当前位置:文档之家› 高考物理备考微专题1.5 共点力的动态平衡与临界极值问题(解析版)

高考物理备考微专题1.5 共点力的动态平衡与临界极值问题(解析版)

高考物理备考微专题1.5 共点力的动态平衡与临界极值问题(解析版)
高考物理备考微专题1.5 共点力的动态平衡与临界极值问题(解析版)

高考物理备考微专题精准突破

专题1.5 共点力的动态平衡与临界极值问题

【专题诠释】

1.动态平衡:“动态平衡”是指物体所受的力一部分是变力,是动态力,力的大小和方向均要发生变化,但变化过程中的每一个状态均可视为平衡状态,所以叫动态平衡.

2.分析动态平衡问题的方法

【高考引领】

【2019·全国卷Ⅰ】如图,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮。一细绳跨过滑轮,其一

端悬挂物块

N,另一端与斜面上的物块M相连,系统处于静止状态。现用水平向左的拉力缓慢拉动N,直

至悬挂N的细绳与竖直方向成45°。已知M始终保持静止,则在此过程中()

A.水平拉力的大小可能保持不变B.M所受细绳的拉力大小一定一直增加

C.M所受斜面的摩擦力大小一定一直增加D.M所受斜面的摩擦力大小可能先减小后增加

【答案】BD

【解析】选N为研究对象,受力情况如图甲所示,由图甲可知,用水平拉力F缓慢拉动N的过程中,水平拉力F逐渐增大,细绳的拉力T逐渐增大,A错误,B正确。

对于M ,受重力G M 、支持力F N 、绳的拉力T 以及斜面对它的摩擦力f ,如图乙所示,若开始时斜面对M 的摩擦力f 沿斜面向上,则T +f =G M sin θ,T 逐渐增大,f 逐渐减小,可能有当f 减小到零后,再反向增大的情况;若开始时斜面对M 的摩擦力沿斜面向下,此时,T =G M sin θ+f ,当T 逐渐增大时,f 逐渐增大,C 错误,D 正确。

【2017·新课标全国Ⅲ卷】一根轻质弹性绳的两端分别固定在水平天花板上相距80cm 的两点上,弹性绳的 原长也为80 cm 。将一钩码挂在弹性绳的中点,平衡时弹性绳的总长度为100 cm ;再将弹性绳的两端缓慢 移至天花板上的同一点,则弹性绳的总长度变为(弹性绳的伸长始终处于弹性限度内)( ) A .86 cm

B .92 cm

C .98 cm

D .104 cm 【答案】B

【解析】设弹性绳的劲度系数为k ,左、右两半段绳的伸长量,由共点力的平衡条件可知,钩码的重力,将弹性绳的两端缓慢移至天花板上同一点时,钩码的重力,解得,则弹性绳的总长度变为,故选B 。

【2017·新课标全国Ⅰ卷】如图,柔软轻绳ON 的一端O 固定,其中间某点M 拴一重物,用手拉住绳的另一 端N 。初始时,OM 竖直且MN 被拉直,OM 与MN 之间的夹角为α(π2

α>

)。现将重物向右上方缓慢拉 起,并保持夹角α不变。在OM 由竖直被拉到水平的过程中( )

A .MN 上的张力逐渐增大

B .MN 上的张力先增大后减小

C .OM 上的张力逐渐增大

D .OM 上的张力先增大后减小

【答案】

AD

100 cm 80 cm 10 cm 2

L -?=

=2 1.2G k k L =?=?2G k L '=?0.6 6 cm L L '?=?=80 cm 292 cm L '+?

=

【解析】以重物为研究对象,受重力mg ,OM 绳上拉力F 2,MN 上拉力F 1,由题意知,三个力合力始终为零,矢量三角形如图所示,

在F 2转至水平的过程中,MN 上的张力F 1逐渐增大,OM 上的张力F 2先增大后减小,所以AD 正确,BC 错误。

【2017·天津卷】如图所示,轻质不可伸长的晾衣绳两端分别固定在竖直杆M 、N 上的a 、b 两点,悬挂衣服 的衣架钩是光滑的,挂于绳上处于静止状态。如果只人为改变一个条件,当衣架静止时,下列说法正确的 是( )

A .绳的右端上移到b ',绳子拉力不变

B .将杆N 向右移一些,绳子拉力变大

C .绳的两端高度差越小,绳子拉力越小

D .若换挂质量更大的衣服,则衣架悬挂点右移

【答案】AB

【解析】设两杆间距离为d ,绳长为l ,Oa 、Ob 段长度分别为l a 和l b ,则b a l l l +=,两部分绳子与竖直方向夹角分别为α和β,受力分析如图所示。

绳子中各部分张力相等,F F F b a ==,则βα=。满足mg F =αcos 2,αααsin sin sin l l l d b a =+=,即l d =αsin ,α

cos 2mg F =,d 和l 均不变,则sin α为定值,α为定值,cos α为定值,绳子的拉力保持不变,衣服的位置不变,故A 正确,CD 错误;将杆N 向右移一些,d 增大,则sin α增大,cos α

减小,绳子

a

F

的拉力增大,故B正确。

【2016·全国二卷】质量为m的物体用轻绳AB悬挂于天花板上,用水平力F拉着绳的中点O,使OA段绳偏离竖直方向一定角度,如图所示。设绳OA段拉力的大小为T,若保持O点位置不变,则当力F的方向顺时针缓慢旋转至竖直方向的过程中()

A.F先变大后变小,T逐渐变小B.F先变大后变小,T逐渐变大

C.F先变小后变大,T逐渐变小D.F先变小后变大,T逐渐变大

【答案】 C

【解析】对结点O受力分析,画出力的平行四边形如图所示,

保持O点位置不变,则当力F的方向顺时针缓慢旋转至竖直方向的过程中,由图可知F先减小后增加,T 一直减小,C正确。

【技巧方法】

处理共点力作用下平衡的方法:

(1)涉及三个力的动态平衡问题解决方法:动态图解法、相似三角形法,极个别情况需要运用数学正弦定理解决问题。

(2)涉及四个及四个以上力的动态平衡问题一般采用解析法,通过寻找变化力的函数解析式,运用数学函数知识判断力的变化情况

【最新考向解码】

1.(2019·山东烟台高三上学期期末)如图所示,一质量为m、半径为r的光滑球A用细绳悬挂于O点,另一质量为M、半径为R的半球形物体B被夹在竖直墙壁和A球之间,B的球心到O点之间的距离为h,A、B 的球心在同一水平线上,A、B处于静止状态,重力加速度为g。则下列说法正确的是()

A .A 对

B 的压力大小为R +r h

mg B .竖直墙壁对B 的摩擦力可能为零

C .当只轻轻把球B 向下移动一点距离,若A 、B 再次保持静止,则A 对B 的压力大小保持不变,细绳拉力增大

D .当只轻轻把球B 向下移动一点距离,若A 、B 再次保持静止,则A 对B 的压力减小,细绳拉力减小

【答案】 AD

【解析】 分析A 球的受力情况,如图1所示,B 对A 的支持力N 与A 的重力mg 的合力与细绳的拉力T

等大反向共线,根据两个阴影三角形相似得:N R +r =mg h =T OA

,得N =R +r h mg ,T =OA h mg ,由牛顿第三定律知A 对B 的压力大小为:N ′=N =R +r h

mg ,A 正确;

B 在竖直方向受到重力,而A 、B 间无摩擦,由平衡条件知竖直墙壁对B 一定有摩擦力,B 错误;当只轻轻把球B 向下移动一点距离,分析A 球的受力情况,如图2所示,N 与T 的合力与mg 等大反向共线,根据两

个阴影三角形相似得:N R +r =mg L =T OA

,可得:N =R +r L mg ,T =OA L mg ,由于L >h ,可知N 减小,T 减小,由牛顿第三定律知A 对B 的压力减小,C 错误,D 正确。

2(2019·安徽教研会高三第二次联考)如图,在一段平坦的地面上等间距分布着一排等高的输电线杆,挂在线杆上的电线粗细均匀且呈对称性。由于热胀冷缩,冬季两相邻线杆之间的导线长度会有所减少。对B 线杆及两侧的电线,冬季与夏季相比( )

A.电线最高点处的张力变大B.电线最低点处的张力不变

C.线杆对地面的压力变小D.线杆两侧电线对线杆拉力的合力不变

【答案】AD

【解析】以相邻两线杆之间的电线为研究对象,受力分析如图所示,可知冬季电线拉力的夹角更大,合力不变(大小等于重力,方向竖直向上),则可得冬季电线的拉力较大,电线最高点和最低点处的张力都变大,B错误,A正确;

把线杆和电线看做一个整体,线杆对地面的压力大小始终等于线杆和电线整体重力之和,C错误;线杆两侧电线对线杆拉力的合力等于电线的重力,故线杆两侧电线对线杆拉力的合力不变,D正确。

3.(2019·湖北沙市中学考试)如图所示,不计质量的光滑小滑轮用细绳悬挂于墙上O点,跨过滑轮的细绳连接物块A、B,A、B都处于静止状态,现将物块B移至C点后,A、B仍保持静止,下列说法中正确的()

A.B与水平面间的摩擦力增大

B.地面对B的弹力增大

C.悬于墙上的绳所受拉力不变

D.A、B静止时,图中α、β、θ三角始终相等

【答案】ABD

【解析】对物体A受力分析,受到重力和细线的拉力,根据平衡条件,拉力等于物体A的重力,当把物体B移至C点后,绳子与水平方向的夹角变小,但细线的拉力不变,对物体B受力分析,受重力、支持力、拉力和静摩擦力,如图所示.

根据共点力平衡条件,有T cos r=f,T sin r+N=mg,由于角r变小,故B与水平面间的静摩擦力变大,地面对B的弹力增大,故A、B正确;对滑轮受力分析,受绳子的拉力T以及悬于墙上的绳子的拉力F,由于绳子的拉力与A的重力相等且夹角变大,故其合力变小,故墙上的绳子的拉力F也变小,故C错误;由于绳子的拉力相等,故合力在角平分线上,故α=β,由几何关系可知α=θ,故α=β=θ,故D正确.

【微专题精练】

1.(2019·宁夏银川育才中学月考)如图所示,质量为M的斜面静置在水平地面上,斜面上有一质量为m的小物块,水平力F作用在小物块上时,两者均保持静止,斜面受到水平地面的静摩擦力为f1,小物块受到斜面的静摩擦力为f

2.现使F逐渐增大,两者仍处于静止状态,则()

A.f1、f2都增大B.f1、f2都不一定增大

C.f1不一定增大,f2一定增大 D. f1一定增大,f2不一定增大

【答案】D

【解析】对小物块受力分析,受重力、斜面的支持力、水平力F,可能有静摩擦力:①当mg sin θ>F cos θ时,静摩擦力沿着斜面向上,大小为f2=mg sin θ-F cos θ,当F增大时,f2变小;②当mg sin θ=F cos θ时,静摩擦力为零,当F增大时,f2变大;③当mg sin θ<F cos θ时,静摩擦力沿着斜面向下,大小为f2=F cos θ-mg sin θ,F增大时,f2变大.由以上分析可知f2不一定增大.对整体受力分析,受到重力、地面的支持力、地面的静摩擦力、水平力F,则有f1=F,则F增大,f1一定增大.故D正确,A、B、C错误.2.(2019·湖北天门中学检测)如图所示,A、B两物体的质量分别为m A、m B,且m A>m B,整个系统处于静止状态,滑轮的质量和一切摩擦均不计.如果绳一端由Q点缓慢地向左移到P点,PQ距离为L,整个系统重新平衡后,物体的高度和两滑轮间的绳与水平方向的夹角θ变化情况是()

A.物体A上升,上升的高度为L

cos θ,θ角不变B.物体A下降,下降的高度为

L

2cos θ,θ角不变

C .物体A 上升,上升的高度为2L cos θ

,θ角不变 D .物体A 的高度不变,θ角变小 【答案】A

【解析】将绳一端由Q 点缓慢向右移到P 点时,绳子的拉力大小不变,分析动滑轮的受力情况,如图所示,

设绳子的拉力大小为F ,两绳子的夹角为2α=π-2θ,由于动滑轮两侧绳子的拉力关于竖直方向有对称性,则有2F cos α=m B g ,由于F =m A g ,保持不变,则知,α角保持不变,由几何知识得知,α+θ=90°,则θ保持不变,当绳一端的固定点Q 缓慢向左移到P 点,动滑轮将下降,则物体A 的高度升高.结合几何关系,

动滑轮与天花板间的2段绳子的长度增加量为ΔL =L 2cos θ×2=L cos θ,故A 上升的高度为h =L cos θ

,故A 正确,B 、C 、D 错误.

4.(2019·山东外国语学校高三月考)如图所示,小车内固定着一个倾角为60°的斜面OA ,挡板OB 与水平面的夹角θ=60°.可绕转轴O 在竖直平面内转动.现将一质量为m 的光滑圆球放在斜面与挡板之间,下列说法正确的是( )

A .当小车与挡板均静止时,球对斜面OA 的压力小于mg

B .保持θ=60°不变,使小车水平向右运动,则球对斜面OA 的压力可能为零

C.保持小车静止, 在θ由60°缓慢减小至15°的过程中,球对挡板OB 的压力先减小再增大

D .保持小车静止, 在θ由60°缓慢减小至15°的过程中,球对挡板OB 的压力逐渐增大

【答案】BC

【解析】球处于静止状态,受力平衡,对球进行受力分析,如图所示,

F A 、F B 以及

G 之间的夹角两两都为120°,根据几何关系可知,F A =F B =mg ,故A 错误; 若保持θ=60°不变,使小车水平向右做匀加速直线运动,当F B 和重力G 的合力正好提供加速度时,球对斜面OA 的压力为零,故B 正确;保持小车静止,在θ由60°缓慢减小至15°的过程中,根据图象可知,F A 不断减小,F

B

先减小后增大,根据牛顿第三定律可知,球对挡板OB的压力先减小后增大,对斜面的压力不断减小,故C 正确,D错误.

5.(2019·甘肃武威第六中学段考)如图所示,横截面为直角三角形的斜劈A,靠在粗糙的竖直墙面上,力F 通过球心水平作用在光滑球B上,系统处于静止状态.当力F增大时,系统仍保持静止,下列说法正确的是()

A.斜劈A所受合外力增大B.斜劈A对竖直墙壁的压力增大

C.球B对地面的压力增大D.墙面对斜劈A的摩擦力增大

【答案】BC

【解析】斜劈A一直处于静止状态,所受合外力一直为零不变,故A错误;对AB整体分析可知,水平方向受到F和墙壁的弹力作用,当F增大时,A对竖直墙壁的压力变大,故B正确;对B受力分析,如图所示,

根据平衡条件有F=F N′sin θ,F N″=m B g+F N′cos θ,可见F增大时F N′增大,F N″增大,根据牛顿第三定律知球B对地面的压力增大,故C正确;对A分析,球B对斜劈A的支持力大小等于F N′,若A所受摩擦力向上,则竖直方向F N′cos θ+F f=m A g,则当F N′增大时,墙面对斜劈A的摩擦力减小,选项D错误.

6.(2019·湖北四校质检)如图所示,两块相互垂直的光滑挡板OP、OQ,OP竖直放置,小球a、b固定在轻弹簧的两端.水平力F作用于b时,a、b紧靠挡板处于静止状态.现保证b球不动,使挡板OP向右缓慢平移一小段距离,则()

A.弹簧变长B.弹簧变短C.力F变大D.b对地面的压力不变【答案】AD

【解析】选a球为研究对象,受力分析如图所示,

由画出的平行四边形可知,挡板的弹力F N变小,弹力F弹逐渐减小,即弹簧的压缩量变短,弹簧变长,选项A正确,B错误;选a球、b球整体为研究对象,由平衡条件可知,F变小,b对地面的压力不变,选项C错误,D正确.

7.(2019·湖南长沙模拟)如图所示,倾角为θ的斜面体c置于水平地面上,小盒b置于斜面上,通过跨过光滑定滑轮的细绳与物体a连接,连接b的一段细绳与斜面平行,连接a的一段细绳竖直,a连接在竖直固定于地面的弹簧上.现向b盒内缓慢加入适量砂粒,a、b、c始终处于静止状态,下列说法中正确的是()

A.b对c的摩擦力可能先减小后增大B.地面对c的支持力可能不变

C.c对地面的摩擦力方向始终向左D.弹簧的弹力可能增大

【答案】A

【解析】向b盒内缓慢加入砂粒的过程中,a、b、c一直处于静止状态,对a分析,弹簧弹力不变,a的重力不变,则细绳拉力不变;对b、c整体分析知,其受方向始终向左的摩擦力,故c对地面的摩擦力方向始终向右,由于b、c整体质量增大,则地面对c的支持力增大,B、C、D错误;如果开始时,b所受c的摩擦力沿斜面向下,则对b分析可知,随着砂粒的加入,b对c的摩擦力可能先减小后增大,A正确.

8.如图所示,固定在竖直平面内的半径为R的光滑圆环的最高点C处有一个光滑的小孔,一质量为m的小球套在圆环上,一根细线的一端拴着这个小球,细线的另一端穿过小孔C,手拉细线使小球从A处沿圆环向上移动.在移动过程中手对细线的拉力F和轨道对小球的弹力F N的大小变化情况是()

A.缓慢上移时,F减小,F N不变

B.缓慢上移时,F不变,F N减小

C.缓慢上移跟匀速圆周运动相比,在同一位置B点的拉力相同

D.缓慢上移跟匀速圆周运动相比,在同一位置B点的弹力相同

【答案】AC

【解析】小球在缓慢上移时可认为每一瞬间都受力平衡,分析小球受力,其受到重力、轨道给予的弹力和细线的拉力作用,作出力的矢量三角形(图略),无论小球运动到哪个位置,总有力的矢量三角形与几何三角形相似,可得弹力F N=mg,而F的大小正比于小球与顶端小孔间的细线长,细线变短,F减小,A正确,B错误.无论是缓慢上移还是做匀速圆周运动,在同一位置其在切线方向的合力为零,但在半径方向的合力

大小与速度大小有关,故弹力的大小与速度的大小有关,但细线的拉力相等,且F=2mg sin α

2,C正确,D

错误.

9.如图所示,3根轻绳悬挂着两个质量相同的小球并保持静止,绳AD与AC垂直.现对B球施加一个水平向右的力F,使B缓慢移动到图中虚线位置,此过程中AD、AC两绳张力T AC、T AD的变化情况是()

A.T AC变大,T AD减小B.T AC变大,T AD不变

C.T AC减小,T AD变大D.T AC不变,T AD变大

【答案】C

【解析】以B为研究对象,受力分析如图甲所示.将B缓缓拉到图中虚线位置的过程,绳子与竖直方向夹角θ变大,由B球受力平衡得T AB cos θ=mg,T AB sin θ=F,所以绳子AB的张力T AB逐渐变大,F逐渐变大.再以A、B整体为研究对象受力分析,如图乙所示,

设AD绳与水平方向夹角为α,AC绳与水平方向夹角为β(α+β=90°),并以AC、AD为坐标轴正方向,可得T AD=2mg sin α+F sin β,T AC=2mg·cos α-F cos β,α、β不变,而F逐渐变大,故T AD逐渐变大,T AC逐渐减小,C正确.

10.(2019·吉林一模)如图所示,在一绝缘斜面C上有一带正电的小物体A处于静止状态,现将一带正电的小球B沿以A为圆心的圆弧缓慢地从P点转至A正上方的Q点处,已知P、A在同一水平线上,且在此过程中物体A和C始终保持静止不动,A、B可视为质点.关于此过程,下列说法正确的是()

A.物体A受到斜面的支持力先增大后减小B.物体A受到斜面的支持力一直增大

C.地面对斜面C的摩擦力先增大后减小D.地面对斜面C的摩擦力逐渐减小

【答案】AD

【解析】以小物块A为研究对象,受力分析如图1所示,重力mg、斜面的支持力N x、斜面给A的摩擦力f x(大小方向都变化)、沿BA方向的库仑力F,沿斜面和垂直斜面建立坐标系,物体受到斜面的支持力N x=mg y +F y,其中重力沿y方向的分力mg y不变,F沿y方向的分力F y逐渐增大,当F与y轴重合时最大,再向重力方向转动过程中分力又开始减小,故A选项正确,B选项错误;以小物块和斜面体整体为研究对象,受力分析如图2所示,

受到重力(M+m)g、地面的支持力N D、地面的摩擦力f D和沿BA方向的库仑力F,沿x方向有f D=F x,分解即得出地面对斜面C的摩擦力一直减小,C选项错误,D选项正确.

11.(2019·江西上饶模拟)如图所示,顶端附有光滑定滑轮的斜面体静止在粗糙水平地面上,三条轻绳结于O 点.一条绳跨过定滑轮连接物块P(PB段轻绳平行于斜面),一条绳连接小球Q,一条绳OA在外力F的作用下处于水平位置.现缓慢改变绳OA的方向,减小θ至θ<90°,且保持结点O位置不变,整个装置始终处于静止状态.下列说法正确的是()

A.绳OA的拉力先减小后增大B.绳OB的拉力一直增大

C.地面对斜面体有向右的摩擦力D.地面对斜面体的支持力一直减小

【答案】AD

【解析】对结点O进行受力分析,在缓慢减小θ至θ<90°的过程中,绳OA拉力的方向变化如图所示,

从方向1到方向2再到方向3,可见绳OA的拉力先减小后增大,绳OB的拉力一直减小,选项A正确,B 错误;对P、Q和斜面体整体受力分析,根据平衡条件知,斜面体受地面的摩擦力与绳OA拉力的水平分力(方向向右)等大反向,摩擦力方向向左,选项C错误;对斜面体、绳PB和P整体受力分析,若绳OB的方向与水平方向的夹角为β,由竖直方向受力平衡得地面对斜面体的支持力N=T sin β+G斜+G P,式中T为绳OB的拉力,因缓慢减小θ至θ<90°的过程中,β不变而T一直减小,故N一直减小,选项D正确.

12.(2019·潍坊期中)如图所示为内壁光滑的半球形凹槽M,O为球心,∠AOB=60°,OA水平,小物块在与水平方向成45°角的斜向上的推力F作用下静止于B处.在将推力F沿逆时针缓慢转到水平方向的过程中装置始终静止,则()

A.M槽对小物块的支持力逐渐减小B.M槽对小物块的支持力逐渐增大

C.推力F先减小后增大D.推力F逐渐增大

【答案】BC

【解析】以小物块为研究对象,分析受力情况,如图所示,

物块受到重力G、支持力F N和推力F三个力作用,根据平衡条件可知,F N与F的合力与G大小相等,方向相反.将推力F沿逆时针缓慢转到水平方向的过程中(F由位置1→3),根据作图可知,M槽对小物块的支持力F N逐渐增大,推力F先减小后增大,当F与F N垂直时,F最小.故A、D错误,B、C正确.13.如图所示,质量为m的小球用细线拴住放在光滑斜面上,斜面足够长,倾角为α的斜面体置于光滑水平面上,用水平力F推斜面体使斜面体缓慢地向左移动,小球沿斜面缓慢升高(细绳尚未到达平行于斜面的位置).在此过程中()

A.绳对小球的拉力减小B.斜面体对小球的支持力减小

C.水平推力F减小D.地面对斜面体的支持力不变

【答案】A

【解析】对小球受力分析,如图甲所示,斜面体左移会引起F T的方向及大小的变化而F N的方向不变,三力的合力为0,则形成闭合三角形,F T与F N相互垂直时F T最小,此时细线和斜面平行,则细线尚未到达平行于斜面的位置时,F T逐渐变小,F N逐渐变大,故选项A正确,B错误;对斜面体受力分析,如图乙所示,

根据平衡条件,有:F=F N′sin α=F N sin α,F N地=Mg+F N′cos α=Mg+F N cos α.由于F N增大,故支持力F N地和推力F均增大,故C、D错误.

14.一铁球通过3段轻绳OA、OB、OC悬挂在天花板上的A点,轻绳OC拴接在轻质弹簧测力计上.第一次,保持结点O位置不变,某人拉着轻质弹簧测力计从水平位置缓慢转动到竖直位置,如图7甲所示,弹簧测力计的示数记为F1.第二次,保持轻绳OC垂直于OA,缓慢移动轻绳,使轻绳OA从竖直位置缓慢转动到如图乙所示位置,弹簧测力计的示数记为F2.则()

A.F1先增大后减小,F2逐渐减小B.F1先增大后减小,F2逐渐增大

C.F1先减小后增大,F2逐渐减小D.F1先减小后增大,F2逐渐增大

【答案】D

【解析】对甲、乙两图中的O点受力分析,两根绳的合力等于铁球的重力,其大小和方向不变,如图所示.甲图中F1先减小,后增大;乙图中F2逐渐增大.选项D正确.

15.如图所示,小方块代表一些相同质量的钩码,图①中O为轻绳之间联接的结点,图②中光滑的滑轮跨在轻绳上悬挂钩码,两装置处于静止状态,现将图①中的B滑轮或图②中的端点B沿虚线稍稍上移一些,则关于θ角变化说法正确的是()

A.图①、图②中θ角均增大B.图①、图②中θ角均不变

C.图①中θ增大、图②中θ角不变化D.图①中θ不变、图②中θ角变大

【答案】B

【解析】图①中,根据钩码个数,三个力正好构成直角三角形,若端点B沿虚线稍稍上移一些,三力大小不变,根据力的合成法则,可知,方向不变,即夹角不变;图②中,因光滑的滑轮,且绳子中的张力相等,根据对称性可作下图,由图中可以看出原来位置为B,后来端点B沿虚线稍稍上移一些为B2,只有绳子与水平方向的夹角不变,才能保持绳子的总长不变,如果绳子与水平方向的夹角增大了,图中的B3,因为滑轮两端的力相等,由对称性可以看出此时对应的绳子的总长为A3B3,大于绳子的原长了,绳子的总长不变,故夹角增大不可能,从以上分析可以得出绳子与水平方向的夹角θ不变.B选项正确.

高一物理力学专题提升专题05平衡中的临界问题

专题05 平衡中的临界问题 【专题概述】 1.临界状态:物体由某种物理状态变化为另一种物理状态时,中间发生质的飞跃的转折状态,通常称之为临界状态。 2.临界问题:涉及临界状态的问题叫做临界问题。 3. 解决临界问题的基本思路 (1)认真审题,仔细分析研究对象所经历的变化的物理过程,找出临界状态。 (2)寻找变化过程中相应物理量的变化规律,找出临界条件。 (3)以临界条件为突破口,列临界方程,求解问题 4.三类临界问题的临界条件 (1)相互接触的两个物体将要脱离的临界条件是:相互作用的弹力为零。 (2)绳子松弛的临界条件是:绳中拉力为零 (3)存在静摩擦的连接系统,当系统外力大于最大静摩擦力时,物体间不一定有相对滑动,相对滑动与相对静止的临界条件是:静摩擦力达最大值 临界现象是量变质变规律在物理学上的生动体现。即在一定的条件下,当物质的运动从一种形式或性质转变为另一种形式或性质时,往往存在着一种状态向另一种状态过渡的转折点,这个转折点常称为临界点,这种现象也就称为临界现象.如:静力学中的临界平衡;机车运动中的临界速度;振动中的临界脱离;碰撞中的能量临界、速度临界及位移临界;电磁感应中动态问题的临界速度或加速度;光学中的临界角;光电效应中的极限频率;带电粒子在磁场中运动的边界临界;电路中电学量的临界转折等. 解决临界问题,一般有两种方法,第一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界特殊规律和特殊解;第二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。 【典例精讲】 典例1:倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A 与斜面间的动摩擦因数μ=0.5。现给A施加一水平力F,如图所示。设最大静摩擦力与滑动摩擦力相等(sin37°=0.6,cos37°=0.8),如果物体A能在斜面上静止,水平推力F与G 的比值不可能是()

平衡中的临界极值问题

平衡中的临界和极值问题 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 平衡物体的临界状态是指物体所处的平衡状态将要被破坏但尚未被破坏的状态。 求解平衡的临界问题一般用极限法。极限分析法是一种预测和处理临界问题的有效方法,它是指:通过恰当选择某个变化的物理量将其推向极端(“极大”、“极小”、“极右”或“极左”等),从而把比较隐蔽的临界现象(或“各种可能性”)暴露出来,使问题明朗化,以便非常简捷地得出结论。在平衡中最常见的临界问题有以下两类: 一、以弹力为情景 1. 两接触物体脱离与不脱离的临界条件是:相互作用力为零。 2. 绳子断与持续的临界条件是:作用力达到最大值; 绳子由弯到直(或由直变弯)的临界条件是:绳子的拉力等于零。 例1:如图所示,物体的质量为2kg ,两根轻绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,在物体上另施加一个方向与水平线成θ=60°的拉力F ,若要使两绳都能伸直,求拉力F 的大小范围。 解:作出A 受力图如图所示,由平衡条件有: F .cos θ-F 2-F 1cos θ=0, F sin θ+F 1sin θ-mg =0 要使两绳都能绷直,则有:F 10,02≥≥F 由以上各式可解得F 的取值范围为: N F N 3 3 403320≤≤ 变式训练1:两根长度不一的细线a 和b ,一根连在天花板上,另一端打结连在一起,如图,已知a 、b 的抗断张力(拉断时最小拉力)分别为70N ,80N.它们与天花板的夹角分别为37°、53°, 现在结点O 处加一个竖直向下的拉力F ,(sin37°=cos53°=0.6, cos37°=sin53°=0.8) 求: (1)当增大拉力F 时,哪根细绳先断? (2)要使细线不被拉断,拉力F 不得超过多少? 变式训练2两根长度相等的轻绳,下端悬挂一质量为m 的物体,上端分别固定在水平天花板上的M 、N 点,M 、N 两点间的距离为s ,如图所示,已知两绳所能承 受的最大拉力均为T ,则每根绳的长度不得短于__ ____. 例2:如图所示,半径为R ,重为G 的均匀球靠竖直墙放置,左下方有厚为h 的木块,若不计摩擦,用至少多大的水平推力F 推木块才能使球离开地面。 解析 以球为研究对象,如图所示。有 R h Rh 2cos R h R sin F cos F G sin F 2 2N 1N 1N -= θ-= θ=θ=θ 再以整体为研究对象得F F 2N = 即 G ·h R )h R 2(h F --= 变式训练3:如图所示,平台重600N ,滑轮重不计,要使系统保持静止,人重不能小于( B ) A .150N B .200N C .300N D .600N 二、以最大静摩擦力为情景 靠摩擦力连接的物体间发生相对滑动或相对静止的临界条件为静摩擦力达到最大。 例3:如图所示,跨过定滑轮的轻绳两端分别系着物体A 和B ,物体A 放在倾角为θ的斜面上。已知物体A 的质量为m ,物体A 与斜面间的动摩擦因数为μ(μ

5 平衡中的临界问题

【专题概述】 1.临界状态:物体由某种物理状态变化为另一种物理状态时,中间发生质的飞跃的转折状态,通常称之为临界状态。 2.临界问题:涉及临界状态的问题叫做临界问题。 3. 解决临界问题的基本思路 (1)认真审题,仔细分析研究对象所经历的变化的物理过程,找出临界状态。 (2)寻找变化过程中相应物理量的变化规律,找出临界条件。 (3)以临界条件为突破口,列临界方程,求解问题 4.三类临界问题的临界条件 (1)相互接触的两个物体将要脱离的临界条件是:相互作用的弹力为零。 (2)绳子松弛的临界条件是:绳中拉力为零 页脚内容1

(3)存在静摩擦的连接系统,当系统外力大于最大静摩擦力时,物体间不一定有相对滑动,相对滑动与相对静止的临界条件是:静摩擦力达最大值 临界现象是量变质变规律在物理学上的生动体现。即在一定的条件下,当物质的运动从一种形式或性质转变为另一种形式或性质时,往往存在着一种状态向另一种状态过渡的转折点,这个转折点常称为临界点,这种现象也就称为临界现象.如:静力学中的临界平衡;机车运动中的临界速度;振动中的临界脱离;碰撞中的能量临界、速度临界及位移临界;电磁感应中动态问题的临界速度或加速度;光学中的临界角;光电效应中的极限频率;带电粒子在磁场中运动的边界临界;电路中电学量的临界转折等.解决临界问题,一般有两种方法,第一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界特殊规律和特殊解;第二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。 【典例精讲】 典例1:倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A与斜面间的动摩擦因数μ=0.5。现给A施加一水平力F,如图所示。设最大静摩擦力与滑动摩擦力相等(sin37°=0.6,cos37°=0.8),如果物体A能在斜面上静止,水平推力F与G的比值不可能是() 页脚内容2

在学习物理中有关临界极值问题的处理

在动力学中临界极值问题的处理 佛山市高明第一中学(528500)周兆富 物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的 问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、电磁学密切相关,综合性强。在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。 一.解决动力学中临界极值问题的基本思路 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。在解决临办极值问题注意以下几点:○1临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。○2临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。○3许多临界问题常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语其内含规律就能找到临界条件。○4有时,某些临界问题中并不包含常见的临界术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。○5临界问题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,抓住临界状态的特征,找到正确的解题方向。○6确定临界点一般用极端分析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。 二.匀变速运动规律中与临界极值相关问题的解读 在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。 ?例1?速度大小是5m/s的甲、乙两列火车,在同一直线上相向而行。当它们相隔2000m时,一只鸟以10m/s的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。问: (1)当两车头相遇时,这鸟共飞行多少时间? (2)相遇前这鸟飞行了多少路程? ?灵犀一点?甲、乙火车和小鸟运动具有等时性,要分析相遇的临界条件。 ?解析?飞鸟飞行的时间即为两车相遇前运动的时间,由于飞鸟在飞行过程中速率没有变化,可用s=vt求路程。 (1)设甲、乙相遇时间为t,则飞鸟的飞行时间也为t,甲、乙速度大小相等v甲= v乙=5m/s,同相遇的临界条件可得:s = (v甲+v乙)t 则: 2000 =200 10 s t s s v v == + 乙 甲

动力学中的临界极值问题的处理讲课教案

动力学中的临界极值问题的处理

动力学中临界极值问题的处理及分析 物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、力学密切相关,综合性强。在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。 一.解决动力学中临界极值问题的基本思路 所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。至于是“出现”还是“不出现”,需视具体问题而定。极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。临界问题往往是和极值问题联系在一起的。 解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。在解决临办极值问题 注意以下几点:○1临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。○2临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。○3许多临界问题 常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语 其内含规律就能找到临界条件。○4有时,某些临界问题中并不包含常见的临界 术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀 减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。○5临界问 题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情 景,抓住临界状态的特征,找到正确的解题方向。○6确定临界点一般用极端分 析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。 二.匀变速运动规律中与临界极值相关问题的解读 在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。 【例1】速度大小是5m/s的甲、乙两列火车,在同一直线上相向而行。当它们相隔2000m时,一只鸟以10m/s的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。问: (1)当两车头相遇时,这鸟共飞行多少时间?

4、力的平衡问题中的临界和极值问题

力的平衡问题中的临界和极值问题 例8:如图所示,绳子AO 的最大承受力为150N ,绳子BO 的最大承受力为 100N ,绳子OC 强度足够大.要使绳子不断,悬挂重物的重力最多为 ( ) A .100N B.150N C. D.200N 例9:物体的质量为2 kg,两根轻细绳AB 和AC 的一端连接于竖直墙上,另一端系于 物体上,在物体上另施加一个方向与水平线成θ角的拉力F,相关几何关系如图所示, θ=60°,若要使绳都能伸直,求拉力F 的大小范围。(g 取10 m/s 2) 课后针对性训练: 1、如右图所示,物体B 靠在竖直墙面上,在竖直轻弹簧的作用下,A 、B 保持静止,则物体A 、B 受力的个数分别为( ) A .3,3 B .4,3 C .4,4 D .4,5 2、如图所示,一个质量为m 的滑块静止置于倾角为30°的粗糙斜面上,一根轻 弹簧一端固定在竖直墙上的P 点,另一端系在滑块上,弹簧与竖直方向的夹角为 30°.则( ) A .滑块可能受到三个力作用 B .弹簧一定处于压缩状态 C .斜面对滑块的支持力大小可能为零 D .斜面对滑块的摩擦力大小可能等于mg 3、如图所示,在水平力F 的作用下,木块A 、B 保持静止。若木块A 与B 的接触 面是水平的,且F≠0。则关于木块B 的受力个数可能是( )。 A.3个或4个 B.3个或5个 C.4个或5个 D.4个或6个 4、如图1-3所示,一光滑的半圆形碗固定在水平面上,质量为m1的小球 用轻绳跨过光滑碗连接质量分别为m2和m3的物体,平衡时小球恰好与碗 之间没有弹力作用,两绳与水平方向夹角分别为60°、30°。则m1、m2、 m3的比值为 ( ) A .1:2:3 B .2::1 C .2:1:1 D .2:1: 5、两个相同的可视为质点的小球A 和B ,质量均为m ,用长度相同的两根细 线把A 、B 两球悬挂在水平天花板上的同一点O ,并用长度相同的细线连接A 、 B 两个小球,然后,用一水平方向的力F 作用在小球A 上,此时三根线均处 于伸直状态,且OB 细线恰好处于竖直方向如图所示.如果两小球均处于静止 状态,则力F 的大小为( ) A .0 B .mg C.3mg 3 D.3mg

高中物理 练习 平衡中的临界和极值问题 新人教版必修1.pdf

平衡中的临界和极值问题 1.如图所示,位于斜面上的物块m 在沿斜面向上的力F 作用下,处于静止状态,则斜面作用于物块的静摩擦力 ( ) A .方向可能沿斜面向上 B .方向可能沿斜面向下 C .大小可能等于零 D .大小可能等于F 2.如图所示,为使重为G 的物块静止在倾角为α的光滑固定斜面上,需对物块施加一个外力F ,当力F 的方向______时,力F 的 值最小,最小值为______. 3.如图所示,物体A 静止于斜面上,与斜面间的动摩擦 因数 5.0=μ,已知kg m A 2=,kg m B 1=,则物体A 受到 ______个力的作用,它们是_______. 4、 如图所示,质量为m ,横截面为直角三角形的物块ABC ,∠ABC =α,AB 边靠在竖直墙面上,F 是垂直于斜面BC 的推力,现物块静止不动,则摩擦力的大小为_________。 5、 如图所示,在质量为1kg 的重物上系着一条长30cm 的细绳,细绳的另一端连着套在水平棒上可以滑动的圆环,环与棒间的动摩擦因数为0.75,另有一条细绳,其一端跨过定滑轮,定滑轮固定在距离圆环0.5m 的地方.当细绳的端点挂上重物G ,而圆环将要滑动时,试问: (1)长为30cm 的细绳的张力是多少? (2)圆环将要开始滑动时,重物G 的质量是多少? (3)角φ多大?(环的重力忽略不计) A C B F α

参考答案: 1.ABCD 2.沿斜面向上 αsin G 3。3个,重力,绳子的拉力,斜面给它的支持力 4.f m g F =+s i n α 5.解析:因为圆环将要开始滑动,所以可以判定本题是在共点力作用下物体的平衡问题. 由平衡条件Fx =0,Fy =0, 建立方程有:μF N -F T cos θ=0,F N -F T sin θ=0。 所以tan θ=1/μ,θ=arctan(1/μ)=arctan(4/3). 设想:过O 作OA 的垂线与杆交于B ′点,由AO =30cm ,tan θ=4/3得,B ′O 的长为40cm. 在直角三角形中,由三角形的边长条件得AB ′=50cm ,但据题设条件AB =50cm ,故B ′点与定滑轮的固定处B 点重合,即得φ=90°。 (1)如图所示,选取坐标系,根据平衡条件有: Gcos θ+F T sin θ-mg =0 F T cos θ-Gsin θ=0. 即F T =8N. (2)圆环将要滑动时,得: m G g =F T cot θ,m G =0.6kg. (3)前已证明φ为直角,故φ=90°. 答案:(1)8N ;(2)0.6kg ;(3)90°。 平衡中的综合问题 1.如图所示,教室里同一块小黑板用相同的细绳按四种方式悬挂着,其中α<β,则每根细绳所 受的拉力中,数值最大的是 A .甲图 B .乙图 C .丙图 D .丁图

第二轮专题复习:平衡中的临界和极值问题

2020届高考物理第二轮专题复习选择题模拟演练 平衡中的临界和极值问题 一、单项选择题 1、如图所示,质量均为m 的A 、B 两物体叠放在竖直弹簧上并保持静止,用大小等于mg 的恒力F 向上拉B ,运动距离h 时,B 与A 分离.下列说法正确的是( ) A . B 和A 刚分离时,弹簧长度等于原长 B .B 和A 刚分离时,它们的加速度为g C .弹簧的劲度系数等于mg h D .在B 与A 分离之前,它们做匀加速直线运动 2、如图所示,在光滑水平面上有一辆小车A ,其质量为m A =2.0 kg ,小车上放一个物体B ,其质量为m B =1.0 kg.如图甲所示,给B 一个水平推力F ,当F 增大到稍大于3.0 N 时,A 、B 开始相对滑动.如果撤去F ,对A 施加一水平推力F ′,如图乙所示.要使A 、B 不相对滑动,则F ′的最大值F max 为( ) A .2.0 N B .3.0 N C .6.0 N D .9.0 N

3、不可伸长的轻绳跨过质量不计的滑轮,绳的一端系一质量M =15 kg 的重物,重物静止于地面上,有一质量m =10 kg 的小猴从绳的另一端沿绳上爬,如图所示,不计滑轮摩擦,在重物不离开地面的条件下,小猴向上爬的最大加速度为(g 取10 m/s 2) ( ) A .5 m/s 2 B .10 m/s 2 C .15 m/s 2 D .25 m/s 2 4、如图所示,三根长度均为l 的轻绳分别连接于C 、D 两点,A 、B 两端被悬挂在水平天花板上,相距2l .现在C 点悬挂一个质量为m 的重物,为使CD 绳保持水平,在D 点可施加力的最小值为( ) A .mg B. 3 3 mg C.12mg D.14 mg 5、如图所示,质量均为m 的木块A 和B ,用一个劲度系数为k 的轻质弹簧连接,最初系统静止,现在用力缓慢拉A 直到B 刚好离开地面,则这一过程A 上升的高度为( )

45共点力平衡中的临界和极值问题

共点力平衡中的临界和极值问题 【【教教学学目目标标】】 1、知道共点力平衡中的临界状态及极值问题; 2、掌握解共点力平衡中的临界问题和极值问题的方法。 【【重重点点难难点点】】 分析共点力平衡中的临界问题和极值问题的方法 【【教教学学方方法法】】 讲练结合 【【教教学学用用具具】】 幻灯片 【【教教学学过过程程】】 一、临界状态 某种物理现象变化为另一种物理现象或物体从某种特性变化为另一种特性时,发生质的飞跃的转折状态称为临界状态。临界状态也可理解为“恰好出现”或“恰好不出现”某种现象的状态,平衡物体的临界状态是指物体所处平衡状态将要破坏而尚未破坏(即将发生变化)的状态。涉及临界状态的问题叫临界问题。解决这类问题时,一定要注意“恰好出现”或“恰好不出现”的条件。 二、极值问题 在平衡物体的极值问题中,一般是指在力的变化过程中的最大值和最小值问题。 三、解答临界问题的基本思维方法 1、假设推理法:即先假设怎样,然后再根据平衡条件及有关知识列方程求解。 2、极限分析法:即通过恰当地选取某个物理量推向极端(“极大”和“极小”、“极左”和“极右”等),从而把比较隐蔽的临界现象(或“各种可能性”)暴露出来,便于解答。 四、解答极值问题的基本思维方法 解答平衡物体的临界问题时,经常遇到讨论某些物理量的极值问题,处理这类问题时,应从极值条件出发,对处于平衡临界状态的物体,列出平衡方程,并应用恰当的数学工具(如应用三角函数的性质、配方法等)解决。 1、根据物体的平衡条件列的方程中,如果含有三角函数则可利用三角函数公式,把所列方程化成仅含单个正弦或单个余弦函数的式子,然后应用正弦或余弦函数的绝对值不大于1的性质,求出某些物理量的最大值或最小值。 2、根据平衡条件列出的方程中,如果含有y =a cos θ+b sin θ形式的部分,可以将其作如下处理求出极值: )y θθ=+ 令tan b a ?=(或tan a b ?=)

平衡中的临界和极值问题

临界问题是指:当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出 某种物理现象转化为另一种物理现象的转折状态称为临界状态。 ,至于是“出现”还 平衡问题的临界状态是指物体的所处的平衡状态将要被破坏而尚未被破坏的状态。这类问题称为临界问题。解临界问题的基本方法是 极值问题则是在满足一定的条件下,某物理量出现极大值或极小解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从 的物体,置于水平长木板上,物体与木板间的动摩擦因数为μ。现将长木板的一端缓慢抬起,要使物体始终保持静止,木板与水平地面间的夹角θ不能超过多少?设最大静摩擦力等 【分析】这是一个斜面问题。当θ增大时,重力沿斜面的分力增大。当此分力增大到等于最大静摩擦力时,物体处于动与不动的临界 μ时,重力 重力沿斜面向下的分 重力沿斜面向下的分力大于滑动摩擦 θ≤μ,则物体保持静止;如

②、将物体以一初速度置于斜面上,如tg<μ,则物体减速,最后 静止;如tg θ=μ,则物体保持匀速运动;如tg θ>μ,则物体做加速运动。 因此,这一临界条件是判断物体在斜面上会如何运动的一个条件。 练习:如图,质量为m 的三角形尖劈静止于斜面上,上表面水平。今在其上表面加一竖直向下的力F 则物体: A 、保持静止; B 、向下匀速运动; C 、向下加速运动; D 、三种情况都要可能。 【解答】A 。 【例2】如图所示,跨过定滑轮的轻绳两端, 分别系着物体A 和B ,物体A 放在倾角为α的斜 面上,已知物体A 的质量为m ,物体B 和斜面间 动摩擦因数为μ(μ

平衡中的临界和极值问题

②、将物体以一初速度置于斜面上,如tg<μ,则物体减速,最后静止;如tgθ=μ,则物体保持匀速运动;如tgθ>μ,则物体做加速运动。 F 因此,这一临界条件是判断物体在斜面上会如何 运动的一个条件。 练习:如图,质量为m的三角形尖劈静止于斜面 上,上表面水平。今在其上表面加一竖直向下的力F 。 则物体: A、保持静止; B、向下匀速运动; C、向下加速运动; D、三种情况都要可能。 【解答】A。 【例2】如图所示,跨过定滑轮的轻绳两端, 分别系着物体A和B,物体A放在倾角为α的斜 面上,已知物体A的质量为m,物体B和斜面 间动摩擦因数为μ(μ

共点力平衡中的临界极值问题

专题:共点力平衡中的临界极值问题1.临界问题 当某物理量变化时,会引起其他物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”、“刚能”、“恰好”等语言叙述。 2.极值问题 物体平衡的极值,一般指在力的变化过程中的最大值和最小值问题。一般用图解法或解析法进行分析。 3.解决极值问题和临界问题的方法 (1)极限法:首先要正确地进行受力分析和变化过程分析,找出平衡的临界点和极值点;临界条件必须在变化中去寻找,不能停留在一个状态来研究临界问题,而要把某个物理量推向极端,即极大和极小,并依次做出科学的推理分析,从而给出判断或导出一般结论。 (2)数学分析法:通过对问题的分析,依据物体的平衡条件写出物理量之间的函数关系(或画出函数图象),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值),但利用数学方法求出极值后,一定要依据物理原理对该值的合理性及物理意义进行讨论和说明。 (3)物理分析方法:根据物体的平衡条件,作出力的矢量图,通过对物理过程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值。 [典题] (2016·宝鸡联考)如图所示,质量为m的物体放在一固定斜面上,当斜 面倾角为30°时恰能沿斜面匀速下滑。对物体施加一大小为F水平向右的恒力,物 体可沿斜面匀速向上滑行。设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过 某一临界角θ0时,不论水平恒力F多大,都不能使物体沿斜面向上滑行,试求: (1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小。 [解析] (1)如图所示, 对物体受力分析,由平衡条件得mg sin 30°=μmg cos 30° 解得μ=tan 30°= 3 3 (2)设斜面倾角为α时,受力情况如图所示,由平衡条件得F cosα=mg sinα+F f

高一【多物体平衡及平衡中的临界、极值问题】专题训练(带解析)

高一【多物体平衡及平衡中的临界、极值问题】 专题训练 一、选择题(1~7题为单项选择题,8~11题为多项选择题) 1.如图1所示,斜面体A放在水平地面上,用平行于斜面的轻弹簧将物块B拴在挡板上,在物块B上施加平行于斜面向上的推力F,整个系统始终处于静止状态,则下列说法正确的是() 图1 A.物块B与斜面之间一定存在摩擦力 B.弹簧的弹力一定沿斜面向下 C.地面对斜面体A的摩擦力一定水平向左 D.若增大推力,则弹簧弹力一定减小 解析因不知道弹簧处于伸长还是压缩状況,故A、B、D错误;对整体受力分析,地面对斜面体A的摩擦力与推力F的水平分力等大反向,故C正确。 答案 C 2.如图2所示,斜面的倾角为30°,物块A、B通过轻绳连接在弹簧测力计的两端,A、B重力分别为10 N、6 N,整个装置处于静止状态,不计一切摩擦,则弹簧测力计的读数为() 图2 A.1 N B.5 N C.6 N D.11 N 解析对物体A由共点力平衡条件有F T-G A sin 30°=0,由牛顿第三定律可知,弹簧测力计的读数为F T=5 N。选项B正确。

答案 B 3.如图3所示,两个物体A、B的质量均为1 kg,各接触面间的动摩擦因数均为 0.3,同时用F=1 N的两个水平力分别作用在A、B上,则地面对物体B,B 对物体A的摩擦力分别为(取g=10 m/s2)() 图3 A.6 N 3 N B.1 N 1 N C.0 1 N D.0 2 N 解析以A、B整体为研究对象进行受力分析,可知地面对B的摩擦力为零; 再以A为研究对象进行受力分析,F f=μmg=3 N>1 N,可知B对A的摩擦力与力F大小相等、方向相反,大小为1 N,所以选项C正确。 答案 C 4.将两个质量均为m的小球a、b用细线相连后,再用细线悬挂于O点,如图4所示。用力F拉小球b,使两个小球都处于静止状态,且细线Oa与竖直方向的夹角保持θ=30°,则F的最小值为() 图4 A. 3 3 mg B.mg C. 3 2 mg D. 1 2 mg 解析以a、b为整体,整体受重力2mg、悬绳Oa的拉力F T及拉力F三个力而平衡,如图所示,三力构成的矢量三角形中,当力F垂直于悬绳拉力F T时有最小值,且最小值F=2mg sin θ=mg,B项正确。 答案 B 5.如图5所示,光滑斜面的倾角为30°,轻绳通过两个滑轮与A相连,轻绳的

平衡中的临界

平衡中的临界、极值问题 一、知识要点 临界问题是指:当某种物理现象(或物理 状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”. 常见问题的出现:1.与摩擦力相关的临界;2.与最大张力相关的临界;3.与弹力发生突然 变化的临界 二、例题分析 例题1、如图所示,半径为R ,重为G 的均匀球靠竖直墙放置,左下方有厚为h 的木块,若不计摩擦,用至少多大的水平推力F 推木块才能使球离开地面. 例题2、如图所示,跨过定滑轮的轻绳两端,分别系着物体A 和B ,物体A 放在倾角为α的斜面上,已知物体A 的质量为m ,物体A 和斜面间动摩擦因数为μ(μ

1.如图所示,能承受最大拉力为10N 的细线OA 与竖直方向成 角,能承受最大拉力为5N 的 细线OB 水平,细线OC 能承受足够大的拉力,为使OA 、OB 均不被拉断,OC 下端所悬挂物体的最大重力是多少? 2.如图所示,一球A 夹在竖直墙与三角劈B 的斜面之间,三角劈的重力为G ,劈的底部与水平地面间的动摩擦因数为μ,劈的斜面与竖直墙面是光滑的。问:欲使三角劈静止不动,球的重力不能超过多大?(设劈的最大静摩擦力等于滑动摩擦力) 3.一个底面粗糙、质量为M 的劈放在粗糙的水平面上,劈的斜面光滑且与水平面夹角为30°,用一端固定的轻绳系一 质量也为M 小球,小球放在斜面上,轻绳与斜面的夹角为 30°,如图所示.若地面对劈的最大静摩擦力等于地面对劈的支持力的k 倍,为使整个 系统静止,k 的最小值为多少? 4、如图,重为G 的木块,在力F 的推动下沿水平地面匀速滑动。若木块与地面间的动摩擦因数为μ,F 与水平方向成α角。试说明:若α超过某一个值时,不论推力F 多大,木块都不可能滑动,并求出这个角度。 5.如图所示,物体A 质量为2 kg ,与斜面间的动摩擦因数为0.4.假设最大静摩擦力等于滑动摩擦力,则若要使A 在斜面上静止,物体B 质量的最大值和最小值是多少?

§2.6 动态平衡、平衡中的临界和极值问题

§2.6 动态平衡、平衡中的临界和极值问题 【考点自清】 一、平衡物体的动态问题 (1)动态平衡: 指通过控制某些物理量使物体的状态发生缓慢变化。在这个过程中物体始终处于一系列平衡状态中。 (2)动态平衡特征: 一般为三力作用,其中一个力的大小和方向均不变化,一个力的大小变化而方向不变,另一个力的大小和方向均变化。 (3)平衡物体动态问题分析方法: 解动态问题的关键是抓住不变量,依据不变的量来确定其他量的变化规律,常用的分析方法有解析法和图解法。晶品质心_新浪博客 解析法的基本程序是:对研究对象的任一状态进行受力分析,建立平衡方程,求出应变物理量与自变物理量的一般函数关系式,然后根据自变量的变化情况及变化区间确定应变物理量的变化情况。 图解法的基本程序是:对研究对象的状态变化过程中的若干状态进行受力分析,依据某一参量的变化(一般为某一角),在同一图中作出物体在若干状态下的平衡力图(力的平形四边形或三角形),再由动态的力的平行四边形或三角形的边的长度变化及角度变化确定某些力的大小及方向的变化情况。 二、物体平衡中的临界和极值问题 1、临界问题: (1)平衡物体的临界状态:物体的平衡状态将要变化的状态。 物理系统由于某些原因而发生突变(从一种物理现象转变为另一种物理现象,或从一种物理过程转入到另一物理过程的状态)时所处的状态,叫临界状态。 临界状态也可理解为“恰好出现”和“恰好不出现”某种现象的状态。 (2)临界条件:涉及物体临界状态的问题,解决时一定要注意“恰好出现”或“恰好不出现”等临界条件。晶品质心_新浪博客 平衡物体的临界问题的求解方法一般是采用假设推理法,即先假设怎样,然后再根据平衡条件及有关知识列方程求解。解决这类问题关键是要注意“恰好出现”或“恰好不出现”。

专题五-牛顿第二定律中的临界和极值问题

专题五-牛顿第二定律 中的临界和极值问题-CAL-FENGHAI.-(YICAI)-Company One1

专题五牛顿运动定律的应用 ——临界和极值问题 一、概念 (1)临界问题:某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态。 (2)极值问题:在满足一定的条件下,某物理量出现极大值或极小值的情况。 二、关键词语 在动力学问题中出现的“最大”、“最小”、“刚好”、“恰能”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件。有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,也可能不出现临界问题,解答这类问题一般用假设法。 三、常见类型 动力学中的常见临界问题主要有三类:一是弹力发生突变时接触物体间的 脱离与不脱离的问题;二是绳子的绷紧与松弛问题;三是 摩擦力发生突变的滑动与不滑动问题。 四、解题关键 解决此类问题的关键是对物体运动情况的正确描述,对临界状态的判断与分析,找出处于临界状态时存在的独特的物理关系,即临界条件。 常见的三类临界问题的临界条: 1、相互接触的两个物体将脱离的临界条件是:相互作用的弹力为零。

2、绳子松弛的临界条件是:绳子的拉力为零。 3、存在静摩擦的系统,相对滑动与相对静止的临界条件是:静摩擦力达到 最大值。 五、例题解析 【例题1】质量为0.2kg的小球用细线吊在倾角为θ=60°的斜面体的顶端,斜面体静止时,小球紧靠在斜面上,线与斜面平行,如图所示,不计摩擦,求在下列三种情况下,细线对小球的拉力(取g=10 m/s2) (1) 斜面体以23m/s2的加速度向右加速运动; (2) 斜面体以43m/s2,的加速度向右加速运动; 【例题2】如图所示,轻绳AB与竖直方向的夹角θ=37°,绳BC水平,小球质量m=0.4 kg,取g=10m/s2。试求: (1)小车以a1=2.5m/s2的加速度向右做匀加速运动时,绳AB的张力是多少? (2)小车以a2=8m/s2的加速度向右做匀加速运动时,绳AB的张力是多少? 【例题3】如图所示,质量为2kg 的m1和质量为1kg 的

高中物理:力平衡中的临界问题

高中物理:力平衡中的临界问题 1.临界状态:物体由某种物理状态变化为另一种物理状态时,中间发生质的飞跃的转折状态,通常称之为临界状态。 2.临界问题:涉及临界状态的问题叫做临界问题。 3. 解决临界问题的基本思路 (1)认真审题,仔细分析研究对象所经历的变化的物理过程,找出临界状态。 (2)寻找变化过程中相应物理量的变化规律,找出临界条件。 (3)以临界条件为突破口,列临界方程,求解问题 4.三类临界问题的临界条件 (1)相互接触的两个物体将要脱离的临界条件是:相互作用的弹力为零。 (2)绳子松弛的临界条件是:绳中拉力为零 (3)存在静摩擦的连接系统,当系统外力大于最大静摩擦力时,物体间不一定有相对滑动,相对滑动与相对静止的临界条件是:静摩擦力达最大值 临界现象是量变质变规律在物理学上的生动体现。即在一定的条件下,当物质的运动从一种形式或性质转变为另一种形式或性质时,往往存在着一种状态向另一种状态过渡的转折点,这个转折点常称为临界点,这种现象也就称为临界现象.如:静力学中的临界平衡;机车运动中的临界速度;振动中的临界脱离;碰撞中的能量临界、速度临界及位移临界;电磁感应中动态问题的临界速度或加速度;光学中的临界角;光电效应中的极限频率;带电粒子在磁场中运动的边界临界;电路中电学量的临界转折等. 解决临界问题,一般有两种方法,第一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界特殊规律和特殊解;第二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。 【总结提升】 所谓极值问题,一般而言,就是在一定条件下求最佳结果所需满足的极值条件.求解极值问题的方法从大的角度可分为物理方法和数学方法。 物理方法包括 (1)利用临界条件求极值; (2)利用问题的边界条件求极值; (3)利用矢量图求极值。

共点力平衡中的临界极值问题

专题:共点力平衡中的临界极值问题 1.临界问题 当某物理量变化时,会引起其他物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”、“刚能”、“恰好”等语言叙述。 2.极值问题 物体平衡的极值,一般指在力的变化过程中的最大值和最小值问题。一般用图解法或解析法进行分析。 3.解决极值问题和临界问题的方法 (1)极限法:首先要正确地进行受力分析和变化过程分析,找出平衡的临界点和极值点;临界条件必须在变化中去寻找,不能停留在一个状态来研究临界问题,而要把某个物理量推向极端,即极大和极小,并依次做出科学的推理分析,从而给出判断或导出一般结论。 (2)数学分析法:通过对问题的分析,依据物体的平衡条件写出物理量之间的函数关系(或画出函数图象),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值),但利用数学方法求出极值后,一定要依据物理原理对该值的合理性及物理意义进行讨论和说明。 (3)物理分析方法:根据物体的平衡条件,作出力的矢量图,通过对物理过程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值。 [典题] (2016·宝鸡联考)如图所示,质量为m 的物体放在一固定斜面上,当斜面 倾角为30°时恰能沿斜面匀速下滑。对物体施加一大小为F 水平向右的恒力,物体 可沿斜面匀速向上滑行。设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某 一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行,试求: (1)物体与斜面间的动摩擦因数; (2)这一临界角θ 0的大小。 [解析] (1)如图所示, 对物体受力分析,由平衡条件得mg sin 30°=μmg cos 30° 解得μ=tan 30°=33 (2)设斜面倾角为α时,受力情况如图所示,由平衡条件得F cos α=mg sin α+F f F N =mg cos α+F sin α F f =μF N 解得F =mg sin α+μmg cos αcos α-μsin α 当cos α-μsin α=0,即cot α= 33时,F →∞,即“不论水平恒力F 多大,都不能使物体沿斜面向上滑行”,此时,临界角θ 0=α=60° 2.(2012·全国新课标)拖把是由拖杆和拖把头构成的擦地工具(如图所示)。设拖把 头的质量为m ,拖杆质量可以忽略;拖把头与地板之间的动摩擦因数为常数μ,重力加 速度为g 。某同学用该拖把在水平地板上拖地时,沿拖杆方向推拖把,拖杆与竖直方向 的夹角为θ。 (1)若拖把头在地板上匀速移动,求推拖把的力的大小; (2)设能使该拖把在地板上从静止刚好开始运动的水平推力与此时地板对拖把的正 压力的比值为λ。已知存在一临界角θ0,若θ≤θ0,则不管沿拖杆方向的推力多大,都不可能使拖把从静止开始运动。求这一临界角的正切值tan θ0。

相关主题
文本预览
相关文档 最新文档