当前位置:文档之家› 数据挖掘课设报告

数据挖掘课设报告

数据挖掘课设报告
数据挖掘课设报告

XI`AN TECHNOLOGICAL UNIVERSITY

课程设计报告

课程名称数据挖掘

专业:信息管理与信息系统

班级: 130513

姓名:贾丹丹

学号: 130513117

指导教师:李刚

成绩:

2016 年 1 月 3 日

前言

数据挖掘就是从大量的数据中挖掘出有用的信息。它是根据人们的特定要求,从浩如烟海的数据中找出所需的信息来,供人们的特定需求使用。据国外专家预测,随着数据量的日益积累和计算机的广泛应用,在今后的5—10年内,数据挖掘将在中国形成一个新型的产业。

数据挖掘,在人工智能领域,习惯上又称为数据库中的知识发现(Knowledge Discovery in Database, KDD),也有人把数据挖掘视为数据库中知识发现过程的一个基本步骤。知识发现过程由以下三个阶段组成:(1)数据准备(2)数据挖掘(3)结果表达和解释。数据挖掘可以与用户或知识库交互。数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。

数据挖掘中的分类反映同类事物共同性质的特征型知识和不同事物之间的差异型特征知识。最为典型的分类方法是基于决策树的分类方法。它是从实例集中构造决策树,是一种有指导的学习方法。该方法先根据训练子集(又称为窗口)形成决策树。如果该树不能对所有对象给出正确的分类,那么选择一些例外加入到窗口中,重复该过程一直到形成正确的决策集。最终结果是一棵树,其叶结点是类名,中间结点是带有分枝的属性,该分枝对应该属性的某一可能值。

目录

1 业务理解 (1)

2 数据理解 (1)

2.1英文版数据说明 (1)

2.2数据的读入 (2)

2.3浏览数据内容 (2)

2.4指定各个变量的作用 (3)

2.5观察各变量的数据分布特征 (4)

3 数据准备 (4)

3.1对数据进行重新分类 (4)

3.2对数据进行平衡处理 (6)

4 建立决策树模型 (6)

4.1 C5.0,CART,CHAID算法介绍 (7)

4.2模型建立 (8)

4.3模型计算结果 (14)

4.4模型结果分析 (17)

5 模型评估 (18)

6 总结 (20)

附录1:zoo.date (21)

附录2:https://www.doczj.com/doc/d15936333.html,s (24)

1 业务理解

动物园动物数量大,种类多,对动物园的动物根据它们的特征进行分类,以便于观察和分析动物的特征,进而更加合理的管理动物以及为未来查找动物信息提供参考。

2 数据理解

该数据集是从UCI网站上获得的一份关于动物园的动物的数据。该数据是收集的动物园中99种动物的特征,包括hair,feathers ,eggs,milk,airborne,aquatic ,Predator,toothed,backbone,breathes,venomous,fins,legs,tail,domestic,catsize 。现需利用数据挖掘将这些动物进行分类,分成7种类型。

2.1英文版数据说明

Source:

Creator:

Richard Forsyth

Donor:

Richard S. Forsyth

8 Grosvenor Avenue

Mapperley Park

Nottingham NG3 5DX

0602-621676

Data Set Information:

A simple database containing 17 Boolean-valued attributes. The "type" attribute

appears to be the class attribute. Here is a breakdown of which animals are in which

type: (I find it unusual that there are 2 instances of "frog" and one of "girl"!)

Class# -- Set of animals:

1 -- (41) aardvark, antelope, bear, boar, buffalo, calf, cavy, cheetah, deer, dolphin,

elephant, fruitbat, giraffe, girl, goat, gorilla, hamster, hare, leopard, lion, lynx, mink,

mole, mongoose, opossum, oryx, platypus, polecat, pony, porpoise, puma, pussycat,

raccoon, reindeer, seal, sealion, squirrel, vampire, vole, wallaby,wolf

2 -- (20) chicken, crow, dove, duck, flamingo, gull, hawk, kiwi, lark, ostrich, parakeet,

penguin, pheasant, rhea, skimmer, skua, sparrow, swan, vulture, wren

3 -- (5) pitviper, seasnake, slowworm, tortoise, tuatara

4 -- (13) bass, carp, catfish, chub, dogfish, haddock, herring, pike, piranha, seahorse,

sole, stingray, tuna

5 -- (4) frog, frog, newt, toad

6 -- (8) flea, gnat, honeybee, housefly, ladybird, moth, termite, wasp

7 -- (10) clam, crab, crayfish, lobster, octopus, scorpion, seawasp, slug, starfish,

worm

Attribute Information:

1. animal name: Unique for each instance

2. hair: Boolean

3. feathers: Boolean

4. eggs: Boolean

5. milk: Boolean

6. airborne: Boolean

7. aquatic: Boolean

8. predator: Boolean

9. toothed: Boolean

10. backbone: Boolean

11. breathes: Boolean

12. venomous: Boolean

13. fins: Boolean

14. legs: Numeric (set of values: {0,2,4,5,6,8})

15. tail: Boolean

16. domestic: Boolean

17. catsize: Boolean

18. type: Numeric (integer values in range [1,7])

Relevant Papers:

Forsyth's PC/BEAGLE User's Guide.

2.2数据的读入

将数据读入Modeler中。在源选项卡中选择可变文件节点并设置节点参数。在文件选项卡中指定从文件zoo.txt中读入数据。

2.3浏览数据内容

在输出选项卡中选择表节点,添加到数据流中。执行该节点生成数据表。在浏览数据时发现两个错误项,数据中有两个frog和一个gril,则删除一个frog 和gril。

【表】节点的输出结果

2.4指定各个变量的作用

其中animal name,hair,feathers ,eggs,milk,airborne,aquatic ,Predator,toothed,backbone,breathes,venomous,fins,legs,tail,domestic,catsize为模型的输入变量, type为模型的目标变量。在字段选项选项卡中选

择【类型】节点,添加到数据流中,设置参数指定变量角色。

【类型】节点的参数

2.5观察各变量的数据分布特征

在输出选项卡中选择数据审核节点,添加到数据流中。执行节点生成数据表。

【数据审核】节点的输出结果

可以看出,该份数据有99个样本,除animal name以外均为数值型变量,除animal name、legs、type以外均是布尔值。Modeler对此计算,输出最小值、最大值、均值、标准差、偏态系数等基本描述统计量。数据显示,legs最大值与最小值差距较大。从数值型变量的柱形图可以看出属于type1的数量最多。数据质量理想。

3 数据准备

3.1对数据进行重新分类

针对该数据,hair,feathers ,eggs,milk,airborne,aquatic ,Predator,toothed,backbone,breathes,venomous,fins,tail,domestic,catsize 属性为是否有hair,feathers ,eggs,milk,airborne,aquatic ,Predator,toothed,backbone,breathes,venomous,fins,tail,domestic,catsize,所以取值0和1不规范,应将取值0和1调整为No和Yes。

【重新分类】的【设置】选项卡

在输出选项卡中选择【表】节点,连接到【重新分类】节点,执行【表】节

点生成重新分类后的数据表,如下:

【表】节点的输出结果

3.2对数据进行平衡处理

观察数据发现,属于type1的数据较多,属于其他type的数据相对较少,所以进行样本平衡处理。

【平衡】的【设置】选项卡

在输出选项卡中选择【表】节点,连接到【平衡】节点,执行【表】节点生成平衡处理后的数据表,如下图:

【表】节点的输出结果

4 建立决策树模型

使用C5.0,CART,CHAID三种算法建立模型:

4.1 C

5.0,CART,CHAID算法介绍

(1)C5.0:C5.0是决策树模型中的算法,79年由J R Quinlan发展,并提出了ID3算法,主要针对离散型属性数据,其后又不断的改进,形成C4.5,它在ID3基础上增加了队连续属性的离散化。C5.0是C4.5应用于大数据集上的分类算法,主要在执行效率和内存使用方面进行了改进。C5.0是经典的决策树模型算法之一,可生成多分支的决策树,目标变量为分类变量,使用C5.0算法可以生成决策树或者规则集。C5.0模型根据能偶带来的最大信息增益的字段拆分样本。第一次拆分确定的样本子集随后再次拆分,通常是根据另一个字段进行拆分,这一过程重复进行指导样本子集不能在被拆分为止。最后,重新缉拿眼最低层次的拆分,哪些对模型值没有显著贡献的样本子集被提出或者修剪。

优点:C5.0模型在面对数据遗漏和输入字段很多的问题时非常稳健;

C5.0模型比一些其他类型的模型易于理解,模型退出的规则有非常直观的解释;

C5.0也提供强大技术以提高分类的精度。

C5.0算法选择分支变量的依据:以信息熵的下降速度作为确定最佳分支变量和分割阀值的依据。

(2)CART:CART(Classification And Regression Tree)算法采用一种二分

递归分割的技术,将当前的样本集分为两个子样本集,使得生成的的每个非叶子

节点都有两个分支。因此,CART算法生成的决策树是结构简洁的二叉树。CART

算法检查每个变量和该变量所有可能的划分值来发现最好的划分,对离散值如

{x,y,x},则在该属性上的划分有三种情({{x,y},{z}},{{x,z},y},{{y,z},x}),

空集和全集的划分除外;对于连续值处理引进“分裂点”的思想,假设样本集中

某个属性共n个连续值,则有n-1个分裂点,每个“分裂点”为相邻两个连续值

的均值 (a[i] + a[i+1]) / 2。将每个属性的所有划分按照他们能减少的杂质(合

成物中的异质,不同成分)量来进行排序。CART算法经常采用事后剪枝方法:

该方法是通过在完全生长的树上剪去分枝实现的,通过删除节点的分支来剪去树

节点。最下面未被剪枝的节点成为树叶。

(3)CHAID:CHAID(Chi-Square Automatic Interaction Detection)

提供了一种在多个自变量中自动搜索能产生最大差异的变量方案。CHAID分析可

以生成非二进制树,即有些分割有两个以上的分支。CHAID模型需要一个单一的

目标和一个或多个输入字段。还可以指定重量和频率领域。

CHAID分析,卡方自动交互检测,是一种用卡方统计,以确定最佳的分割,

建立决策树的分类方法。CHAID算法以因变量为根结点,对每个自变量(只能是

分类或有序变量,也就是离散性的,如果是连续变量,如年龄,收入要定义成分

类或有序变量)进行分类,计算分类的卡方值(Chi-Square-Test)。如果几个变

量的分类均显著,则比较这些分类的显著程度(P值的大小),然后选择最显著

的分类法作为子节点。CHIAD可以自动归并自变量中类别,使之显著性达到最大。最后的每个叶结点就是一个细分市场。

4.2模型建立

(1)在【建模】选项卡中选择【C5.0】、【C&R树R】、【CHAID(C)】节点,添加到数据流中。设置各算法的主要参数。

【C5.0】的【模型】选项卡

【C5.0】的【分析】选项卡

【C&R树】的【构建选项】选项卡(一)

【C&R树】的【构建选项】选项卡(二)

【C&R树】的【构建选项】选项卡(三)

【C&R树】的【构建选项】选项卡(四)

【C&R树】的【构建选项】选项卡(六)

【CHAID】的【构建选项】选项卡(一)

【CHAID】的【构建选项】选项卡(二)

【CHAID】的【构建选项】选项卡(三)

【CHAID】的【构建选项】选项卡(四)

【CHAID】的【构建选项】选项卡(五)

(2)建立的数据流如图所示:

动物分类的数据流

4.3模型计算结果

C5.0算法分析结果的文字形式如下图:

C5.0算法分析结果的图形形式如下图:

CART算法分析结果的文字形式如下图:

CHAID算法分析结果的文字形式如下图:

4.4模型结果分析

(1)C5.0算法模型结果分析

该模型找出了10个影响因素:feathers,tail,backbone,milk,fins,legs, predator,airborne其中feathers是最重要的属性,其中legs,predator,fins 是不重要的属性。因此,对一个动物进行归类时,首先看它是否有feathers。

当feathers为有时,则直接属于type2,不用考虑其他因素,如果没有feathers,再看它是否有backbone,如果有backbone,再看它是否有milk,如果有milk,则属于type1,如果没有milk,再看它是否有fins,如果有fins,则直接属于type4,如果没有fins,再看它是否有tail,如果有tail,则属于type3,如果没有tail,则直接属于type5,如果没有backbone,再看它是否有airborne,如果有airborne,则直接属于type6,如果没有airborne,再看它是否有predator,如果有predator,则属于type7,如果没有predator,再看它的legs 是否为0,如果它的legs为0,则属于type7,如果它的legs为2,4,5,6,8,则属于type,6。

(2)CART算法模型结果分析

该模型找出了3个影响因素:feathers,legs,airborne,其中feathers是最重要的属性,与feathers比较,其他属性远远不如feathers重要。

当feathers为有时,则直接属于type2,不用考虑其他因素,如果无feathers,则直接属于type1。

(3)CHAID算法模型结果分析

该模型找出了10个影响因素:legs,hair,aquatic,fins,toothed,其中legs 最重要,其中fins和toothed是最不重要的属性。

当当腿的数量等于0时,再看它是否有hair,如果有,则直接属于type1,不用考虑其他因素,如果没有hair,则看它收否有toothed,如果没有则直接属于

type7,如果有toothed,再看它是否有fins,如果没有,则属于type3,如果有,

数据挖掘实验报告

《数据挖掘》Weka实验报告 姓名_学号_ 指导教师 开课学期2015 至2016 学年 2 学期完成日期2015年6月12日

1.实验目的 基于https://www.doczj.com/doc/d15936333.html,/ml/datasets/Breast+Cancer+WiscOnsin+%28Ori- ginal%29的数据,使用数据挖掘中的分类算法,运用Weka平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。 2.实验环境 实验采用Weka平台,数据使用来自https://www.doczj.com/doc/d15936333.html,/ml/Datasets/Br- east+Cancer+WiscOnsin+%28Original%29,主要使用其中的Breast Cancer Wisc- onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 3.实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size (均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。 该数据的数据属性如下: 1. Sample code number(numeric),样本代码; 2. Clump Thickness(numeric),丛厚度;

【最新】python数据分析课程报告论文(附代码数据)

用python进行数据分析 一、样本集 本样本集来源于某高中某班78位同学的一次月考的语文成绩。因为每位同学的成绩都是独立的随机变量,遂可以保证得到的观测值也是独立且随机的 样本如下: grades=[131,131,127,123,126,129,116,114,115,116,123,122,118, 121,126,121,126,121,111,119,124,124,121,116,114,116, 116,118,112,109,114,116,116,118,112,109,114,110,114, 110,113,117,113,121,105,127,110,105,111,112,104,103, 130,102,118,101,112,109,107,94,107,106,105,101,85,95, 97,99,83,87,82,79,99,90,78,86,75,66]; 二、数据分析 1.中心位置(均值、中位数、众数) 数据的中心位置是我们最容易想到的数据特征。借由中心位置,我们可以知道数据的一个平均情况,如果要对新数据进行预测,那么平均情况是非常直观地选择。数据的中心位置可分为均值(Mean),中位数(Median),众数(Mode)。其中均值和中位数用于定量的数据,众数用于定性的数据。 均值:利用python编写求平均值的函数很容易得到本次样本的平均值 得到本次样本均值为109.9 中位数:113 众数:116 2.频数分析 2.1频数分布直方图 柱状图是以柱的高度来指代某种类型的频数,使用Matplotlib对成绩这一定性变量绘制柱状图的代码如下:

数据挖掘领域的十大经典算法原理及应用

数据挖掘领域的十大经典算法原理及应用 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1.C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV 机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面

数据挖掘及决策树

昆明理工大学信息工程与自动化学院学生实验报告 (2016 —2017 学年第学期) 课程名称:数据仓库与数据挖掘开课实验室:信自楼444 2017 年 06 月 01 日 一、上机目的及内容 目的: 1.理解数据挖掘的基本概念及其过程; 2.理解数据挖掘与数据仓库、OLAP之间的关系 3.理解基本的数据挖掘技术与方法的工作原理与过程,掌握数据挖掘相关工具的使用。 内容: 给定AdventureWorksDW数据仓库,构建“Microsoft 决策树”模型,分析客户群中购买自行车的模式。 要求: 利用实验室和指导教师提供的实验软件,认真完成规定的实验内容,真实地记录实验中遇到的 二、实验原理及基本技术路线图(方框原理图或程序流程图) 请描述数据挖掘及决策树的相关基本概念、模型等。 1.数据挖掘:从大量的、不完全的、有噪音的、模糊的、随机的数据中,提取隐含在其中的、 人们事先不知道的、但又潜在有用的信息和知识的过程。

预测:利用历史数据建立模型,再运用最新数据作为输入值,获得未来 变化趋势或者评估给定样本可能具有的属性值或值的范围 聚类分析根据数据的不同特征,将其划分为不同数据类 偏差分析对差异和极端特例的描述,揭示事物偏离常规的异常现象,其基本思想 是寻找观测结果与参照值之间有意义的差别 3.决策树:是一种预测模型,它代表的是对象属性与对象值之间的一种映射关系。树中每个 节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从 根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输 出,可以建立独立的决策树以处理不同输出。 算法概念 ID3 在实体世界中,每个实体用多个特征来描述。每个特征限于在一 个离散集中取互斥的值 C4.5 对ID3算法进行了改进: 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选 择取值多的属性的不足;在树构造过程中进行剪枝;能够完成对 连续属性的离散化处理;能够对不完整数据进行处理。 三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC及Microsoft SQL Server套件 四、实验方法、步骤(或:程序代码或操作过程) (一)准备Analysis Services 数据库 1.Analysis Services 项目创建成功 2.更改存储数据挖掘对象的实例

数据挖掘实验报告(一)

数据挖掘实验报告(一) 数据预处理 姓名:李圣杰 班级:计算机1304 学号:1311610602

一、实验目的 1.学习均值平滑,中值平滑,边界值平滑的基本原理 2.掌握链表的使用方法 3.掌握文件读取的方法 二、实验设备 PC一台,dev-c++5.11 三、实验内容 数据平滑 假定用于分析的数据包含属性age。数据元组中age的值如下(按递增序):13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70。使用你所熟悉的程序设计语言进行编程,实现如下功能(要求程序具有通用性): (a) 使用按箱平均值平滑法对以上数据进行平滑,箱的深度为3。 (b) 使用按箱中值平滑法对以上数据进行平滑,箱的深度为3。 (c) 使用按箱边界值平滑法对以上数据进行平滑,箱的深度为3。 四、实验原理 使用c语言,对数据文件进行读取,存入带头节点的指针链表中,同时计数,均值求三个数的平均值,中值求中间的一个数的值,边界值将中间的数转换为离边界较近的边界值 五、实验步骤 代码 #include #include #include #define DEEP 3 #define DATAFILE "data.txt" #define VPT 10 //定义结构体 typedef struct chain{ int num; struct chain *next; }* data; //定义全局变量 data head,p,q; FILE *fp; int num,sum,count=0; int i,j; int *box; void mean(); void medain(); void boundary(); int main () { //定义头指针 head=(data)malloc(sizeof(struc t chain)); head->next=NULL; /*打开文件*/ fp=fopen(DATAFILE,"r"); if(!fp) exit(0); p=head; while(!feof(fp)){

数据挖掘论文

数据挖掘课程论文 ——————数据挖掘技术及其应用的实现 数据挖掘技术及其应用的实现 摘要:随着网络、数据库技术的迅速发展以及数据库管理系统的广泛应用,人们积累的数据越来越多。数据挖掘(Data Mining)就是从大量的实际应用数据中提取隐含信息和知识,它利用了数据库、人工智能和数理统计等多方面的技术,是一类深层次的数据分析方法。本文介绍了数据库技术的现状、效据挖掘的方法以及它在Bayesian网建网技术中的应用:通过散据挖掘解决Bayesian网络建模过程中所遇到的具体问题,即如何从太规模效据库中寻找各变量之间的关系以及如何确定条件概率问题。 关键字:数据挖掘、知识获取、数据库、函数依赖、条件概率 一、引言: 数据是知识的源泉。但是,拥有大量的数据与拥有许多有用的知识完全是两回事。过去几年中,从数据库中发现知识这一领域发展的很快。广阔的市场和研究利益促使这一领域的飞速发展。计算机技术和数据收集技术的进步使人们可以从更加广泛的范围和几年前不可想象的速度收集和存储信息。收集数据是为了得到信息,然而大量的数据本身并不意味信息。尽管现代的数据库技术使我们很容易存储大量的数据流,但现在还没有一种成熟的技术帮助我们分析、理解并使数据以可理解的信息表示出来。在过去,我们常用的知识获取方法是由知识工程师把专家经验知识经过分析、筛选、比较、综合、再提取出知识和规则。然而,由于知识工程师所拥有知识的有局限性,所以对于获得知识的可信度就应该打个 折扣。目前,传统的知识获取技术面对巨型数据仓库无能为力,数据挖掘技术就应运而生。 数据的迅速增加与数据分析方法的滞后之间的矛盾越来越突出,人们希望在对已有的大量数据分析的基础上进行科学研究、商业决策或者企业管理,但是目前所拥有的数据分析工具很难对数据进行深层次的处理,使得人们只能望“数”兴叹。数据挖掘正是为了解决传统分析方法的不足,并针对大规模数据的分析处理而出现的。数据挖掘通过在大量数据的基础上对各种学习算法的训练,得到数据对象间的关系模式,这些模式反映了数据的内在特性,是对数据包含信息的更高层次的抽象[1]。目前,在需要处理大数据量的科研领域中,数据挖掘受到越来越多的关注,同时,在实际问题中,大量成功运用数据挖掘的实例说明了数据挖掘对科学研究具有很大的促进作用。数据挖掘可以帮助人们对大规模数据进行高效的分

学习18大经典数据挖掘算法

学习18大经典数据挖掘算法 本文所有涉及到的数据挖掘代码的都放在了github上了。 地址链接: https://https://www.doczj.com/doc/d15936333.html,/linyiqun/DataMiningAlgorithm 大概花了将近2个月的时间,自己把18大数据挖掘的经典算法进行了学习并且进行了代码实现,涉及到了决策分类,聚类,链接挖掘,关联挖掘,模式挖掘等等方面。也算是对数据挖掘领域的小小入门了吧。下面就做个小小的总结,后面都是我自己相应算法的博文链接,希望能够帮助大家学习。 1.C4.5算法。C4.5算法与ID3算法一样,都是数学分类算法,C4.5算法是ID3算法的一个改进。ID3算法采用信息增益进行决策判断,而C4.5采用的是增益率。 详细介绍链接:https://www.doczj.com/doc/d15936333.html,/androidlushangderen/article/details/42395865 2.CART算法。CART算法的全称是分类回归树算法,他是一个二元分类,采用的是类似于熵的基尼指数作为分类决策,形成决策树后之后还要进行剪枝,我自己在实现整个算法的时候采用的是代价复杂度算法, 详细介绍链接:https://www.doczj.com/doc/d15936333.html,/androidlushangderen/article/details/42558235 3.KNN(K最近邻)算法。给定一些已经训练好的数据,输入一个新的测试数据点,计算包含于此测试数据点的最近的点的分类情况,哪个分类的类型占多数,则此测试点的分类与此相同,所以在这里,有的时候可以复制不同的分类点不同的权重。近的点的权重大点,远的点自然就小点。 详细介绍链接:https://www.doczj.com/doc/d15936333.html,/androidlushangderen/article/details/42613011 4.Naive Bayes(朴素贝叶斯)算法。朴素贝叶斯算法是贝叶斯算法里面一种比较简单的分类算法,用到了一个比较重要的贝叶斯定理,用一句简单的话概括就是条件概率的相互转换推导。 详细介绍链接:https://www.doczj.com/doc/d15936333.html,/androidlushangderen/article/details/42680161 5.SVM(支持向量机)算法。支持向量机算法是一种对线性和非线性数据进行分类的方法,非线性数据进行分类的时候可以通过核函数转为线性的情况再处理。其中的一个关键的步骤是搜索最大边缘超平面。 详细介绍链接:https://www.doczj.com/doc/d15936333.html,/androidlushangderen/article/details/42780439 6.EM(期望最大化)算法。期望最大化算法,可以拆分为2个算法,1个E-Step期望化步骤,和1个M-Step最大化步骤。他是一种算法框架,在每次计算结果之后,逼近统计模型参数的最大似然或最大后验估计。

数据挖掘实验报告资料

大数据理论与技术读书报告 -----K最近邻分类算法 指导老师: 陈莉 学生姓名: 李阳帆 学号: 201531467 专业: 计算机技术 日期 :2016年8月31日

摘要 数据挖掘是机器学习领域内广泛研究的知识领域,是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地提取出有价值的知识模式,以满足人们不同应用的需要。K 近邻算法(KNN)是基于统计的分类方法,是大数据理论与分析的分类算法中比较常用的一种方法。该算法具有直观、无需先验统计知识、无师学习等特点,目前已经成为数据挖掘技术的理论和应用研究方法之一。本文主要研究了K 近邻分类算法,首先简要地介绍了数据挖掘中的各种分类算法,详细地阐述了K 近邻算法的基本原理和应用领域,最后在matlab环境里仿真实现,并对实验结果进行分析,提出了改进的方法。 关键词:K 近邻,聚类算法,权重,复杂度,准确度

1.引言 (1) 2.研究目的与意义 (1) 3.算法思想 (2) 4.算法实现 (2) 4.1 参数设置 (2) 4.2数据集 (2) 4.3实验步骤 (3) 4.4实验结果与分析 (3) 5.总结与反思 (4) 附件1 (6)

1.引言 随着数据库技术的飞速发展,人工智能领域的一个分支—— 机器学习的研究自 20 世纪 50 年代开始以来也取得了很大进展。用数据库管理系统来存储数据,用机器学习的方法来分析数据,挖掘大量数据背后的知识,这两者的结合促成了数据库中的知识发现(Knowledge Discovery in Databases,简记 KDD)的产生,也称作数据挖掘(Data Ming,简记 DM)。 数据挖掘是信息技术自然演化的结果。信息技术的发展大致可以描述为如下的过程:初期的是简单的数据收集和数据库的构造;后来发展到对数据的管理,包括:数据存储、检索以及数据库事务处理;再后来发展到对数据的分析和理解, 这时候出现了数据仓库技术和数据挖掘技术。数据挖掘是涉及数据库和人工智能等学科的一门当前相当活跃的研究领域。 数据挖掘是机器学习领域内广泛研究的知识领域,是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地抽取出有价值的知识模式,以满足人们不同应用的需要[1]。目前,数据挖掘已经成为一个具有迫切实现需要的很有前途的热点研究课题。 2.研究目的与意义 近邻方法是在一组历史数据记录中寻找一个或者若干个与当前记录最相似的历史纪录的已知特征值来预测当前记录的未知或遗失特征值[14]。近邻方法是数据挖掘分类算法中比较常用的一种方法。K 近邻算法(简称 KNN)是基于统计的分类方法[15]。KNN 分类算法根据待识样本在特征空间中 K 个最近邻样本中的多数样本的类别来进行分类,因此具有直观、无需先验统计知识、无师学习等特点,从而成为非参数分类的一种重要方法。 大多数分类方法是基于向量空间模型的。当前在分类方法中,对任意两个向量: x= ) ,..., , ( 2 1x x x n和) ,..., , (' ' 2 ' 1 'x x x x n 存在 3 种最通用的距离度量:欧氏距离、余弦距 离[16]和内积[17]。有两种常用的分类策略:一种是计算待分类向量到所有训练集中的向量间的距离:如 K 近邻选择K个距离最小的向量然后进行综合,以决定其类别。另一种是用训练集中的向量构成类别向量,仅计算待分类向量到所有类别向量的距离,选择一个距离最小的类别向量决定类别的归属。很明显,距离计算在分类中起关键作用。由于以上 3 种距离度量不涉及向量的特征之间的关系,这使得距离的计算不精确,从而影响分类的效果。

数据挖掘课程实验最终报告

数据挖掘课程实验最终报告 王丹 杨亮 朱鹏飞 文本分类和主题提取 实验内容简介: 文本分为10个类别,每个类别有200篇文章,每篇文章大概3000字,属于长文本分类,对于每个类别,提取其中的主题内容。 一、预处理阶段 首先需要对文本进行预处理, 1)去掉不相关的header,footer以及其他注释信息 2)去除文本分行标志的“\r\n”,合并为一个段落 3)将处理好的文件放到新的目录下,目录结构和之前的结构相同。 二分词 对上一步进行预处理的文本进行分词,分词后放到新的目录下,目录结构仍然保持和之前的目录结构一致。 三对预处理的文本进行打包 本次步骤主要是实现一个训练用语料数据结构,为做计算tf-idf向量空间模型做准备 1首先定义训练集的数据结构 定义训练集对象:data_set 使用python的bunch类提供一种key,value的对象形式 Target_name:所有分类集名称列表 Label:每个语篇定义分类标签列表

Filenames:分词后语篇路径 Contents:分词后语篇内容 2 从分词语料库中将所需信息读入训练集的数据结构中 3 将训练集持久化为一个数据对象文件 4 读出数据对象文件,验证持久化的正确性。 四对打包后的数据计算tf-idf权重,并持久化词包文件 1 导入训练集 2 从文件导入停用词表,并转换为list 3 创建词袋数据结构,并配置停用词表 4 统计每个词语的tf-idf权值。 使用Tdidfvectorizer计算tf-idf权值。 五对测试集进行分类 1 确定测试语料:对测试语料进行预处理 2 对测试语料进行分词 3 导入测试语料:随机选取测试语料类别并记录 4 导入训练词袋模型含vocabulary 5 计算测试语料的tf-idf权值,让两个tfidfvectorizer共享一个vocabulary 6 应用分类算法 7 预测和输出分类结果 8 计算分类精度 KNN算法分类 KNN算法原理:通过训练好模型,当有新的文章来时,统计它周围k个类别的文章的类型,距离采用的是计算tf-idf矩阵间的距离,由于每篇文章是平等的,由于每类文章的数量基本

数据挖掘报告

哈尔滨工业大学 数据挖掘理论与算法实验报告(2016年度秋季学期) 课程编码S1300019C 授课教师邹兆年 学生姓名汪瑞 学号 16S003011 学院计算机学院

一、实验内容 决策树算法是一种有监督学习的分类算法;kmeans是一种无监督的聚类算法。 本次实验实现了以上两种算法。在决策树算法中采用了不同的样本划分方式、不同的分支属性的选择标准。在kmeans算法中,比较了不同初始质心产生的差异。 本实验主要使用python语言实现,使用了sklearn包作为实验工具。 二、实验设计 1.决策树算法 1.1读取数据集 本次实验主要使用的数据集是汽车价值数据。有6个属性,命名和属性值分别如下: buying: vhigh, high, med, low. maint: vhigh, high, med, low. doors: 2, 3, 4, 5more. persons: 2, 4, more. lug_boot: small, med, big. safety: low, med, high. 分类属性是汽车价值,共4类,如下: class values:unacc, acc, good, vgood 该数据集不存在空缺值。

由于sklearn.tree只能使用数值数据,因此需要对数据进行预处理,将所有标签类属性值转换为整形。 1.2数据集划分 数据集预处理完毕后,对该数据进行数据集划分。数据集划分方法有hold-out法、k-fold交叉验证法以及有放回抽样法(boottrap)。 Hold—out法在pthon中的实现是使用如下语句: 其中,cv是sklearn中cross_validation包,train_test_split 方法的参数分别是数据集、数据集大小、测试集所占比、随机生成方法的可

数据挖掘课程论文综述

海南大学 数据挖掘论文 题目:股票交易日线数据挖掘 学号:20100602310002 姓名: 专业:10信管 指导老师: 分数:

目录 目录 (2) 1. 数据挖掘目的 (3) 2.相关基础知识 (3) 2.1 股票基础知识 (3) 2.2 数据挖掘基础知识 (4) 2.2.2数据挖掘的任务 (5) 3.数据挖掘方案 (6) 3.1. 数据挖掘软件简介 (6) 3.2. 股票数据选择 (7) 3.3. 待验证的股票规律 (7) 4. 数据挖掘流 (8) 4.1数据挖掘流图 (8) 4.2规律验证 (9) 4.2.2规律2验证 (10) 4.2.3规律三验证 (12) 4.3主要节点说明 (14) 5.小结 (15)

1.数据挖掘目的 数据挖掘的目的就是得出隐藏在数据中的有价值的信息,发现数据之间的内在联系与规律。对于本次数据挖掘来说,其目的就是学会用clementine对股票的历史数据进行挖掘,通过数据的分析,找出存在股票历史数据中的规律,或者验证已存在的股票规律。同时也加深自己对股票知识的了解和对clementine软件的应用能力。为人们决策提供指导性信息,为公司找出其中的客户为公司带来利润的规律,如二八原则、啤酒与尿布的现象等。 2.相关基础知识 2.1 股票基础知识 2.1.1 股票 是一种有价证券,是股份公司在筹集资本时向出资人公开或私下发行的、用以证明出资人的股本身份和权利,并根据持有人所持有的股份数享有权益和承担义务的凭证。股票代表着其持有人(股东)对股份公司的所有权,每一股同类型股票所代表的公司所有权是相等的,即“同股同权”。股票可以公开上市,也可以不上市。在股票市场上,股票也是投资和投机的对象。对股票的某些投机炒作行为,例如无货沽空,可以造成金融市场的动荡。 2.1.2 开盘价 开盘价又称开市价,是指某种证券在证券交易所每个交易日开市后的第一笔买卖成交价格。世界上大多数证券交易所都采用成交额最大原则来确定开盘价。 2.1.3 收盘价 收盘价是指某种证券在证券交易所一天交易活动结束前最后一笔交易的成交价格。如当日没有成交,则采用最近一次的成交价格作为收盘价,因为收盘价是当日行情的标准,又是下一个交易日开盘价的依据,可据以预测未来证券市场行情;所以投资者对行情分析时,一般采用收盘价作为计算依据。

数据挖掘实验报告-关联规则挖掘

数据挖掘实验报告(二)关联规则挖掘 姓名:李圣杰 班级:计算机1304 学号:1311610602

一、实验目的 1. 1.掌握关联规则挖掘的Apriori算法; 2.将Apriori算法用具体的编程语言实现。 二、实验设备 PC一台,dev-c++5.11 三、实验内容 根据下列的Apriori算法进行编程:

四、实验步骤 1.编制程序。 2.调试程序。可采用下面的数据库D作为原始数据调试程序,得到的候选1项集、2项集、3项集分别为C1、C2、C3,得到的频繁1项集、2项集、3项集分别为L1、L2、L3。

代码 #include #include #define D 4 //事务的个数 #define MinSupCount 2 //最小事务支持度数 void main() { char a[4][5]={ {'A','C','D'}, {'B','C','E'}, {'A','B','C','E'}, {'B','E'} }; char b[20],d[100],t,b2[100][10],b21[100 ][10]; int i,j,k,x=0,flag=1,c[20]={0},x1=0,i1 =0,j1,counter=0,c1[100]={0},flag1= 1,j2,u=0,c2[100]={0},n[20],v=1; int count[100],temp; for(i=0;i=MinSupCount) { d[x1]=b[k]; count[x1]=c[k]; x1++; } } //对选出的项集中的元素进行排序 for(i=0;i

数据挖掘中十大经典算法

数据挖掘十大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。 5. 最大期望(EM)算法 在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。 6. PageRank PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里?佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个

数据挖掘课程论文要求

吉JISHOU UNIVERSITY 课 程 论 文 课程名称 小二号楷GB2312不加粗 题 目 小二号楷GB2312不加粗 作 者 所属学院 专业年级 信息管理与信息系统2008级 写作时间 吉首大学教务处制

目 录 (1) Abstract (1) 引言 (2) 一、应收帐款具有“双刃性” (2) (一)有利方面 (2) (二)不利方面 (3) 二、我国应收帐款管理制度及缺陷 (3) (一)相关制度 (3) (二)制度缺陷 (3) 三、加强应收帐款管理的措施 (4) (一)制定适当的信用政策 (4) (二)提取坏帐准备金,减少坏帐损失 (4) (三)慎选结算方式,推行票据结算制度 (5) (四)对应收帐款设定担保,办理信用保险 (5) (五)制定合理的收款政策,催收帐款责任到位 (5) (六)根据帐龄情况采取必要措施 (5) 四、系统分析,为应收帐款科学管理提供思路 (5) 结语 (13) 参考文献 (13) (用3号黑体字,中间空2字符) (用小4号宋体字,1.5倍行距,下同)

学生姓名 (吉首大学 ***学院,湖南 张家界 摘要:(←用小4号黑体字)应收帐款的存在是买方市场下企业为占有市场而必然出现的结果。它既可扩大市场,提高市场占有率,又给企业带来潜在的坏帐风险,具有“双刃性”。企业应充分认识应收帐款的利弊,从应收帐款的周转情况、帐龄、规模及对收入和利润的弹性等方面系统分析,从信用政策、坏帐准备、及时催收、根据帐龄区别对待等方面加强管理,由此降低和控制应收帐款的风险。(←用5号宋体字,中文摘要应简洁明了,字数为300字左右,内容包括论文的写作目的、意义、研究方法、研究过程、主体内容及结论,突出创造性成果及新见解) 关键词:(←用小4号黑体字)应收帐款;管理;分析(←用5号宋体字,关键词为能反映论文最主要内容的名词性术语,数量3 The Management and the Analysis of the Account Receivable (↑用3号Times New Noman ,加粗,居中) (如果有副标题,用小3号Times New Noman ,居中) (作者姓名,用4号Times New Noman ,居中) (School of ****,Jishou University Zhangjiajie,Hunan 427000) (单位,用小4号 Abstract : (←用小4号Times New Noman ,加粗,首个字母大写)The existence of the account receivable is a result to occupy market in the buyer ’s market. The account receivable not only expands the occupation rate of market but also brings the potential bad account risk. It is “a pair of edge nature ”. Enterprises should study the pros and cons of the account receivable and analyze turnover situation and scale of the account receivable age of the debt and elasticity to the income and profit of the account receivable. And enterprises should strengthen management to lower and to control the (用4号宋体字)

大数据挖掘weka大数据分类实验报告材料

一、实验目的 使用数据挖掘中的分类算法,对数据集进行分类训练并测试。应用不同的分类算法,比较他们之间的不同。与此同时了解Weka平台的基本功能与使用方法。 二、实验环境 实验采用Weka 平台,数据使用Weka安装目录下data文件夹下的默认数据集iris.arff。 Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java 写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 三、数据预处理 Weka平台支持ARFF格式和CSV格式的数据。由于本次使用平台自带的ARFF格式数据,所以不存在格式转换的过程。实验所用的ARFF格式数据集如图1所示 图1 ARFF格式数据集(iris.arff)

对于iris数据集,它包含了150个实例(每个分类包含50个实例),共有sepal length、sepal width、petal length、petal width和class五种属性。期中前四种属性为数值类型,class属性为分类属性,表示实例所对应的的类别。该数据集中的全部实例共可分为三类:Iris Setosa、Iris Versicolour和Iris Virginica。 实验数据集中所有的数据都是实验所需的,因此不存在属性筛选的问题。若所采用的数据集中存在大量的与实验无关的属性,则需要使用weka平台的Filter(过滤器)实现属性的筛选。 实验所需的训练集和测试集均为iris.arff。 四、实验过程及结果 应用iris数据集,分别采用LibSVM、C4.5决策树分类器和朴素贝叶斯分类器进行测试和评价,分别在训练数据上训练出分类模型,找出各个模型最优的参数值,并对三个模型进行全面评价比较,得到一个最好的分类模型以及该模型所有设置的最优参数。最后使用这些参数以及训练集和校验集数据一起构造出一个最优分类器,并利用该分类器对测试数据进行预测。 1、LibSVM分类 Weka 平台内部没有集成libSVM分类器,要使用该分类器,需要下载libsvm.jar并导入到Weka中。 用“Explorer”打开数据集“iris.arff”,并在Explorer中将功能面板切换到“Classify”。点“Choose”按钮选择“functions(weka.classifiers.functions.LibSVM)”,选择LibSVM分类算法。 在Test Options 面板中选择Cross-Validatioin folds=10,即十折交叉验证。然后点击“start”按钮:

数据挖掘主要算法

朴素贝叶斯: 有以下几个地方需要注意: 1. 如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分类为例),比如说是句子单词的话,则长度为整个词汇量的长度,对应位置是该单词出现的次数。 2. 计算公式如下: 其中一项条件概率可以通过朴素贝叶斯条件独立展开。要注意一点就是的计算方法,而由朴素贝叶斯的前提假设可知, = ,因此一般有两种,一种是在类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本的总和;第二种方法是类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本中所有特征出现次数的总和。 3. 如果中的某一项为0,则其联合概率的乘积也可能为0,即2中公式的分子为0,为了避免这种现象出现,一般情况下会将这一项初始化为1,当然为了保证概率相等,分母应对应初始化为2(这里因为是2类,所以加2,如果是k类就需要加k,术语上叫做laplace 光滑, 分母加k的原因是使之满足全概率公式)。 朴素贝叶斯的优点: 对小规模的数据表现很好,适合多分类任务,适合增量式训练。 缺点: 对输入数据的表达形式很敏感。 决策树: 决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。 信息熵的计算公式如下:

其中的n代表有n个分类类别(比如假设是2类问题,那么n=2)。分别计算这2类样本在总样本中出现的概率p1和p2,这样就可以计算出未选中属性分枝前的信息熵。 现在选中一个属性xi用来进行分枝,此时分枝规则是:如果xi=vx的话,将样本分到树的一个分支;如果不相等则进入另一个分支。很显然,分支中的样本很有可能包括2个类别,分别计算这2个分支的熵H1和H2,计算出分枝后的总信息熵H’=p1*H1+p2*H2.,则此时的信息增益ΔH=H-H’。以信息增益为原则,把所有的属性都测试一边,选择一个使增益最大的属性作为本次分枝属性。 决策树的优点: 计算量简单,可解释性强,比较适合处理有缺失属性值的样本,能够处理不相关的特征; 缺点: 容易过拟合(后续出现了随机森林,减小了过拟合现象); Logistic回归: Logistic是用来分类的,是一种线性分类器,需要注意的地方有: 1. logistic函数表达式为: 其导数形式为: 2. logsitc回归方法主要是用最大似然估计来学习的,所以单个样本的后验概率为: 到整个样本的后验概率:

数据挖掘实验报告1

实验一 ID3算法实现 一、实验目的 通过编程实现决策树算法,信息增益的计算、数据子集划分、决策树的构建过程。加深对相关算法的理解过程。 实验类型:验证 计划课间:4学时 二、实验内容 1、分析决策树算法的实现流程; 2、分析信息增益的计算、数据子集划分、决策树的构建过程; 3、根据算法描述编程实现算法,调试运行; 4、对所给数据集进行验算,得到分析结果。 三、实验方法 算法描述: 以代表训练样本的单个结点开始建树; 若样本都在同一个类,则该结点成为树叶,并用该类标记; 否则,算法使用信息增益作为启发信息,选择能够最好地将样本分类的属性; 对测试属性的每个已知值,创建一个分支,并据此划分样本; 算法使用同样的过程,递归形成每个划分上的样本决策树 递归划分步骤,当下列条件之一成立时停止: 给定结点的所有样本属于同一类; 没有剩余属性可以进一步划分样本,在此情况下,采用多数表决进行 四、实验步骤 1、算法实现过程中需要使用的数据结构描述: Struct {int Attrib_Col; // 当前节点对应属性 int Value; // 对应边值 Tree_Node* Left_Node; // 子树 Tree_Node* Right_Node // 同层其他节点 Boolean IsLeaf; // 是否叶子节点 int ClassNo; // 对应分类标号 }Tree_Node; 2、整体算法流程

主程序: InputData(); T=Build_ID3(Data,Record_No, Num_Attrib); OutputRule(T); 释放内存; 3、相关子函数: 3.1、 InputData() { 输入属性集大小Num_Attrib; 输入样本数Num_Record; 分配内存Data[Num_Record][Num_Attrib]; 输入样本数据Data[Num_Record][Num_Attrib]; 获取类别数C(从最后一列中得到); } 3.2、Build_ID3(Data,Record_No, Num_Attrib) { Int Class_Distribute[C]; If (Record_No==0) { return Null } N=new tree_node(); 计算Data中各类的分布情况存入Class_Distribute Temp_Num_Attrib=0; For (i=0;i=0) Temp_Num_Attrib++; If Temp_Num_Attrib==0 { N->ClassNo=最多的类; N->IsLeaf=TRUE; N->Left_Node=NULL;N->Right_Node=NULL; Return N; } If Class_Distribute中仅一类的分布大于0 { N->ClassNo=该类; N->IsLeaf=TRUE; N->Left_Node=NULL;N->Right_Node=NULL; Return N; } InforGain=0;CurrentCol=-1; For i=0;i

相关主题
文本预览
相关文档 最新文档