当前位置:文档之家› 部分药物血药浓度的采血时间和量

部分药物血药浓度的采血时间和量

部分药物血药浓度的采血时间和量
部分药物血药浓度的采血时间和量

第八节血药浓度标本的采集

【护理目标】

标本采集符合检查要求,操作规范,正确反映患者血药浓度值。

【操作重点步骤】

1.选择合适的标本采集时间。

评估监测目的、用药的详细情况(首,再次用药时间、剂量等),各种药物的峰浓度以及谷浓度的不同采血时间有所不同。

监测药物长期效应(谷浓度)应在药物稳定期(稳态)采血,通常在药物5个半衰期左右。

监测药物峰值效应(峰浓度)通常在药物输液结束后1~2 h后采血(洋地黄类药物需要6~8 h后)。

2.根据血药浓度监测申请单的要求,填写采血时间。

3.同一患者多次取血监测血药浓度,注意每次采血时问应尽量一致。

4.按静脉血采集方法采血。

5.医疗废物按“感染性医疗垃圾”处理。

6.标本采集后马上送检测部门,不能马上送检,应与相关部门联系。【结果标准】

1.患者/家属对所做的解释和护理表示理解和满意。

2.采取标本方法正确,标本符合检验要求。

3.标本送检和异常结果回报及时,异常情况得到及时处理。

【操作流程及要点说明】

与“静脉采血法流程”同。

【相关连接】

1.峰浓度:药物进人体内迅速在体内分布后的血药浓度。峰浓度主要反映药物治疗疗效。

2.谷浓度:药物在组织和血液间的分布达到平衡(稳态)后,在紧接服用下一剂量之前取样测得的血药浓度。代表两次用药之间的最低血药浓度。谷浓度能反映组织中药物的积聚与药物毒性的关系。

3.稳态:即每天摄人药量与从体内消除的药量相等。

4.部分药物血药浓度的采血时间和量

霉酚酸酯血药浓度监测的意义及应用

霉酚酸酯血药浓度监测的意义及应用 发表时间:2018-12-25T10:04:20.200Z 来源:《健康世界》2018年24期作者:谭凤菊1 尉娜2 [导读] 霉酚酸酯(Mycophenolate mofetil,MMF)是霉酚酸(mycophenolic acid,MPA)的酯类衍生物,现通称吗替麦考酚酯(商品名:骁悉 CellCept),具有独特的免疫抑制作用,常用于器官移植术后。 1.山东省菏泽市鄄城县人民医院神经外科 274600; 2.青岛大学附属医院药剂科 266000 摘要:霉酚酸酯(Mycophenolate mofetil,MMF)是霉酚酸(mycophenolic acid,MPA)的酯类衍生物,现通称吗替麦考酚酯(商品名:骁悉 CellCept),具有独特的免疫抑制作用,常用于器官移植术后。MMF在人体内吸收后经血浆酯酶的作用下快速、完全水解成活性代谢物MPA,MPA是选择性、高效性、可逆性、非竞争性的次黄嘌呤单核苷酸脱氢酶(IMPDH)抑制剂,可抑制鸟嘌呤核苷酸的从头合成途径,耗竭淋巴细胞内GMP和GTP,阻断DNA的合成,抑制T、B淋巴细胞增殖,从而发挥其免疫抑制功效[1]。 20世纪90年代Soilinger等首次报道MMF能够预防肾移植术后的排斥反应,大规模双盲随机研究也证实MMF联合环抱素(CsA)和泼尼松预防和治疗肾移植急性排斥反应有良好效果[2],MMF随即被广泛应用于器官移植术后排斥反应的预防和治疗,成为器官移植和免疫性疾病中使用最广泛的免疫抑制剂之一,特别在移植稳定期采用低剂量或者撤除钙调神经磷酸酶抑制剂(环孢素A和他克莫司)或皮质类固醇的方案中,MMF更是起着重要作用[3]。 一、药物代谢动力学 MMF在胃肠道吸收迅速且充分,经过脱脂后成为有活性的MPA。MMF口服后在循环中迅速代谢,MPA浓度迅速上升,1h内即达高峰[4]。MPA主要在肝脏由UDP-葡萄糖苷酸转移酶(UDP-glucuronosyltransferases,UGT)的同工酶UGT1A9介导代谢为无药理活性的7-O-葡萄糖苷酸(MPAG)[4],这个过程也可能在肠道或肾脏进行。MPA还可代谢为另两种产物,MPA-酰基葡萄糖苷酸(AcMPAG)和MPA-苯基葡萄糖苷(葡萄糖苷MPA)[5]。 二、影响MPA血药浓度的因素 研究表明,服用相同剂量的不同患者间霉酚酸血浓度和血浆浓度-时间曲线下面积值可相差10倍[6]。MPA与白蛋白广泛结合,肝肾功能正常时结合率为97% ~99%。体外研究证明当血清白蛋白升高时游离MPA浓度下降,如血清白蛋白由2 g/dl上升至4 g/dl时,游离MPA由3%降至1.5%[7]。在肾功能不全患者中影响MPA结合的另一因素为累积MPAG(其主要清除途径在肾脏)。血浆中MPAG水平增加会降低MPA与白蛋白的结合,浓度在400mg/L时游离MPA浓度是10 mg/L时的2倍[8]。此外,离体研究显示高浓度(>250mg/L)的水杨酸和呋塞米可竞争MPA与血浆蛋白的结合位点,显著提高血MPA浓度[9]。 MPA药代动力学的另一特点为时间依赖性。移植后早期MPA平均AUC0-12较移植后晚期低30% ~50%。这种变化通常发生在肾移植3至6个月后,其它实体器官移植患者亦可见到同样的现象[10]。这种口服清除率暂时增加主要发生在肾功能不全受体,移植后早期口服清除率增加可能是因为蛋白结合率发生变化。一项临床研究证实肾功能改善后游离MPA下降40% ~60%,移植3月后AUC0-12也发生相应变化[11]。此外,有研究显示患者年龄、体重及体表面积并不影响MPA-AUC,血清肌酐及肌酐清除率也与AUC无关,但在不同性别患者,MPA-AUC却有显著差异。在接受同样剂量MMF时,女性患者MPA-AUC较男性患者高出47.15%[12]。 三、MPA血药浓度的监测方法及指标 尽管临床应用常规剂量(国外2~3 g/d,国内1~2 g/d)获得良好的效果,但MMF代谢个体差异性普遍存在,固定给药剂量带来疗效差异和不必要的不良反应[13]。由于MMF口服后迅速分解,血浆浓度无法检测,目前检测的MMF药物浓度均是指血浆MPA浓度。人们希望根据患者的MPA血药浓度调整用药剂量,将器官移植排斥反应和毒副反应的风险降到最低。血MPA浓度有两种测定方法:高效液相色谱法(HPLC)和酶放大免疫分析技术(en-zyme multiplied immunoassay technique,EMIT)。EMIT特异性不及HPLC,因为葡萄糖苷酸代谢产物AcMPAG与MPA有交叉反应,因此,EMIT法测出的MPA浓度偏高,而HPLC可单独测MPA浓度,不受AcMPAG的影响。EMIT法测出的MPA浓度比HPLC法约高出24% ~35%,且移植后早期偏差更大[14]。偏差程度因不同患者、移植后复发时间、取样时间及MPA、MPAG 水平而异。但在儿童,EMIT与HPLC在评估急性排斥风险时具有可比性。因此,HPLC或EMIT都可作为药物浓度监测的工具,目前评估MPA的疗效及不良反应主要以从0至12小时血浆浓度时间曲线下面积(area under the plasma concentration-time curve,AUC0-12)及谷浓度(C0)为主要参数。文献报道MPA水平与临床疗效关系概括如表1。 然而,0-12 h的霉酚酸血浆浓度-时间曲线下面积值虽然与药理效应相关性好,但是在常规检查中难以开展,因此,人们开始探讨测定和评估血MPA浓度的新方法。最近一项药物临床实验研究显示:0-2 h之间的血浆浓度-时间曲线下面积值的预测值能很好的评估0-12 h之间的血浆浓度-时间曲线下面积值,对移植排斥有最高的预测值[15]。一项固定剂量浓度对照试验研究对于每12 h服用霉酚酸酯的患者,测定服药前、服药后0.5 h及服药后2 h三点的血液样本的霉酚酸浓度,并根据公式计算获得的0-12 h的霉酚酸血浆浓度-时间曲线下面积值,该方法考虑到联用免疫抑制剂对血药浓度的影响,可以准确地反应患者对药物的暴露状态,与多点采取样本所测定的血浆浓度-时间曲线下面积值比较具有很好的一致性,相关系数达0.8-0.9,具有临床应用价值[16]。因此,应用有限取样法(3点法),分别采集肾移植受者静脉血1.0-2.0 mL,时间点分别为服霉酚酸酯前(C0)、服药后0.5 h(C0.5)和服药后2 h(C2),测定霉酚酸血浆浓度-时间曲线下面积值测定,相对简便易行,在临床应用更具有可操作性。 四、MPA血药浓度监测的应用 1. MPA血药浓度监测在肾移植中的应用 移植早期以CsA为基础的抗排斥方案中,MPA-AUC0-12h范围是30~60mg?h/L(HPLC法)[24],低于30 mg?h/L急性排斥反应风险增加,而超出60 mg?h/L急性排斥反应风险也不再进一步下降,而不良反应发生率显著增加[17]。由于MPA的时间依赖性,要在最初几周内达到AUC0-12h>60mg?h/L患者不易耐受,因此通常不会超出此浓度。在器官移植时强调应维持足够的MPA血药浓度以保证其足够的免疫抑制活性和抗排斥疗效。在肝移植患者中,只有当MPA-AUC或C0在上述推荐的浓度范围内MPA才有良好的药理学活性[18]。虽然MPA浓度与药物毒性间同样可以建立明确的相关性。出现MPA毒性的肾移植患者平均AUC0-12h从(48±19)mg?h/L至(67±30)mg?h/L,说明在治疗浓度与出现毒性的浓度间存在重叠[19]。近来一项研究观察小剂量MMF(500 mg,2/d)联合FK506的效果,发现出现药物毒性的MPA-AUC阈值是37.6mg?h/L,接近于达到最佳治疗效果AUC的下限[20]。

光合作用曲线图分析大全

有关光合作用的曲线图的分析 1.光照强度对光合作用强度的影响 (1)、纵坐标代表实际光合作用强度还是净光合作用强度? 光合总产量和光合净产量常用的判定方法: ①如果CO2 吸收量出现负值,则纵坐标为光合净产量; ②(光下)CO2 吸收量、O2释放量和葡萄糖积累量都表示光合净产量; ③光合作用CO2 吸收量、光合作用O2释放量和葡萄糖制造量都表示光合总产量。 因此本图纵坐标代表的是净光合作用强度。 (2)、几个点、几个线段的生物学含义: A点:A点时光照强度为0,光合作用强度为0,植物只进行呼吸作用,不进行光合作用。净光合强度为负值由此点获得的信息是:呼吸速率为OA的绝对值。 B点:实际光合作用强度等于呼吸作用强度(光合作用与呼吸作用处于动态衡),净光合作用强度净为0。表现为既不释 放CO2也不吸收CO2 C N点:为光合作用强度达到最大值(CM)时所对应的最低的光照强度。(先描述纵轴后横轴) AC段:在一定的光照强度范围内,随着光照强度的增加,光合作用强度逐渐增加 AB段:此时光照较弱,实际光合作用强度小于呼吸作用强度。净光合强度仍为负值。此时呼吸作用产生的CO2除了用于光合作用外还有剩余。表现为释放CO2。 BC段:实际光合作用强度大于呼吸作用强度,呼吸产生的CO2不够光合作用所用,表现为吸收CO2。 CD段:当光照强度超过一定值时,净光合作用强度已达到最大值,光合作用强度不随光照强度的增加而增加。 (3)、AC段、CD段限制光合作用强度的主要因素 在纵坐标没有达到最大值之前,主要受横坐标的限制,当达到最大值之后,限制因素主要是其它因素了 AC段:限制AC段光合作用强度的因素主要是光照强度。 CD段:限制CD段光合作用强度的因素主要是外因有:CO2浓度、温度等。内因有:酶、叶绿体色素、C5 (4)、什么光照强度,植物能正常生长? 净光合作用强度> 0,植物才能正常生长。 BC段(不包括b点)和CD段光合作用强度大于呼吸作用强度,所以白天光照强度大于B点,植物能正常生长。 在一昼夜中,白天的光照强度需要满足白天的光合净产量 > 晚上的呼吸消耗量,植物才能正常生长。

血药浓度监测工作规范试行

治疗药物监测工作规范(试行) 治疗药物监测(TDM)是临床药学研究的重要内容之一,是实现药动学理论与临床实践相结合的一门新兴学科。为了准确、灵敏的检测血药浓度,实现给药方案个体化,提高药物疗效和减少不良反应的发生,特制定血药浓度测定、结果解释及个体化用药方案设计等的工作规范。 1.方法学的开发:根据我院临床的需要及检测仪器设备(HPLC、TDX等)的情况,对部分有必要进行TDM的药物建立体内药物浓度测定方法,方便临床常规检测。同时结合国内外最新的药物分析进展,不断开发高灵敏度、高分辨率、简便的体内药物测定方法学,并形成论文发表。 2.通过院刊或其他途径向临床宣传TDM开展的必要性及能开展的项目,以使临床对该工作有一定的了解。同时对开展监测的药物的峰、谷浓度采血时间、血样采集量、采血所用的试管、药物的半衰期等资料汇总,并向临床介绍。 3.设计TDM申请表,其内容应包括: 3.1患者的基本情况:性别、年龄、体重、原发疾病、肝肾功能及临床症状等。 3.2患者的用药情况:用药剂量、间隔时间、用药途径、方法、疗程及合并用药等。 3.3标本采集情况:标本种类、采集时间。 4.临床TDM的申请及标本采集 4.1对本实验室能监测的药物,临床根据患者的症状、疗效或毒副反应的情况,决定是否进行血药浓度监测,并填写TDM申请表。 4.2采集时间

4.3标本采集后应连同TDM申请表立即送实验室。 5.测定: 5.1接到标本后,要按测定方法立刻对标本进行处理并测定,确实因工作安排关系,不能立刻测定者,要将标本处理后,放冰箱(0℃以下)冷冻保存,并尽早安排测定(要求当天检测完)。 5.2为了保证测定的准确度及灵敏度,使用TDX检测时,每一次测定均要求与质控一起检测,并根据质控的测定结果校正测定的浓度;使用HPLC法进行测定时,根据柱效及时重做标准曲线及使用对照品重做回收率等。 5.3做好仪器设备的日常维护,保证仪器设备的良好性能。同时要及时补充各种试剂及对照品、试剂盒等。 5.4测定后,应及时填写血药浓度检测报告单(当天完成)。 6.结果解释及个体化用药方案设计 6.1要求:对实验室开展的TDM项目,收集群体参数值(K a、K、V d 、Cl、T 1/2 及有效血药浓度范围等),列成表,方便查找,并及时参考国内外相关资料及时更新。熟悉掌握测定药物的使用、相互作用、患者临床症状及毒副反应的表现等,并及时收集最新的资料。 6.2接到TDM申请后,实验室立刻通知负责结果解释及个体化用药方案设计人员或相关专科的临床药师,由其到相应临床查看患者病历,了解患者用药情况及临床疗效或毒副反应。 6.3根据患者的年龄、体重、肝肾功能情况、实际临床疗效、是否出现毒副反应等,结合血药浓度测定的结果进行解释。

临床药代动力学-甲氨蝶呤-浓度监测和监测意义

背景知识提炼 1.临床常用大剂量甲氨蝶呤治疗肿瘤的原因 (1)小剂量甲氨蝶呤在肿瘤细胞内的浓度很低,抑制肿瘤细胞繁殖的作用较差,通常不被用来进行肿瘤的治疗。[来源于第一题的资料“用量小于30mg/m2...”部分,具体文献来源未知] (2)大剂量甲氨蝶呤在肿瘤细胞当中浓度较高,抑制肿瘤细胞繁殖的作用较强。[1] *小剂量甲氨蝶呤可用于类风湿性关节炎的治疗,但治疗剂量较小。[2] *对于甲氨蝶呤治疗其他疾病的用量,由于剂量较小,我们认为不具有监测意义,但目前没有特别明确的文献支持,所以存疑,或者课堂上向老师再询问一下。 2.临床上应用甲氨蝶呤的剂量指标不统一 (1)不同患者对于甲氨蝶呤的耐受程度、代谢水平差异较大。[2],[4] (2)一般临床上采用先进行个体化试验判断安全用药指标,再进行逐步加大药量治疗的方式。[3] 第三题核心回答 1.大剂量甲氨蝶呤的血药浓度监测正常范围 【以t1/2β时相的几个时间点浓度判断】 HD-MTX正常安全浓度标准按时间计算: 0小时,MTX浓度不低于700μmol/l; 24小时,MTX浓度不高于10μmol/l; 48小时,MTX浓度不高于1μmol/l; 72小时,MTX浓度不高于0.1μmol/l。[2] 2.甲氨蝶呤血药浓度监测的意义: (1)治疗指数低 (2)存在不良反应 (3)存在排泄延迟 (4)治疗作用与毒性反应难以区分(使用时剂量较大) (5)用于指导临床使用四氢叶酸钙或甲酰四氢叶酸等药物解救的次数和剂量调整

监测意义部分概括性较强,文献比较分散,故未全部列出。 相关具体描述: 大剂量甲氨蝶呤(HDMTX)辅以亚叶酸钙解救疗法是临床上治疗急性淋巴细胞白血病、骨肉瘤、恶性淋巴瘤等多种癌症的治疗方案。由于剂量常达普通用量的100倍以上,大剂量甲氨蝶呤给药时的毒性较大,若发生排泄延迟,则有可能出现严重的不良反应,诸如骨髓抑制、感染、胃肠道反应、黏膜损害或者肝肾功能损害等。且不同人体内代谢个体差异显著。[4] 在HDMTX方案中,即使采用固定的剂量和输注时间,MTX的体内药动学过程在不同患者或同一患者不同治疗周期仍有很大差异性,尤其是排泄延迟现象。因此,通过治疗药物监测,观察患者是否出现MTX排泄延迟以及把握亚叶酸钙的解救时机和剂量具有重要的临床价值。[5] [4]赵新才,卢进,吴红媛,徐嵘,郭澄,张剑萍.大剂量甲氨蝶呤血药浓度影响因素和检测方法的研究进展[J].药学服务与研究,2019,19(05):369-372. [5]钱卿,胡楠,陈荣,蒋艳,凌静,邹素兰.大剂量甲氨蝶呤治疗血液系统恶性肿瘤后排泄延迟的影响因素及其与不良反应的相关性研究[J].中国医院用药评价与分析,2020,20(01):56-59. *附表:不同消除浓度的甲氨蝶呤对于临床解救用药甲酰四氢叶酸的剂量指导 引用 [1]大剂量甲氨蝶呤亚叶酸钙解救疗法治疗恶性肿瘤专家共识[J].中国肿瘤临床,2019,46(15):761-767. 原文内容:HD-MTX血药浓度明显增加,既可以透过血脑屏障,又可以达到血运不佳的实体肿瘤,通过被动扩散进入细胞质内。目前HD-MTX广泛应用于ALL,骨肿瘤,淋巴瘤等,对于提高PCNS(原发性中枢神经系统淋巴瘤)无病生存率,降低患儿ALL(急性淋巴细胞白血病)髓外白血病的发生,降低伯

血药浓度监测方法研究

血药浓度监测方法研究 何莎学号:201202191501 摘要:当前临床用药中,需要进行临床血药浓度监测的药物有几十种,有时用药目的也决定了药物需进行血药浓度监测,血药浓度监测的必要性已受到越来越多的重视和强调。针对血药浓度监测不同方法的研究,本文分别从高效液相、液质联用、免疫分析等方面进行概述,探讨不同监测方法的异同和优劣,为临床血药浓度监测提供参考。 关键词:血药浓度监测;方法;临床 The research on method of Monitoring of Blood concentration Abstract:In the current clinical use, the drugs whitch need for monitoring of blood concentration have a few kinds, sometimes the purpose also determines the drugs for blood concentration monitoring, the necessity of blood drug concentration monitoring has been more and more attention and emphasis. According to the different methods of research on blood concentration monitoring , this paper respectively focus on from the high performance liquid, liquid mass combined, immune analysis, whitch were summarized and discussed the similarities and differences of different monitoring methods, and the advantages and disadvantages, for clinical blood concentration monitoring to provide reference. Keywords: blood concentration monitoring; Methods; clinical 前言 众所周知,当药物经各种途径进入体内后,血液成为体内转运的中枢,绝大多数药物经血液循环到达作用部位或受体部位,并以一定浓度产生药效(也包括副作用,甚至毒性作用)。由于药物进入体内到产生药理作用是一个十分复杂的过程,故各种因素都可影响药理作用的强弱,而探讨各种因素对药理作用的影响就显得尤为重要了[1]。血药浓度监测是应用先进的微量分析技术测定血液中的药

治疗药物血药浓度监测

治疗药物血药浓度监测 一、需要进行监测的药效学和药动学原因 1.安全范围窄,治疗指数低一些药物治疗浓度和最小中毒浓度接近甚至重叠,极易中毒,只有通过TDM调整剂量,才能既保证疗效又不致产生毒性; 2.以控制疾病发作或复发为目的的用药此类用药多需数月或数年的长期用药,如果不进行TDM,临床只能根据病症是否出现或复发、毒性反应是否发生为调整剂量的依据。而一旦发生上述情况再调整剂量,将导致不必要的经济损失或延误病情,甚至不可逆的后果; 3.不同治疗目的需不同的血药浓度; 4.药物过量中毒; 5.药物治疗无效原因查找; 6.已知治疗浓度范围内存在消除动力学方式转换的药物; 7.首过消除强及生物利用度差异大的药物; 8.存在影响药物体内过程的病理情况; 9.长期用药及可能产生药动学相互作用的联合用药。 二、需要进行TDM的药物特点 1.治疗指数低、安全范围窄,毒性反应强的药物; 2.药代动力学的个体差异大的药物; 3.具有非线性动力学特性的药物; 4.患心、肝、肾和胃肠道等脏器疾病时使用的药物; 5.为预防慢性病发作需长期使用的药物; 6.治疗浓度与中毒浓度很接近的药物; 7.产生不良相互作用、影响药物疗效的合并用药; 8.常规剂量下出现毒性反应的药物。 具有以下特点的药物不需要进行检测 1.有客观而简便的观察其作用指标的药物; 2.有效血药浓度范围大、毒性小的药物; 3.短期服用、局部使用或不易吸收进入体内的药物。 三、TDM的临床应用和意义 1.监督临床用药,制定合理的给药方案,确定最佳治疗剂量,保证个体化给药,提高疗效和减少不良反应。 2.研究与确定常用剂量情况下,不产生疗效或出现意外毒性反应的原因。 3.确定患者是否按照医嘱服药。

监测血药浓度应注意什么

监测血药浓度应注意什么 对于长期服药的患者,在症状控制良好且无明显毒副作用反应的情况下,应每半年至一年检测一次血药浓度。那么监测血药浓度时应注意哪些问题呢? (1)抽血时间:抽血时间对于血药浓度的结果十分重要,有些患者在服药后抽血,造成血药浓度值高于实际值,而误导医生对患者病情的判断,使得测血药浓度意义减少许多。由于所监测的药物浓度为谷浓度,所以监测抗癫痫药物血药浓度的血样应在浓度最低时采取。【患者在抽血前应注意有什么事项?】 (2)药物浓度达稳态:除非怀疑患者服用抗癫痫药中毒,一般监测血药浓度的目的是为了根据体内药物具体浓度,调整个体化给药方案。所以,此时监测的血药浓度时是指药物在人体血液中的稳态浓度。在药物未达到稳态血药浓度时进行血药浓度监测,会造成检测数值低于实际应达到的浓度值,不利于对患者的服药剂量做出客观合理的判断。【稳态浓度是指什么?】 (3)客观看待血药浓度值:血药浓度测定在癫痫治疗中占有重要地位,但是临床医生不能只重视血药浓度的数值而忽略临床实际情况分析,在许多情况下,即使血药浓度不在有效范围也不需要马上进行调整用药。【血药浓度在什么范围内算正常,可以不用调整用药?】 (4)定期复查:对于长期服药的患者,应每半年至一年监测一次血药浓度,如果患者为儿童,身体发育较快,即使对于治疗顺利的患者来说,半年前和半年后的药物代谢情况可能有较大的差别,因此每半年监测一次血药浓度是很有必要的。如果患者出现了药物不良反应或者发作频率增加等情况,就更应该及时地进行血药浓度检测,以便查找原因。【长期服用抗癫痫药物的患者除了要做血药浓度检测外还应做什么检查?】 (文章来源:全球医院网来源链接:https://www.doczj.com/doc/d81313748.html,/dianxian/150112/1114.html)

空气中氮氧化物日变化曲线

空气中氮氧化物的日变化曲线 XXX(XX大学环境与化学工程学院环境科学专业091班,辽宁大连 116622) 1概述 1.1研究背景 1.1.1氮氧化物的来源 大气中氮氧化物(NO x )包括多种化合物,如一氧化氮、二氧化氮、三氧化二氮、四氧化二氮和五氧化二氮,除二氧化氮以外,其他氮氧化物极不稳定,遇光、湿或热变成二氧化氮或一氧化氮,一氧化氮不稳定又变成二氧化氮。因此大气污染化学中的氮氧化物主要指的是一氧化氮和二氧化氮。其主要来自天 然过程,如生物源、闪电均可产生NO x 。NO x 的人为源绝大部分来自化石燃料的 燃烧过程,包括汽车及一切内燃机所排放的尾气,也有一部分来自生产和使用硝酸的化工厂、钢铁厂、金属冶炼厂等排放的废气,其中以工业窑炉、氮肥生 产和汽车排放的NO x 量最多。城市大气中2/3的NO x 来自汽车尾气等的排放,交 通干线空气中NO x 的浓度与汽车流量密切相关,而汽车流量往往随时间而变 化,因此,交通干线空气中NO x 的浓度也随时间而变化。 1.1.2氮氧化物的危害 NO的生物化学活性和毒性都不如NO 2,同NO 2 一样,NO也能与血红蛋白结 合,并减弱血液的输氧能力。如果NO 2 的体积分数为(50—100)×10-6时,吸 入时间为几分钟到一小时,就会引起6—8周肺炎; 如果NO 2 的体积分数为(150—200)×10-6时,就会造成纤维组织变性性细支气管炎,及时治疗,将于3—5不周后死亡。 在实验室,NO 2 体积分数达到10-6级,植物叶片上就会产生斑点,显示植 物组织遭到破坏。体积分数为10-5级的NO 2 会引起植物光合作用的可逆衰减。 此外,NO x 还是导致大气光化学污染的重要物质。

HPLC法测定艾司唑仑血药浓度的方法验证.

HPLC 法测定艾司唑仑血药浓度的方法验证 侯大平*,张志国#,国玉芝,雷力力,黄展(佳木斯大学附属第一医院,佳木斯市154002) 中图分类号 R 969. 1;R 971+. 3 文献标识码 A 文章编号 1001-0408(2011)14-1280-03 摘要目的:建立测定艾司唑仑血药浓度的方法,以确定较好的检测条件。方法:采用高效液相色谱法,以依利特Hypersil -1 ODS 2C 18为色谱柱,甲醇-乙腈-水(28∶28∶54)为流动相,1. 0mL ·min 为流速,35℃为柱温,230nm 为检测波长,地西泮为内标,考察服用艾司唑仑片患者血浆、碱化血浆、血清浓度并对选定的标本及提取方法进行验证。结果:艾司唑仑血浆浓度明显高于碱化血浆及血清浓度,经成对双侧t 检验,艾司唑仑血浆浓度与碱化血浆及血清浓度比较(P 分别为0. 01130、0. 01817),有显著性差异。艾司唑仑血药浓度在0. 0494~1. 2896μg ·mL -1范围内线性关系良好(r =0. 9918),定量下限为0. 0494μg ·mL -1;平均日内、日间RSD 均<10%,平均回收率为99. 95%~100. 79%。结论:采用患者血浆作为标本进行艾司唑仑血药浓度监测和药物中毒的定量分析可行,本方法简便、准确。关键词艾司唑仑;血浆;碱化血浆;血清;高效液相色谱法;血药浓度

Method Validation of Plasma Concentration Determination of Estazolam by HPLC HOU Da-ping ,ZHANG Zhi-guo ,GUO Yu-zhi ,LEI Li-li ,HUANG Zhan (The First Affiliated Hospital of Jiamusi University ,Jiamusi 154002,China ) ABSTRACT OBJECTIVE :To establish the method for plasma concentration determination of estazolam ,and to confirm optimal determination conditions. METHODS :HPLC method was adopted. The determination was performed on Elite Hypersil ODS 2C 18column with methanol-acetonitrile-water (28∶28∶54)as mobile phase at flow rate of 1. 0mL ·min -1. The column temperature was set at 35℃and detection wavelength was 230nm. Diazepam was used as the internal standard. The concentrations of estazolam in plasma ,alkalinized plasma and serum in patients receiving estazolam were determined. Selected samples and extraction method were verified. RESULTS :Plasma concentration of estazolam was significantly higher than those in alkalinized plasma and serum. In bilateral paired t test ,the concentration of estazolam in plasma was significantly different from that in alkalinized plasma and serum (P =0. 01130and P =0. 01817). The linear range of estazolam was 0. 0494~1. 2896μg ·mL -1(r =0. 9918). The minimum quanti-tation limit was 0. 0494μg ·mL -1. The average recovery rate was 99. 95%~100. 79%. The RSD of intra-day and inter-day were less than 10%. CONCLUSION :It is feasible to collect plasma sample of patients for plasma concentration monitoring of estazolam and quantitation analysis of drug poisoning. The method is simple ,accurate. KEY WORDS Estazolam ;Plasma ;Alkalinized plasma ;Serum ;HPLC ;Plasma concentration 艾司唑仑为临床常用的镇静催眠药,也可用于抗焦虑、抗癫痫治疗,大剂量可引起外周神经肌肉阻滞、兴奋不安等不良反应,严重的可导致死亡。鉴于其临床应用广泛,监测其血药浓度对临床治疗和中毒抢救均有重要意义。然而,在高效液相色谱(HPLC )法测定艾司唑仑血药浓度时,文献报道有使用 [1][2][3]

一些药物的血药浓度与治疗作用的关系

七、一些药物的血药浓度与治疗作用的关系 药物血药浓度(μg/ml)药理作用 乙醚 丙烯炔巴比妥 溴化物 苯巴比妥 异戊巴比妥 司可巴比妥 戊巴比妥 氯乙烯醇 炔乙蚁胺 导眠能 安眠酮 甲乙哌啶酮 杜冷丁 溴梦拉(bromuml) 阿达林 水合氯醛 副醛 硫喷妥 trimethobenzamide 丙咪嗪 去甲丙咪嗪 阿密替林 去甲替林 羟基安定 锂 达尔丰 吗啡 镇痛新 保泰松 醋氨酚 苯丙胺类900~1000 1~4 40~50 20 20 1 1 4~6 5~10 0.2~0.4 2~5 10 0.6~0.7 1~3 1~3 5~10 30~150 30 1~2 2~6 0.6~1.4 0.3~0.9 0.015~0.035 1~2 0.5~1.3mmol/ml 0.1~0.2 1 0.14~0.16 40~60 10~20 1~2 麻醉作用 麻醉作用 镇静作用 镇静作用 镇静作用 镇静作用 镇静作用 镇静作用 镇静作用 镇静作用 镇静作用 镇静作用 镇静作用 镇静—催眠作用 镇静—催眠作用 催眠作用 催眠作用 催眠作用 抗眩晕 抗抑郁作用 抗抑郁作用 抗抑郁作用 抗抑郁作用 抗抑郁作用 抗抑郁作用 镇痛作用 镇痛作用 镇痛作用 镇痛作用 镇痛作用 中枢兴奋

续表 药物血药浓度(μg/ml)药理作用 利多卡因 水杨酸盐 丙胺卡因 洋地黄毒甙 地高辛 苯妥英钠 溴苄胺 普鲁卡因酰胺 奎尼丁 心得安 醋磺环己脲 氯磺丙脲 降脂酰胺 甲磺丁脲 抗组胺药 brompheniramine 扑尔敏 麦沙吡立伦 丙烯硫喷妥 丁巯二胺 酰胺咪嗪 苯巴比妥 苯妥英钠 扑痫酮 甲琥胺 乙琥胺 三甲双酮 利眠宁 眠尔通1~2 50~100 350~400 >250 <2 0.014~0.030 0.0003~0.0013 4~24 12~23 0.5~1.3 4~8 3~6 0.035~0.20 20~55 30~140 150~250 50~95 0.008~0.016 0.008~0.016 0.008~0.016 2~4 30 2~4 2~10 10~20 10~20 10~20 2.5~7.5 30~50 600~800 1~2 10~20 局部麻醉 镇痛 抗痛风 治疗风湿热 局部麻醉 强心 稳定窦性节律和抗心律失 常 抗心律失常(窦性期前收 缩) 抗心律失常(室上性心动 过速) 抗心律失常 抗心律失常 抗心律失常 β-阻滞作用 降血糖作用 降血糖作用 降血糖作用 降血糖作用 抗组胺作用 抗组胺作用 抗组胺作用 抗组胺作用 催眠作用 镇静催眠作用 抗惊厥作用 抗惊厥作用 抗惊厥作用 抗惊厥作用 抗惊厥作用 抗惊厥作用 抗惊厥作用

实验二__血药浓度法测定扑热息痛口服给药的药物动力学参数

4 实验二 血药浓度法测定扑热息痛口服给药的药动学参数 [实验目的] 掌握口服给药后用血药浓度法测定药物制剂的药物动力学参数的原理与方法,并加深对这些参数的理解。 [仪器与试剂] 同实验一 [实验原理] 血管外给药途径包括口服、皮下注射、透皮给药等。血管外给药后,药物的吸收和消除常用一级过程描述,即药物以一级速度过程吸收进入体内,然后以一级速度过程从体内消除(一级吸收模型)。体内血药浓度与时间的关系为: )() (0t k kt a a a e e k k V FX k C ----= 对大多数药物来说,吸收速率常数k a 大于消除速率常数k 。当k a 远远大于 k ,且t 较长时,则e -kat 趋向零,上式可简化为: kt a a e k k V FX k C -?-=) (0 利用尾段直线即可计算消除速度k 。 残数浓度C 残与时间t 的关系式为: t k a a a e k k V FX k C -?-=) (0残 利用残数线即可计算消除速度ka 。 [实验方法] 1 标准曲线的制备(同静脉给药项下) 2 给药与取样 称取0.5g 对乙酰氨基酚,用蒸馏水配制成20mL 的混悬液。 取体重2.5~3kg 的健康家兔一只,实验前禁食12h 。给药前,先由兔耳缘静脉取空白血约2ml 。然后将预先配制的乙酰氨基酚混悬液灌胃给药,在给药后20、40、60、90、120、150、180、210、270min 时采血约2ml ,其它操作同

5 静脉注射给药项下。 [实验结果与数据处理] 1 将血药标准曲线数据列表(表2-1),求出回归方程A=a+bC (C :浓度,a :截距,b :斜率,A :吸收度)及线性相关系数r ,同时用坐标纸画图。 表2-1 血药浓度-吸收度数据表 标准液浓度(μg /ml ) 50 100 150 200 250 吸收度(A ) 回归方程 2 血药浓度的数据处理:根据标准曲线回归方程计算扑热息痛口服给药的血药浓度,将有关实验数据列表(表2-2)。 表2-2 静脉注射血药浓度表 取样时间(min ) 20 40 60 90 120 150 180 210 270 样品吸收度(A ) 血药浓度(μg /ml ) 按单室模型处理数据,用残数法计算消除速度常数k 、半衰期t 1/2、吸收速度常数k a 、达峰时间t m 及峰浓度C m ,同时用梯形法计算AUC ,填入表2-3。画出C-t 的关系图,并根据计算结果写出口服给药动力学方程表达式。 相关公式:)() (0t k kt a a a e e k k V FX k C ----= k k k k k k k k t a a a a m lg 303.2ln ln -=--= m kt e V FX C -=0max k C t t C C AUC n i i n i i i +-+=+-=+∑)](2[11 01 表2-3 动力学参数表 参 数 k t 1/2 k a t m C m AUC (梯形法) 动力学方程表达式: [思考题] 静脉注射与口服给药测得的对乙酰氨基酚的药物动力学参数有无差异?原因是什么?

某市几种主要大气污染物浓度时间变化特征及其与气象因子的关系

某市几种主要大气污染物浓度时间变化特 征及其与气象因子的关系 某市位于A高原东北侧,黄河河谷之中,四周群山环绕,是我国建国后首批重点建设的工业城市之一。特殊的山谷地形、不利的气象条件、以重工业和石化工业为主体的产业结构等诸多因素的影响下,使某市成为我国大气污染较严重的城市之一。本文通过对某市大气污染监测数据及相关气象资料的统计处理,分析了某市几种主要大气污染物浓度的时空变化以及污染物浓度与气象因子的关系。主要结论如下: (1)某市主要污染物浓度近30年来呈波动下降趋势,且2001年以后下降幅度显著增加。 (2)一年当中SO2、NO2、PM10月均浓度峰值主要集中在11月、月12和1月,整体而言,三种污染物季节变化均值整体呈“冬高夏低”的变化特点,即冬季污染最严重,夏季空气质量最好。一年四季中,三种污染物浓度按冬>春>秋>夏的顺序排列。。此外,春季沙尘天气发生频繁,导致PM10在3、4月出现次高峰。 (3)SO2、NO2、PM10日平浓度与同期的气温、相对湿度、风速、总云量、水平能见度均呈负相关,与同期的气压均呈正相关,均通过显著性检验。具体到每个季节季节,三种污染物与六种地面气象要素之间的相关性不尽相同。 (4)某市月均逆温频率和逆温层厚度年内变化趋势均与污染物浓度年内变化趋势基本一致,表现出冬季频率高、厚度大,夏季频率低、厚度小。在考虑等温层和不考虑等温层两种情况下,逆温层厚度均与同期SO2、NO2、PM10浓度之间呈显著的正相关,说明逆温层厚度可以作为某市空气污染预报的重要指标之一。 (5)月平均最大混合层厚度的年变化特征呈单周期型,12月最低,4月最高。污染最严重的11、12和1月的月均最大混合层厚度最低,出现在1000m以下的频率也最高。SO2、NO2、PM10日平均浓度与同期最大混合层厚度之间呈显著的负相关,说明混合层厚度是影响某市市空气污染的重要因素。 关键词:大气污染物、气象因子、变化特征、相关分析

稳态血药浓度的临床应用

稳态血药浓度的临床应用 稳态血药浓度,也是药物效应相对稳定的浓度。通常用“Css(mg或ug/ml)”表示。是指在连续恒速静脉滴注给药或按半衰期(t1/2)间隔时间恒量重复给药的过程中,血药浓度会逐渐增高, 经4~5个t1/2使药物吸收速度与消除速度达到近似平衡的状态。如果以药物的t1/2为重复给药的间隔时间,首次剂量加倍即可达到Css。增加给药的剂量,只能提高血浆药物的浓度,不能缩短到达Css的时间。单位时间内的给药剂量不变,缩短给药的间隔时间,只能减少血浆药物浓度的波动范围(即缩小Cssmax与 Cssmin的差值),不能影响Css 和到达Css的时间。 口服给药的Css包括:“平均稳态血药浓度”,“稳态血药浓度峰值(Cssmax)”和“稳态血药浓度谷值(Cssmin)”。Cssmax是口服药物在一定剂量下血浆中的最大有效浓度,Cssmin 是口服药物在一定剂量下血浆中的最小有效浓度。 静脉滴注连续恒速给药的Css则始终保持一个水平。 只要口服剂量不变按t1/2间隔时间恒量重复给药或静脉滴注连续恒速给药,任何药物经过20个t1/2以后,蓄积剂量和排泄剂量完全相等(即蓄积剂量=给药剂量),它们的有效浓度不会因用药时间的长短而增大或减少,药物效应亦稳定在一定水平。 一、Css的估算:任何药物必须按该药t1/2连续恒量给药,并经该药的9个t1/2后,才可认为达到Css(5个t1/2后蓄积剂量为96.9%,7个t1/2后蓄积剂量为99.3%,9个t1/2后蓄积剂量99.8%)。 1、口服给药:口服给药一定剂量达到Css以后,给药后的2h(大多数药物2小时几乎全部吸收入血,即蓄积计量+给药剂量)时为一定剂量下的Cssmax;Cssmax的计算公式为:(给药剂量+蓄积剂量)÷(体重公斤×8%×1000)。到一个t1/2间隔时间时(即应该服药的时间时的蓄积计量)为一定剂量下的Cssmin;Cssmin的计算公式为:给药剂量÷(体重公斤×8%×1000)。平均稳态血药浓度=(Cssmin+Cssma)÷2。例如:某患者,体重78公斤,口服某药物20mg/次, 按t1/2 q8h给药,9次以后达到Css。估计该药物的Cssmin为0.0032mg/ml(20mg÷(78×8%×1000);Cssmax为0.0064mg/ml【(20mg+40mg)÷(78×8%×1000)】;平均稳态血药浓度为0.0048mg/ml【(0.0032+0.0064)÷2】。如首次剂量加倍(40mg/次),口服后2h时即可达到Cssmax 【40mg÷(78×8%×1000)=0.0064mg/ml】;到一个t1/2间隔时间时为Cssmin。 2、静脉给药。某药物的t1/2为1h,以3mg/min的速度连续恒速静滴,每小时滴入180mg (3mg×60min),9h后血液中药物的蓄积剂量才能达到180mg。按上述患者体重计算Css为0.029mg/ml(180÷(78×8%×1000)。但是,在病情危重时则需要立即达到Css的剂量,可首次静脉注射180mg后,再继续以一个t1/2时间内滴注180mg(3mg/min)的速度连续恒速静滴,即可始终维持0.029mg/ml的Css。 二、临床应用: 1、用于确定给药的最适剂量。临床上在药物的允许用量范围内,如用量过大,则不良反应亦较大;用量过小则疗效较差。选择和确定最适剂量是临床给药的关键环节。给药的最适

医院药物浓度测定方法、步骤及流程图

卡马西平血药浓度分析方法及操作步骤 A B 临床血样离心5min(3000r/min) 取空白血清200μL 取血清200μL,加甲醇20μL 加卡马西平液(70.0μg/mL)20μL 加内标安定液(89.6μg/mL)10μL 混匀,加乙醚5mL 旋涡震荡2min,离心3min(3000r/mL) 取乙醚液4.6mL到另一10mL玻璃管中 55℃水浴中挥干 加甲醇:水(70∶30)200uL溶解 4000r/min离心5min ,转移上清液至进样瓶 色谱条件: zorbax Xdb-C18柱流动相:甲醇/水=60:40(v/v) 柱温:25℃;流速:1mL/min;检测波长:225nm 结果:卡马西平t=4.01,u=600;安定t=9.78,u=660 总结:检测波长225nm较254nm峰面积响应值高出两倍。

安定血药浓度分析方法及操作步骤 A B 临床血样离心5min(3000r/min) 取空白血清200μL 取血清200μL,加甲醇20μL 加安定标准溶液(89.6μg/mL)20μL 加内标卡马西平液(70.0μg/mL)10μL 混匀,加乙醚5mL 旋涡震荡2min,离心5min(3000r/mL) 取乙醚液4.6mL到另一10mL玻璃管中 45℃水浴中氮气吹干 加甲醇水(60∶40)200uL溶解 离心2min,取20uL进样 色谱条件: zorbax Xdb-C18柱流动相:甲醇/水=60:40(v/v) 柱温:25℃;流速:1mL/min;检测波长:225nm 结果:卡马西平t=4.01,u= ;安定t=9.78,u= 总结:检测波长225nm较254nm峰面积响应值高出两倍。

高中生物所有曲线图

(3)蛋白质分泌过程相关图示的解读 ①图甲表示用放射性元素标记某种氨基酸,追踪不同时间放射性元素在细胞中的分布情况,图甲表明放射性元素出现的先后顺序是附有核糖体的内质网、高尔基体、分泌小泡;从放射性元素的含量变化可推知,分泌小泡来自高尔基体。 ②图乙和图丙都表示膜面积随时间的变化关系,只是图乙表示的是前后两个时间点,而图丙表示的是一定时间段内的变化。在上述过程中,高尔基体膜和细胞膜的成分均实现了更新。 2.探究影响跨膜运输的因素分析 (1)物质浓度(在一定的浓度范围内) (2)氧气浓度 1.探究酶的高效性、专一性 (1)酶的高效性曲线 ①如图A表示未加催化剂时,生成物浓度随时间的变化曲线,请在图中绘出加酶和加无机催化剂的条件时的变化曲线。 提示:如图所示

②由曲线可知:酶比无机催化剂的催化效率更高;酶只能缩短达到化学平衡所需的时间,不改变化学反应的平衡点。因此,酶不能(“能”或“不能”)改变最终生成物的量。 (2)酶的专一性曲线 ①在A反应物中加入酶A,反应速率较未加酶时的变化是明显 加快,说明酶A能催化该反应。 ②在A反应物中加入酶B,反应速率和未加酶时相同,说明酶 B不能催化该反应。 2.探究影响酶活性的因素 (1)分析图A、B可知,在最适宜的温度和pH条件下,酶的活性最高。温度和pH偏高或偏低,酶活性都会明显降低。 (2)分析图A、B曲线可知:过酸、过碱、高温都会使酶失去活性,而低温只是使酶的活性降低。前者都会使酶的空间结构遭到破坏,而后者并未破坏酶的分子结构和空间结构。 (3)分析图C中的曲线,反应溶液中pH的变化是否会影响酶作用的最适温度呢?不会 (1)模型解读:温度通过影响与细胞呼吸有关酶的活性来影响呼吸速率。 ①最适温度时,细胞呼吸最强。 ②超过最适温度时,呼吸酶活性降低,甚至变性失活,细胞呼吸受到抑制。 ③低于最适温度呼吸酶活性下降,细胞呼吸受到抑制。 (2)应用:①低温下贮存蔬菜水果。 ②温室栽培中增大昼夜温差(降低夜间温度),以减少夜间呼吸消耗有机物。 2.探究氧气对细胞呼吸的影响 (1)模型解读:O2是有氧呼吸所必需的,对厌氧型生物而言,O2对其无氧呼吸有抑制作用。 ①O2浓度=0时,只进行无氧呼吸。

相关主题
文本预览
相关文档 最新文档