当前位置:文档之家› 创新学分实验4_离散非周期信号频谱分析的MATLAB算法实现

创新学分实验4_离散非周期信号频谱分析的MATLAB算法实现

创新学分实验4_离散非周期信号频谱分析的MATLAB算法实现
创新学分实验4_离散非周期信号频谱分析的MATLAB算法实现

离散非周期信号频谱分析的MATLAB 算法实现

1 引言

在上一章中介绍了四种不同类型信号的频谱变化规律,在这一章将具体研究其中的一种,即离散非周期信号。在从理论上掌握其频谱变化规律的基础上,着重讨论如何应用离散傅里叶变换DFT 对其频谱进行分析,针对具体实例,通过MATLAB 编程采用FFT 算法实现对其频谱的计算,并和理论值比较,作了相应的误差分析。

2 频域采样定理

如前所述,依据以下关系式所构成的一对离散时间傅里叶变换DTFT ,即 Ω

Ω=

?

Ωd e

X n x n

j π

π

20

)(21)( ∑-=Ω-=

Ω1

)()(N n n

j e

n x X

可知离散非周期信号的频谱是周期连续的频谱。由于频谱是连续的,尚须对其作离散化处理(即采样)后才能利用DFT 进行分析。对采样过程而言,如果不能恰当地确定采样间隔或采样点数,势必产生混叠误差。例如,在频域欠取样情况下,由于出现时域信号波形混叠,也就无法恢复原信号,因而无法从频域样点重建原离散频谱,以至在严重情况下会得到错误的计算结果。

采样定理为采样后能否恢复原信号提供了理论依据。

对于离散非周期信号的频谱分析,我们需要用到频域采样定理,即: 如果序列x(n)的长度为M ,则只有当频域采样点数N ≥M 时,才可以由频域采样X (k )恢复原序列x(n),否则产生时域混叠现象。

3 实现方法与求解步骤

利用FFT 和IFFT 分析离散非周期信号(序列)的频谱,要视序列的长度选择适当的方法:

(1)当序列长度有限时,在正确选取M 、N 的条件下(即使得N ≥M )可以求得准确的频谱样值。

(2)若序列很长或无限长,必须先根据能量分布在满足实际工程计算允许的范围内进行截断处理,从而选取适当的M 、N 以求解频谱样值。由于截断必然产生泄露误差以及混叠误差,所以使得计算的结果只能是频谱样值的近似值。

已知N 点有限序列x(n)的频谱为: ∑-=Ω-=

Ω1

)()(N n n

j e

n x X

若序列很长,需要把它截断为M 点,则其近似频谱为:

∑-=Ω-≈

Ω1

)()(M n n

j e

n x X

为了实现计算机数字分析,在数字域将数字频率N

k k π20=Ω=Ω进行离散

化,求得其近似的频谱样值为:

)()]([)()

(1

22k X n x DFT e

n x X M n kn

N

j

N

k

==≈

Ω∑

-=-=Ωππ

综上,总结对离散非周期信号(序列)频谱分析的一般求解步骤为: (1) 确定原序列x (n )的长度M 。根据能量分布,序列为无限长时需要进

行截断。

(2) 确定作FFT 的点数N 。根据频域取样定理,为使时域波形不产生混叠,

必须取N ≥M 。

(3) 使用fft 命令作N 点FFT 计算X (k )。频率分辨率N

π20=Ω。

(4) 绘制频谱图,使运算结果可视化。

4 实例分析及MATLAB 编程

[例] 已知无限长序列x (n )=)(8.0n u n 。

(1) 截取序列长度M=10点,用FFT 计算其频谱,并与理论计算的结果进行

比较,观察功率泄漏现象。

(2) 截取序列长度M=20点,用FFT 计算其频谱,观测功率泄漏情况并与(1)进行比较。 [解]

该序列总能量7778

.264

.011][0

2

=-=

=

=n n x E

相关MATLAB 运算指令:

E=1/(1-0.64) E =

2.7778

(1)M=10点截断的信号的能量64

.01)64.0(1][0

19

2

--=

=

∑=n n x

E

占总能量的比例通过以下MATALB 指令计算: p10=(1-(0.64).^10)/(1-0.64)/E p10 = 0.9885

即10点截断的信号能量占原始信号总能量的98.85%,占了大部分,有少部分泄漏。

编写以下MATLAB 程序观察N=M=10点时的功率泄漏现象:

N=10; n=0:N-1; x=(0.8).^n; X=fft(x,N); subplot(2,1,1);

stem(n,x); ylabel('x[n]'); xlabel('Time n');

omega=2*pi/N*n;

X0=1./(1-0.8*exp(-j*omega)); subplot(2,1,2);

plot(omega,abs(X),omega,abs(X0),'--'); ylabel('X(omega)');

xlabel('Frequency(rad)');

运行程序,结果显示如图4.1。

123456789

00.20.40.6

0.81x [n ]

Time n

1

2

3

4

5

6

012345

6X (o m e g a )

Frequency(rad)

图4.1 M=10点时的时域信号和DFT 计算出的频谱

(2) M=20点截断的信号的能量64

.01)64.0(1][20

19

2

--=

=

∑=n n x

E

占总能量的比例由以下MATLAB 指令计算:

p20=(1-(0.64).^20)/(1-0.64)/E p20 = 0.9999

即20点截断的信号能量占原始信号总能量的99.99%,只有0.01%的泄漏。

编写以下MATLAB 程序观察N=M=20点时的功率泄漏现象:

N=20;

n=0:N-1;

x=(0.8).^n; X=fft(x,N); subplot(2,1,1);

stem(n,x); ylabel('x[n]'); xlabel('Time n');

omega=2*pi/N*n;

X0=1./(1-0.8*exp(-j*omega)); subplot(2,1,2);

plot(omega,abs(X),omega,abs(X0),'--'); ylabel('X(omega)');

xlabel('Frequency(rad)');

运行程序,结果显示如图4.2。

02468

101214161820

0.20.40.60.81x [n ]

Time n

1

2

3

4

5

6

0123456X (o m e g a )

Frequency(rad)

4.2 M=20点时的时域信号和DFT 计算出的频谱

其中,上图为截短后的时间序列,下图中实线为截短的时间序列的幅频特性,虚线为原序列的幅频特性。可见,增大M的取值后,再用FFT计算其频谱,泄露就会明显的减少,得到的谱也近似其真实谱。

5 误差分析

DFT解决了用计算机对离散非周期信号进行分析的问题,但由于对频域是连续函数的信号需要离散化,对长度或频谱很宽或无限长的信号需要做截断处理,因此如果不能恰当地确定取样间隔T,势必产生混叠误差。如果截断和选取的长度N不合适,则会造成频谱扩散,使能量和功率产生泄露,产生泄漏误差。截断长度越短,泄漏误差也越大。为此,如何通过正确的确定T与N来减少这两种误差,实现高效计算有着极其重要的实际意义。

刚才我们从图4.1和图4.2中已经看出,时域截断对应FFT计算的频谱幅度应小与真实幅度谱,同时由于矩形窗函数对x(n)突然截断,使FFT计算的谱向高频处扩展产生了功率泄露。为了减少能量扩散,增大M的取值后,再用FFT计算其频谱,泄露就会明显的减少,得到的谱也近似其真实谱。

6 实验心得

完成本次实验后,我对于实现离散非周期信号频谱分析的MATLAB算法有了比较全面的学习和理解,面对问题的解答我充分利用了MATLAB的应用方法,使我对于MATLAB的应用有了更进一步的提高。在实验过程中出现的难点和问题也顺利解决。对于我以后的学习和工作有非常大的帮助。

信号与系统matlab实验及答案

产生离散衰减正弦序列()π0.8sin 4n x n n ?? = ??? , 010n ≤≤,并画出其波形图。 n=0:10; x=sin(pi/4*n).*0.8.^n; stem(n,x);xlabel( 'n' );ylabel( 'x(n)' ); 用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。观察并分析a 和0t 的变化对波形的影响。 t=linspace(-4,7); a=1;

t0=2; y=sinc(a*t-t0); plot(t,y); t=linspace(-4,7); a=2; t0=2; y=sinc(a*t-t0); plot(t,y);

t=linspace(-4,7); a=1; t0=2; y=sinc(a*t-t0); plot(t,y);

三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移 某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1 s f T = 表示抽样频率,即单位时间内抽取样值的个数。抽样频率取40 Hz s f =,信号频率f 分别取5Hz, 10Hz, 20Hz 和30Hz 。请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。可能用到的函数为plot, stem, hold on 。 fs = 40; t = 0 : 1/fs : 1 ; % ?μ?ê·?±e?a5Hz,10Hz,20Hz,30Hz f1=5; xa = cos(2*pi*f1*t) ; subplot(1, 2, 1) ;

matlab信号与系统实验报告

实验一 基本信号的产生与运算 一、 实验目的 学习使用MATLAB 产生基本信号、绘制信号波形、实现信号的基本运算。 二、 实验原理 MATLAB 提供了许多函数用于产生常用的基本信号:如阶跃信号、脉冲信号、指数信号、正弦信号和周期方波等等。这些信号是信号处理的基础。 1、 利用MATLAB 产生下列连续信号并作图。 (1)51),1(2)(<<---=t t u t x (2)300),3 2sin()(3.0<<=-t t e t x t (3)1.01.0,3000cos 100cos )(<<-+=t t t t x (4)2000),8.0cos()1.0cos()(<<=t t t t x ππ 答:(1)、 >> t=-1:0.02:5; >> x=(t>1); >> plot(t,-2*x); >> axis([-1,5,-3,1]); >> title('杨婕婕 朱艺星'); >> xlabel('x(t)=-2u(t-1)'); (2)、 >> t=0:0.02:30; >> x=exp(-0.3*t).*sin(2/3*t); >> plot(t,x);

>> title('杨婕婕朱艺星'); >> xlabel('x(t)=exp(-0.3*t).*sin(2/3*t)'); 因为原函数在t=15后x(t)取值接近于零,所以将横坐标改成0到15,看得更清晰 axis([0,15,-0.2,0.6]); (3)>> t=-0.1:0.01:0.1;x=cos(100*t)+cos(3000*t);plot(t,x); >> title('杨婕婕朱艺星'); >>xlabel('x=cos(100*t)+cos(3000*t)'); 因为t的间隔取太大,以至于函数不够准确,缩小t的间隔: t=-0.1:0.002:0.2;x=cos(100*t)+cos(3000*t); plot(t,x);title('杨婕婕') >> t=-0.1:0.0001:0.1; x=cos(100*t)+cos(3000*t); >> plot(t,x);title('杨婕婕朱艺星'); >> xlabel('x=cos(100*t)+cos(3000*t)');

信号(MATLAB)实验指导书

《信号与系统》实验指导书 张建奇骆崇编写 浙江工业大学之江学院信息工程分院 2012年2月

目录 实验一MATLAB的基本使用 (1) 一、实验目的 (1) 二、实验原理 (1) 三、实验内容与要求 (8) 四、实验报告 (9) 实验二时域波形的MATLAB实现 (10) 一、实验目的 (10) 二、预习要求 (10) 三、实验原理 (10) 四、实验内容与要求 (18) 五、实验报告 (19) 实验三用MATLAB对系统时域分析 (20) 一、实验目的 (20) 二、预习要求 (20) 三、实验原理 (20) 四、实验内容与要求 (29)

实验一MATLAB的基本使用 一、实验目的 1、了解和掌握MATLAB的基本操作 2、了解MATLAB的库函数 3、会用MATLAB进行简单的操作。 二、实验原理 1、界面操作 MATLAB是“MATrix LABoratory”的缩写(矩阵实验室),它是由美国Mathworks公司于1984年正式推出的一种科学计算软件,由于其强大的功能,在欧美的一些大学里MATLAB已经成为许多诸如数字信号处理、自动控制理论等高级教程的主要工具软件,同时也成为理工科学生,必须掌握的一项基本技能。 当需要运行程序时,只需选择桌面上(或开始)中的MATLAB6.5应用程序图标即可 通常情况下,MATLAB的工作环境主要由一下几个窗口组成: 命令窗口(Command Window)

工作区间浏览器(Workspace) 历史命令窗口(Command History) 图形窗口(Figure) 文本编辑窗口(Editor) 当前路径窗口(Current Directory) MATLAB的命令窗与命令操作 当用户使用命令窗口进行工作时,在命令窗口中可以直接输入相应的命令,系统将自动显示信息。 例如在命令输入提示符“>>”后输入指令: >>t=[1,2,3;4,5,6;7,8,9]; 按回车键(Enter)后,系统即可完成对变量t的赋值。 MATALB提供了非常方便的在线帮助命令(help),它可提供各个函数的用法指南,包括格式、参数说明、注意事项及相关函数等内容。 2、图形窗 MATLAB图形窗(Figure)主要用于显示用户所绘制的图形。 通常,只要执行了任意一种绘图命令,图形窗就会自动产生。

信号与系统 MATLAB实验报告

《信号与系统》MATLAB实验报告 院系:专业: 年级:班号: :学号: 实验时间: 实验地点:

实验一 连续时间信号的表示及可视化 实验题目: )()(t t f δ=;)()(t t f ε=;at e t f =)((分别取00<>a a 及); )()(t R t f =;)()(t Sa t f ω=;)2()(ft Sin t f π=(分别画出不同周期个数的波形)。 解题分析: 以上各类连续函数,先运用t = t1: p:t2的命令定义时间围向量,然后调用对应的函数,建立f 与t 的关系,最后调用plot ()函数绘制图像,并用axis ()函数限制其坐标围。 实验程序: (1))()(t t f δ= t=-1:0.01:3 %设定时间变量t 的围及步长 f=dirac(t) %调用冲激函数dirac () plot(t,f) %用plot 函数绘制连续函数 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的围 (2))()(t t f ε= t=-1:0.01:3 %设定时间变量t 的围及步长 f=heaviside(t) %调用阶跃函数heaviside () plot(t,f) %用plot 函数绘制连续函数 title('f(t)=heaviside(t)') %用title 函数设置图形的名称 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的围 (3)at e t f =)( a=1时:

t=-5:0.01:5 %设定时间变量t 的围及步长 f=exp(t) %调用指数函数exp () plot(t,f) %用plot 函数绘制连续函数 title('f=exp(t)') %用title 函数设置图形的名称 axis([-5,5,-1,100]) %用axis 函数规定横纵坐标的围 a=2时: t=-5:0.01:5 f=exp(2*t) % 调用指数函数exp () plot(t,f) title('f=exp(2*t)') axis([-5,5,-1,100]) a=-2时: t=-5:0.01:5 f=exp(-2*t) plot(t,f) title('f=exp(-2*t)') axis([-5,5,-1,100]) (4))()(t R t f = t=-5:0.01:5 f=rectpuls(t,2) % 用rectpuls(t,a)表示门函数,默认以零点为中心,宽度为a plot(t,f) title('f=R(t)') axis([-5 5 -0.5 1.5]) (5))()(t Sa t f ω= ω=1时: t=-20:0.01:20 f=sin(t)./t % 调用正弦函数sin (),并用sin (t )./t 实现抽 样函数 plot(t,f)

信号与系统 matlab答案

M2-3 (1) function yt=x(t) yt=(t).*(t>=0&t<=2)+2*(t>=2&t<=3)-1*(t>=3&t<=5); (2)function yt=x (t) yt=(t).*(t>=0&t<=2)+2*(t>=2&t<=3)-1*(t>=3&t<=5); t=0:0.001:6; subplot(3,1,1) plot(t,x2_3(t)) title('x(t)') axis([0,6,-2,3]) subplot(3,1,2) plot(t,x2_3(0.5*t)) title('x(0.5t)') axis([0,11,-2,3]) subplot(3,1,3) plot(t,x2_3(2-0.5*t)) title('x(2-0.5t)') axis([-6,5,-2,3]) 图像为:

M2-5 (3) function y=un(k) y=(k>=0) untiled3.m k=[-2:10] xk=10*(0.5).^k.*un(k); stem(k,xk) title('x[k]') axis([-3,12,0,11])

M2-5 (6) k=[-10:10] xk=5*(0.8).^k.*cos((0.9)*pi*k) stem(k,xk) title('x[k]') grid on M2-7 A=1; t=-5:0.001:5; w0=6*pi; xt=A*cos(w0*t); plot(t,xt) hold on A=1; k=-5:5; w0=6*pi; xk=A*cos(w0*0.1*k); stem(k,xk) axis([-5.5,5.5,-1.2,1.2]) title('x1=cos(6*pi*t)&x1[k]')

实验1 用MATLAB进行信号频谱分析(推荐文档)

实验1 用MATLAB 进行信号频谱分析 一、实验目的 ㈠ 初步掌握MATLAB 产生常用离散时间信号的编程方法。 ㈡ 学习编写简单的FFT 算法程序,对离散信号进行幅频谱分析。 ㈢ 观察离散时间信号频谱的特点。 二、实验原理 ㈠ 常用的离散时间信号 在 MATLAB 语言主要是研究离散信号的。常用的离散信号有: 1.单位取样序列 ???≠==000 1)(n n n δ 2.单位阶跃序列 ?? ?<≥=0 01 )(n n n u 3.实指数序列 R a n a n x n ∈?=;)( 4.复指数序列 n e n x n j ?=+)(0)(ωσ 5.正(余)弦序列 )c o s ()(0θω+=n n x n ? 6.周期序列 n N n x n x ?+=)()( ㈡ 离散信号的产生 离散信号的图形显示使用stem 指令。 在 MATLAB 中的信号处理工具箱中,主要提供的信号是离散信号。

由于MATLAB 对下标的约定为从1开始递增,例如x=[5,4,3,2,1,0],表示x(1)=5,x(2)=4,X(3)=3… 因此要表示一个下标不由1开始的数组x(n),一般应采用两个矢量,如 n=[-3,-2,-1,0,l ,2,3,4,5]; x=[1,-l ,3,2,0,4,5,2,1]; 这表示了一个含9个采样点的矢量:X(n)={x(-3),x(-2),x(-1),x(0),x(1),x(2),x(3),x(4),x(5)}。 1.单位取样序列 ?? ?≠==δ0 001)(n n n 这一函数实现的方法有二: 方法一:可利用MATLAB 的zeros 函数。 x=zeros(1,N); %建立一个一行N 列的全零数组 x(1)=1; %对X (1)赋1 方法二:可借助于关系操作符实现 n=1:N; x=[n==1]; %n 等于1时逻辑关系式结果为真,x=1;n 不等于1时为假,x=0 如要产生 ?????≤<<=≤≤=-δ2 0210 100)(10)(n n n n n n n n n n n n 则可采用MATLAB 实现: n=n1:n2; x=[(n-n0)==0];%n=n0时逻辑关系式结果为真,x=1;n ≠n0时为

matlab信号与系统代码整理

连续时间系统 (1) 离散时间系统 (2) 拉普拉斯变换 (4) Z变换 (5) 傅里叶 (7) 连续时间系统 %%%%%%%%%%向量法%%%%%%%%%%%%%%%% t1=-2:0.01:5; f1=4*sin(2*pi*t1-pi/4); figure(1) subplot(2,2,1),plot(t1,f1),grid on %%%%%%%%%符号运算法%%%%%%%%%%%% syms t f1=sym('4*sin(2*pi*t-pi/4)'); figure(2) subplot(2,2,1),ezplot(f1,[-2 5])跟plot相比,ezplot不用指定t,自动生成。axis([-5,5,-0.1,1])控制坐标轴的范围xx,yy; 求一个函数的各种响应 Y’’(t)+4y’(t)+2y(t)=f”(t)+3f(t) %P187 第一题 %(2) clear all; a1=[1 4 2]; b1=[1 0 3]; [A1,B1,C1,D1]=tf2ss(b1,a1); t1=0:0.01:10; x1=exp(-t1).*Heaviside(t1); rc1=[2 1];(起始条件) figure(1) subplot(3,1,1),initial(A1,B1,C1,D1,rc1,t1);title('零输入响应') subplot(3,1,2),lsim(A1,B1,C1,D1,x1,t1);title('零状态响应') subplot(3,1,3),lsim(A1,B1,C1,D1,x1,t1,rc1);title('全响应') Y=lsim(A1,B1,C1,D1,x1,t1,rc1);title('全响应')则是输出数值解 subplot(2,1,1),impulse(b1,a1,t1:t:t2可加),grid on,title('冲激响应') subplot(2,1,2),step(b1,a1,t1:t:t2可加),grid on,title('阶跃响应') 卷积 %第九题 P189 clear all; %(1) t1=-1:0.01:3;

(完整word版)信号与系统matlab实验

习题三 绘制典型信号及其频谱图 1.更改参数,调试程序,绘制单边指数信号的波形图和频谱图。观察参数a对信号波形 及其频谱的影响。 程序代码: close all; E=1;a=1; t=0:0.01:4; w=-30:0.01:30; f=E*exp(-a*t); F=1./(a+j*w); plot(t,f);xlabel('t');ylabel('f(t)'); figure; plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|';

E=1,a=1,波形图频谱图更改参数E=2,a=1;

更改参数a,对信号波形及其频谱的影响。(保持E=2)上图为a=1图像 a=2时

a=4时 随着a的增大,f(t)曲线变得越来越陡,更快的逼近0,而对于频谱图,随着a增大,图像渐渐向两边张开,峰值减小,陡度减小,图像整体变得更加平缓。 2.矩形脉冲信号 程序代码: close all; E=1;tao=1; t=-4:0.1:4; w=-30:0.1:30;

f=E*(t>-tao/2&tao/2)+0*(t<=-tao/2&t>=tao/2); F=(2*E./w).*sin(w*tao/2); plot(t,f);xlabel('t');ylabel('f(t)'); figure; plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|') ; figure; plot(w,20*log10(abs(F))); xlabel('\omega');ylabel('|F(\omega)| in dB'); figure; plot(w,angle(F));xlabel('\omega');ylabel('\phi(\omega )');

matlab信号与系统实验报告

实验一 基本信号的产生与运算 一、 实验目的 学习使用MATLAB 产生基本信号、绘制信号波形、实现信号的基本运算。 二、 实验原理 MATLAB 提供了许多函数用于产生常用的基本信号:如阶跃信号、脉冲信号、指数信号、正弦信号和周期方波等等。这些信号是信号处理的基础。 1、 利用MATLAB 产生下列连续信号并作图。 (1)51),1(2)(<<---=t t u t x (2)300),3 2 sin()(3.0<<=-t t e t x t (3)1.01.0,3000cos 100cos )(<<-+=t t t t x (4)2000),8.0cos()1.0cos()(<<=t t t t x ππ 答:(1)、 >> t=-1:0.02:5; >> x=(t>1); >> plot(t,-2*x); >> axis([-1,5,-3,1]); >> title('杨婕婕 朱艺星'); >> xlabel('x(t)=-2u(t-1)');

(2)、 >> t=0:0.02:30; >> x=exp(-0.3*t).*sin(2/3*t); >> plot(t,x); >> title('杨婕婕朱艺星'); >> xlabel('x(t)=exp(-0.3*t).*sin(2/3*t)');

因为原函数在t=15后x(t)取值接近于零,所以将横坐标改成0到15,看得更清晰 axis([0,15,-0.2,0.6]);

(3)>> t=-0.1:0.01:0.1;x=cos(100*t)+cos(3000*t);plot(t,x); >> title('杨婕婕朱艺星'); >>xlabel('x=cos(100*t)+cos(3000*t)'); 因为t的间隔取太大,以至于函数不够准确,缩小t的间隔:t=-0.1:0.002:0.2;x=cos(100*t)+cos(3000*t); plot(t,x);title('杨婕婕')

MATLAB实验报告

实验一 名称:连续时间信号分析 姓名:王嘉琦 学号:201300800636 班级:通信二班 一、实验目的 (一)掌握使用Matlab 表示连续时间信号 1、学会运用Matlab 表示常用连续时间信号的方法 2、观察并熟悉常用信号的波形和特性 (二)掌握使用Matlab 进行连续时间信号的相关运算 1、学会运用Matlab 进行连续时间信号的时移、反褶和尺度变换 2、学会运用Matlab 进行连续时间信号微分、积分运算 3、学会运用Matlab 进行连续时间信号相加、相乘运算 4、学会运用Matlab 进行连续时间信号卷积运算 二、实验条件 Matlab 三、实验内容 1、利用Matlab 命令画出下列连续信号的波形图。 (1))4/3t (2cos π+ 代码: k=2;w=3;phi=pi/4; t=0:0.01:3; ft=k*cos(w*t+phi); plot(t,ft),grid on; axis([0,3,-2.2,2.2]) title('余弦信号')

(2) )t (u )e 2(t -- 代码: k=-1;a=-1; t=0:0.01:3; ft=2-k*exp(a*t); plot(t,ft),grid on axis([0,3,2,3]) title('指数信号')

(3))]2()(u )][t (cos 1[--+t u t π 代码: k=1;w=pi;phi=0; t=0:0.01:2; ft=1+k*cos(w*t+phi); plot(t,ft),grid on; axis([0,3,0,2]) title('余弦信号')

信号与系统MATLAB实验

《信号与系统及MATLAB实现》实验指导书

前言 长期以来,《信号与系统》课程一直采用单一理论教学方式,同学们依靠做习题来巩固和理解教学内容,虽然手工演算训练了计算能力和思维方法,但是由于本课程数学公式推导较多,概念抽象,常需画各种波形,作题时难免花费很多时间,现在,我们给同学们介绍一种国际上公认的优秀科技应用软件MATLAB,借助它我们可以在电脑上轻松地完成许多习题的演算和波形的绘制。 MATLAB的功能非常强大,我们此处仅用到它的一部分,在后续课程中我们还会用到它,在未来地科学研究和工程设计中有可能继续用它,所以有兴趣的同学,可以对MATLAB 再多了解一些。 MATLAB究竟有那些特点呢? 1.高效的数值计算和符号计算功能,使我们从繁杂的数学运算分析中解脱出来; 2.完备的图形处理功能,实现计算结果和编程的可视化; 3.友好的用户界面及接近数学表达式的自然化语言,易于学习和掌握; 4.功能丰富的应用工具箱,为我们提供了大量方便实用的处理工具; MATLAB的这些特点,深受大家欢迎,由于个人电脑地普及,目前许多学校已将它做为本科生必须掌握的一种软件。正是基于这些背景,我们编写了这本《信号与系统及MATLAB实现》指导书,内容包括信号的MATLAB表示、基本运算、系统的时域分析、频域分析、S域分析、状态变量分析等。通过这些练习,同学们在学习《信号与系统》的同时,掌握MATLAB的基本应用,学会应用MATLAB的数值计算和符号计算功能,摆脱烦琐的数学运算,从而更注重于信号与系统的基本分析方法和应用的理解与思考,将课程的重点、

难点及部分习题用MATLAB进行形象、直观的可视化计算机模拟与仿真实现,加深对信号与系统的基本原理、方法及应用的理解,为学习后续课程打好基础。另外同学们在进行实验时,最好事先预习一些MATLAB的有关知识,以便更好地完成实验,同时实验中也可利用MATLAB的help命令了解具体语句以及指令的使用方法。 实验一基本信号在MATLAB中的表示和运算 一、实验目的 1.学会用MATLAB表示常用连续信号的方法; 2.学会用MATLAB进行信号基本运算的方法; 二、实验原理 1.连续信号的MATLAB表示 MATLAB提供了大量的生成基本信号的函数,例如指数信号、正余弦信号。 表示连续时间信号有两种方法,一是数值法,二是符号法。数值法是定义某一时间范围和取样时间间隔,然后调用该函数计算这些点的函数值,得到两组数值矢量,可用绘图语句画出其波形;符号法是利用MATLAB的符号运算功能,需定义符号变量和符号函数,运算结果是符号表达的解析式,也可用绘图语句画出其波形图。 例1-1指数信号指数信号在MATLAB中用exp函数表示。 如at )(,调用格式为ft=A*exp(a*t) 程序是 f t Ae

信号与系统MATLAB实验

2016-2017学年第一学期 信号与系统实验报告 班级: 姓名: 学号: 成绩: 指导教师:

实验一常见信号的MATLAB 表示及运算 一.实验目的 1.熟悉常见信号的意义、特性及波形 2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法 二.实验原理 信号一般是随时间而变化的某些物理量。按照自变量的取值是否连续,信号分为连续时间信号和离散时间信号,一般用()f t 和()f k 来表示。若对信号进行时域分析,就需要绘制其波形,如果信号比较复杂,则手工绘制波形就变得很困难,且难以精确。MATLAB 强大的图形处理功能及符号运算功能,为实现信号的可视化及其时域分析提供了强有力的工具。 根据MATLAB 的数值计算功能和符号运算功能,在MATLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。在采用适当的MATLAB 语句表示出信号后,就可以利用MATLAB 中的绘图命令绘制出直观的信号波形了。下面分别介绍连续时间信号和离散时间信号的MATLAB 表示及其波形绘制方法。 1.连续时间信号 所谓连续时间信号,是指其自变量的取值是连续的,并且除了若干不连续的点外,对于一切自变量的取值,信号都有确定的值与之对应。从严格意义上讲,MATLAB 并不能处理连续信号。在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在MATLAB 中连续信号可用向量或符号运算功能来表示。 ⑴ 向量表示法 对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t 的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。 说明:plot 是常用的绘制连续信号波形的函数。 严格说来,MATLAB 不能表示连续信号,所以,在用plot()命令绘制波形时,要对自变量t 进行取值,MATLAB 会分别计算对应点上的函数值,然后将各个数据点通过折线连接起来绘制图形,从而形成连续的曲线。因此,绘制的只是近似波形,而且,其精度取决于t 的取样间隔。t 的取样间隔越小,即点与点之间的距离越小,则近似程度越好,曲线越光滑。例如:图1-1是在取样间隔为p=0.5时绘制的波形,而图1-2是在取样间隔p=0.1时绘制的波形,两相对照,可以看出图1-2要比图1-1光滑得多。

信号与系统MATLAB实验报告

实验报告 实验课程:信号与系统—Matlab综合实验学生姓名: 学号: 专业班级: 2012年5月20日

基本编程与simulink仿真实验 1—1编写函数(function)∑=m n k n 1并调用地址求和∑∑∑===++100 11-8015012 n n n n n n 。实验程序: Function sum=qiuhe(m,k)Sum=0For i=1:m Sum=sum+i^k End 实验结果; qiuhe(50,2)+qiuhe(80,1)+qiuhe(100,-1) ans=4.6170e+004。 1-2试利用两种方式求解微分方程响应 (1)用simulink对下列微分方程进行系统仿真并得到输出波形。(2)编程求解(转移函数tf)利用plot函数画图,比较simulink图和plot图。)()(4)(6)(5)(d 22t e t e d d t r t r d d t r d t t t +=++在e(t)分别取u(t)、S(t)和sin(20пt)时的情况! 试验过程 (1)

(2) a=[1,5,6]; b=[4,1]; sys=tf(b,a); t=[0:0.1:10]; step(sys)

连续时间系统的时域分析3-1、已知某系统的微分方程:)()()()()(d 2t e t e d t r t r d t r t t t +=++分别用两种方法计算其冲激响应和阶跃响应,对比理论结果进行验证。 实验程序: a=[1,1,1];b=[1,1];sys=tf(b,a);t=[0:0.01:10];figure;subplot(2,2,1);step(sys);subplot(2,2,2);x_step=zeros(size(t));x_step(t>0)=1;x_step(t==0)=1/2;lsim(sys,x_step,t);subplot(2,2,3);impulse(sys,t);title('Impulse Response');xlabel('Time(sec)');ylabel('Amplitude');subplot(2,2,4);x_delta=zeros(size(t));x_delta(t==0)=100;[y1,t]=lsim(sys,x_delta,t);y2=y1;plot(t,y2);title('Impulse Response');

实验项目五:表示信号与系统的MATLAB函数、工具箱

电子科技大学 实 验 报 告 学生姓名: 学号: 指导老师: 日期:2016年 12月25 日

一、实验室名称: 科研楼a306 二、实验项目名称: 实验项目五:表示信号与系统的MATLAB 函数、工具箱 三、实验原理: 利用MATLAB 强大的数值处理工具来实现信号的分析和处理,首先就是要学会应用MATLAB 函数来构成信号。常见的基本信号可以简要归纳如下: 1、单位抽样序列 ???=01 )(n δ 00≠=n n 在MATLAB 中可以利用zeros()函数实现。 ; 1)1();,1(==x N zeros x 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即: ???=-01)(k n δ 0≠=n k n 2、单位阶跃序列 ???0 1)(n u 00<≥n n 在MATLAB 中可以利用ones()函数实现。 );,1(N ones x = 3、正弦序列 )/2sin()(?π+=Fs fn A n x 采用MATLAB 实现 )/***2sin(*1:0fai Fs n f pi A x N n +=-= 4、复正弦序列

n j e n x ?=)( 采用MATLAB 实现 )**exp(1 :0n w j x N n =-= 5、指数序列 n a n x =)( 采用MATLAB 实现 n a x N n .^1 :0=-= 四、实验目的: 目的:1、加深对常用离散信号的理解; 2、熟悉表示信号的基本MATLAB 函数。 任务:基本MATLAB 函数产生离散信号;基本信号之间的简单运算;判断信 号周期。 五、实验内容: MATLAB 仿真 实验步骤: 1、编制程序产生上述5种信号(长度可输入确定),并绘出其图形。 2、在310≤≤n 内画出下面每一个信号: 1223[]sin()cos() 44[]cos ()4 []sin()cos()48n n x n n x n n n x n πππππ=== 六、实验器材: 计算机、matlab 软件、C++软件等。 七、实验数据及结果分析: 实验1: 单位抽样序列

信号与系统MATLAB实验总汇

实验一、MATLAB 编程基础及典型实例 一、实验目的 (1)熟悉MATLAB 软件平台的使用; (2)熟悉MATLAB 编程方法及常用语句; (3)掌握MATLAB 的可视化绘图技术; (4)结合《信号与系统》的特点,编程实现常用信号及其运算。 示例一:在两个信号进行加、减、相乘运算时,参于运算的两个向量要有相同的维数,并且它们的时间变量范围要相同,即要对齐。编制一个函数型m 文件,实现这个功能。function [f1_new,f2_new,n]=duiqi(f1,n1,f2,n2) a=min(min(n1),min(n2)); b=max(max(n1),max(n2)); n=a:b; f1_new=zeros(1,length(n)); f2_new=zeros(1,length(n)); tem1=find((n>=min(n1))&(n<=max(n1))==1); f1_new(tem1)=f1; tem2=find((n>=min(n2))&(n<=max(n2))==1); f2_new(tem2)=f2; 四、实验内容与步骤 (2)绘制信号x(t)=)3 2sin(2t e t ?的曲线,t 的范围在0~30s ,取样时间间隔为0.1s 。t=0:0.1:30; y=exp(-sqrt(2)*t).*sin(2*t/3); plot(t,y);

(3)在n=[-10:10]范围产生离散序列:?? ?≤≤?=Other n n n x ,033,2)(,并绘图。n=-10:1:10; z1=((n+3)>=0); z2=((n-3)>=0); x=2*n.*(z1-z2); stem(n,x);(4)编程实现如下图所示的波形。 t=-2:0.001:3; f1=((t>=-1)&(t<=1)); f2=((t>=-1)&(t<=2)); f=f1+f2; plot(t,f); axis([-2,3,0,3]);

基带信号眼图实验——matlab仿真

基带信号眼图实验——matlab 仿真

————————————————————————————————作者:————————————————————————————————日期: ?

数字基带信号的眼图实验——matla b仿真 一、实验目的 1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法; 2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度; 3、熟悉MATL AB 语言编程。 二、实验预习要求 1、复习《数字通信原理》第七章7.1节——奈奎斯特第一准则内容; 2、复习《数字通信原理》第七章7.2节——数字基带信号码型内容; 3、认真阅读本实验内容,熟悉实验步骤。 三、实验原理和电路说明 1、基带传输特性 基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该 () n s n a t nT δ-∑() H ω() n s n a h t nT -∑基带传输抽样判决 图3-1?基带系统的分析模型 抑制码间干扰。设输入的基带信号为()n s n a t nT δ-∑,s T 为基带信号的码元周期,则经过基 带传输系统后的输出码元为 ()n s n a h t nT -∑。其中 1 ()()2j t h t H e d ωωωπ +∞ -∞ = ? ?(3-1) 理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足: 10()0,s k h kT k =?=? ? , 为其他整数 ?? ?(3-2) 频域应满足:

信号与系统 MATLAB实验报告

《信号与系统》MATLAB 实验报告 院系: 专业: 年级: 班号: 姓名: 学号: 实验时间: 实验地点: 实验一 连续时间信号的表示及可视化 实验题目: )()(t t f δ=;)()(t t f ε=;at e t f =)((分别取00<>a a 及); )()(t R t f =;)()(t Sa t f ω=;)2()(ft Sin t f π=(分别画出不同周期个数的波形)。 解题分析: 以上各类连续函数,先运用t = t1: p:t2的命令定义时间范围向量,然后调用对应的函数,建立f 与t 的关系,最后调用plot ()函数绘制图像,并用axis ()函数限制其坐标范围。 实验程序: (1))()(t t f δ= t=-1:0.01:3 %设定时间变量t 的范围及步长 f=dirac(t) %调用冲激函数dirac () plot(t,f) %用plot 函数绘制连续函数 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的范围 (2))()(t t f ε= t=-1:0.01:3 %设定时间变量t 的范围及步长 f=heaviside(t) %调用阶跃函数heaviside () plot(t,f) %用plot 函数绘制连续函数

title('f(t)=heaviside(t)') %用title 函数设置图形的名称 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的范围 (3)at e t f =)( a=1时: t=-5:0.01:5 %设定时间变量t 的范围及步长 f=exp(t) %调用指数函数exp () plot(t,f) %用plot 函数绘制连续函数 title('f=exp(t)') %用title 函数设置图形的名称 axis([-5,5,-1,100]) %用axis 函数规定横纵坐标的范围 a=2时: t=-5:0.01:5 f=exp(2*t) %调用指数函数exp () plot(t,f) title('f=exp(2*t)') axis([-5,5,-1,100]) a=-2时: t=-5:0.01:5 f=exp(-2*t) plot(t,f) title('f=exp(-2*t)') axis([-5,5,-1,100]) (4))()(t R t f = t=-5:0.01:5 f=rectpuls(t,2) %用rectpuls(t,a)表示门函数,默认以零点为中心,宽度为a plot(t,f) title('f=R(t)') axis([-5 5 -0.5 1.5]) (5))()(t Sa t f ω= ω=1时:

信号与系统实验(MATLAB版) (1)

《信号与系统MATLAB实现》实验指导书 电气信息工程学院 2014年2月

长期以来,《信号与系统》课程一直采用单一理论教学方式,同学们依靠做习题来巩固和理解教学内容,虽然手工演算训练了计算能力和思维方法,但是由于本课程数学公式推导较多,概念抽象,常需画各种波形,作题时难免花费很多时间,现在,我们给同学们介绍一种国际上公认的优秀科技应用软件MA TLAB,借助它我们可以在电脑上轻松地完成许多习题的演算和波形的绘制。 MATLAB的功能非常强大,我们此处仅用到它的一部分,在后续课程中我们还会用到它,在未来地科学研究和工程设计中有可能继续用它,所以有兴趣的同学,可以对MATLAB 再多了解一些。 MATLAB究竟有那些特点呢? 1.高效的数值计算和符号计算功能,使我们从繁杂的数学运算分析中解脱出来; 2.完备的图形处理功能,实现计算结果和编程的可视化; 3.友好的用户界面及接近数学表达式的自然化语言,易于学习和掌握; 4.功能丰富的应用工具箱,为我们提供了大量方便实用的处理工具; MATLAB的这些特点,深受大家欢迎,由于个人电脑地普及,目前许多学校已将它做为本科生必须掌握的一种软件。正是基于这些背景,我们编写了这本《信号与系统及MATLAB实现》指导书,内容包括信号的MA TLAB表示、基本运算、系统的时域分析、频域分析、S域分析、状态变量分析等。通过这些练习,同学们在学习《信号与系统》的同时,掌握MATLAB的基本应用,学会应用MATLAB的数值计算和符号计算功能,摆脱烦琐的数学运算,从而更注重于信号与系统的基本分析方法和应用的理解与思考,将课程的重点、难点及部分习题用MATLAB进行形象、直观的可视化计算机模拟与仿真实现,加深对信号与系统的基本原理、方法及应用的理解,为学习后续课程打好基础。另外同学们在进行实验时,最好事先预习一些MATLAB的有关知识,以便更好地完成实验,同时实验中也可利用MATLAB的help命令了解具体语句以及指令的使用方法。

根据Matlab的信号与系统实验指导材料

基于Matlab 的信号与系统实验指导 实验一 连续时间信号在Matlab 中的表示 一、实验目的 1、学会运用Matlab 表示常用连续时间信号的方法 2、观察并熟悉这些信号的波形和特性 二、实验原理及实例分析 1、信号的定义与分类 2、如何表示连续信号? 连续信号的表示方法有两种;符号推理法和数值法。 从严格意义上讲,Matlab 数值计算的方法不能处理连续时间信号。然而,可利用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能被Matlab 处理,并且能较好地近似表示连续信号。 3、Matlab 提供了大量生成基本信号的函数。如: (1)指数信号:K*exp(a*t) (2)正弦信号:K*sin(w*t+phi)和K*cos(w*t+phi) (3)复指数信号:K*exp((a+i*b)*t) (4)抽样信号:sin(t*pi) 注意:在Matlab 中用与Sa(t)类似的sinc(t)函数表示,定义为:)t /()t (sin )t (sinc ππ= (5)矩形脉冲信号:rectpuls(t,width) (6)周期矩形脉冲信号:square(t,DUTY),其中DUTY 参数表示信号的占空比

DUTY%,即在一个周期脉冲宽度(正值部分)与脉冲周期的比值。占空比默认为0.5。 (7)三角波脉冲信号:tripuls(t, width, skew),其中skew 取值范围在-1~+1之间。 (8)周期三角波信号:sawtooth(t, width) (9)单位阶跃信号:y=(t>=0) 三、实验内容 1、验证实验内容 直流及上述9个信号 2、程序设计实验内容 (1)利用Matlab 命令画出下列连续信号的波形图。 (a ))4/3t (2cos π+ (b ) )t (u )e 2(t -- (c ))]2()(u )][t (cos 1[--+t u t π (2)利用Matlab 命令画出复信号) 4/t (j 2e )t (f π+=的实部、虚部、模和辐角。 四、实验报告要求 1、格式:实验名称、实验目的、实验原理、实验环境、实验内容、实验思考等 2、实验内容:程序设计实验部分源代码及运行结果图示。

实验一----信号的MATLAB表示及信号的运算

实验一----信号的MATLAB表示及信号的运算

信号的MATLAB表示及信号的运算 一、实验目的 1.掌握的MATLAB使用; 2.掌握MATLAB生成信号的波形; 3.掌握MATLAB分析常用连续信号; 4.掌握信号的运算的MATLAB实现。 二、实验工具 1.台式电脑一台; 2.MATLAB7.1软件环境; 三、实验内容 编写程序实现下列常用函数,并显示波形。 1.正弦函数 f(t)=Ksin(wt+a); 2.矩形脉冲函数f(t)=u(t)-u(t-t0); 3.抽样函数 sa(t)=sint/t; 4.单边指数函数 f(t)=Ke-t; 5.已知信号f1(t)=u(t+2)-u(t-2), f2(t)=cos(2pt),用MATLAB绘制f1t)+f2(t)和f1(t)*f2(t)的波形。

四、实验要求 预习信号的时域运算和时域变换(相加、相乘、移位、反折、尺度变化、例项)相关知识。 五、实验原理 在某一时间区间内,除若干个不连续的点外,如果任意时刻都可以给出确定的函数值,则称信号为连续时间信号,简称为连续信号。MATLAB提供了大量生成基本信号的函数,所以可利用连续信号在等时间间隔点的取值来近似表示连续信号,这些离散的数值能被MATLAB处理,并显示出来。 六、实验步骤 1.打开MATLAB7.1软件,并在老师的指导和带领下逐步熟悉此软件; 2.编写正弦函数程序: clear all; t=-8:.01:8; k=2;w=1;a=pi/4; f=k*sin(w*t+a); plot(t,f);

grid; xlabel('t'); ylabel('f(t)'); axis([-8 8 -3 3]); 3.编写矩形脉冲信号函数程序: clear all; t=-4:0.001:4; T=1; f1=rectpuls(t,4*T); f2=cos(2*pi*t); plot(t,f2+f1); axis([-4 4 -1.5 2.5]); grid on; figure plot(t,f2.*f1); axis([-4 4 -1.5 1.5]); grid on;

相关主题
文本预览
相关文档 最新文档