当前位置:文档之家› 水电阻测试

水电阻测试

水电阻测试
水电阻测试

BW2系列液体起动变阻器

1 用途

BW2系列液体起动变阻器(以下简称变阻器),接于拖动球磨机,轧机,破碎机,水泵等机械的绕线转子感应电动机的转子回路,作该电动机的起动之用,该产品具有起动电流小,起动力矩大,起动平稳的特点,特别适用于电网容量小,电压负载较大的场合。

2 技术参数

3 外型及安装尺寸

变阻器外型及安装尺寸见图及表。

4性能、特点

变阻器主要由电极系统,电极驱动系统,电控系统及上、下箱体四部份组成。

4.1电极系统设置在下箱中,主电极采用铜基合金材料,结构为多环套筒式,上下运行时无阻力,且接触面大,残余电阻极小。相间的绝缘采用专用定制的绝缘材料,能承受高电压的冲击而保证不被击穿。

4.2电极驱动系统及电控设置在变阻器的上箱。电极的传动系统为双减速器链轮传动,从启动到变阻结束非常平稳,决无跳动现象发生。箱内装有上、下限位开关,以控制电极行程,并通过上箱正面的标牌,指示出动电极的升降位置。变阻器还装有温度继电器和液位继电器,用于控制溶液的温度及液面的位置。当使用地的环境温度很低使溶液结冰时,可启动加热器使箱内液体融化。

4.3下箱柜体采用4mm~5mm钢板,内涂防腐材料,强度高,使用寿命长达10年以上。下箱的外侧装有液位观察窗口,加液口及排液阀等,调整溶液非常方便。

5使用

5.1 使用前必须检查变阻器是否已可靠接地。

5.2 使用前必须取下变阻器平衡块固定件。

5.3 变阻器对控制电源有相序要求,使用前必须判断,变阻器出厂时,电极一般放在中间位置,当接通电源时,动电极应为上升,若动电极下降,说明控制电源相序相反,则应立即断开控制电源,调整控制电源相序,即把电源进线的任意二相对调。

6 变阻器溶液的配制

变阻器所用溶液是纯度在99%以上无水碳酸钠(Na2CO3)和水(自来水)配制而成,推荐按表3初选溶液浓度。实际使用时,起动电流过大或过小,可适当减小或增加溶液浓度。

溶液配制时,必须先用适量开水把碳酸钠充分搅匀,直至完全溶解后才能倒入箱体中,放水稀释至液位线,不可先在箱体内倒入碳酸钠。

注: 表中U2e--电动机转子开路电压V

I2e --电动机转子额定电流A

7. 维修、保养

7.1检查全部元器件的接线、螺钉是否松脱(用手拉一下),铜排的紧固螺钉是否松动,铜排是否有过热的痕迹。

7.2检查继电器、接触器的触头接触是否良好,有无活动受阻的现象(此检查必须在停机下进行)。

7.3水箱的液体是否减少,如减少应加自来水至水位线。

7.4在主电机停机的条件下,按测试按钮,检查电极向下运行→接触器短接→向上运行时的电器元件、传动机构(减速器、电机、齿轮及上限位开关和下限位开关)动作是否正常,如不正常应及时更换损坏的元器件。减速器的润滑油(定子油),每隔1~2年更换一次。

7.5设备运行时,水温应低于75℃,如水温高于75℃应有故障信号发出。这可能是由于连续启动次数太多造成,也可能是短接接触器触头接触不良造成,应更换接触器。

7.6设备启动时,如发现水箱内有闪络现象发生,则说明是由于电极系统中的绝缘管或绝缘筒损坏而造成相间击穿所产生的电弧。应及时检查电极系统元件(绝缘管、绝缘筒、动电极拉杆、定电极拉杆、动电极和静电极),发现损坏的应马上更换。检查电极系统时,只需将上箱机架与下水箱四周边框上的螺母去掉,用钢丝穿入上箱机架的吊环螺钉中起吊即可。

7.7液体变阻器电阻值R的测量

液体变阻器在发生故障寻找故障原因时,需要测量动电极与静电极距离最大时的电阻值R 。为了提高测量精度,一般采用伏安法。如图所示:

测量时应分离转子电路,控制电流值以10A为宜。测得每相电流I,

每相电压V后,即得变阻器每相电阻值。R=V/I (Ω)

三相电阻值R应基本相同,应在(0.8~1.0)R H范围内,R H为电动机的额定电阻,R H=U20/(√3 ×I2e)。这样就能保证电动机顺利起动。

例如:电动机数据为

型号 YRKK6303-4 额定功率Pe=2000Kw 额定电压Ue=6Kv 转子开路电压U 20=1800V 转子额定电流I 2e=674A 额定电阻R H =U 20/(√3 ×I 2e)=1800/(1.732×674)=1.54Ω 则 变阻器每相电阻值应为:

R =(0.8~1.0)R H =(0.8~1.0)×1.54=1.23~1.54(Ω)

如果变阻器的三相电阻相差很大,就得寻找原因,一般是动静电极间绝缘套管损坏,或短接接触器触头熔焊。

变阻器的三相基本对称但电阻值大于要求值时,就得增加溶液浓度。 变阻器的三相基本对称但电阻值小于要求值时,就得稀释溶液浓度。 7.8做好柜的清洁工作。

8 BW2液体变阻器元器件示意图。

液位仪

JCZ5进液口

接 线 端 子

C65-16A3P PLC

LC1-D09LC1-D09LC1-D09LC1-D09LC1-D09LR2-D

1306C

LC1-D09LC1-D09LC1-D09LC1-D09轴承走

线

走槽

线电动机

减速器减速器

温度仪

平锤

衡轴

行程标尺

观察窗

限 位

下 限 位

出水口

绝缘筒

静电极

动电极

绝缘管JCZ5

动电极连杆

静电极连杆

上海东屋电器有限公司

加热器

正面示意图 反面示意图

水电阻的原理

就是用两根旧角铁,引出导线后,浸在水里。水的导电性不好,为了增加导电性,应该在水中加盐、废硫酸等(或用海水)。这样就形成了一个电阻小、适宜大电流放电的水电阻。电流起的作用是将水电解,以消耗大量电能。如果用电阻丝来放电,那要电阻丝消耗大量电能,就会严重发热、烧毁,必须要有庞大的体积和很高的价格,并要散热。实际使用中,水电阻中的水很容易被加热至沸腾,造成电阻值不稳,为此我们采取了循环水。

水电阻的配置

1、配液用水:一般选用经过净置后去掉沉淀物的生活用水即可。

2、电阻溶剂即电阻粉,由生产厂商提供。

3、液体起动电阻RO的确定:RO=0.577*U2e/I2e·KF·kt/kM 式中:U2e:电机转子回路的开路电压(V)I2e:电机转子回路的额定电流(A)KF:电机功率容裕倍数。(KF=1.1-1.3,取1.2)kt:温度倍数。(kt=1.1-1.3,取1.2) kM:起动转矩倍数。(kM=1.1-1.3,取1.2) 根据实际情况,我们将上述公式进行简化后:RO=0.7*U2e/I2e 式中:U2e:电机转子回路的开路电压(V)I2e:电机转子回路的额定电流(A)

4、水电阻的配制:

①先将动极板置于起动位置,将准备好的水注入到水箱规定位置的2/3左右,注意三格液位要基本相等;

②将配制好的溶液注入水箱中;

③分别向液阻箱中加水至要求液位;

④扳动试验按钮,使极板上下运动二、三次,使箱内电阻液搅拌均匀;

⑤液体电阻的测量:将液体电阻的活动极板移到起动位置后,通过自耦变压器给每相动静极板之间通过50Hz电,电流从0开始逐渐正大至5A左右电流I(A),记下电流表A的读数,并测量两极之间压降V(V),测液体电阻值为:R(Ω)=V(V)/I(A)

⑥电阻的调整如偏大应增大电阻液浓度,否则应降低其浓度,调节方法是用软管抽出部分溶液加水或电液粉(电解粉)。>水电阻自动控制的方法

a)改变极板的距离:随着电机转速的升高,离心力加大,水电阻极板距离逐步减少,并在电机转速达到电机额定转速经过一段延时后,将水电阻极板距离降为零。

b)改变水电阻的温度:水电阻通过电流后温度自动升高,在水电阻负温度特性的作用下,电阻逐步减少。>水电阻的适用范围

1.适用于三相交流3KV、6KV、10KV,额定功率200-20000KW的鼠笼式异步电动机或同步电动机的软起动与保护。

2.然后一般在小型发电站用得多,主要是在外大电网停电的情况下,拖住发电机的转速,使其不至于发生空载飞车事故。

热敏电阻-物理实验

热敏电阻和热电偶温差电势的测量 随着半导体热敏电阻和热电偶在工业中的应用日益广泛,我们有必要对它们的一些温度特性有所了解。DHT 型热学实验仪是集加热、传感、测量于一体的多功能实验仪器。采用单片机测量、控制。脉宽调制式加热,温度采用精确的PID 参数自整定控制。具有测、控温精度高,加热时间快,降温时间短,操作使用方便。实验安全、无环境污染。可以任意地设定加热温度(室温~150℃) 一、实验目的 1、热敏电阻的温度特性研究。 2、铜—康铜热电偶温差电势的特性研究。 3、描绘热敏电阻和热电偶温差电势的特性曲线。 4、了解PID 在工业控制中运用的原理和方法。 二、实验仪器 DHT 型热学实验仪、直流电桥、数字万用表 三、实验原理 1、热敏电阻 热敏电阻是一种电阻值随其电阻体的温度变化呈显著变化的热敏感电阻。它多由金属氧化物半导体材料制成,也有由单晶半导体、玻璃和塑料制成的。由于热敏电阻具有体积小、结构简单、灵敏度高、稳定性好、易于实现远距离测量和控制等优点,所以广泛应用于测温、控温、温度补偿、报警等领域。 本实验所测试样为负温度系数(NTC)热敏电阻,它的电阻值随温度升高而减小。其电阻温度特性的通用公式为 )11( 212 1T T B e R R -= (1) 式中,R l 为温度T l 时的阻值;R 2为温度为T 2时的阻值;B 为热敏指数,由材料的物理特性决定。 若设T 2趋于无穷大,上式可简化成 T B T Ae R = (2) 热敏电阻温度系数的定义式为 dT dR R T T 1= α 对于负温度系数热敏电阻,其温度系数是温度丁的函数,以T α表示。可以得出 2T B T - =α (3) 上式表示,对负温度系数电阻来说,T α在工作温度范围内随温度增加迅速减小。表示温度系数时要注明其温度值,通常以25℃时的值来表示。 对式(2)线性化,可得 T B A R T 1 ln ln += (4)

接地电阻测量实验报告范文

接地电阻测量实验报告范文 为了了解接地装置的接地电阻值是否合格、保证安全运行,同时根据配电设备维护规程的有关规定,我部于20xx 年3月1日上午8:00 对乐民原料部弓角田煤矿各变配电点的接地及其各变压器对地绝缘情况进行测量试验。试验过程及试验结果分析报告如下: 一、试验前的准备: 1、制订试验方案: 前期,我们组织机电队人员一起到现场查看接地装置,查找接地极的适合试验的位置,制订、讨论、修改试验方案,提出试验中的注意事项。 2、试验方法: 接地电阻表本身备有三根测量用的软导线,可接在E、P、C三个接线端子上。接在E端子上的导线连接到被测的接地体上,P端子为电压极,C端子为电流极(P、C都称为辅助接地极),根据具体情况,我们准备采用两种方式测量:(1)、将辅助接地极用直线式或三角线式,分别插入远离接地体的土壤中;(2)、用大于25cm×25cm的铁板作为辅助电极平铺在水泥地面上,然后在铁板下面倒些水,铁板的布放位置与辅助接地极的要求相同。两种方法我们都采取接地体和连接设备不 断开的方式测量,接地电阻电阻表将倍率开关转换到需要的量程上,用手摇发电机手柄,以每分钟120转/分以上的速度转时,使电阻表上的仪表指针趋于平衡,读取刻盘上

的数值乘以倍率即为实测的接地电阻值。 3、试验工具: 我们准备好ZC29B-2型接地电阻测试仪、ZC110D-10(0~2500MΩ)型摇表、万用表、铜塑软导线(BVR 1.5mm2)、测电笔、接地极棒和接地板等试验用具及棉纱等辅助材料。 二、试验过程: 1、3月1日上午,现场试验人员进行简单碰头,并进行分工:由帅锐进行测量、值班人员蔡富贵和彭余坤配合操作、陈应沫记录、班长方兴华负责监护; 2、8:45试验开始; 3、测量辅助接地极间及与测量接地体间的距离; 4、采取第一种方法,将接地极棒插入到土壤中并按照图纸接好线; 5、将测量接地体连接处与连接端子牢靠连接; 6、将导线与接地电阻表接好; 7、校正接地电阻表; 8、测量并记录数据;(试验数据见附表) 9、采取第二种方法,测量并记录数据; 10、整个试验过程结束。 恒鼎实业弓角田煤矿春季预防性试验设备外壳接地测试记录 恒鼎实业弓角田煤矿春季预防性试验变压器绝缘测试记录 使用仪器: ZC29B-2型接地电阻测试仪

电阻率测量报告

. . . . 莆田南日岛风电场三期工程施工图阶段土壤电阻率测量报告 福建永福工程顾问有限公司 发证机关:福建省建设厅 证书等级:乙级证书编号:130903-ky 二00九年一月·

批准:审核:校核:编写:

目录 1、前言 2、仪器接线示意图 3、原理及操作 4、测量结果分析 5、结论

1、前言 根据公司勘察任务安排及工程勘察联系书的要求,莆田南日岛风电厂三期工程施工图阶段土壤电阻率测量工作于2008年10月2日至2008年10月24日期间进行。 南日岛风电厂前两期共投产19台风机,本期计划建设57台风机,总装机容量48.45MW,110kV升压站一座。 本次测量工作采用DZD-6A多功能直流电法仪测量,测量原理采用等极距四极对称法,极距分别为a=5、10、20、60、100m,大部分风机为测量至100m极距,局部因测量场地限制仅测量至40m 或60m极距。 本次测量工作布线按每风机一条测线,升压站按常规220kV变电站布线方式,四周四条线,对角两条线,共六条测线。本期总共完成测线63条。 本次测量遵循《电力工程物探技术规定》(DL/T5159-2002)。 2、仪器接线示意图 仪器接线示意图

3、原理及操作 等极距四极对称法,又称温纳装置,其做法是沿测线上的测点,分别打入电极,并用导线连接供电回路AB 和测量回路MN ,通过对AB 电极供电,使位于其中间的大地产生电场,测量MN 处产生的电位差及电流,通过以下公式计算出其电阻率。 测量原理示意图 I U K MN a ?=ρ ① a ρ——MN 间的等效土壤电阻率; MN U ?——MN 间的电位差; I ——MN 间的电流; K ——装置系数,对称四极法中a 2MN AN AM K ππ=?= DZD-6A 直流电法仪存在内在计算系统,测量前仅需输入极距a 后,则可直接测出结果。

热敏电阻演示实验

实验三十五 热敏电阻演示实验 一、实验目的: 了解NTC 热敏电阻现象。 二、实验内容: 通过对NTC 热敏电阻加热,了解其特性。 三、实验仪器: 加热器、热敏电阻、可调直流稳压电源、+15V 稳压电源、电压表、主、副电源。 四、实验原理: 热敏电阻的温度系数有正有负,因此分成两类:PTC 热敏电阻(正温度系数)与NTC 热敏电阻(负温度系数)。一般NTC 热敏电阻测量范围较宽,主要用于温度测量;而PTC 突变型热敏电阻的温度范围较窄,一般用于恒温加热控制或温度开关,也用于彩电中作自动消磁元件。有些功率PTC 也作为发热元件用。PTC 缓变型热敏电阻可用作温度补偿或作温度测量。 一般的NTC 热敏电阻测温范围为:-50℃~+300℃。热敏电阻具有体积小、重量轻、热惯性小、工作寿命长、价格便宜,并且本身阻值大,不需考虑引线长度带来的误差,适用于远距离传输等优点。但热敏电阻也有:非线性大、稳定性差、有老化现象、误差较大、一致性差等缺点。一般只适用于低精度的温度测量。 五、实验注意事项: 加热时间不要超过2分钟,此实验完成后应立即将+15V 电源拆去,以免影响梁上的应变片性能。 六、实验步骤: 1、了解热敏电阻在实验仪的所在位置及符号,它是一个蓝色元件,封装在双平行振动平行梁上片梁的表面。 2、将电压表切换开关置2V 档,直流稳压电源切换开关置±2V 档,按图35接线,开启主、副电源,调整W1(RD)电位器,使电压表指示为100mV 左右。这时电压表的指示值为室温时的Vi 。 3、将+15V 电源接入加热器,加热器的另一端接地。观察电压表的读数变化(注意加热时间不要超过2分钟)。 电压表的输入电压: S IL IH T IL i V ) W W (R W V ?++= 4、由此可见,当温度 时,RT 阻值 ,Vi 。

电阻率测试报告

电阻率测试报告 湖北华迪工程勘察院 二 一一年六月十四日

电阻率测试报告 测试人:刘松 编写人:刘松 审核人:王正国 湖北华迪工程勘察院 二 一一年六月十四日

一、工程概况 荆门星球35KV变电站位于荆门星球家居广场南部,我院于6月初接到鄂西北工程勘察公司的委托,当天组织人员设备进场勘察,于第二天完成该地段全部外业工作。此次外业工作采用多功能直流电法仪,运用四极法进行电阻率测试,实际工作见表1-1~表1-3,各勘探孔具体位置详见《勘探点平面布置图》 二、场地工程地质条件概况 根据工程地质钻探和原位测试资料,本次变电站勘察所揭露的地层主要为:第四系全新统(Q4)填土和新近系上新统(N2)强风化、中风化泥灰岩组成,现将勘察区的各地层分述如下: (1)第四系全新统地层(Q4ml):主要组成为粘土、亚粘土、砂土层等组成,在勘察段内,该层厚度约为0.6m,层底标高在177.63~171.30m。 (2)新近系上新统(N2):主要由强风化泥灰岩组成,在勘察段内,该层厚度约为8m,层底标高在170.83~162.75m。 (3)新近系上新统(N2):主要由中风化泥灰岩组成,在勘察段内,该层未揭穿,最大揭露厚度约为7.5m 三、场地电阻率测量成果及设计参数 表1-1 实测视电阻率成果表(k1)

表1-2 实测视电阻率成果表(k2) 表1-3 实测视电阻率成果表(k3) 表2土壤电阻率设计建议值 四、土对建筑材料的腐蚀性评价 场地岩土层的实测视电阻率值均小于50欧·米且大于20欧·米,根据《岩土工程勘察规范》(GB50021—2001)(2009年版)12.2.5的规定,取各指标中腐蚀等级最高者考虑,故该场地土层对钢结构具中腐蚀性,因此对构架设备进行施工时,应适当采取防腐措施。 Then how can we translate poems? According to Wang’s understanding, the translation of poems is

PTC热敏电阻实验报告

功能材料—PTC热敏陶瓷制备与性能的综合实验一、实验目的 通过实验,使学生加深对“电子信息材料专业方向”中有关基础理论知识的理解。 1.了解PTC热敏陶瓷制备原理及方法 2.使学生熟练掌握PTC电阻的测试方法 二、实验原理 PTC效应与许多因素有关,PTC热敏电阻(正温度系数热敏电阻)是一种具温度敏感性的半导体电阻,一旦超过一定的温度(居里温度) 时,它的电阻值随着温度的升高几乎是呈阶跃式的增高。也可以说,PTC(positive temperature coefficient) 电阻是指在某一温度下电阻急剧增加、具有正温度系数的热敏电阻或材料。当PTC 陶瓷元件接通电源后,电流将随电压的升高而迅速增加,达到居里温度时,电流达到最大值,这时PTC 陶瓷元件进入PTC 区域,此时当电压继续升高时,由于PTC 陶瓷元件的电阻急剧增大,电流反而减小。 纯BaTiO3陶瓷是良好的绝缘体,是一种优良的陶瓷电容器材料,也是一种典型的钙钛矿型结构的铁电材料。纯的BaTiO3在常温下几乎是绝缘的,电阻率大于1012Ω?cm,通过不等价取代在BaTiO3中掺杂微量的元素后,会使其性能发生变化,出现PTC效应,并且伴随着室温电阻率的大幅度下降。制成的钛酸钡基PTC 陶瓷具有较大的正温度系数和开关阻温特性,通过掺杂,它的居里温度可在很宽的范围内(室温~400 ℃) 任意调节,所以,在航空航天、电子信息通讯、自动控制、家用电器、汽车工业、生物技术、能源及交通等领域,它得到了广泛的应用。 钛酸钡基PTC 陶瓷的组成: (1)移峰剂——添加后能够移动居里点(BaTiO3瓷120o C) 添加物与主晶相形成固溶体使铁电陶瓷的特性在居里温度处出现的峰值发生移动的现象,称为移峰效应。居里温度通常满足以下经验公式: t c =t c1 (1-x)+t c2 x(x-摩尔分数) 该添加物称为移峰剂。PTC 陶瓷中常用钙钛矿型铁电体的移峰剂有两种:钛酸铅、PbTiO3(490℃)、钛酸锶SrTiO3(-250℃)。 (2)半导体化: 施主掺杂:将BaTiO 3 基本组成离子分成三种离子群:其中至少在两个位置上的部分离子,用离子半径相接近,而原子价相差1价的不同离子进行置换。置换可得到低电阻率的陶瓷材料。 1.对于Ba 2+位可用La 3+、Ce3+、Sb3+、Sm3+、Dy3+或K +、Na +等离子;

电阻率测量报告

莆田南日岛风电场三期工程施工图阶段土壤电阻率测量报告 福建永福工程顾问有限公司 发证机关:福建省建设厅 证书等级:乙级证书编号:130903-ky 二00九年一月·福州

批准:审核:校核:编写:

目录 1、前言 2、仪器接线示意图 3、原理及操作 4、测量结果分析 5、结论

1、前言 根据公司勘察任务安排及工程勘察联系书的要求,莆田南日岛风电厂三期工程施工图阶段土壤电阻率测量工作于2008年10月2日至2008年10月24日期间进行。 南日岛风电厂前两期共投产19台风机,本期计划建设57台风机,总装机容量48.45MW,110kV升压站一座。 本次测量工作采用DZD-6A多功能直流电法仪测量,测量原理采用等极距四极对称法,极距分别为a=5、10、20、60、100m,大部分风机为测量至100m极距,局部因测量场地限制仅测量至40m 或60m极距。 本次测量工作布线按每风机一条测线,升压站按常规220kV变电站布线方式,四周四条线,对角两条线,共六条测线。本期总共完成测线63条。 本次测量遵循《电力工程物探技术规定》(DL/T5159-2002)。 2、仪器接线示意图 仪器接线示意图

3、原理及操作 等极距四极对称法,又称温纳装置,其做法是沿测线上的测点,分别打入电极,并用导线连接供电回路AB 和测量回路MN ,通过对AB 电极供电,使位于其中间的大地产生电场,测量MN 处产生的电位差及电流,通过以下公式计算出其电阻率。 测量原理示意图 I U K MN a ?=ρ ① a ρ——MN 间的等效土壤电阻率; MN U ?——MN 间的电位差; I ——MN 间的电流; K ——装置系数,对称四极法中a 2MN AN AM K ππ=?= DZD-6A 直流电法仪存在内在计算系统,测量前仅需输入极距a 后,则可直接测出结果。

物理实验报告(测定金属的电阻率)

实验名称:测定金属的电阻率 [实验目的] 1. 练习使用螺旋测微器. 2. 学会用伏安法测量电阻的阻值. 3. 测定金属的电阻率. [实验原理] 由电阻定律lI U d l S R 42πρ==可知,只要测出金属导线的长度l ,横截面积S 和对应导线长度的电压 U 和电流I ,便可以求出制成导线的金属材料的电阻率ρ。长度l 用刻度尺测量.横截面积S 由导线的直径 d 算出,导线的直径d 需要由螺旋测微器(千分尺)来测量,电压U 和电流I 分别用电压表和电流表测出。 [实验器材] 某种金属材料制成的电阻丝,螺旋测微器,毫米刻度尺,电池组,电流表,电压表,滑动变阻器,开关,导线若干. [实验步骤] 1. 用螺旋测微器在接入电路部分的被测金属导线上的三个不同位置各测量一次导线的直径,结果记在表 格内,求出其平均值d 。 2. 按原理电路图连接好用伏安法测电阻的实验电路。 3. 用刻度尺准确测量接入电路中的金属导线的有效长度l ,结果记入表格内。 4. 用伏安法测金属导线对应长度的电压U 和电流I 。 5. 重复上述实验三次,并将数据记入表格。 6. 拆去实验电路,整理好实验器材. [实验数据记录] [数据处理] 求对应长度的电阻率计算表达式推导:根据金属导线的横截面积22 41)2 (d d S ππ= =和电阻I U R = 得:金属的电阻率m lI U d l S R ?Ω==?=________42πρ [结论]金属的电阻率是__________m ?Ω. [误差分析]

[实验要点] 1.本实验中被测金属导线的电阻较小,因此,实验电路必须采用电流表的外接法. 2.测量导线的直径时,应将导线拉直平放在螺旋测微器的测砧上,使螺旋杆的顶部和测砧上的导线成线 接触,而不是点接触;应在不同的部位,不同的方向测量几次,取平均值. 3.测量导线的长度时,应将导线拉直,测量待测导线接入电路的两个端点之间的长度,亦即电压表两极 并入点间的部分待测导线的长度,长度测量应准确到毫米. 4.用伏安法测电阻时,电流不宜太大,通电时间不宜太长.当我们要测量时才合上开关,测量后即断开开 关. 5.闭合电键S之前,一定要使滑动变阻器的滑片处在有效电阻最大的位置. 6.为准确求出R平均值,可采用I-U图象法求电阻.

误差分析-热敏电阻

用非平衡电桥研究热敏电阻 摘要:文本结合用非平衡电桥研究热敏电阻实例来探讨用origin 软件做数据处理的方法, 并分析其优势。 关键词:非平衡电桥,直线拟合 1 热敏电阻 热敏电阻是一种电阻值随其电阻体温度变化呈现显著变化的热敏感电阻。本实验所选择为负温度系数热敏电阻,它的电阻值随温度的升高而减少。其电阻温度特性的通用公式为: T B T Ae R = (1) 式中T 为热敏电阻所处环境的绝对温度值(单位,开尔文),今为热敏电阻在温度T 时的电阻值,A 为常数,B 为与材料有关的常数。将式(l)两边取对数,可得: T B A R T +=ln ln (2) 由实验采集得到T R T -数据,描绘出T R T 1 - ln 的曲线图,由图像得出直线的斜率B ,截距A ln ,则可以将热敏电阻的参数表达式写出来。 2 平衡电桥 电桥是一种用比较法进行测量的仪器,由于它具有很高的测t 灵敏度和准确度,在电 测技术中有较为广泛的应用,不仅能测量多种电学量,如电阻、电感、电容、互感、频率及电介质、磁介质的特性;而且配适当的传感器,还能用来测量某些非电学量,如温度、湿度、压强、微小形变等。在“测量热敏电阻温度特性”实验中用平衡电桥来测量热敏电阻的阻值,其原理如下: 在不同温度下调节电阻3R 的大小,使检流计G 的示数为0,有平衡电桥的性质可知 1 2 3 R R R R x = .在实验时,调节1R 和2R 均为1000欧姆。则x R 的值即为3R 的值。 3 非平衡电桥原理

图1 非平衡电桥的原理图如图1所示。非平衡电桥在结构形式上与平衡电桥相似,但测量方法上有很大差别。非平衡电桥是使1R 2R 3R 保持不变,x R 变化时则检流计G 的示数g I 变化。再根据“g I 与x R 函数关系,通过测量g I 从而测得x R 。由于可以检测连续变化的g I ,从而可以检测连续变化的x R ,进而检测连续变化的非电量。 4 实验条件的确定 当电桥不平衡时,电流计有电流g I 流过,我们用支路电流法求出g I 与热敏电阻x R 的关系。桥路中电流计内阻g R ,桥臂电阻1R 2R 3R 和电源电动势E 为已知量,电源内阻可忽略不计。 根据基尔霍夫第一定律和基尔霍夫第二定律,通过一些列的计算可求得热敏电阻x R E R R R R R R R R R R R I R R R R R R R R R I E R R R g g g g g g x 113213132213232132)()(+++++++-= 5 用非平衡电桥测电阻的实例 已知:微安表量程Ig=100μA ,精度等级f=级,温度计的量程为100 t 100 95 90 85 80 75 70 65 60 55 50 45 40 35 Ig T 373 368 363 358 353 348 343 338 333 328 323 318 313 308 Rt 951 1032 1140 1255 1380 1541 1749 1985 2255 2527 2850 3660 3991 4398

电阻测量的设计实验报告

佛山科学技术学院 实验报告 课程名称实验项目 专业班级姓名学号 指导教师成绩日期年月日

【实验目的】 1.掌握减小伏安法测量电阻的方法误差和仪表误差的方法; 2.根据测量不确定度的要求,合理选择电压表和电流表的参数; 3.根据给定实验仪器合理设计变形电桥电路(或电压补偿测量电路)测量电阻。 【实验仪器】 直流稳压电源、伏特表、毫安表、被测电阻、滑线变阻器(或电位器)2个、电阻箱2只、开关式保护电阻、开关。 【实验原理】 1.方法误差 根据欧姆定律,测出电阻R x 两端的电压U ,同时测出流过电阻R x 的电流I ,则待测电阻值为 I U R x = 测 (24-1) 通常伏安法测电阻有两种接线方式:电流表内接法和电流表外接法。由于电表内阻的存在,这两种方法都存在方法误差。 在内接法测量电路中(如图24-1所示),电流表的读数I 为通过电阻R x 的电流I x ,但电压表的读数U 并不是电阻R x 的两端电压U x ,而是U=U x +U A ,所以实验中测得的待测电阻阻值为 式中R A 是电流表的内阻。它给测量带来的相对误差为 x A x x R R R R R E = -= 内内 (24-2) 内接法测量待测电阻阻值的修正公式 A x R I U R -= 。 (24-3) 在外接法测量电路中(如图24-2所示),电压表的读数U 等于电阻R x 的两端电压 U x ,但电流表的读数I 并不是流过R x 的电流I x ,而是I=I x +I V ,所以实验中测得的待测电阻阻值为 式中R V 是电压表的内阻。它给测量带来的相对误差为 x V x x x R R R R R R E +-=-= 外外 (24-4) 外接法测量待测电阻阻值的修正公式 U IR UR R R R R R V V V V x -=-= 外外 (24-5) 比较 内E 、外E 的大小,可以得:当V A R R R x >,采用内接法测量电阻,会使外内E E <;当V A R R R x <,采用外接法测量电阻,会使外内E E >;当V A x R R R ≈时,则采用内接法和外接法测量电阻都可以。其中电流表的内阻R A 、电压表的内阻R V 由实验室给出。 图24-1 内接法 图24-2 外接法

热敏电阻数字温度计的设计与制作

评分: 大学物理实验设计性实验 实《用热敏电阻改装温度计》实验提要 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明 书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶根据实验情况自己确定所需的测量次数。 实验仪器 惠斯通电桥,电阻箱,表头,热敏电阻,水银温度计,加热电炉,烧杯等实验所改装的温度计的要求 (1)要求测量范围在40℃~80℃。 (2)定标时要求测量升温和降温中同一温度下热敏温度计的指示值(自己确定测量间隔,要达到一定的测量精度)。 (3)改装后用所改装的温度计测量多次不同温度的热水的温度,同时用水银温度计测出此时的热水温度(作为标准值),绘制出校正曲线。 提交整体设计方案时间 学生自选题后2~3周内完成实验整体设计方案并提交。提交整体设计方案,要求电子版。用电子邮件发送到指导教师的电子邮箱里。 思考题 如何才能提高改装热敏温度计的精确度? 用热敏电阻改装温度计 实验目的: 1.了解热敏电阻的特性; 2.掌握用热敏电阻测量温度的基本原理和方法; 3.进一步掌握惠斯通电桥的原理及应用。 实验仪器:

惠斯通电桥,电阻箱,热敏电阻,水银温度计,滑动变阻器,微安表,加热电炉,烧杯等 实验原理: 1.惠斯通电桥原理 惠斯通电桥原理电路图如图1所示。当电桥平衡时,B,D之间的电势相等,桥路电流I=0,B,D之间相当于开路,则U B=U D;I1=I x,I2=I0; 于是I1R1=I2R2,I1R X=I2R0 由此得R1/R X=R2/R0 或R X=R0R1/R2 (1) (1)式即为惠斯通电桥的平衡条件,也是用来测量 电阻的原理公式。欲求R X,调节电桥平衡后,只要知道 R1,R2,R0的阻值,即可由(1)式求得其阻值。 2.热敏电阻温度计原理 热敏电阻是具有负的电阻温度系数,电阻值随温度升高而迅速下降,这是因为热敏电阻由半导体制成,在这些半导体内部,自由电子数目随温度的升高增加的很快,导电能力很快增强,虽然原子振动也会加剧并阻碍电子的运动。但这样作用对导电性能的影响远小于电子被释放而改变导电性能的作用,所以温度上升会使电阻下降。 这样我们就可以测量电桥非平衡时通过桥路的电流大小来表征温度的高低。 热敏电阻温度计的设计电路图如图2示

热敏电阻温度传感器

热敏电阻(温度传感器)特性测量实验 一 试验目的 1.了解热敏电阻传感器,PT100,热电偶传感器的结构。 2.了解相关测试器的使用。 3.测试热敏电阻,PT100,热电偶三种传感器随温度变化,其阻值的变化。 二 实验内容 按要求步骤完成数据的测试。 三 实验器材 万用表,加热器,电源,热敏电阻,PT100,热电偶,若干导线 四 基本原理 热敏电阻在不同的温度下,随着温度的升降,其阻值也发生相应的升降。 PT100是一种以铂(Pt)作成的电阻式温度传感器,属于正电阻系数,其电阻和温度变化的关系式如下:R=Ro(1+αT) 热电偶:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势 五 试验步骤 1.准备好加热器,万用表,5V 电源及相关导线。 2.首先,在室温下测试热敏电阻的阻值 3.连接好线路,查看温度测试其温度,从20°开始每间隔5°读出其阻值,并记录。 4.绘制起温度曲线,与理论值做比较 六 测试数据:截图如下: 7 8 5 6 4 3 2 1 稳压电源 220V

实际文件在excell 中 温度传感器的阻值随温度变化参数温度 热敏电阻 温度 54℃59℃64℃69℃74℃79℃84℃89℃94℃阻值(20K Ω) 8.9 4.74 3.3 2.8 2.5 2.1 1.4 1.3热电偶温度 78℃73℃68℃63℃58℃53℃48℃43℃38℃阻值(200Ω) 12.811.610.59.38.587.47.1 6.5 PT100 温度 66℃61℃56℃51℃46℃41℃36℃31℃26℃阻值(200Ω) 122 121.4 120 118 117 112.6 111.8 111.3 110.2 七 结果分析: 热敏电阻 阻值(20K Ω) 24681054℃59℃64℃69℃74℃79℃84℃89℃94℃99℃ 热敏电阻 阻值(20K Ω)

实验二十二 NTC热敏电阻温度特性实验

实验二十二NTC热敏电阻温度特性实验 一、实验目的:定性了解NTC热敏电阻的温度特性。 二、实验原理:热敏电阻的温度系数有正有负,因此分成两类:PTC热敏电阻(正温度系数:温度升高而电阻值变大)与NTC热敏电阻(负温度系数:温度升高而电阻值变小)。一般NTC热敏电阻测量范围较宽,主要用于温度测量;而PTC突变型热敏电阻的温度范围较窄,一般用于恒温加热控制或温度开关,也用于彩电中作自动消磁元件。有些功率PTC也作为发 热元件用。PTC缓变型热敏电阻可用作温度补偿或作温度测量。 一般的NTC热敏电阻大都是用Mn,Co,Ni,Fe等过渡金属氧化物按一定比例混合,采 用陶瓷工艺制备而成的,它们具有P型半导体的特性。热敏电阻具有体积小、重量轻、热惯 性小、工作寿命长、价格便宜,并且本身阻值大,不需考虑引线长度带来的误差,适用于远 距离传输等优点。但热敏电阻也有:非线性大、稳定性差、有老化现象、误差较大、离散性 大(互换性不好)等缺点。一般只适用于低精度的温度测量。一般适用于-50℃~300℃的低精 度测量及温度补偿、温度控制等各种电路中。NTC热敏电阻RT温度特性实验原理如图22—1 所示,恒压电源供电Vs=2V,W2L为采样电阻(可调节)。计算公式:Vi=[W2L/(R T+W2)]·Vs 式中:Vs=2V、R T为热电阻、W2L为W2活动触点到地的阻值作为采样电阻。 图22—1 热敏电阻温度特性实验原理图 三、需用器件与单元:机头平行梁中的热敏电阻、加热器;显示面板中的F/V表(或电压表)、±2V~±10V步进可调直流稳压电源、-15V直流稳压电源;调理电路面板中传感器输 出单元中的R T热电阻、加热器;调理电路单元中的电桥、数显万用表(自备)。 四、实验步骤: 1、用数显万用表的20k电阻当测一下R T热敏电阻在室温时的阻值。R T是一个黑色(或 兰色或棕色)园珠状元件,封装在双平行梁的上梁表面。加热器的阻值为100Ω左右封装在 双平行应变梁的上下梁之间。如图22—2所示。

伏安法测电阻实验报告

科学探究的主要步骤 ※一、提出问题 ※二、猜想与假设 ※三、设计实验 (一)实验原理 (二)实验装置图 (三)实验器材和规格 (三)实验步骤 (四)记录数据和现象的表格 四、进行试验 ※五、分析与论证 ※六、评估 七、交流与合作 ※最后:总结实验注意事项 第一方面:电学主要实验滑动变阻器复习提纲 1、原理——通过改变接入电路中电阻丝的长度,来改变电路中的电阻, 从而改变电路中的电流。 2、构造和铭牌意义一一200 Q:滑动变阻器的最大阻值

3、结构示意图和电路符号 电路符号 4、 变阻特点一一能够连续改变接入电路中的电阻值。 5、 接线方法一一 6、 使用方法一一与被调节电路(用电器)串联 7、 作用一一1、保护电路 2、改变所在电路中的电压分配或电流大小 8、 注意事项一一电流不能超过允许通过的最大电流值 9、 在日常生活中的应用 ——可调亮度的电灯 、可调热度的电锅 、 收音机的音量调节旋钮?…… 实验题目:导体的电阻一定时,通过导体的电流 和导体两 端电压的关系(研究欧姆定 律实验新教材方案) 一、提出问题: 通过前面的学习,同学们已经定性的知道: 加在导体两端的电压越高, 通过导体的电流就会越大;导体的电阻越大,通过导体的电流越小。现在 我们共同来探究:如果知道了一个导体的电阻值和它两端的电压值,能不 能计算出诵过它的电流呢?即诵过导体的电流与导体两端的电压和导体 的电阻有什么定量关系? 二、 猜想与假设: 1、 电阻不变,电压越大,电流越 _______________________________ 。(填大”或小” 结构示蕙图 C D A B C 精殊揍法 D D C D

非平衡电桥测量热敏电阻的温度系数实验报告

一、名称:非平衡电桥测量热敏电阻的温度系数二、目的: 1、掌握非平衡电桥的工作原理。 2、了解金属导体的电阻随温度变化的规律。 3、了解热敏电阻的电阻值与温度的关系。 4、学习用非平衡电桥测定电阻温度系数的方法。 三、仪器: 1、热敏电阻。 2、数字万用表。 3、ZX-21型电阻箱。 4、滑线变阻器。 5、固定电阻器。 6、水浴锅。 7、温度计。 8、直流稳压电源等。 四、原理:

热敏电阻由半导体材料制成,是一种敏感元件。其特点是在一定的温度范围内,它的电阻率T ρ随温度T 的变化而显著地变化,因而能直接将温度的变化转换为电量的变化。一般半导体热敏电阻随温度升高电阻率下降,称为负温度系数热敏电阻(简称“NTC ”元件,其电阻率T ρ随热力学温度T 的关系为T B T e A /0=ρ…(5,式中0A 与B 为常数,由材料的物理性质决定。 也有些半导体热敏电阻,例如钛酸钡掺入微量稀土元素,采用陶瓷制造工艺烧结而成的热敏电阻在温度升高到某特定范围(居里点时,电阻率会急剧上升,称为正温度系数热敏电阻(简称“PTC ”元件。其电阻率的温度特性为: T B T e A ?'=ρρ…(6,式中A '、ρ B 为常数,由材料物理性质决定。 在本实验中我们使用的是负温度系数的热敏电阻。对于截面均匀的“NTC ”元件,阻值T R 由下式表示: T B T T e S l A S l R /0==ρ (7 ,式中l 为热敏电阻两极间的距离,S 为热敏电阻横截面积。令S l A A 0

=,则有: T B T Ae R /=…(8,上式说明负温度系数热敏电阻的阻值随温度升高按指数规律下降,如图2所示,可见其对温度的敏感程度比金属电阻等其它感温元件要高得多。由于具有上述性质,热敏电阻被广泛应用于精密测温和自动控温电路中。对(8式两边取对数,得 A T B R T ln 1ln +=…(9,可见T R ln 与T 1成线性关系,若从实验中测得若干个T R 和对 应的T 值,通过作图法可求出A (由截距A ln 求出和B (即斜率。 半导体材料的激活能Bk E =,式中k 为玻耳兹曼常数(231038.1-?=k J/K,将B 与 k 值代入可求出E 。根据电阻温度系数的定义: dT dR R dT d T T T T 11= = ρρα… (10,将(8式代入可求出热敏电阻的电阻温度系数:2T B -=α… (11,对给定材料的热敏电阻,在测得B 值后,可求出该温度下的电阻温度系数。 五、步骤: 1、热敏温度计定标:①如图连接线路(接线时不要打开电源,其中x R 为热敏电阻,3R 为试验中给出的总阻值为1750Ω的滑动变阻器。将x R 置于水浴锅中,注意

用热敏电阻测量温度

3.5.2 用热敏电阻测量温度 (本文内容选自高等教育出版社《大学物理实验》) 热敏电阻是由对温度非常敏感的半导体陶瓷质工作体构成的元件。与一般常用的金属电阻相比,它有大得多的电阻温度系数值。根据所具有电阻温度系数的不同,热敏电阻可分三类:1.正电阻温度系数热敏电阻;2.临界电阻温度系数热敏电阻;3.普通负电阻温度系数热敏电阻。前两类的电阻急变区的温度范围窄,故适宜用在特定温度范围作为控制和报警的传感器。第三类在温度测量领域应用较广,是本实验所用的热敏元件。热敏电阻作为温度传感器具有用料省、成本低、体积小、结构简易,电阻温度系数绝对值大等优点,可以简便灵敏地测量微小温度的变化。我国有关科研单位还研制出可测量从-260℃低温直到900℃高温的一系列不同类型的热敏电阻传感器,在人造地球卫星和其他有关宇航技术、深海探测以及科学研究等众多领域得到广泛的应用。本实验旨在了解热敏电阻-温度特性和测温原理,掌握惠斯通电桥的原理和使用方法。学习坐标变换、曲线改直的技巧和用异号法消除零点误差等方法。 实验原理 1. 半导体热敏电阻的电阻——温度特性 某些金属氧化物半导体(如:Fe 3O 4、MgCr 2O 4等)的电阻与温度关系满足式(1): T B T e R R ∞= (1) 式中R T 是温度T 时的热敏电阻阻值,R ∞是T 趋于无穷时热敏电阻的阻值,B 是热敏电阻的材 料常数,T 为热力学温度。 金属的电阻与温度的关系满足(2): )](1[1212t t a R R t t -+= (2) 式中a 是与金属材料温度特性有关的系数,R t1、R t2分别对应于温度t 1、t 2时的电阻值。 根据定义,电阻的温度系数可由式(3)来决定: dt dR R a t t 1= (3) R t 是在温度为t 时的电阻值,由图3.5.2-1(a )可知,在R-t 曲线某一特定点作切线,便可求出该温度时的半导体电阻温度系数a 。 由式(1)和式(2)及图3.5.2-1可知,热敏电阻的电阻-温度特性与金属的电阻-温度特性比较,有三个特点: (1) 热敏电阻的电阻-温度特性是非线性的(呈指数下降),而金属的电阻-温度特性是线性的。

测量金属丝的电阻率的实验报告

测量金属丝的电阻率的 实验报告 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

《测量金属丝的电阻率》实验报告 徐闻一中:麦昌壮 一、实验目的 1.学会使用伏安法测量电阻。 2.测定金属导体的电阻率。 3.掌握滑动变阻器的两种使用方法和螺旋测微器的正确读数。 二、实验原理 设金属导线长度为l ,导线直径为d ,电阻率为ρ,则: 由S l ρR =,得: l R d l RS 42?==πρ。 三、实验器材 已知长度为50cm 的被测金属丝一根,螺旋测微器一把,电压表、电流表各一个,电源一个,开关一个,滑动变阻器一只,导线若干。 四、实验电路 五、实验步骤 1.用螺旋测微器测三次导线的直径d ,取其平均值。 2.按照实验电路连接好电器元件。 3.移动滑动变阻器的滑片,改变电阻值。 4.观察电流表和电压表,记下三组不同的电压U 和电流I 的值。 5.根据公式计算出电阻率ρ的值。 六、实验数据

七、实验结果 ρ平均=(1.97+2.06+2.18)÷3×10-7Ω·m=2.07×10-7Ω·m 八、实验结论 金属丝的电阻率是2.07×10-7Ω·m。 九、【注意事项】 1.本实验中被测金属导线的电阻值较小,因此实验电访必须采用电流表外接法 2.实验连线时,应先从电源的正极出发,依次将电源、电键、电流表、待测金属导线、滑动变阻器连成主干线路(闭合电路),然后再把电压表并联在待洲金属导线的两端 3.测量被测金属导线的有效长度,是指测量待测导线接入电路的两个端点之间的长度,亦即电压表两并入点间的部分待测导线长度.测量时应将导线拉直. 4.闭合电键S之前,一定要使滑动变阻器的滑动片处在有效电阻值最大的位置 5.在用伏安法测电阻时,通过待测导线的电流强度正的值不宜过大(电流表用0~0.6A量程),通电时间不宜过长,以免金属导线的温度明显升高,造成其电阻率在实验过程中逐渐增大.

电阻测量的设计实验报告

佛山科学技术学院 实 验 报 告 课程名称 实验项目 专业班级 姓 名 学 号 指导教师 成 绩 日 期 年 月 日 【实验目的】 1.掌握减小伏安法测量电阻的方法误差和仪表误差的方法; 精品文档,超值下载 2.根据测量不确定度的要求,合理选择电压表和电流表的参数; 3.根据给定实验仪器合理设计变形电桥电路(或电压补偿测量电路)测量电阻。 【实验仪器】 直流稳压电源、伏特表、毫安表、被测电阻、滑线变阻器(或电位器)2个、电阻箱2只、开关式保护电阻、开关。 【实验原理】 1.方法误差 根据欧姆定律,测出电阻R x 两端的电压U ,同时测出流过电阻R x 的电流I ,则待测电阻值为 I U R x = 测 (24-1) 通常伏安法测电阻有两种接线方式:电流表内接法和电流表外接法。由于电表内阻的存在,这两种方法都存在方法误差。 在内接法测量电路中(如图24-1所示),电流表的读数I 为通过电阻R x 的电流I x ,但电压表的读数U 并不是电阻R x 的两端电压U x ,而是U=U x +U A ,所以实验中测得的待测电阻阻值为 A x A x x R R I R R I I U R +=+== ) (内 式中R A 是电流表的内阻。它给测量带来的相对误差为 x A x x R R R R R E = -= 内内 (24-2) 内接法测量待测电阻阻值的修正公式 A x R I U R -= 。 (24-3) 在外接法测量电路中(如图24-2所示),电压表的读数U 等于电阻R x 的两端电压U x ,但电流表的读数I 并不是流过R x 的电流I x ,而是I=I x +I V ,所以实 验中测得的待测电阻阻值为 图24-1 内接法 图24-2 外接法

实验一_热敏电阻演示实验

青岛农业大学 理学与信息科学学院 传感器原理与应用实验报告学生专业班级 学生姓名(学号) 指导教师 完成时间 实验地点 年月日

实验报告 姓名:学号:班级: 实验项目名称:实验二热敏电阻演示实验 实验目的:了解NTC热敏电阻现象 实验原理:温度是诸多物理现象中具有代表性的物理量,现代生活中准确的温度是不可缺少的信息内容,如家用电器有:电饭煲、电冰箱、空调、微波炉这些家用电器中都少不了温度传感器。 热敏电阻,利用半导体材料随温度变化测温,特点:体积小、灵敏度高、使用方便,稳定性差;两种不同类型的金属导体,导体两端分别接在一起构成闭合回路,当两个结点温度不等(T>T0)有温差时,回路里会产生热电势,形成电流,这种现象称为热电效应。 利用这种效应,只要知道一端结点温度,就可以测出另一端结点的温度。 固定温度的接点称基准点(冷端)T0 ,恒定在某一标准温度;待测温度的接点称测温点 (热端)T ,置于被测温度场中。 热电偶热端温度为T时 热端接触电势: 冷端接触电势: 在闭合回路中,总的接触电势为: 实验步骤(电路图): (1)了解热敏电阻在实验仪的所在位置及符号,它是一个兰色或棕色元件,封装在双平行振动梁上片梁的表面。 (2)将F/V表切换开关置2V档,直流稳压电源切换开关置±2V档,按图2接线,开启主、副电源,调整W1(RD)电位器,使F/V表指示为100mV左右。这时为室温时的Vi。

图1 热敏电阻实验电路图 (3)将-15V 电源接入加热器,观察电压表的读数变化,电压表的输入电压: S IL IH T IL i V )W W (R W V ?++= (4)由此可见,当温度 升高 时,RT 阻值 减小 ,Vi 增大 。 (5)加热1—2分钟,观察一下RT 阻值、Vi 变化趋势如何? RT 阻值不再发生变化,Vi 趋于稳定 实验结果及分析: 1.若热电偶两电极材料相同(NA=NB 、σA=σB ),无论两端点温度如何,总热电势为零; 2. 如果热电偶两接点温度相同,T=T0时,A 、B 材料不同,回路总电势为零; 实验中的注意事项及实验感想、收获或建议等: 热电偶必须用不同材料做电极;在T 、T0两端必须有温差梯度,这是热电偶产生热电势的必要条件。 思考题:如果你手上有这样一个热敏电阻,想把它作为一个0~50℃的温度测量电路,你认为该怎样来实现? 将冷端插入冰水混合物(0℃)中,将热端置于被测环境中。

测量金属丝的电阻率实验报告单

"测量金属丝的电阻率"实验报告单 班级________________姓名________________实验时间______________ 一、实验目的 1.学会使用伏安法测量电阻。 2.测定金属导体的电阻率。 3.掌握滑动变阻器的使用方法和螺旋测微器的正确读数。 二、实验器材 长度为cm的被测金属丝一根,螺旋测微器一把,电压表、电流表各一个,电源一个,开关一个,滑动变阻器一只,导线若干。 三、实验电路图 四、实验步骤 1.用螺旋测微器在接入电路部分的被测金属导线上的三个不同位置各测量一次导线的直径,结果记 录在表格内,求出其平均值d. 2.按原理电路图连接好用伏安法测电阻的实验电路. 3.用毫米刻度尺测量接入电路中的金属导线的有效长度,反复测量3次,结果记录表格内,求出其 平均值l. 4.用伏安法测金属导线的电阻R。用平均值法或图像法处理获得的电压U、电流I,求电阻R。 5.将测得的电压U、电流I、有效长度l、直径d,代入电阻定律公式中,推导出金属导线的电阻率 ρ= 6.拆去实验电路,整理好实验器材. "测量金属丝的电阻率"数据记录表

1. 在“测定金属丝的电阻率”的实验中,待测电阻丝阻值约为4Ω。 (1)用螺旋测微器测量电阻丝的直径d 。其中一次测量结果如右 图所示,图中读数为d =mm 。 (2)为了测量电阻丝的电阻R ,除了导线和开关外, 还有以下一些器材可供选择: 电压表V ,量程3V ,内阻约3k Ω 电流表A 1,量程0.6A ,内阻约0.2Ω 电流表A 2,量程100μA ,内阻约2000Ω 滑动变阻器R 1,0~1750Ω,额定电流0.3A 滑动变阻器R 2,0~50Ω,额定电流1A 电源E 1(电动势为1.5 V ,内阻约为0.5Ω) 电源E 2(电动势为3V ,内阻约为1.2Ω) 为了调节方便,测量准确,实验中应选用 电流表________,滑动变阻器_________, 电源___________。(填器材的符号) (3)请在右边的方框图中画出测量电阻丝的电阻应采 用的电路图,并在图中标明所选器材的符号。 (4)请根据电路图,在右图所给的实物图中画出连线。 (5)用测量量表示计算材料电阻率的公式 是ρ =(已用刻度尺测量出接入电路中的金属导线的有效长度为l )。 补充练习1: 补充练习2: ⑴_________mm ⑵ _________mm (3) _________mm (4) _________mm 35 40 45 30 25 S V + - + - A

相关主题
文本预览
相关文档 最新文档