当前位置:文档之家› 高考物理二轮复习专题四电磁场类问题电磁复合场练习

高考物理二轮复习专题四电磁场类问题电磁复合场练习

高考物理二轮复习专题四电磁场类问题电磁复合场练习
高考物理二轮复习专题四电磁场类问题电磁复合场练习

专题四 电磁场类问题(电、磁、复合场)

一、

单选题

1.如图所示,平行板电容器充电后形成一个匀强电场,大小保持不变。让不计重

力的相同带电粒子a 、b ,以不同初速度先、后垂直电场射入,a 、b 分别落到负极板的中央和边缘,则( ) A .b 粒子加速度较大 B .b 粒子的电势能变化量较大

C .若仅使a 粒子初动能增大到原来的2倍,则恰能打在负极板的边缘

D .若仅使a 粒子初速度增大到原来的2倍,则恰能打在负极板的边缘 2.如图甲所示,两平行正对的金属板A 、B 间加有如图乙所示的交变

电压,一重力可忽略不计的带正电粒子被固定在两板的正中间P 处。若在t 0时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动,并最终打在A 板上。则t 0可能属于的时间段是( ) A .0

4

B.T 2

C.

3T

4

3.如图所示,在圆形区域内存在垂直纸面向外的匀强磁场,ab 是圆的直径。一带电粒子从a 点射入磁场,速度大小为v 、方向与ab 成30°角时,恰好从b 点飞出磁场,且粒子在磁场中运动的时间为t ;若同一带电粒子从a 点沿ab 方向射入磁场,也经时间t 飞出磁场,则其速度大小为( )

A.1

2v B.23v C.

3

2

v D.32

v 4.自行车速度计利用霍尔效应传感器获知自行车的运动速率。如图甲所示,自行车前轮上安装一块磁铁,轮子每转一圈,这块磁铁就靠近霍尔传感器一次,

传感器会输出一个脉冲电压。图乙为霍尔元件的工作原理图,当磁场靠近霍尔元件时,导体内定向运动的自由电荷在磁场力作用下偏转,最终使导体在与磁场、电流方向都垂直的方向上出现电势差,即为霍尔电势差。下列说法正确的是( )

A .根据单位时间内的脉冲数和自行车车轮的半径即可获知车速大小

B .自行车的车速越大,霍尔电势差越高

C .图乙中霍尔元件的电流I 是由正电荷定向移动形成的

D .如果长时间不更换传感器的电源,霍尔电势差将增大

5.科研人员常用磁场来约束运动的带电粒子,如图所示,粒子源位于纸面内一边长为a 的正方形中心O

处,可以沿纸面向各个方向发射速度不同的粒子,粒子质量为m、电荷量为q、最大速度为v,忽略粒子重力及粒子间相互作用,要使粒子均不能射出正方形区域,可在此区域加一垂直纸面的匀强磁场,则磁感应强度B的最小值为( )

A.2mv

qa

B.

22mv

qa

C.4mv

qa

D.

42mv

qa

二、多选题

6.如图所示,两个等量异号点电荷M、N分别固定在A、B两点,F为AB连线中垂

线上某一点,O为AB连线的中点,且AO=OF,E和φ分别表示F处的场强大小和

电势。将某试探负点电荷由F处静止释放时,其电势能和加速度大小分别用ε和

a表示,取无穷远处为电势零点,若将负点电荷N移走,则( )

A.E不变B.φ升高

C.ε变小D.a变大

7.如图所示,电路中R1、R2均为可变电阻,电源内阻不能忽略,平行板电容器C的极板水平放置,闭合电键S,电路达到稳定时,带电油滴悬浮在两板之间静止不动。如果仅改变下列某一个条件,油滴能向下

运动的是( )

A.增大R1的阻值B.增大R2的阻值

C.增大两板间的距离D.断开电键S

8.如图所示,一足够长的绝缘细杆处于磁感应强度为B=0.5 T的匀强磁场中,杆与磁场垂直且与水平方向的夹角为θ=37°。一质量为m=0.1 g、电荷量为q=5×10-4 C的带正电圆环套在杆上,圆环与杆之间的动摩擦因数为μ=0.4。现将圆环从杆上的某一位置无初速度释放。则下列判断中正确的是(sin 37°=0.6,cos 37°=0.8,取重力加速度g=10 m/s2)( )

A.圆环下滑过程中洛伦兹力始终做正功

B.当圆环下滑的速度达到2.4 m/s时,圆环与杆之间的弹力为零

C.圆环下滑过程中的最大加速度为6 m/s2

D.圆环下滑过程中的最大速度为9.2 m/s

9.如图所示为利用海流发电的磁流体发电机原理示意图,矩形发电管道

水平东西放置,整个管道置于方向竖直向上、磁感应强度大小为B的匀

强磁场中,其上、下两面是绝缘板,南、北两侧面M、N是电阻可忽略的

导体板,两导体板与开关S和定值电阻R相连,已知发电管道长为L、

宽为d、高为h,海水在发电管道内以恒定速率v朝正东方向流动。发电

管道内的海水在垂直流动方向的电阻为r,海水在管道内流动时受到的摩擦阻力大小恒为f,不计地磁场的影响,则( )

A.N侧的电势高

B.开关S断开时,M、N两端的电压为Bdv

C .开关S 闭合时,发电管道进、出口两端压力差F =f +B 2d 2v

R +r

D .开关S 闭合时,电阻R 上的功率为B 2d 2v 2

R

10.如图所示,在一个边长为a 的正六边形区域内存在磁感应强度为B ,方向垂直于纸面向里的匀强磁场,一个比荷为q m

的正粒子,从A 点沿AD 方向以一定的初速度射入匀强磁场区域,粒子在运动过程中只受磁场力作用;已知粒子从ED 边上的某一点垂直ED 边界飞出磁场区域。则( )

A .粒子进入磁场区域的初速度大小为23Bqa

3m

B .粒子在磁场区域内运动的时间t =πm

3Bq

C .粒子在磁场区域内运动的半径R =23a

D .若改变B 和初速度的大小,使该粒子仍从ED 边界垂直飞出磁场区域,则粒子在磁场区域内运动的路程不变 三、计算题

11.如图所示,等量异种点电荷固定在水平线上的M 、N 两点上,电荷量均为Q ,有一质量为m 、电荷量为+q (可视为点电荷)的小球,固定在长为L 的绝缘轻质细杆的一端,细杆另一端可绕过O 点且与MN 垂直的水平轴无摩擦地转动,O 点位于MN 的垂直平分线上距MN 为L 处,现在把杆拉到水平位置,由静止释放,小球经过最低点B 时速度为v ,取O 处电势为零,忽略+q 对+Q 、-Q 形成电场的影响。求:

(1)小球经过B 点时对杆的拉力大小;

(2)在+Q 、-Q 形成的电场中,A 点的电势φA ;

(3)小球继续向左摆动,经过与A 等高度的C 点时的速度。

12.反射式速调管是常用的微波器件之一,它利用电子团在电场中的振荡来产生微波,其振荡原理与下述过程类似。如图所示,在虚线MN 两侧分别存在着方向相反的两个匀强电场,一带电微粒从A 点由静止开

始,在电场力作用下沿直线在A 、B 两点间往返运动。已知电场强度的大小分别是E 1=2.0×103

N/C 和E 2

=4.0×103 N/C ,方向如图所示。带电微粒质量m =1.0×10-20 kg ,带电荷量q =-1.0×10-9

C ,A 点距虚线MN 的距离d

1=1.0 cm ,不计带电微粒的重力,忽略相对论效应。求:

(1)B点到虚线MN的距离d2;

(2)带电微粒从A点运动到B点所经历的时间t。

13.平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ象限存在沿y轴负方向的匀强电场,如图所示。一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y轴的距离为到x轴距离的2倍。粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等。不计粒子重力,问:

(1)粒子到达O点时速度的大小和方向;

(2)电场强度和磁感应强度的大小之比。

14.如图,绝缘粗糙的竖直平面MN左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E,磁场方向垂直纸面向外,磁感应强度大小为B。一质量为m、电荷量为q的带正电的小滑块从A点由静止开始沿MN下滑,到达C点时离开MN做曲线运动。A、C两点间距离为h,重力加速度为g。

(1)求小滑块运动到C点时的速度大小v C;

(2)求小滑块从A点运动到C点过程中克服摩擦力做的功W f;

(3)若D点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D点时撤去磁场,此后小滑块继续运动到水平地面上的P点。已知小滑块在D点时的速度大小为v D,从D 点运动到P点的时间为t,求小滑块运动到P点时速度的大小v P。

15.如图甲所示,粒子源靠近水平极板M、N的M板,N板下方有一对长为L,间距为d=1.5L的竖直极板P、Q,再下方区域存在着垂直于纸面的匀强磁场,磁场上边界的部分放有感光胶片。水平极板M、N中间开有小孔,两小孔的连线为竖直极板P、Q的中线,与磁场上边界的交点为O。水平极板M、N之间的电压为U0,竖直极板P、Q之间的电压U PQ随时间t变化的图

像如图乙所示,磁场的磁感强度B =

1

L 2mU 0

q

。粒子源连续释放初速不计、质量为m 、带电量为+q 的粒

子,这些粒子经加速电场获得速度,进入竖直极板P 、Q 之间的电场后再进入磁场区域,都会打到感光胶片上。已知粒子在偏转电场中运动的时间远小于电场变化的周期,粒子重力不计。求:

(1)粒子进入偏转电场时的动能E k ; (2)磁场上、下边界区域的最小宽度x ; (3)粒子打到磁场上边界感光胶片的落点范围。

专题四:电磁场类问题(电、磁、复合场)答案

1.解析:选D 加速度为a =

qE

m

,a 、b 两个粒子相同,电场强度E 相同,则加速度相同,故A 错误;电场力做功为W =qEy ,可见,电场力做功相同,由能量守恒得知,a 、b 的电势能增量相同,故B 错误;若a

粒子的初动能增大到原来的2倍,由动能的定义式E k =12mv 2

知,a 粒子的初速度增大到原来的2倍,粒

子在电场中做类平抛运动,a 粒子到达下极板的时间不变,水平位移变为原来的2倍,a 粒子不能打到负极板的边缘,故C 错误;若仅使a 粒子初速度增大到原来的2倍,粒子到达下板的时间不变,水平位移变为原来的2倍,则a 恰能打在负极板的边缘,故D 正确。

2.解析:选B 两板间加的是方波电压,刚释放粒子时,粒子向A 板运动,说明释放粒子时U AB 为负,A 、

D 错误;若t 0=T 2时刻释放粒子,则粒子恰好做方向不变的单向直线运动,一直向A 运动;若t 0=3T

4时刻

释放粒子,则粒子恰好在电场中固定两点间做往复运动,因此在T 2

4

时间内释放该粒子,粒子的运动

满足题意的要求,B 正确,C 错误。

3.[解析] 设圆形区域的半径为R ,带电粒子进入磁场中做匀速圆周运动,如图1所示,由洛伦兹力提供

向心力,则有:qvB =m v 2r ,得 r =mv

qB

,r ∝v 。当粒子从b 点飞

出磁场时,出射速度与入射速度与ab 的夹角恰好相等,所以速度的偏转角为60°,轨迹对应的圆心角为60°。根据几何知识得,粒子的轨迹半径为 r 1=2R ;当粒子从a 点沿ab 方向

射入磁场时,如图2所示,经过磁场的时间也是t ,说明轨迹对应的圆心角与第一种情况相等,也是60°。根据几何知识得,粒子的轨迹半径为 r 2=3R ;则有:v ′v =r 2r 1=32,解得v ′=3

2

v 。故C 正确。

4.解析:选 A 根据单位时间内的脉冲数可知车轮转动的转速,若再已知自行车车轮的半径,根据v =2πrn 即可获知车速大小,选项A 正确;根据霍尔原理可知U d

q =Bqv ,U =Bdv ,即霍尔电势差只与磁场强度、霍尔元件的厚度以及电子定向移动的速率有关,与车速无关,选项B 错误;题图乙中霍尔元件的电流I 是由电子定向移动形成的,选项C 错误;如果长时间不更换传感器的电源,则会导致电子定向移动的速率减小,故霍尔电势差将减小,选项D 错误。

5.解析:选C 粒子在匀强磁场中运动,洛伦兹力提供向心力,则有:Bvq =mv 2R ,所以R =mv

Bq

。粒子做圆

周运动,圆上最远两点之间的距离为2R ;而O 到边界的最短距离为1

2a ,所以,要使粒子均不能射出正方

形区域,则2R ≤12a ,即2mv Bq ≤12a ,所以B ≥4mv qa ,故磁感应强度B 的最小值为4mv

qa ,故A 、B 、D 错误,C 正

确。

6.解析:选BC 令电荷M 、N 都存在时为状态1,各物理量用下标1表示;只有电荷M 时为状态2,各物理量用下标2表示。状态1时,电荷M 、N 对在F 处的电场强度大小都为E 0,两者相互垂直,根据电场叠加定理可得:合场强E 1=2E 0,方向水平向右。状态2时,电荷M 在F 处的电场强度也是E 0,方向沿AF 连线方向。所以若将负点电荷N 移走,则E 改变,故A 错误;状态1时,易知AB 连线的中垂线为一条等

势线,中垂线上无穷远处的电势为0,所以φ1=0。状态2时,只有正电荷M ,所以φ2>0,可得:若将负点电荷N 移走,则φ升高,故B 正确;电势能?=q φ,所以?1=0,?2<0,所以?变小,故C 正确;F =qE ,a =F m =qE m

,试探电荷q 、m 不变,E 变小,所以a 变小,故D 错误。

7.解析:选CD 增大R 1的阻值,稳定后电容器两板间的电压升高,带电油滴所受电场力增大,将向上运动,A 错误;电路稳定后,电容器相当于断路,无电流通过电阻R 2,故R 2两端无电压,所以,增大R 2的阻值,电容器两板间的电压不变,带电油滴仍处于静止状态,B 错误;增大两板间的距离,两板间的电压不变,电场强度减小,带电油滴所受电场力减小,将向下运动,C 正确;断开电键S 后,两极板间的电势差为零,带电油滴只受重力作用,将向下运动,D 正确。

8.解析:选CD 由于洛伦兹力始终与速度垂直,不做功,故A 错误;当圆环与杆之间的弹力为零时,摩擦力为零,加速度最大,此时有qvB =mg cos θ,解得v =3.2 m/s ,由mg sin θ=ma

解得a

=6

m/s 2

,故B 错误,C 正确;圆环向下加速运动时,必会出现qvB >mg cos θ,此时,杆对圆环的弹力为F N =

qvB -mg cos θ,当mg sin θ=μF N =μ(qv

B -mg cos θ)时速度最大,解得v 大=9.2 m/s ,故D 正

确。

9.解析:选BC 海水向东流动的过程中,正电荷受到的洛伦兹力的方向指向M ,而负电荷受到的洛伦兹力的方向指向N ,所以M 侧聚集正电荷,M 侧的电势高,故A 错误;开关S 断开时,设海水中的电荷所带的电荷量为q ,当其所受的洛伦兹力与电场力平衡时,M 、N 两端的电压U 保持恒定,有qvB =q U d

,解得:

U =Bdv ,故B 正确;设开关S 闭合后,发电管道进、出口两端压力分别为F 1、F 2,海水所受的摩擦阻力恒

为f ,开关S 闭合后管道内海水受到的安培力为F 安,有:F 2=F 1+f +F 安,F 安=BId ,根据欧姆定律有I

=U

R +r ,解得:F =F 2-F 1=f +B 2d 2v R +r ,故C 正确;电阻R 上的功率为P =I 2

R =B 2d 2v 2R R +r 2

,故D 错误。 10.解析:选CD 画出粒子在磁场区域内运动的轨迹如图所示,由题意及速度方向确定轨迹圆的圆心在O

点,连接AE ,由几何关系确定各角度关系如图所示。粒子在磁场区域内运动的半

径r =OA =AE sin 30°=2a cos 30°sin 30°=23a ,C 正确;由洛伦兹力提供向心力qvB =

mv 2r ,解得v =23Bqa m

, A 错误;粒子在磁场区域内运动的时间t =

30°360°×2πm qB =πm

6qB

,B 错误;若改变粒子初速度的大小和B 的大小,仍使粒子从ED 边界垂直飞出磁场区域,通过画图知带电粒子在磁场中的运动轨迹不变,所以路程也不变,D 正确。

11.解析:(1)小球经B 点时,在竖直方向有T -mg =mv 2L 即T =mg +mv 2

L

由牛顿第三定律知,小球对细杆的拉力大小也为mg +mv 2

L

(2)O 点电势为零,而O 在MN 的垂直平分线上,所以φB =0

小球从A 到B 过程中,由动能定理得mgL +q (φA -φB )=12mv 2解得φA =mv 2

-2mgL

2q 。

(3)由电场对称性可知,φC =-φA ,即U AC =2φA

小球从A 到C 过程,根据动能定理qU AC =12

mv C 2解得v C =2v 2

-4gL 。

12.解析:(1)带电微粒由A 运动到B 的过程中,由动能定理有|q |E 1d 1-|q |E 2d 2=0,E 1d 1=E 2d 2,

解得d 2=0.50 cm 。

(2)设微粒在虚线MN 两侧的加速度大小分别为a 1、a 2,由牛顿第二定律有

|q |E 1=ma 1, |q |E 2=ma 2,

设微粒在虚线MN 两侧运动的时间大小分别为t 1、t 2,由运动学公式有

d 1=12a 1t 12, d 2=12

a 2t 22, 又t =t 1+t 2, 解得t =1.5×10-8 s 。

答案:(1)0.50 cm (2)1.5×10-8

s

13.[解析] (1)在电场中,粒子做类平抛运动,设Q 点到x 轴距离为L ,到y 轴距离为2L ,粒子的加速度为a ,运动时间为t ,有2L =v 0t ①L =12

at 2

设粒子到达O 点时沿y 轴方向的分速度为v y v y =at ③

设粒子到达O 点时速度方向与x 轴正方向夹角为α,有tan α=v y v 0

④ 联立①②③④式得α=45° ⑤

即粒子到达O 点时速度方向与x 轴正方向成45°角斜向上。 设粒子到达O 点时速度大小为v ,由运动的合成有v =v 02

+v y 2

⑥ 联立①②③⑥式得v =2v

0。 ⑦

(2)设电场强度为E ,粒子电荷量为q ,质量为m ,粒子在电场中受到的电场力为

F ,由牛顿第二定律可得F =ma ⑧ 又F =qE ⑨

设磁场的磁感应强度大小为B ,粒子在磁场中做匀速圆周运动的半径为R ,所

受的洛伦兹力提供向心力,有qvB =m v 2R ⑩ 由几何关系可知R =2L ? 联立①②⑦⑧⑨⑩?式得E

B =

v 0

2。 ?

[答案] (1)2v 0,与x 轴正方向成45°角斜向上 (2)v 0

2

14. [解析] (1)小滑块沿MN 运动过程,水平方向受力满足qvB +N =qE

小滑块在C 点离开MN 时N =0 解得v C =E

B

(2)由动能定理得mgh -W f =12mv C 2-0 解得W f =mgh -mE

2

2B

2。

(3)如图,小滑块速度最大时,速度方向与电场力、重力的合力方向垂直。撤去

磁场后小滑块将做类平抛运动,等效加速度为g ′, g ′=

? ??

??qE m 2+g 2 且v P 2

=v D 2

+g ′2t 2

解得v P =

v D 2+????

??? ????qE m 2+g 2t 2。 [答案] (1)E B (2)mgh -mE 2

2B

2(3)

v D 2+????

??? ????qE m 2+g 2t 2

15.解析:(1)粒子进入偏转电场时的动能,即为MN 间的电场力做的功E k =W MN =U 0q 。 (2)设带电粒子以速度v 进入磁场,且与磁场边界之间的夹角为α时,轨迹如图所示,

向下偏移的距离:Δy =R -R cos α=R (1-cos α)而R =mv

Bq

v 1=v sin α

Δy =

mv 1Bq ·1-cos αsin α

当α=90°时,Δy 有最大值。

即加速后的粒子以速度v 1进入竖直极板P 、Q 之间的电场不发生偏转,沿中心线进入磁场。 磁场上、下边界区域的最小宽度即为此时的粒子运动轨道半径。

U 0q =12

mv 12 所以v 1=

2qU 0

m

Δy max =

mv 1

Bq

=L 。 (3)粒子运动轨迹如图所示,

若U PQ =0时进入偏转电场,在电场中做匀速直线运动,进入磁场时R =L ,打在感光胶片上距离交点

O 最近为x =2L

设任意电压时粒子出偏转电场时的速度为v n ,根据几何关系

v n =

v 1

sin θR n =mv n

Bq

粒子打在感光胶片上的位置和进入磁场位置间的间距为Δx =2R n sin θ=2mv 1

Bq

则粒子打在感光胶片上的位置和进入磁场位置间的间距相等,与偏转电压无关,在感光胶片上的落点宽度等于粒子在电场中的偏转距离。

粒子在电场中最大偏转距离 y =12at 2=12·3qU 01.5Lm ·? ????L v 12=L 2

粒子在感光胶片上落点距交点O 的最小、最大距离分别是2L 和5L 2,则落点范围是L

2。

答案:(1)U 0q (2)L (3)L

2

2高三物理高考第一轮专题复习――电磁场(附答案详解)

高三物理第一轮专题复习——电磁场 在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。 (1请判断该粒子带何种电荷,并求出其比荷q/m ; (2若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ’,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ’多大?此次粒子在磁场中运动所用时间t 是多少? 电子自静止开始经M 、N 板间(两板间的电压

为U 的电场加速后从A 点垂直于磁场边界射入宽度为d 的匀强磁场中, 电子离开磁场时的位置P 偏离入射方向的距离为L ,如图所示.求匀强磁场的磁感应强度.(已知电子的质量为m ,电量为e 高考如图所示,abcd 为一正方形区域,正离子束从a 点沿ad 方向以0 =80m/s 的初速度射入,若在该区域中加上一个沿ab 方向的匀强电场,电场强度为E ,则离子束刚好从c 点射出;若撒去电场,在该区域中加上一个垂直于abcd 平面的匀强磁砀,磁感应强度为B ,则离子束刚好从bc 的中点e 射出,忽略离子束中离子间的相互作用,不计离子的重力,试判断和计算: (1所加磁场的方向如何?(2E

与B 的比值B E /为多少? 制D 型金属扁盒组成,两个D 形盒正中间开有一条窄缝。两个D 型盒处在匀强磁场中并接有高频交变电压。图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。在磁场力的作用下运动半周,再经狭缝电压加速。如此周而复始,最后到达D 型盒的边缘,获得最大速度,由导出装置导出。已知正离子的电荷量为q ,质量为m ,加速时电极间电压大小为U ,磁场的磁感应强度为B ,D 型盒的半径为R 。每次加速的时间很短,可以忽略不计。正离子从离子源出发时的初速度为零。 ( 1为了使正离子每经过窄缝都被加速,求交变电压的频率; (2求离子能获得的最大动能; ( 3求离子第 1 次与第n 次在下半盒中运动的轨道半径之比。 甲

电磁场考试试题及问题详解

电磁波考题整理 一、填空题 1. 某一矢量场,其旋度处处为零,则这个矢量场可以表示成某一标量函数的(梯度)形式。 2. 电流连续性方程的积分形式为(??? s dS j=- dt dq) 3. 两个同性电荷之间的作用力是(相互排斥的)。 4. 单位面积上的电荷多少称为(面电荷密度)。 5. 静电场中,导体表面的电场强度的边界条件是:(D1n-D2n=ρs) 6. 矢量磁位A和磁感应强度B之间的关系式:(B=▽ x A) 7. .E(Z,t)=e x E m sin(wt-kz-)+ e y E m cos(wt-kz+),判断上述均匀平面电磁波的极化方式为: (圆极化)(应该是 90%确定) 8. 相速是指均匀平面电磁波在理想介质中的传播速度。 9.根据电磁波在波导中的传播特点,波导具有(HP)滤波器的特点。(HP,LP,BP三选一) 10.根据电与磁的对偶关系,我们可以由电偶极子在远区场的辐射场得到(磁偶极子)在远区产生的辐射场 11. 电位移矢量D=ε E+P在真空中 P的值为(0) 12. 平板电容器的介质电容率ε越大,电容量越大。 13.恒定电容不会随时间(变化而变化) 14.恒定电场中沿电源电场强度方向的闭合曲线积分在数值上等于电源的(电动势) 15. 电源外媒质中电场强度的旋度为0。 16.在给定参考点的情况下,库伦规范保证了矢量磁位的(散度为零) 17.在各向同性媚质中,磁场的辅助方程为(D=εE, B=μH, J=σE) 18. 平面电磁波在空间任一点的电场强度和磁场强度都是距离和时间的函数。 19. 时变电磁场的频率越高,集肤效应越明显。 20. 反映电磁场中能量守恒与转换规律的定理是坡印廷定理。 二、名词解释 1. 矢量:既存在大小又有方向特性的量 2. 反射系数:分界面上反射波电场强度与入射波电场强度之比 3. TEM波:电场强度矢量和磁场强度矢量均与传播方向垂直的均匀平面电磁波 4. 无散场:散度为零的电磁场,即·=0。 5. 电位参考点:一般选取一个固定点,规定其电位为零,称这一固定点为参考点。当取点为参考 点时,P点处的电位为=;当电荷分布在有限的区域时,选取无穷远处为参考点较为方便,此时=。 6. 线电流:由分布在一条细线上的电荷定向移动而产生的电流。 7.磁偶极子:磁偶极子是类比电偶极子而建立的物理模型。具有等值异号的两个点磁荷构成的系统称为磁偶极子场。磁偶极子受到力矩的作用会发生转动,只有当力矩为零时,磁偶极子才会处于平衡状

电磁场专题

第二讲 电场、磁场 [高考命题趋向] 在电场部分中,高考主要考查库仑定律、点电荷的电场、场强的叠加、电势、电势差、电场线、等势面等概念以及电荷在电场中运动的加速和偏转等问题,其中既有难度中、低档的选择题,也可能与其它知识联系出现难度较大的综合性计算题。 高考对磁场部分的考查侧重于磁场的基本概念和安培力的简单应用,带电粒子在磁场中的运动的应用。带电粒子在磁场中的圆周运动问题,几乎年年有,并且占有较大的分值,这一部分也将是09年高考的一个重点内容。 提醒注意:带电粒子在复合场中的运动问题,因其涉及的知识点比较多,易于考查学生综合利用物理知识分析处理实际问题的能力,所以几乎是高考每年必考的内容,且多以难度中等或中等偏上的计算题出现在高考试卷中。 【考点透视】 一 电场 库仑定律:2 2 1r Q kQ F = ,(适用条件:真空中两点电荷间的相互作用力) 电场强度的定义式:q F E =(实用任何电场),其方向为正电荷受力的方向。电场强度 是矢量。 真空中点电荷的场强:2 r kQ E = ,匀强电场中的场强:d U E = 。 电势、电势差:q W U AB B A AB = -=??。 电容的定义式:U Q C =,平行板电容器的决定式kd S C πε4= 。 电场对带电粒子的作用:直线加速2 21mv Uq =。偏转:带电粒子垂直进入平行板间的匀 强电场将作类平抛运动。 提醒注意:应熟悉点电荷、等量同种、等量异种、平行金属板等几种常见电场的电场线和等势面,理解沿电场线电势降低,电场线垂直于等势面。 二 磁场 磁体、电流和运动电荷的周围存在着磁场,其基本性质是对放入其中的磁体、电流、运

(完整word版)高考物理压轴题电磁场汇编

24、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向 垂直于纸面,磁感应强度为B 。一质量为m ,带有电量 q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点(AP =d )射入磁场(不计重力影响)。 ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 24、⑴由于粒子在P 点垂直射入磁场,故圆弧轨道的圆心在AP 上,AP 是直径。 设入射粒子的速度为v 1,由洛伦兹力的表达式和牛顿第二定律得: 2 11/2 v m qBv d = 解得:12qBd v m = ⑵设O /是粒子在磁场中圆弧轨道的圆心,连接O /Q ,设O / Q =R /。 由几何关系得: / OQO ?∠= // OO R R d =+- 由余弦定理得:2 /22//()2cos OO R R RR ?=+- 解得:[] / (2) 2(1cos )d R d R R d ?-= +- 设入射粒子的速度为v ,由2 /v m qvB R = 解出:[] (2) 2(1cos )qBd R d v m R d ?-= +- 24.(17分) 如图所示,在xOy 平面的第一象限有一匀强电场,电场的 方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d 。接着,质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。 24.质点在磁场中偏转90o,半径qB mv d r = =φsin ,得m qBd v φsin =; v

高考物理压轴题电磁场汇编

1、在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁 感应强度为B。一质量为m带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP= d)射入磁场(不计重力影响)。 ⑴如果粒子恰好从A点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q 点切线 方向的夹角为φ (如图)。求入射粒子的速度。 解:⑴由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP 是直径。 设入射粒子的速度为V1,由洛伦兹力的表达式和牛顿第二定律得: v12 m qBv1 d/2 解得:v1-q B d 2m ⑵设O是粒子在磁场中圆弧轨道的圆心,连接 由几何关系得:QQQ Z = QQ^R Z R_d 由余弦定理得:/ 2 2 /2/ (QQ ) =R R -2RR COSr 解得:P Z d(2R-d) 2 ∣R(1 cos J - d 1 2 设入射粒子的速度为v,由m~v√ = qvB R Z 解出: qBd (2R-d) V 2m [R(1 + cos c P) -d 】 2、(17分)如图所示,在XQy平面的第一象限有一匀强电场,电场的方向 平行于y轴向下;在X轴和第四象限的射线QC之间有一匀强磁场,磁 感应强度的大小为B,方向垂直于纸面向外。有一质量为m,带 有 电荷量+q的质点由电场左侧平行于X轴射入电场。质点到达X轴上A 点时,速度方向与X轴的夹角为φ , A点与原点Q的距离为d。接着, 质点进入磁场,并垂直于QC飞离磁场。不计重力影响。若QC与X 轴 的夹角也为φ ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的 场强大小。 D V

高考物理一轮复习磁场专题

第十一章、磁场 一、磁场: 1、基本性质:对放入其中的磁极、电流有力的作用。 磁极间、电流间的作用通过磁场产生,磁场是客观存在的一种特殊形态的物质。 2、方向:放入其中小磁针N极的受力方向(静止时N极的指向) 放入其中小磁针S极的受力的反方向(静止时S极的反指向) 3、磁感线:形象描述磁场强弱和方向的假想的曲线。 磁体外部:N极到S极;磁体内部:S极到N极。 磁感线上某点的切线方向为该点的磁场方向;磁感线的疏密表示磁场的强弱。 4、安培定则:(右手四指为环绕方向,大拇指为单独走向) 二、安培力: 1、定义:磁场对电流的作用力。 2、计算公式:F=ILBsinθ=I⊥LB式中:θ是I与B的夹角。 电流与磁场平行时,电流在磁场中不受安培力;电流与磁场垂直时,电流在磁场中受安培力最大:F=ILB 0≤F≤ILB 3、安培力的方向:左手定则——左手掌放入磁场中,磁感线穿过掌心,四指指向电流方向,大拇指指向为通电导线所受安培力的方向。 三、磁感应强度B: 1、定义:放入磁场中的电流元与磁场垂直时,所受安培力F跟电流元IL的比值。

qB m v r =2、公式: 磁感应强度B是磁场的一种特性,与F、I、L等无关。 注:匀强磁场中,B与I垂直时,L为导线的长度; 非匀强磁场中,B与I垂直时,L为短导线长度。 3、国际单位:特斯拉(T)。 4、磁感应强度B是矢量,方向即磁场方向。 磁感线方向为B方向,疏密表示B的强弱。 5、匀强磁场:磁感应强度B的大小和方向处处相同的磁场。磁感线是分布均匀的平行直线。例:靠近的两个异名磁极之间的部分磁场;通电螺线管内的磁场。 四、电流表(辐向式磁场) 线圈所受力矩:M=NBIS ∥=k θ 五、磁场对运动电荷的作用: 1、洛伦兹力:运动电荷在磁场中所受的力。 2、方向:用左手定则判断——磁感线穿过掌心,四指所指为正电荷运动方向(负电荷运动的反方向),大拇指所指方向为洛伦兹力方向。 3、大小:F=qv ⊥B 4、洛伦兹力始终与电荷运动方向垂直,只改变电荷的运动方向,不对电荷做功。 5、电荷垂直进入磁场时,运动轨迹是一个圆。 IL F B =

电磁场与电磁波研究性教学专题

《电磁场与电磁波》研究性教学参考题目 一、要求和建议: 1. 最多5人一组。任选一个题目,也可自拟相关题目。 2. 研究型学习一报告在第13周(5月24日之前)交,由各小组长组织提交ppt 文档和word 文档。 E-mail to: xtshao@https://www.doczj.com/doc/d14471166.html, 3. 报告要求: (1) 题目; (2) 作者姓名、班级、学号; (3) 阐述原理,理论分析和计算过程和计算结果; (4) 收获和体会,哪些内容来自教材,哪些属于知识扩展,并提供参考文献的编号、 作者、文章或书名,出版社或期刊号,时间; (5) 建议以及存在的问题。 二、静电场特性研究 1、查找相关资料,针对第二章静电场中电位的定义、物理意义,从以下四个方面讨论静电场零电位的选择。 ● 静电场电位零点选择的任意性; ● 为什么选择无穷远处为电位零点(U ∞=0)? ● 为什么选择U 地=0,它和U ∞=0是否相容? ● 零点不同的电位如何相加? 2、针对以下给定的电荷分布,用matlab 仿真画出对应的电位和电场分布。并对结果进行分析。 (1)电荷为Q 、相距d 的电偶极子放置在真空中。 (2)两个接地的半无限大导体板分别放置在x 轴和y 轴上,形成900夹角,正电荷04πε放置在点(a ,a )处。 (3)一个两维的电位分布近似用二次方表示如下: )(4220 y x V v +-=ερ v ρ为电荷分布。证明上述V 函数满足泊松方程。画出电荷图形和电位分布。

3、求平行板电容器边缘附近的电场分布。设场点离电容器边缘的距离远大于极板间距,但远小于极板的尺寸,直接积分计算电场。 4、心电图是检测和诊断心脏功能的重要仪器。当心脏跳动时,身体各部分的电势会发生变化,把金属电极贴在人体有关部分的皮肤上测量电极间电势差的变化情况,就能诊断心脏跳动是否异常。电极间的电势差有数毫伏,利用记录仪或示波器可把电势差随时间的变化记录或显示出来。距离很小的正负电荷层称为电偶层,研究电偶层的电势,定性分析心电图的工作原理。 三、恒定电流场与恒定磁场特性研究 1、用安培里定律分析两平行的无限长载流直导线之间的作用力。 2、研究和探讨光和磁的作用及应用。 3、螺线管中具有不同介质分界面时的磁场分布研究(B 和H 边界条件的研究) 长直螺线管一半是空气,一半是铁芯,单位长度上均匀密绕着 n 匝线圈,通流 I ,铁 芯磁导率为μ,截面积为S ,求作用在铁芯截面上的力。 解答如下: 空螺线管内磁场均匀,为 Sx I n Sx H W 22020m 2 121μμ== 假设铁心沿轴向方向虚位移?x , 则 x S I n W ?μμ?220m )(21-= x W f ΔΔm =S I n 220)(2 1μμ-= 试问上述解答是否正确?满足边界条件吗?给出正确解答。 4、如下图所示,螺线管的线圈被拉出一段距离。已知在螺线管内部介质中的磁导率为1μ,其磁感应强度为B1,磁场强度为H1。在空气中的磁导率为2μ,磁感应强度B2,磁场强度为H2,求出在两种介质表面的磁感应强度以及磁场强度的大小关系。

高考物理压轴题之电磁学专题(5年)(含答案分析).

25.2014新课标2 (19分)半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m且质量分布均匀的直导体棒AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯 视图如图所示.整个装置位于一匀强磁场中,磁感应强度的 大小为B,方向竖直向下,在内圆导轨的C点和外圆导轨的 D点之间接有一阻值为R的电阻(图中未画出).直导体棒 在水平外力作用下以速度ω绕O逆时针匀速转动、转动过 程中始终与导轨保持良好接触,设导体棒与导轨之间的动摩 擦因数为μ,导体棒和导轨的电阻均可忽略,重力加速度大 小为g.求: (1)通过电阻R的感应电流的方向和大小; (2)外力的功率.

25.(19分)2013新课标1 如图,两条平行导轨所在平面与水平 地面的夹角为θ,间距为L。导轨上端接 有一平行板电容器,电容为C。导轨处于 匀强磁场中,磁感应强度大小为B,方向 垂直于导轨平面。在导轨上放置一质量为 m的金属棒,棒可沿导轨下滑,且在下滑 过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系。 24.(14分)2013新课标2 如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行。a、b为轨道直径的两端,该直径与电场方向平行。一电荷为q(q>0)的质点沿轨道内侧运动.经过a 点和b点时对轨道压力的大小分别为Na和Nb不计重力,求电场强度的大小E、质点经过a点和b点时的动能。

高中物理引力场电场磁场经典解题技巧专题辅导

高中物理引力场、电场、磁场经典解题技巧专题辅导 【考点透视】 一万有引力定律 万有引力定律的数学表达式:2 21r m m G F =,适用条件是:两个质点间的万有引力的计算。 在高考试题中,应用万有引力定律解题常集中于三点:①在地球表面处地球对物体的万有引力近似等于物体的重力,即mg R Mm G =2,从而得出2gR GM =,它在物理量间的代换时非常有用。②天体作圆周运动需要的向心力来源于天体之间的万有引力,即r mv r Mm G 22=;③圆周运动的有关公式:T πω2=,r v ω=。 二电场 库仑定律:221r Q kQ F =,(适用条件:真空中两点电荷间的相互作用力) 电场强度的定义式:q F E = (实用任何电场),其方向为正电荷受力的方向。电场强度是矢量。 真空中点电荷的场强:2r kQ E =,匀强电场中的场强:d U E =。 电势、电势差:q W U AB B A AB = -=??。 电容的定义式:U Q C =,平行板电容器的决定式kd S C πε4=。 电场对带电粒子的作用:直线加速 221mv Uq = 。偏转:带电粒子垂直进入平行板间的 匀强电场将作类平抛运动。 提醒注意:应熟悉点电荷、等量同种、等量异种、平行金属板等几种常见电场的电场线

和等势面,理解沿电场线电势降低,电场线垂直于等势面。 三磁场 磁体、电流和运动电荷的周围存在着磁场,其基本性质是对放入其中的磁体、电流、运动电荷有力的作用。 熟悉几种常见的磁场磁感线的分布。 通电导线垂直于匀强磁场放置,所受安培力的大小:BIL F =,方向:用左手定则判定。 带电粒子垂直进入匀强磁场时所受洛伦兹力的大小: qvB F =,方向:用左手定则判定。若不计带电粒子的重力粒子将做匀速圆周运动,有qB mv R =,qB m T π2=。 【例题解析】 一万有引力 例1地球(看作质量均匀分布的球体)上空有许多同步卫星,同步卫星绕地球近似作匀速圆周运动,根据所学知识推断这些同步卫星的相关特点。 解析:同步卫星的周期与地球自转周期相同。因所需向心力由地球对它的万有引力提供,轨道平面只能在赤道上空。设地球的质量为M ,同步卫星的质量为m ,地球半径为R ,同步 卫星距离地面的高度为h ,由向万F F =,有 )(4)(22 2h R T m h R GmM ++π=,得R GMT h -=3224π;又由h R v m h R GmM +=+22)(得h R GM v +=;再由ma h R GmM =+2)(得2 )(h R GM a +=。由以分析可看出:地球同步卫星除质量可以不同外,其轨道平面、距地面高度、线速度、向心加速度、角速度、周期等都应是相同的。 点拨:同步卫星、近地卫星、双星问题是高考对万有引力定律中考查的落足点,对此应引起足够的重视,应注意准确理解相关概念。 例2某星球的质量为M ,在该星球表面某一倾角为θ的山坡上以初速度0v 平抛一个物体,经t 时间该物体落到山坡上。欲使该物体不再落回该星球的表面,至少应以多大的速度

压轴题08 电磁场综合专题(原卷版)-2020年高考物理挑战压轴题(尖子生专用)

压轴题08电磁场综合专题 1.如图所示,真空区域中存在匀强电场与匀强磁场;每个磁场区域的宽度均为0.20m h =,边界水 平,相邻两个区域的距离也为h ,磁感应强度大小 1.0T B =、方向水平且垂直竖直坐标系xoy 平面向里;电场在x 轴下方的整个空间区域中,电场强度的大小 2.5N/C E =、方向竖直向上。质量41.010kg m -=?、电荷量4 4.010C q -=?的带正电小球,从y 轴上的P 点静止释放,P 点与x 轴的距离也为h ;重力加速度g 取10m/s 2,sin 370.6=,cos370.8=,不计小球运动时的电磁辐射。求小球: (1)射出第1区域时的速度大小v (2)射出第2区域时的速度方向与竖直方向之间的夹角θ (3)从开始运动到最低点的时间t 。 2.如图甲所示,平行金属板M 、N 水平放置,板长L =5 m 、板间距离d =0.20m 。在竖直平面内建立xOy 直角坐标系,使x 轴与金属板M 、N 的中线OO ′重合,y 轴紧靠两金属板右端。在y 轴右侧空间存在方向垂直纸面向里、磁感应强度大小B =5.0×10-3T 的匀强磁场,M 、N 板间加随时间t 按正弦规律变化的电压u MN ,如图乙所示,图中T 0未知,两板间电场可看作匀强电场,板外电场可忽略。比荷q m =1.0×107C/kg 、带正电的大量粒子以v 0=1.0×105m/s 的水平速度,从金属板左端沿中线OO ′连续射入电场,进入磁场的带电粒子从y 轴上的 P 、Q (图中未画岀,P 为最高点、Q 为最低点)间离开磁场。在每个粒子通过电场区域的极短时间内,电场可视作恒定不变,忽略粒子重力,求: (1) 进入磁场的带电粒子在电场中运动的时间t 0及在磁场中做圆周运动的最小半径r 0; (2) P 、Q 两点的纵坐标y P 、y Q ; (3) 若粒子到达Q 点的同时有粒子到达P 点,满足此条件的电压变化周期T 0的最大值。

高考物理:专题9-磁场(附答案)

专题9 磁场 1.(15江苏卷)如图所示,用天平测量匀强磁场的磁感应强度,下列各选项所示的载流线圈匝数相同,边长NM 相等,将它们分别挂在天平的右臂下方,线圈中通有大小相同的电流,天平处于平衡状态,若磁场发生微小变化,天平最容易失去平衡的是 答案:A 解析:因为在磁场中受安培力的导体的有效长度(A)最大,所以选A. 2.(15海南卷)如图,a 是竖直平面P 上的一点,P 前有一条形磁铁垂直于P ,且S 极朝向a 点,P 后一电子在偏转线圈和条形磁铁的磁场的共同作用下,在水平面内向右弯曲经过a 点.在电子经过a 点的瞬间.条形磁铁的磁场对该电子的作用力的方向() A .向上 B.向下 C.向左 D.向右 答案:A 解析:条形磁铁的磁感线方向在a 点为垂直P 向外,粒子在条形磁铁的磁场中向右运动,所以根据左手定则可得电子受到的洛伦兹力方向向上,A 正确. 3.(15重庆卷)题1图中曲线a 、b 、c 、d 为气泡室中某放射物质发生衰变放出的部分粒子的经迹,气泡室中磁感应强度方向垂直纸面向里.以下判断可能正确的是 A.a 、b 为粒子的经迹 B. a 、b 为粒子的经迹 C. c 、d 为粒子的经迹 D. c 、d 为粒子的经迹 答案:D 解析:射线是不带电的光子流,在磁场中不偏转,故选项B 错误.粒子为氦核带正电,由左手定则知受到向上的洛伦兹力向上偏转,故选项A 、C 错误;粒子是带负电的电子流,应向下偏转,选项D 正确. 4.(15重庆卷)音圈电机是一种应用于硬盘、光驱等系统的特殊电动机.题7图是某音圈电机的原理示意图,它由一对正对的磁极和一个正方形刚性线圈构成,线圈边长为,匝数为,磁极正对区域内的磁感应强度方向垂直于线圈平面竖直向下,大小为,区域外的磁场忽略不计.线圈左边始终在磁场外,右边始终在磁场内,前后两边在磁场内的长度始终相等.某时刻线圈中电流从P 流向Q,大小为. βγαβγαβL n B I

电磁场计算题专项练习

电磁场计算题专项练习 一、电场 1、(20分)如图所示,为一个实验室模拟货物传送的装置,A就是一个表面绝缘质量为1kg的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg带电量为q=1×10-2C的绝缘货柜,现将一质量为0.9kg的货物放在货柜内.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E1=3×102N/m的电场,小车与货柜开始运动,作用时间2s后,改变电场,电场大小变为E2=1×102N/m,方向向左,电场作用一段时间后,关闭电场,小车正好到达 目的地,货物到达小车的最右端,且小车与货物的速度恰好为零。已知货柜与小车间的动摩擦因数μ=0、1,(小车不带电,货柜及货物体积大小不计,g取10m/s2)求: ⑴第二次电场作用的时间; B ⑵小车的长度; A ⑶小车右端到达目的地的距离. 16(8分)如图所示,水平轨道与直径为d=0.8m的半圆轨道相接,半圆轨道的两端点A、B连线就是一条竖直线,整个装置处于方向水平向右,大小为103V/m的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2, (1)若它运动的起点离A为L,它恰能到达轨道最高点B,求小球在B点的速度与L的值. (2)若它运动起点离A为L=2.6m,且它运动到B点时电场消失,它继续运动直到落地, 求落地点与起点的距离.

6如图所示,两平行金属板A 、B 长l =8cm,两板间距离d =8cm,A 板比B 板电势高300V,即UAB =300V 。一带正电的粒子电量q =10-10C,质量m =10-20kg,从R 点沿电场中心线垂直电场线飞入电场,初速度v0=2×106m/s,粒子飞出平行板电场后经过界面MN 、PS 间的无电场区域后,进入固定在中心线上的O 点的点电荷Q 形成的电场区域(设界面PS 右边点电荷的电场分布不受界面的影响)。已知两界面MN 、PS 相距为L =12cm,粒子穿过界面PS 最后垂直打在放置于中心线上的荧光屏EF 上。求(静电力常数k =9×109N ·m2/C2) (1)粒子穿过界面PS 时偏离中心线RO 的距离多远? (2)点电荷的电量。 二、磁场 1、(19分)如图所示,在直角坐标系的第—、四象限内有垂直于纸面的匀强磁场,第二、三象限内沿x 轴正方向的匀强电场,电场强度大小为E,y 轴为磁场与电场的理想边界。一个质量为m ,电荷量为e 的质子经过x 轴上A 点时速度大小为v o ,速度方向与x 轴负方向夹角θ=300。质子第一次到达y 轴时速度方向与y 轴垂直,第三次到达y 轴的位置用B 点表示,图中未画出。已知OA=L 。 (1)求磁感应强度大小与方向; (2)求质子从A 点运动至B 点时间 15.(20分)如图10所示,abcd 就是一个正方形的盒子,在cd 边的中点有一小孔 B A v 0 R M N L P S O E F l

高三专题复习题带电粒子在电磁场中的运动

带电粒子在电磁场中的运动 目的:强化粒子在电磁场中运动的解题方法 课时:2 1.如图所示的平面直角坐标系xOy ,在第Ⅰ象限内有平行于y 轴的匀强电场,方向沿y 轴正方向;在第Ⅳ象限的正三角形abc 区域内有匀强磁场,方向垂直于xOy 平面向里,正三角形边长为L ,且ab 边与y 轴平行.一质量为m 、电荷量为q 的粒子,从y 轴上的P(0,h)点,以大小为v 0的速度沿x 轴正方向射入电场,通过电场后从x 轴上的a(2h ,0)点进入第Ⅳ象限,又经过磁场从y 轴上的某点进入第Ⅲ象限,且速度与y 轴负方向成45°角,不计粒子所受的重力.求: (1)电场强度E 的大小; (2)粒子到达a 点时速度的大小和方向; (3)abc 区域内磁场的磁感应强度B 的最小值. ? (1) (2) (3)qL mv B 02≥ 2.如图所示,坐标系xOy 在竖直平面内,水平轨道AB 和斜面BC 均光滑 且绝缘,AB 和BC 的 长度均为L ,斜面BC 与水平地面间的夹角θ=600 ? ,有一质量为m 、电量为+q 的带电小球(可看成质点)被放在A 点。已知在第一象限分布着互相垂直的匀强电场和匀强磁场,电场方向竖直向上,场强 大小,磁场为水平方向(图中垂直纸面向外),磁感应强度大小为B ;在第二象限分布着 沿x 轴正向的水平匀强电场,场强大小。现将放在A 点的带电小球由静止释放(运动过 程中小球所带的电量不变),则 (1)小球到B 点的速度大小? (2)从A 点开始,小球需经多少时间才能落到地面?

?解:(1)设带电小球运动到B点时速度为v B则由功能关系: 解得:①2分 (2)设带电小球从A点运动到B点用时为t1, ②2分 当带电小球进入第二象限后所受电场力为 ③ 所以带电小球做匀速圆周运动:④则带电小球做匀速圆周运动的半径⑤ 则其圆周运动的圆心为如图所示的点, 假设小球直接落在水平面上的点,则

高考物理压轴题电磁场汇编(可编辑修改word版)

φQ R P O y E φA φ B C 24、在半径为R 的半圆形区域中有一匀强磁场,磁场的方向 垂直于纸面,磁感应强度为B。一质量为m,带有电量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点 (AP=d)射入磁场(不计重力影响)。 A D ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在 Q点切线方向的夹角为φ(如图)。求入射粒子的速度。 24、⑴由于粒子在 P 点垂直射入磁场,故圆弧轨道的圆心在 AP 上,AP 是直径。 设入射粒子的速度为 v1 v2 m1=qBv 1 d / 2 qBd φ Q R/ R 解得:v1 = 2m P D A O/ O ⑵设 O/是粒子在磁场中圆弧轨道的圆心,连接O/Q,设O/Q=R/。 由几何关系得:∠OQO/= OO/=R/+R -d 由余弦定理得:(OO/ )2=R2+R/2 - 2RR/ cos 解得:R/ d (2R -d ) = 2[R(1+ cos) -d ] 设入射粒子的速度为 v,由m v R/ =qvB 解出:v = qBd (2R -d ) 2m[R(1+c os) -d] 24.(17 分)如图所示,在xOy 平面的第一象限有一匀强电场,电场的方 向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场, 磁感应强度的大小为B,方向垂直于纸面向外。有一质量为m,带有电 荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时, 速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d。接着,质点 O x 进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹 角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。 24.质点在磁场中偏转90o,半径r=d sin=mv ,得v= qBd sin; qB m v 2

2004-2013十年高考物理-大全分类解析-专题13-带电粒子在电磁场中的运动

2004-2013十年高考物理 大全分类解析 专题13 带电粒子在电磁 场中的运动 一.2013年高考题 1. (2013全国新课标理综II 第17题)空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R ,磁场方向垂直于横截面。一质量为m 、电荷量为q (q>0)的粒子以速率v0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°。不计重力。该磁场的磁感应强度大小为 A .033mv qR B .qR mv 0 C . qR mv 03 D .qR mv 03 2. (2013全国新课标理综1第18题)如图,半径为R 的圆是一圆柱形匀强 磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外,一 电荷量为q (q>0)。质量为m 的粒子沿平行于直径ab 的方向射入磁场区域, 射入点与ab 的距离为R/2,已知粒子射出磁场与射入磁场时运动方向间的夹 角为60°,则粒子的速率为(不计重力) A . m qBR 2 B .m qBR C .m qBR 23 D .m qBR 2

3.(2013高考广东理综第21题)如图9,两个初速度大小相同的同种离 子a和b,从O点沿垂直磁场方向进入匀强磁场,最后打到屏P上, 不计重力,下列说法正确的有 A.a,b均带正电 B.a在磁场中飞行的时间比b的短 C. a在磁场中飞行的路程比b的短 D.a在P上的落点与O点的距离比b的近 4.(2013高考浙江理综第20题)注入工艺中,初速度可忽略的离子P+和P3+,经电压为U的电场加速后,垂直进入磁感应强度大小为B、方向垂直纸面向里,有一 定的宽度的匀强磁场区域,如图所示,已知离子P+在磁场中转过 θ=30°后从磁场右边界射出。在电场和磁场中运动时,离子P+和P3+ A.在电场中的加速度之比为1∶1 B.在磁场中运动的半径之比为3∶1 C.在磁场中转过的角度之比为1∶2 D.离开电场区域时的动能之比为1∶3

电磁场第三版思考题目答案完整版

电磁场第三版思考题目 答案 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

一:1.7什么是矢量场的通量通量的值为正,负或0分别表示什么意义 矢量场F穿出闭合曲面S的通量为: 当大于0时,表示穿出闭合曲面S的通量多于进入的通量,此时闭合曲面S 内必有发出矢量线的源,称为正通量源。 当小于0时,小于 有汇集矢量线的源,称为负通量源。 当等于0时等于、闭合曲面内正通量源和负通量源的代数和为0,或闭合面内无通量源。 1.8什么是散度定理它的意义是什么 矢量分析中的一个重要定理: 称为散度定理。意义:矢量场F的散度在体积V上的体积分等于矢量场F在限定该体积的闭合积分,是矢量的散度的体积与该矢量的闭合曲面积分之间的一个变换关系。 1.9什么是矢量场的环流环流的值为正,负,或0分别表示什么意义 矢量场F沿场中的一条闭合回路C的曲线积分,称为矢量场F沿 的环流。 大于0或小于0,表示场中产生该矢量的源,常称为旋涡源。 等于0,表示场中没有产生该矢量场的源。 1.10什么是斯托克斯定理它的意义是什么该定理能用于闭合曲面吗

在矢量场F所在的空间中,对于任一以曲面C为周界的曲面S,存在如下重要关系 这就是是斯托克斯定理矢量场的旋度在曲面S上的面积分等于矢量场F在限定曲面的闭合曲面积分,是矢量旋度的曲面积分与该矢量沿闭合曲面积分之间的一个变换关系。能用于闭合曲面. 1,11 如果矢量场F能够表示为一个矢量函数的旋度,这个矢量场具有什么特性=0,即F为无散场。 1.12如果矢量场F能够表示为一个标量函数的旋度,这个矢量场具有什么特性=0即为无旋场 1.13 只有直矢量线的矢量场一定是无旋场,这种说法对吗为什么 不对。电力线可弯,但无旋。 1.14 无旋场与无散场的区别是什么 无旋场F的旋度处处为0,即,它是有散度源所产生的,它总可以表示矢量场的梯度,即 =0 无散场的散度处处为0,即,它是有旋涡源所产生的,它总可以表示为某一个旋涡,即。

高考物理压轴题电磁场汇编

Q 1、在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于 φ纸面,磁感应强度为B。一质量为m,带有电量q的粒子以一 定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁 R 场(不计重力影响)。 ⑴如果粒子恰好从A点射出磁场,求入射粒子的速度。A O P D ⑵如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 解:⑴由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP是直径。 设入射粒子的速度为v1,由洛伦兹力的表达式和牛顿第二定律得: Q 2 v φ 1 mqBv 1 d/2 / R R qBd v 解得:1 2m / AO O ⑵设O/是粒子在磁场中圆弧轨道的圆心,连接O/Q,设O/Q=R/。 P D / 由几何关系得:OQO // OORRd 由余弦定理得: 2 /22// (OO)RR2RRcos 解得: /d(2Rd) 2R(1cos)d R 设入射粒子的速度为v,由 2 v mqvB / R 解出:v qBd(2Rd) 2mR(1cos)d y 2、(17分)如图所示,在xOy平面的第一象限有一匀强电场,电场的方 向平行于y轴向下;在x轴和第四象限的射线OC之间有一匀强磁场, E 磁感应强度的大小为B,方向垂直于纸面向外。有一质量为m,带有 电荷量+q的质点由电场左侧平行于x轴射入电场。质点到达x轴上A 点时,速度方向与x轴的夹角为φ,A点与原点O的距离为d。接着,O φ A φ x

质点进入磁场,并垂直于OC飞离磁场。不计重力影响。若OC与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场 的场强大小。 B C 解:质点在磁场中偏转90o,半径 mv rdsin,得 qB v q Bd sin m ; v

2019年高考物理真题同步分类解析专题06 磁场(解析版)

2019年高考物理试题分类解析 专题06 磁场 1. (2019全国1卷17)如图,等边三角形线框LMN 由三根相同的导体棒连接而成,固定于匀强磁场中,线框平面与磁感应强度方向垂直,线框顶点M 、N 与直流电源两端相接,已如导体棒MN 受到的安培力大小为F ,则线框LMN 受到的安培力的大小为( ) A .2F B .1.5F C .0.5F D .0 【答案】B 【解析】设导体棒MN 的电流为I ,则MLN 的电流为 2I ,根据BIL F =,所以ML 和LN 受安培力为2F ,根据力的合成,线框LMN 受到的安培力的大小为F +F F 5.130sin 2 20 =? 2. (2019全国1卷24)(12分)如图,在直角三角形OPN 区域内存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外。一带正电的粒子从静止开始经电压U 加速后,沿平行于x 轴的方向射入磁场;一段时间后,该粒子在OP 边上某点以垂直于x 轴的方向射出。已知O 点为坐标原点,N 点在y 轴上,OP 与x 轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d ,不计重力。求 (1)带电粒子的比荷; (2)带电粒子从射入磁场到运动至x 轴的时间。 【答案】 (1)设带电粒子的质量为m ,电荷量为q ,加速后的速度大小为v 。由动能定理有2 12 qU mv =① 设粒子在磁场中做匀速圆周运动的半径为r ,由洛伦兹力公式和牛领第二定律有2 v qvB m r =②

由几何关系知d ③ 联立①②③式得 224q U m B d =④ (2)由几何关系知,带电粒子射入磁场后运动到x 轴所经过的路程为 πtan302 r s r = +?⑤ 带电粒子从射入磁场到运动至x 轴的时间为 s t v = ⑥ 联立②④⑤⑥式得 2π(42Bd t U =⑦ 【解析】另外解法(2)设粒子在磁场中运动时间为t 1,则U Bd qB m T t 8241412 1ππ=? ==(将比荷代入) 设粒子在磁场外运动时间为t 2,则U Bd qU md qU m d v t 1236326y 2 22= ?=?== 带电粒子从射入磁场到运动至x 轴的时间为21t t t +=,代入t 1和t 2得2π(42Bd t U =. 3. (全国2卷17)如图,边长为l 的正方形abcd 内存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面(abcd 所在平面)向外。ab 边中点有一电子源O ,可向磁场内沿垂直于ab 边的方向发射电子。已知电子的比荷为k 。则从a 、d 两点射出的电子的速度大小分别为( ) A .14kBl B .14kBl ,5 4 kBl

经典电磁场题目(有详细答案)较难

一)瑞安中学2011学年第二学期高三5月份考试理综试卷 25.(22分)如图甲所示,空间分布着有理想边界的匀强电场和匀强磁场.匀强磁场分为Ⅰ、Ⅱ两个区域,其边界为MN、PQ,磁感应强度大小均为B,向如图所示,Ⅰ区域高度为d,Ⅱ区域的高度足够大.一个质量为m、电量为q的带正电的小球从磁场上的O点由静止开始下落,进入电、磁复合场后,恰能做匀速圆运动. (1)求电场强度E的大小; (2)若带电小球运动一定时间后恰能回到O点,求带电小球释放时距MN的高度h; (3)若带电小球从距MN的高度为3h的O'点由静止开始下落,为使带电小球运动一定时间后仍能回到O'点,需将磁场Ⅱ向下移动一定距离(如图乙所示),求磁场Ⅱ向下移动的距离y及小球从O'点释放到第一次回到O'点的运动时间T。 图甲图乙 (二)省效实中学2012届高三模拟测试 25.(22分)如图甲所示,一个质量m=0.1 kg的正形金属框总电阻R=0.5Ω,金属框放在表面绝缘且光滑的斜面顶端(金属框上边与AA′重合),自静止开始沿斜面下滑,下滑过程中穿过一段边界与斜面底边BB′平行、宽度为d的匀强磁场后滑至斜面底端(金属框下边与BB′重合),设金属框在下滑过程中的速度为v,与此对应的位移为s,那么v2—s 图象(记录了线框运动全部过程)如图乙所示,已知匀强磁场向垂直斜面向上,g取10m/s2.试问: (1)根据v2—s图象所提供的信息,计算出金属框从斜面顶端滑至底端所需的时间为多少? (2)匀强磁场的磁感应强度多大? (3)现用平行斜面沿斜面向上的恒力F作用在金属框上,使金属框从斜面底端BB′(金属框下边与BB′重合)由静止开始沿斜面向上运动,匀速通过磁场区域后到达斜面顶端(金属框上边与AA′重合).试计算恒力F做功的最小值.

2018届高三毕业班物理通用版二轮专题复习练酷训练:专题检测(二十四) 破解电磁场压轴题

专题检测(二十四) 破解电磁场压轴题 1.(2018届高三·扬州调研)如图所示,等量异种点电荷固定在水平 线上的M 、N 两点上,电荷量均为Q ,有一质量为m 、电荷量为+q (可视为点电荷)的小球,固定在长为L 的绝缘轻质细杆的一端,细杆另一端可绕过O 点且与MN 垂直的水平轴无摩擦地转动,O 点位于MN 的 垂直平分线上距MN 为L 处,现在把杆拉到水平位置,由静止释放,小球经过最低点B 时速度为v ,取O 处电势为零,忽略+q 对+Q 、-Q 形成电场的影响。求: (1)小球经过B 点时对杆的拉力大小; (2)在+Q 、-Q 形成的电场中,A 点的电势φA ; (3)小球继续向左摆动,经过与A 等高度的C 点时的速度。 解析:(1)小球经B 点时,在竖直方向有 T -mg =m v 2L 即T =mg +m v 2 L 由牛顿第三定律知,小球对细杆的拉力大小也为mg +m v 2 L 。 (2)O 点电势为零,而O 在MN 的垂直平分线上,所以φB =0 小球从A 到B 过程中,由动能定理得 mgL +q (φA -φB )=1 2m v 2 解得φA =m v 2-2mgL 2q 。 (3)由电场对称性可知,φC =-φA , 即U AC =2φA 小球从A 到C 过程,根据动能定理得qU AC =1 2m v C 2 解得v C = 2v 2-4gL 。 答案:(1)mg +m v 2 L (2)m v 2-2mgL 2q (3) 2v 2-4gL 2.如图所示,一足够长的矩形区域abcd 内充满磁感应强度为B 、方向垂直于纸面向里的匀强磁场。现从矩形区域ad 边的中点O 处垂直磁场射入一速度方向跟ad 边夹角为30°、大小为v 0的带电粒子。已知粒子质量为m ,电荷量为+q ,ad 边长为l ,重力影响忽略不计。

相关主题
文本预览
相关文档 最新文档