绍。 1、汽柴油加氢催化剂研究进展 随着原油的劣质化和环保法规的日益严格,我国在清洁柴油生产方面面临着十分严峻的局面,所以迫切需要研制具有高效加氢精制的催化剂来满足油品深度加氢处理的要求[1-3]。日益提高的环境保护要求促进了柴油标准的不断升级。文中综述了国外炼油企业在柴油加氢催化剂方面的技术进展。 刘笑等综述了国内外有关FCC汽油中硫的存在形态、加氢脱硫反应原理及其催化剂的研究进展。一般认为,FC C汽油中的硫化物形态主要为嚷吩类化合物,且主要集中在重馏分中,汽油的加氢脱硫反应原理的研究也都集中在嚷吩

的加氢脱硫反应上。传统的HDS催化剂由于烯烃饱和率过高不适于FCC汽油的加氢脱硫,可通过改变催化剂的酸性来调整其HDS/HYD选择性。发展高活性、高选择性的催化剂仍是现今研究的热点,同时还应足够重视硫醇的二次生成而影响脱硫深度的问题。 赵西明综述了裂解汽油一段加氢把基催化剂的研究进展。提出在裂解原料劣化的形势下,把基催化剂的研究重点是制备和选择孔容较大、孔分布合理、酸性弱、比表面积适中的载体,并添加助催化剂。从控制拟薄水铝石的制备过程和后处理方法以及添加扩孔剂等角度出发,评述了近年来大、中孔容Alt及其前驱物拟薄水铝石的制备方法。任志鹏等[4]介绍了裂解汽油一段选择加氢催化剂的工业应用现状及发展趋势,综述了新型裂解汽油一段选择加氢Ni系催化剂的研究进展。提出在贵金属价格上涨和裂解原料劣化的形势下,Ni系催化剂是未来裂解汽油一段加氢催化剂的重点发展方向。而Ni系催化剂的研究重点是制备和选择比表面积适中、酸性低、孔体积大、孔分布合理的载体,选择合适的Ni盐前体及浸渍方法,添加第二种金属助剂以及开展硫化和再生方法的研究。 孙利民等介绍了镍基裂解汽油一段加氢催化剂的工业应用状况及研究进展,指出了提高裂解汽油一段镍基催化剂加氢性能的途径及该领域最新发展趋势。文献[5-6]介绍了柴油加氢精制催化剂的研究进展,近年来,随着柴油需求量增加、原油劣化程度加深和环保要求的日益严格,满足特定需求的超低硫柴油仍存在很大挑战,柴油加氢精制催化剂的研制和开发取得较大进展。介绍了载体、活性组分、助剂和制备方法(液相浸渍法、沉淀法和溶胶一凝胶法)等因素对催化剂活性的影响,结果表明,溶胶一凝胶法较其它方法有较优的一面。具体探讨了溶胶一凝胶法的制备条件对催化剂活性的影响,也为设计、开发高活性加氢精制催化剂积累了经验。 马金丽等介绍了柴油加氢脱硫催化剂研究进展。降低柴油中硫含量对于减少汽车尾气排放从而保护环境具有十分重要的意义。介绍了加氢脱硫催化剂的研究进展。张坤等介绍了中国石化抚顺石油化工研究院开发的最大柴油十六烷值改进技术(MCI)、和中国石化石油化工科学研究院研发的提高柴油十六烷值和

生物脱氮新技术研究进展_周少奇

第1卷第6期2000年12月   环境污染治理技术与设备 T echniques and Equipment fo r Enviro nmental Pollutio n Co ntrol   V ol.1,N o.6 Dec.,2000生物脱氮新技术研究进展① 周少奇 周吉林 (华南理工大学环境科学与工程系,广州510640) 摘 要 本文对短程硝化反硝化、同时硝化反硝化及厌氧氨氧化等生物脱氮新技术的研究和开发 进展进行了简单的综述和讨论,并指出了这些新技术的特点和研究开发应用的前景。 关键词:生物脱氮 短程硝化反硝化 同时硝化反硝化 厌氧氨氧化 脱氮处理是废水处理中的重要环节之一。废水中氮的去除方法有物理法、化学法和生物法三种,而生物法脱氮又被公认为是一种经济、有效和最有发展前途的方法之一。目前,废水的脱氮处理大多采用生物法。废水生物脱氮技术经过几十年的发展,无论是在理论认识上还是在工程实践方面,都取得了很大的进步。 传统生物脱氮途径一般包括硝化和反硝化两个阶段,硝化和反硝化反应分别由硝化菌和反硝化菌作用完成,由于对环境条件的要求不同,这两个过程不能同时发生,而只能序列式进行,即硝化反应发生在好氧条件下,反硝化反应发生在缺氧或厌氧条件下。由此而发展起来的生物脱氮工艺大多将缺氧区与好氧区分开,形成分级硝化反硝化工艺,以便硝化与反硝化能够独立地进行。1932年,Wuhrmann利用内源反硝化建立了后置反硝化工艺(post-denitrification),Ludzack和Ettinger于1962年提出了前置反硝化工艺(pre-denitrificatio n),1973年Barnard结合前面两种工艺又提出了A/O工艺,以及后又出现了各种改进工艺如Bardenpho、Phoredox(A2/O)、UC T、JBH、AAA工艺等,这些都是典型的传统硝化反硝化工艺[1]。 然而,生物脱氮技术的新发展却突破了传统理论的认识。近年来的许多研究表明[2~12]:硝化反应不仅由自养菌完成,某些异养菌也可以进行硝化作用;反硝化不只在厌氧条件下进行,某些细菌也可在好氧条件下进行反硝化;而且,许多好氧反硝化菌同时也是异养硝化菌(如Thiosphaera pantotropha菌),并能把NH4+氧化成NO2-后直接进行反硝化反应。生物脱氮技术在概念和工艺上的新发展主要有:短程(或简捷)硝化反硝化(shortcut nitrification-denitrification)、同时硝化反硝化(simultaneous nitrification-denitrifi-cation-SND)和厌氧氨氧化(Anaerobic Ammonium Oxidation-ANAMMOX)。 ①广东省重点科技攻关项目、广东省自然科学基金项目(980598)、广州市重点科技攻关项目资助

加氢流程叙述

1 概述 易高环保能源研究院有限公司生物油脂及废弃油品制清洁燃料项目15 万吨/年生物油脂加氢装置以经过催化蒸馏的生物油脂为原料,经过催化加氢反应进行脱硫、脱氮、 烯烃饱和、脱氧,生产清洁石脑油和柴油组分。装置低分气及汽提塔顶气至装置外脱硫。 2 工艺原理及特点 2.1 加氢精制过程的主要反应 加氢精制采用固定床催化工艺,在适当的温度、压力下,原料油和氢气在催化剂作用下进行反应,主要目的是脱除油品中的硫、氮、氧等杂元素和金属杂质。以改善油品 的质量。对二次加工油品来说,还包括使烯烃、二烯烃饱和以提高油品的安定性,被处 理的原料的平均分子量及烃类分子的骨架结构只发生极小的变化。 1)加氢脱硫反应 脱硫反应是原料油中的硫醇、二硫化物、噻吩与氢气进行反应生成烃类和硫化氢。2)加氢脱氮反应 石油馏分中的含氮化合物主要是吡咯类和吡啶类的氮杂环化合物,也含有少量的胺类和腈类,它们经加氢脱氮后产生烃类和氨,例如: 由于吡咯和吡啶都具有芳香性,其结构相当稳定,所以此类化合物中的氮是较难脱除的。 3)加氢脱氧反应 石油中各类含氧化合物的加氢脱氧的反应主要有: 其中以呋喃的加氢脱氧最为困难。 4)加氢脱金属反应 石油中的微量金属是与硫、氮、氧等杂原子以化合或络合状态存在的,所以,在加氢脱硫脱氮、脱氧的同时,也会脱去金属。 5)不饱和烃的加氢 石油热加工产物中含有相当多的烯烃和二烯烃,其性质不稳定,借助加氢可使其双键饱和,其反应如下: 此外,在加氢精制过程中,稠环芳烃也会发生部分加氢饱和反应,但由于加氢精制的反应条件一般比较缓和,所以其转化率较低。 加氢精制的上述各类反应的反应速率一般认为是按下列顺序依次降低: 脱金属>二烯烃饱和>脱硫>脱氧>单烯烃饱和>脱氮>芳烃饱和 2.2 加氢精制反应特点

高分子负载钯催化下的氯苯加氢脱氯反应

山西大学学报(自然科学版)23(2):141~143,2000 Journal of Shanx i U niv ersit y(Nat.Sci.Ed.) 文章编号:0253-2395(2000)02-0141-03 高分子负载钯催化下的氯苯加氢脱氯反应 段新娥1 王文静2 李 竞1 乔志敏1 (1.山西大学化学系,山西太原030006;2.太原化工学校030024) 摘 要:首次考察了载体、碱、温度,在常压氢气氛及均相钯催化剂作用下对氯苯加氢脱氯的影响。筛选结果表明在 0.1M PaH2和65℃条件下,PV P—P dCl2/N aO A c/EtO H体系可有效还原氯苯。 关键词:氯苯;加氢脱氯;P V P—P dCl2 中图分类号:O643.38 文献标识码:A 催化脱卤是卤代物还原的一个重要方法,通常使用的催化剂为贵金属催化剂,芳基碘和芳基溴在很多过渡金属均相催化剂下可以进行脱卤反应,但由于芳基氯的加氢还原存在较大热力学障碍,很难发生加氢脱氯反应[1-3]。在氢源的选择上,由于氢的低溶解度,钯络合物一般不用氢气作为氢源[3]。只有氢气在一定压力下,均相钯催化剂才可以有效还原芳基氯[4]。本文寻找了高分子负载钯催化剂常压加氢脱氯的方法,得到了PVP—PdCl2/NaOAc/EtOH这一有效催化还原体系。 1 实验部分 1.1 试剂 C6H5Cl,PdCl2,C2H5OH,PVP,N aOAc为分析纯,其它碱及高分子载体均为化学纯。 1.2 催化剂的制备 称取一定量可溶性高分子置于250mL烧杯中,加入无水乙醇使之溶解后,加入PdCl2溶液,室温搅拌48h,得一橙红色溶液。 1.3 加氢反应 加氢反应在夹套玻璃反应瓶中进行,先将碱加入反应瓶中,抽空换氢气两次后注射入定量溶剂,搅拌10min后加入均相催化剂,氢气氛下还原20min,加入氯苯反应。 1.4 分析测试 氯苯转化率分析采用上海分析仪器厂102型气相色谱仪(PEG20M,10%,2m× 3m m)。 2 结果与讨论 2.1 不同高分子钯负载催化剂的选择 表1是几种高分子负载钯催化剂对氯苯的催化加氢结果,从表中看出只有Chetosan-Pd,EC-Pd和PVP-Pd有催化加氢脱氯活性,其它高分子载体均无活性。PVP作为载体有明显的催化加氢活性。通过对PVP-PdCl2的XPS表征,PVP中N1S和O1S的结合能均发生了变化,数据表明Pd处于低价配位状态,FT-IR 实验中在486cm-1处观察到Pd-N微弱的伸缩振动,PVP—PdCl2的结构尚需进一步研究确定。 收稿日期:1999-10-12 作者简介:段新娥(1970-),女,山西汾阳人,1997年毕业于内蒙古大学,理学硕士,现在山西大学化学系工作。 乔志敏(1970-),男,山西阳泉人,1995年毕业于大连化学物理研究所,理学硕士,现在山西大学化学系工作。

柴油非加氢脱氮技术

课程论文首页

柴油非加氢脱氮技术 710304214 林泉 摘要:介绍了柴油非加氢脱氮技术的研究现状和发展前景,分析了酸碱精制、溶剂精制、吸附精制、加速老化、离子交换精制及组合脱氮、生物脱氮和微波脱氮等柴油脱氮方法的原理和特点,展望了柴油非加氢脱氮技术的应用前景。 关键词:柴油氮化物精制溶剂加氢 柴油是我国目前消费量最大的发动机燃料之一,主要用于装有柴油发动机的农业机械、重型车辆、铁路机车、船舶、工程和矿山机械等。但是,柴油中的氮化物在燃烧过程中可形成导致空气污染和酸雨的氮氧化合物,其中的碱性氮化物在柴油的催化加工过程中会使酸性催化剂的活性中心减少,造成催化剂中毒。与此同时,碱性氮化物还会使柴油的氧化安定性变差,影响其储存和使用性能。为了适应新的环保法规的实施,改善柴油品质,必须尽可能的脱除其中的氮化物。我国原油氮质量分数一般为0.1%~0.5%,普遍偏高,因此柴油脱氮在我国显得尤为重要。柴油中的氮化物分为碱性氮化物和非碱性氮化物,前者包括苯胺、吡啶、喹啉及其衍生物,后者包括吡咯、吲哚及其衍生物。 目前,国内外从石油及其产品中脱氮的方法分加氢精制和非加氢精制两种。其中加氢精制工艺已经较为成熟,精制的收率高,产品安定性好,但脱氮率较低,还需要充足的氢源,设备投资及操作费用高,在应用上受到很大的限制。因此,国内外很多研究者已经把目光转向设备投资少,操作费用又低的非加氢脱氮工艺。非加氢精制的主要方法有:酸精制、溶剂精制、配合法精制及组合法精制、生物脱氮和微波脱氮等。 1、主要脱氮工艺 1.1酸精制 碱性氮化物是影响柴油品质的主要因素。酸精制的原理即根据酸碱中和理论将其脱除。很早以前人们就发现用蚁酸。水溶液脱除页岩油中的氮化物,可以降低炼厂氢耗,使处理后油品的含氮量满足下游加工的要求。酸精制它们可以脱除柴油中的碱性氮化物以及硫醇类、硫酚类、硫醚、噻吩等各种非烃化合物,部分非碱性氮化物、烯烃类、芳烃类也可以被洗去。舒运贵等人用磷酸和稀碱联合精制掺炼重油的催化裂化柴油,精制过程中,磷酸循环使用,磷酸渣经氨水中和后,分出的氮化物作为燃料烧掉,而磷酸铵的化合物经热分解后得到的磷酸可以再循环使用。李季用二氧化碳酸性水溶液作脱氮剂洗涤焦化柴油,使柴油中碱性氮化物溶于水而被分离出来,碱性氮脱除率约为60%。该工艺简单,无污染,可进一步回收利用碱性氮化物,且中试效果比小试好,但是脱氮率偏低。酸精制操作简单,但是选择性往往较低,一些不含氮的烃类化合物也可溶于酸相中,使精制后油的收率降低,另外,废渣的处理和设备腐蚀问题也限制其应用。 1.2溶剂精制 溶剂精制工艺用于油品脱氮已经有几十年的历史,并且已成功开发了几种具有代表性的工艺过程。该工艺是根据相似相容原理,利用溶质在两种互不相容的液体间分配性质的不同达到液体混合物分离、提纯的目的。溶剂精制一般采用的是极性溶剂,如酚类、有机酸类等。有些研究者以JC型为溶剂对安定性差的柴油进行抽提,研究影响柴油安定性的因素及其影响程度,但单纯的JC与氮化物的作用力弱,萃取选择性低。吕志凤等人发现用质量分数2 %硫酸JC溶精制重油催化裂化柴油,可脱除大部分氮化物和烃类化合物,可使柴油的安定性得到明显改。如果重油催化裂化柴油经碱洗后再用此溶剂精制,精制后油的安定性比单独碱洗或用质量分数2 %硫酸JC精制的效果明显。王军民等人用含硫极性溶剂和含氢键

煤焦油加氢催化剂的研究进展_雷振

Jan.2014现代化工 第34卷第1期Modern Chemical Industry 2014年1月 煤焦油加氢催化剂的研究进展 雷 振1,胡冬妮2,潘海涛3,陆江银 1*(1.新疆大学石油天然气精细化学品教育部重点实验室,新疆乌鲁木齐830046; 2.中国石油新疆培训中心,新疆乌鲁木齐830046; 3.中国神华煤制油化工有限公司新疆煤化工分公司,新疆乌鲁木齐830049) 摘要:介绍了煤焦油的性质及特点,以及国内外煤焦油加工的现状。从加氢催化剂载体的角度,阐述了传统γ-Al 2O 3、改性 γ-Al 2O 3、多孔材料的特征以及它们在加氢催化反应中的应用。最终结合煤焦油催化加氢特点,展望了介-微孔复合材料作为催化剂载体的优势所在一具有适当的孔径、比表面积及酸性。 关键词:煤焦油;加氢催化剂;载体中图分类号:TE621文献标志码:A 文章编号:0253-4320(2014)01-0030-04 Research progress of coal tar catalytic hydrogenation LEI Zhen 1,HU Dong-ni 2,PAN Hai-tao 3,LU Jiang-yin 1* (1.Key Lab of Oil &Gas Fine Chemicals ,Ministry of Education ,Xinjiang University ,Urumqi 830046,China ; 2.Xin Jiang Training Centre of CNPC ,Urumqi 830046,China ;3.Shenhua Xinjiang Coal Chemical Co.,Ltd.,Urumqi 830049,China )Abstract :The properties and characteristics of coal tar and the present situation of coal tar processing are introduced in this paper.The characteristics of traditional γ-Al 2O 3, modified γ-Al 2O 3,porous materials and their application in catalytic reactions are elaborated from the perspective of the carrier of hydrogenation catalyst.Finally ,combining with the characteristics of catalytic hydrogenation of coal tar ,the advantages of meso-micro pore composite materials as carrier of the catalyst ,having proper pore diameter ,specific surface area and acidity ,are prospected. Key words :coal tar ;hydrogenation catalysts ;supporter 收稿日期:2013-08-05;修回日期:2013-11-12基金项目:国家自然科学基金项目(21163019) 作者简介:雷振(1987-), 男,硕士生;陆江银(1964-),男,教授,从事石油天然气加工及多相催化的研究,通讯联系人,jiangyinlu6410@163.com 。 目前中国能源的基本情况是“缺油、少气、富煤”,石油燃料油品的消费量逐年增加。据国家统 计局2011年的数据[1] 显示, 国内石油消费量2011年达到4.56亿t 。石油进口依存度由2010年的58.7%提高到59.8%,成品油净进口量比2010年增长48.1%,柴油呈现净进口。在这样一个严峻的能源格局下,寻找新途径发展新能源成为解决能源短缺及单一性的重要举措。而我国是煤炭大国,发展煤化工工业,利用低温煤焦油和发展中高温煤焦油深加工燃料产品,具有非常重要的战略和现实意义。 煤焦油加氢轻质化包括加氢裂化和加氢精制,即对煤焦油加氢脱金属、脱硫和脱氮,加氢饱和,最终实现轻质化达到国家燃料油环保要求。加氢催化剂在加氢轻质化中扮演着重要的角色,高性能加氢催化剂的开发显得尤为重要,而新型材料的研究开发则是加氢催化剂性能提升的基础。本文中通过对近几年煤焦油加氢轻质化的研究以及加氢催化剂的发展做一综述,为煤焦油轻质化的更高效利用提供 一定的理论方向。 1我国煤焦油的性质及特点 煤焦油是煤干馏过程中得到的黑褐色黏稠产 物,主要含有苯、甲苯、二甲苯等芳烃,以及芳香族含氧化合物(如苯酚等酚类化合物)、含氮和含硫的杂环化合物等很多有机物。按焦化温度不同,可分为高温焦油(900 1000?)、中温焦油(600 1000?)和低温焦油(450 650?)。相比石油原料,其具有较高的C /H 比,还富含好多重金属、含氮 化合物以及胶质。表1[2] 显示了典型的中低温煤焦油性质及组分 [2] 。 表1 典型中低温煤焦油的性质及组成 项目 密度 (20?)/(kg ·m -3) 质量分数/% 残炭 酚 硫 氮 饱和烃 芳烃胶质+沥青质中低温煤焦油 980.0 4.01 5.30.330.7921.0 54.0 25.0 ·03·

三种生物脱氮工艺研究现状

2016 年春季学期研究生课程考核 (读书报告、研究报告)考核科目:专业新技术 学生所在院 :市政环境工程学院 (系) 学生所在学科: 学生姓名:左左 学号: 学生类别:工学硕士 考核结果阅卷人 三种生物脱氮工艺研究现状 一、前沿

氮是造成水体富营养化的一种主要污染物质,尤其是当水体有机性污染物降低到一定标准之后。为了维护生态环境,保障人体健康,国家的污水排放标准逐步严格,对氮的去除也有了更高的要求。因此,研究具有高效脱氮功能的工艺越来越重要。 传统的生物脱氮理论[1]包括硝化和反硝化两个过程,分别由自养型硝化菌和异氧型反硝化菌完成。其生物脱氮原理为: 氨化反应是在氨化菌作用下,有机氮被分解转化为氨态氮,这一过程称为氨化过程,氨化过程很容易进行;硝化反应由好氧自养型微生物完成,在有氧状态下,亚硝化菌利用无机碳为碳源将NH4+氧化成NO2-,然后硝化菌再将NO2-氧化成NO3-的过程。反硝化反应是在缺氧状态下,反硝化菌将亚硝酸盐氮、硝酸盐氮还原成气态氮 (N2 )的过程。反硝化菌为异养型微生物,多属于兼性细菌,在缺氧状态时,利用硝酸盐中的氧作为电子受体,以有机物 (污水中的 BOD 成分)作为电子供体,提供能量并被氧化稳定。具体流程图如下: 传统生物脱氮途径 近十多年来,许多国家加强了对生物脱氮的研究,并在理论和技术上都取得了重大突破。其中主要包括短程硝化反硝化,厌氧氨氧化和同步硝化反硝化等,以及它们的组合工艺[2]。这些新的理论研究表明: ①硝化反应不仅由自养菌完成,某些异养菌也可以进行硝化作用; ②反硝化不只在厌氧条件下进行,某些细菌可在好氧或缺氧条件下完成反硝化; ③许多好氧反硝化菌同时也是异养硝化菌,并能把NH4+氧化成NO2-后,直接进行反硝化反应。 二、研究现状 1、短程硝化反硝化 短程硝化反硝化[3]是将氨氮氧化控制在亚硝化阶段,然后进行反硝化,省去了传统生物脱氮中将亚硝酸盐氧化成硝酸盐,再还原成亚硝酸盐两个环节。因此,该技术具有很多优点: 可节省约25%氧供应量,降低能耗; 可节省反硝化所需的碳源,在C/N 一定的情况下,提高TN的去

水处理生物脱氮除磷工艺

生物脱氮除磷工艺 第一节 概述 一、营养元素的危害 氮素物质对水体环境和人类都具有很大的危害,主要表现在以下几个方面: 氨氮会消耗水体中的溶解氧; 氨氮会与氯反应生成氯胺或氮气,增加氯的用量; 含氮化合物对人和其它生物有毒害作用:① 氨氮对鱼类有毒害作用;② NO 3- 和NO 2-可被转化为亚硝胺——一种“三致”物质;③ 水中NO 3-高,可导致婴儿患变性血色蛋白症——“Bluebaby ”; 加速水体的“富营养化”过程;所谓“富营养化”就是指水中的藻类大量繁殖而引起水质恶化,其主要因子是N 和P (尤其是P );解决的办法主要就是要严格控制污染源,降低排入水环境的废水中的N 、P 含量;对于城市废水来说,利用传统的活性污泥法进行处理,对N 的去除率一般只有40%左右,对磷的去除率一般只有20~30%。 二、脱氮的物化法 1、氨氮的吹脱法: -++?+OH NH O H NH 423 2 2每 3 采用斜发沸石作为除氨的离子交换体。 出水 折点加氯法脱氯工艺流程

1、铝盐除磷 4343AlPO PO Al →++ + 一般用Al 2(SO 4)3,聚氯化铝(PAC )和铝酸钠(NaAlO 2) 2、铁盐除磷:FePO 4 Fe(OH)3 一般用FeCl 2、FeSO 4 或 FeCl 3 Fe 2(SO 4)3 3、石灰混凝除磷 O H PO OH Ca HPO OH Ca 23452423))((345+→++--+ 向含磷的废水中投加石灰,由于形成OH -,污水的pH 值上升,磷与Ca 2+反应,生成羟磷灰石。 第二节 生物脱氮工艺与技术 一、活性污泥法脱氮传统工艺 1、Barth 提出的三级活性污泥法流程: 第一级曝气池的功能:① 碳化——去除BOD 5、COD ;② 氨化——使有机氮转化为氨氮; 第二级是硝化曝气池,投碱以维持pH 值; 第三级为反硝化反应器,可投加甲醇作为外加碳源或引入原废水。 该工艺流程的优点是氨化、硝化、反硝化分别在各自的反应器中进行,反应速率较快且较彻底;但七缺点是处理设备多,造价高,运行管理较为复杂。 2、两级活性污泥法脱氮工艺 与前一工艺相比,该工艺是将其中的前两级曝气池合并成一个曝气池,使废水在其中同时实现碳化、氨化和硝化反应,因此只是在形式上减少了一个曝气池,并无本质上的改变。 二、缺氧——好氧活性污泥法脱氮系统(A —O 工艺)

加氢脱硫催化剂的研究进展

文献总结 1前言 随着我国经济的持续快速发展、城市化进程的加快和人民生活水平的不断提高,我国各种油品的需求量与日俱增。柴油是石油炼制的大宗产品之一,广泛用作柴油车、铁路内燃机车、船舶、大型发动机组等的燃料。近年来随着柴油发动机技术的发展,特别是电喷技术的应用,使得世界各国对柴油的需求量越来越大。我国现生产的柴油品种分为轻柴油、重柴油及专用柴油,其中轻柴油约占柴油总产量的98%。表1列出了近几年我国原油和成品油的消费状况[1]。从表中可以看到,2005年我国原油消费299.86 Mt,相比2000年增长了34.9%,年均增长率为6.2%。成品油的消费比原油增长更为迅速,2005年我国汽、柴油的表观消费量预2000年相比分别增长了31.6%和55.6%,年均增长率为5.6%和9.2%,柴油增长速度大于汽油。 表1 近年来我国原油、成品油消费状况一览表Mt 年份原油汽油柴油煤油 2000 222.32 36.80 70.50 9.13 2001 217.64 35.48 74.07 8.24 2002 231.07 37.23 76.21 8.71 2003 252.32 40.16 83.74 8.64 2004 291.83 47.09 103.73 10.62 2005 299.86 48.42 109.68 10.49 另外,随着我国自产原油的日益重质化、劣质化以及进口的含硫和高硫原油逐年增加,优质油品越来越少。目前世界上含硫原油(硫含量为0.5%~2.0%)和高硫原油(硫含量2.0%以上)的产量已占世界原油总产量的75%以上,其中硫含量在1%以上的原油超过世界原油总产量的55%,硫含量2%以上的原油也占30%以上。目前全球炼油厂加工的原油平均相对密度是0.8514,平均硫含量是0.9%,2000年后,平均相对密度将上升到0.8633,硫含量将上升到1.6%。此外,原油中重金属铁、钒、镍的含量也有上升趋势[2]。这都导致所生产的柴油中硫、氮、氧等杂质含量过高,产品质量差。 另一方面,随着环境的日益恶化,人们环保意识的不断增强,政府立法对排放在大气中的尾气标准也越来越苛刻,对石油产品的质量标准的要求也越来越高,即允许的S、N含量越来越低。美国车用柴油标准已进入超清洁阶段,加拿大和墨西哥进入清洁阶段(见表2)。美国车用柴油硫含量要求小于15ppm;加拿大要求部分小于15ppm,部分小于500ppm;墨西哥要求小于300ppm。美国车

城市污水厌氧氨氧化生物脱氮研究进展

城市污水城市污水厌氧氨氧化厌氧氨氧化厌氧氨氧化生物脱氮研究进展生物脱氮研究进展 唐崇俭,郑 平 (浙江大学 环境工程系,浙江 杭州 310029) 摘 要:厌氧氨氧化菌可在厌氧条件下以亚硝酸盐为电子受体将氨氧化为氮气,是目前废水生物脱氮的研究热 点之一。小试的研究表明,该工艺的容积负荷可高达125kg N/(m 3 ·d)。城市污水处理厂污泥厌氧消化液以及城市 生活垃圾填埋场渗滤液都含有高氨氮浓度以及低有机物浓度,十分适合采用厌氧氨氧化工艺进行处理。目前,生 产性厌氧氨氧化工艺已在荷兰、丹麦和日本等国成功应用于这两类废水的脱氮处理,最大容积氮去除速率高达 9.5kg N/(m 3·d),显示了该工艺诱人的工程应用前景。本文分析了世界上第一个生产性厌氧氨氧化工艺处理城市 污水厂污泥厌氧消化液的运行情况,论述了厌氧氨氧化工艺在城市污水处理中面临的问题。结合课题组内的研究 结果,提出了一种新型的菌种流加式厌氧氨氧化工艺,并探讨了其在城市污水处理中的作用。 关键关键词词:厌氧氨氧化;城市污水;生物脱氮;工程应用 Application of Anammox Process in Municipal Wastewater Treatment Tang Chongjian, Zheng Ping (Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China ) Abstract : Under anoxic condition, anaerobic ammonium-oxidizing (Anammox) bacteria can oxidize ammonium to nitrogen gas using nitrite as electron acceptor. It becomes a topic issue on biological nitrogen removal from ammonium-rich wastewater due to some promising advantages such as low operational cost and super high volumetric loading rate. As reported, the nitrogen loading rate reached up to 125 kg N/(m 3·d). Characterized by high ammonium concentration and relatively low biodegradable organic content, the sludge digester liquor from the municipal wastewater treatment plant and the landfill leachate are demonstrated to be very suitable for application of Anammox process to realize high-rate nitrogen removal. The full-scale application of Anammox process has already been applied for nitrogen removal from sludge digester liquor and landfill leachate in The Netherlands, Japan and Denmark with the maximum nitrogen removal rate as high as 9.5 kg N/(m 3·d). Thus, the operation of the first full-scale Anammox reactor treating municipal sludge digester liquor was introduced, and the problems during the application of Anammox process in municipal wastewater treatment were discussed. An innovative Anammox process with sequential biocatalyst addition (SBA-Anammox process) was proposed to overcome the drawbacks and accelerate the application of Anammox process in municipal wastewater nitrogen removal.

相关主题
文本预览
相关文档 最新文档