当前位置:文档之家› 晶闸管投切电容器(TSC)的应用

晶闸管投切电容器(TSC)的应用

晶闸管投切电容器(TSC)的应用
晶闸管投切电容器(TSC)的应用

晶闸管投切电容器(TSC)的应用

【摘要】:传统的无功补偿设备有并联电容器、调相机和同步发电机等,调相机和同步发电机等补偿设备又属于旋转设备,其损耗、噪声都很大,这些设备不适应电力系统发展的需要。合理的无功功率补偿对于对输配电系统非常重要。与机械投切电容器相比,晶闸管的开、关无触点,其操作寿命几乎是无限的,减少了投切时的冲击电流和操作困难,其动态响应时间短。TSC能快速跟踪冲击负荷的突变,随时保持最佳馈电功率因数,实现动态无功补偿,减少电压波动,提高电能质量,节约电能。

【关键词】:无功补偿;TSC;零电压投切;

中图分类号:TM714 文献标识码:B 文章编号:1002-6908(2008)0510027-02

电力系统运行的经济性和电能质量与无功功率有重大的关系。无功功率是电力系统一种不可缺少的功率。大量的感性负荷和电网中的无功功率损耗,要求系统提供足够的无功功率,否则电网电压将下降,电能质量得不到保证。同时,无功功率的不合理分配,也将造成线损增加,降低电力系统运行的经济性。

电力负荷是随时变化的,所需要的无功功率也是随时变化的,为了维持无功平衡,要求无功补偿设备实行动态补偿,即要根据无功负荷的变化及时投切电容器。以往的动态无功补偿设备以机械开关(接触器)作为电容器的投切开关,机械开关不仅动作速度慢,而且会产生诸如涌流冲击、过电压、电弧重燃等现象,开关本身和电容器都容易损坏。

随着电力电子技术和微机控制技术的迅速发展和广泛应用,出现了智能型的动态无功补偿装置。这种以电力电子器件作为无功器件(电容器、电抗器)的控制或开关器件的动态无功补偿装置被称为静止无功补偿装置。

TSC是动态无功补偿技术的发展方向,它正成为传统无功补偿装置的更新换代产品。正因为如此,本课题选择这一技术领域进行研究。

一、静止无功补偿技术的现状及发展

20世纪70年代以来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容器(TSC)以及二者的混合装置(TCR TSC)等主要形式组成的静止无功补偿器(SVC)得到快速发展。

二、TSC投入的暂态过程分析

设装设TSC的母线电压是标准的正弦电压信号us(t)=Um sin(ωt+α),投入时电容器上的残压为Uc0,忽略晶闸管的导通压降和损耗,认为是一个理想开关,则用拉氏变换表示的TSC支路电压方程为:

电容器组投切操作步骤

电容器组投切时的操作步骤 1)、全站停电操作时,应先拉电容器组开关,再拉各路的出线开关。 2)、全站恢复送电时,应先合各路出线开关,再合电容器开关。 3)、全站故障失去电源后,没有失压保护的电容器组,必须将电容器组断开,以免电源重新合闸时损坏电容器。 4)、任何额定电压的电容器组,禁止将电容器组带负荷投入电源,以免损坏设备,电容器组每次分闸后,重新合闸时,必须将电容器停电3——5分钟,放电后进行。 电容器自动补偿原理 一、KL-4T 智能无功功率自动补偿控制器 1、补偿原理 JKL-4T 智能无功功率自动补偿控制器采用单片机技术,投入区域、延时时间、过压切除门限等参数已内部设定,利用程序控制固态继电器和交流接触器复合工作方式,投切电容器的瞬间过渡过程由固态继电器执行,正常工作由接触器执行(投入电容时,先触发固态继电器导通,再操作交流接触器上电,然后关断固态继电器;切除电容时先触发固态继电器导通,再操作交流接触器断电,然后关断固态继电器),具有电压过零投入、电流过零切除、无拉弧、低功耗等特点。 2、计算方法及投切依据 以电压为判据进行控制,无需电流互感器,适用于末端补偿,以保证用户电压水平。 1)电压投切门限 投入电压门限范围 175V ~210V 出厂预置 175V 切除电压门限范围 230V ~240V 出厂预置 232V 回差 0V ~ 22V 出厂预置 22V 2)欠压保护门限(电压下限)170V ~175V 出厂预置 170V

3)过压保护门限(电压上限)242V ~ 260V 出厂预置 242V 4)投切延时 1S ~600S 出厂预置 30S 3、常见故障及处理办法 用户端电压过低而电容器不能投入。 1)电压低于欠压保护门限。 2)三相电压严重不平衡。 二、JKL-4C 无功补偿控制器 1、补偿原理 JKL-4C 无功补偿控制器采用单片机技术,投切组数、投切门限、延时时间、过压切除门限等参数可由用户自行整定。取样物理量为无功电流,取样信号相序自动鉴别、转换、无须提供互感器变比及补偿电容容量,自行整定投切门限,满量程跟踪补偿,无投切振荡,适应于谐波含量较大的恶劣现场工作。 2、计算方法及投切依据 依据《DL/T597-1996低压无功补偿器订货技术条件》无功电流投切,目标功率因数为限制条件。 1)当电网功率因数低于COSФ预置且电网无功电流大于1.1Ic时(Ic为电容器所产生无功电流,由控制器自动计算),超过延时时间,补偿电容器自动投入。 2)当相位超前或电压处于过压、欠压状态时,控制器切除电容器。 3、常见故障及处理办法 1)显示 -.50 。取样电压电流线接错,应为线电压和另外一相流。 2)功率因数显示较低而不投入电容。目标功率因数设置过低或负荷过小或者过压保护门限设置过低。 三、PDK2000配电综合测控仪 1、补偿原理

晶闸管投切开关TGS控制器TJK2-D

特通电气低压无功补偿装置选型指南 一、无功和谐波 (2) 二、方案设计 (3) 三、TSC无功功率动态补偿装置 (4) 特通增强调谐型—JJH型无功功率动态补偿装置 (7)

一、 无功和谐波 1、 无功与谐波的本质及危害? ? 无功增加供电设备容量,增加设备投资。 ? 无功增加供电设备及线路损耗。 ? 无功影响供电电压,降低产品质量,缩短生产设备使用寿命,。 ? 谐波使公用电网产生了附加的谐波损耗,谐波流过中线时会使线路过热甚至发生火灾。 ? 谐波会引起公用电网中局部的并联谐振和串联谐振 ? 谐波会导致继电保护和自动装置的误动作。 2、 无功和谐波的相关标准:

二、 方案设计 1、 装置补偿容量设计: ①. 估算法 一般来说,对于电动机类型的功率负荷,补偿量约为40%(低压补偿一般取30%-40%);对于综合配变,补偿量约为20%(高压补偿一般取20%左右); ③. 负荷计算法 此处所说的负荷计算法,主要指需要系数负荷计算法。是用设备功率乘以需要系数和同时系数,直接求出计算负荷的方法。这种方法比较简便,应用广泛,尤其适用于配、变电所的负荷计算。统计结束后利用查表法计算无功补偿的容量。 有功功率P () e X p P K K P ?∑?=∑ kW 无功功率Q () ?tg P K K Q e X q ??∑?=∑ kvar 视在功率S 22Q P S += kV A Pe ——用电设备组的设备功率,kW ; K X ——需要系数;(需要系数是一个综合系数,它标志着用电设备组投入运行时,从供电网络实际取用的功率与用电设备组设备功率之比。) tgφ——用电设备功率因数角的正切值; K Σp ——有功功率同时系数,一般取0.8~1.0;

电容器投切开关

电容器投切开关 电容器投入时会产生的涌流,涌流的大小与线路阻抗有关,与电容器投入时电容器与电源间的电压差有关。在极端的情况下,涌流可以超过100倍的电容器额定电流。如此巨大的涌流会对电容器的寿命产生很大的影响,会对电网产生干扰,因此人们总是希望涌流越小越好。 1、专用接触器投切开关:为了减少电容器投入时的涌流,人们发明了CJ19系列投切电容器专用接触器,此类器件的基本原理是利用限流电阻首先接入电路使电容器预充电,从而减小电源与电容器间的电压差,然后主触点将限流电阻短路掉。此类器件通常可以将涌流降低到5倍以下,但切除电容器时的电弧不可避免,因此对接点的要求较高以保证足够的使用寿命。 2、晶闸管电压过零投入技术:由于晶闸管的导通损耗很大,使补偿装置的自耗电增大,不仅需要使用大面积的散热片甚至还要另加风扇。 3、复合开关技术:复合开关技术就是将晶闸管与继电器接点并联使用,由晶闸管实现电压过零投入与电流过零切除,由继电器接点来通过连续电流,这样就避免了晶闸管的导通损耗问题,也避免了电容器投入时的涌流。但是复合开关技术既使用晶闸管又使用继电器,于是结构就变得相当复杂,并且由于晶闸管对dv/dt的敏感性也比较容易损坏。 4、同步开关技术:同步开关是近年来最新发展的技术,顾名思义,就是使机械开关的接点准确地在需要的时刻闭合或断开。对于控制电容器的同步开关,就是要在开关接点两端电压为零的时刻闭合,从而实现电容器的无涌流投入,在电流为零的时刻断开,从而实现开关接点的无电弧分断。 同步开关与常用的复合开关相比较,省略了与磁保持继电器接点并联的晶闸管组件,于是结构简化,成本降低,又避免了晶闸管组件所容易出现的故障,因此可靠性大大提高。 TSC系列晶闸管可控硅功率模块是一种新型的可控硅控制电容投切开关,即TSC 动态投切开关,具有电压过零时刻投入,不产生涌流;电流过零时刻切除,不产生高压;全波导通不产生附加的谐波,无声运行。是替代交流接触器的一种新型开关。TSC系列功率模块集成了晶闸管、触发板、散热器、轴流风机、温度控制、接线端子等,用户使用时只须上端接电源,下端接电容,二次端接控制器输出,接线简洁,安装方便。用于动态补偿的电容投切。 安装简单,接线方便,可控硅采用进口,保证可控硅的使用的寿命和年限。 该产品采用可控硅电容投切智能控制电路。其充分利用软件硬件结合的优势,同步投入,PWM驱动输出,等电位检测技术,脉冲变压器触发,具有电压过零检测及投入准确;电流过零时刻切除;响应速度快、保护功能齐全等特点,保证了电容投切开关及负载电容工作时的长期安全与稳定。适用对电网功率因数的快速动态补偿及谐波治理电容的频繁投切。

等容自动投切电容器技术规范讲解

唐山轨道客车有限责任公司110kV变电站 6kV分组等容自动投切无功补偿成套 装置 技术规范书

一、总则 本技术规范书的使用范围,仅限于唐山轨道客车有限责任公司110kV 变电站6kV母线高压自动投切无功补偿装置技术条件。该成套具有智能控制功能,控制合理、准确和迅速;电容分组合理,能用较少的分组达到较多的容量组合,补偿级差小;电容回路串联一定比例的电抗器,可有效的减小电容器投入时的合闸涌流,增加了设备的使用寿命,同时可抑制对线路谐波电流的放大,减少对电网造成的污染;装置还具有对电网运行数据进行监测、分析、记录等功能,并能在推荐或者规定的使用环境下长期正常运行。 本规范书详细规定了招标设备的供电环境条件,技术参数,质量要求及运行 方式等。 招标方具备生产过三台或以上符合招标文件所规定要求的产品,并已成功地 运行了三年以上。 本次招标设备要求经过权威部门鉴定并达国内先进技术水平。 本招标文件作为订货合同的附件,与合同具有同等的法律效力。 二、执行的标准 设备符合国家、行业等有关标准。 GB 50227-95 GB 50062-92并联电容器装置设计规范 电力装置的继电保护和自动装置设计规范 GB 50060-923-110KV高压配电装置设计规范 GB331.1-97 GB 14808-93 GB/T3983.2-1989 GB1207-1997 GB1208-1997 DL/T 604-1996 DL/462-1992 GB/T11024.1-2001高压输变电设备的绝缘配合 交流高压接触器 高电压并联电容器 电压互感器 电流互感器 高压并联电容器装置订货技术条件 高压并联电容器用串联电抗器定货技术条件 标称电压1kV以上交流电力系统用并联电容器:总则、 性能、试验和定额安全要求、安装和运行导则 GB/T11024.4-2001标称电压1kV以上交流电力系统用并联电容器:内部熔

晶闸管投切电容器(TSC)技术触发器的技术参数和标准

晶闸管投切电容器触发器的技术参数和标准 关键词:晶闸管投切电容器触发器 TSC 电容器谐波对于晶闸管投切电容器(TSC)来说,晶闸管的负载是容性的电容器,不是感性的电抗器和电机,不是阻性的电阻器,对于TSC的触发器就不同于电机、电抗器、电阻器的触发器,有特殊的要求。 随着TSC补偿装置结构形式、电压等级、晶闸管结构、选取同步触发的信号等的不同,触发器也有所不同。好的TSC触发器保证了TSC装置可靠运行,欠缺的TSC触发器,使得整套TSC装置工作不正常。 下面谈晶闸管投切电容器(TSC)的触发器需要注意的技术性能参数要求、标准。 1.专业术语定义: 1.1 电网同步电压信号:触发器的同步电压信号取自电网电压。 1.2 晶闸管过零同步信号:触发器的同步电压信号取自晶闸管的阴极、阳极。 1.3 晶闸管触发电流变化率:指的是晶闸管触发电流的陡度,1us上升的触发电流mA数值。一般>40mA/us。 1.4 触发脉冲宽度(us):触发电流上升到10%和下降到10%的时间,单位us.一般>50us。 1.5 晶闸管触发电流强度(mA):一般为晶闸管触发电流的5~7 倍,>500mA。 1.6 脉冲列触发:TSC的晶闸管触发电流不是单脉冲或双脉冲,而是一串脉冲,脉冲串的宽度可以是120 、180 、甚至是360 。 1.7 擎住电流:门极触发电流的平台。要求有一个“肩膀”;“肩膀”越高,即“擎住电流”峰值越大,晶闸管就越能保证导通;“肩膀”越宽,即“擎住电流”有效值越大,晶闸管就越能保证导通。 1.8 触发器的绝缘水平:指触发器能够耐住的电压水平,指的是触发器的输出端电网侧的高电位和触发器的输入低电位之间可承受的电压水平。 1.9 TSC触发器动作时间(ms):指的是TSC从停止到再触发的时间,快速的触发器为20ms。不是TSC得到命令到动作的时间。

高压电容器组无损频繁投切装置

JHA-10/30-400系列高压电容器组无损智能投切装置安装使用说明书 郑州建豪电器技术有限公司 ZHENGZHOU JIANHAO ELECRIC TECHNICAL CO.,LTD

目 录 1 概述 (1) 2 面板说明 (6) 3 初次使用 (6) 4 吊运、安装 (6) 5 初次挂网时冲击试验的做法 (7) 6 随机文件 (8) 7 订货需知 (8)

1 概述 本装置由触发控制系统、投切单元、检测系统等组成,控制系统由微机实时监测、智能控制、电容器组投切单元由晶闸管、真空接触器共同组成。采用实时检测电容器残压技术,当控制系统检测到电容器上的残留电压与供电系统电压大小相等、方向相同时,使开关导通。投切电容器无冲击、无燃弧、无过电压,确保对电容器组的无损投切。在持续导通过程中由真空接触器工作,避免热耗和散热等问题。 1.1环境条件 a. 环境温度:周围空气温度最高不超过+45℃、最低不低于-20℃,且在24小时内的平均值不超过+35℃; b. 海拔高度:不超过1000米; c. 相对湿度:日平均值不大于95%、月平均值不大于90%,在周围空气温度+40℃时不超过50%; d. 工作环境:周围空气应不受腐蚀性、可燃性、易爆性气体及水蒸气等明显污染,污染等级:III级; e. 电容器组的接法:星接; f. 安装方式:立放; g. 安装地点:户内/户外 h. 一次接线方式:电缆下/排侧进线,确保相序正确; 1. 2 性能指标

a.额定电压:10 kV /6kV b.工作电流:30—400A c.控制器功耗:平均功耗 < 20W 最大功耗 < 30W d.合闸时间:220ms e.分闸时间:< 100ms 1.3型号及组成意义 1.4 一次电缆施工方案 施工前 施工后 图1-4-1

晶闸管的触发电路

晶闸管TSC的触发电路 1. 介绍晶闸管投切电容器的原理和快速过零触发要求 晶闸管投切电容器组的关键技术是必须做到电流无冲击。晶闸管投切电容器组的机理如图一所示,信息请登陆:输配电设备网 当电路的谐振次数n为2、3时,其值很大。 式(2)的第三项给出当触发角偏离最佳点时的振荡电流的幅值;式(2)中的第二项给出当偏离最佳予充电值时振荡电流的幅值。若使电容器电流ic=C*du/dt=0,则du/dt=0,即晶闸管必须在电源电压的正或负峰值触发导通投切电容器组,电容器预充电到峰值电压。 触发电路的功能是:电流无冲击触发;快速投切,20ms的动作。这个20ms不是得到投切命令到产生动作的时间,而是从停止到再投入动作的时间为20ms。快速反应时,在平衡补偿电路,不能出现不平衡动作,即有的相有电流,有的没有。

1. 两类晶闸管的触发电路的特点和存在的问题 从同步信号的采集上,有两类晶闸管触发电路。一类为从电网电压取得同步信号,一类为从晶闸管两端取得同步信号。 从电网电压取得同步信号的电路框图如图二:信息来源:https://www.doczj.com/doc/d114109870.html, 电路中包括同步变压器、同步信号处理电路和功率驱动电路、脉冲变压器隔离电路等。当得到触发命令后,在投切点产生触发脉冲列,经过脉冲变压器的隔离,推动晶闸管。同步信号处理电路有滤波处理功能,可以是CMOS等的电子电路组成,也可以是单片机、GAL电路等。电路中包括相序错判断功能。信息来自:输配电设备网 从电网电压取得同步信号的优点为在主回路没有送电时,给触发命令,可以测量晶闸管的触发脉冲幅度和相位,在主回路得电后,给触发命令,可以放心, TSC为正确的投入工作。对于TSC电路中的两只晶闸管+一只二极管的“2+1”电路、两只晶闸管+两只二极管的“2+2”电路、三只晶闸管+三只二极管的“3+3”电路,电容器有二极管预充电, 电容器上一直存在直流电压,晶闸管的交直流电压不变,电网电压取得同步信号触发适合。缺点为电路复杂,对于400V小容量的TSC电路造价高。如果TSC全部采用晶闸管不用二极管,由于晶闸管两端的电压随着电容器放电电压的减少逐渐小,意味着触发点在变动,上述电路不能跟随变化触发点,所以不适应了。信 图二: 电网电压取得同步信号的触发电路 从晶闸管两端取得过零信号比较困难,过零触发要求电压高时截止,电压最低低时导通触发。几乎找不出什么元件是这种特性.如稳压管,电压低截止,电压高维持电压不变.不满足要求。 目前,从晶闸管两端取得过零信号的典型触发电路是MOC3083,它的框图如图三:信 图三:MOC3083电路图 MOC3083芯片内部有过零触发判断电路,它是为220V电网电压设计的,芯片的双向可控硅耐压800V,在4、6两端电压低于12V时如果有输入触发电流,内部的双向可控硅就导通。 用在380V电网的TSC电路上要串联几只3083。在2控3的TSC电路应用如图四:

谈晶闸管投切电容器TSC的触发电路

谈晶闸管投切电容器TSC的触发电路 摘要:该文介绍了晶闸管投切电容器的原理和快速过零触发要求,分析了两类晶闸管的触发电路的特点和存在的问题,指出了一种新型的从主回路晶闸管获取晶闸管电压过零信号的电路框图,以该电路支撑产生一系列触发电路,取得了优秀的触发效果。 关键词: 晶闸管投切电容器TSC, 触发电路 [ Abstract ] This article introduces theprinciple of the thyristor switched capacitor and the requirementfor a fast zero trigger. We analyzed two types oftrigger circuits for thyristor, presenting their characteristics aswell as the problems that exist. We plotted an circuit framediagram for a newly designed mechanism of acquiring the zerothyristor voltage signal from the thyristor in the main closedcircuit. Based on this circuit, a series of trigger circuits weregenerated and excellent trigger effects were achieved. Keyword: Thyristor Switched Capacitor (TSC),trigger circuit 前言:在快速无功补偿和谐波滤波装置中,要用晶闸管作为执行元件投切电容器,做为TSC电路,前文分析了三种TSC的主电路。执行元件晶闸管根据应用场合的不同,有饼式的、模块的和双向可控硅的不同结构型式。针对不同的主回路和不同的晶闸管型式,触发电路也不同。TSC要求在晶闸管电压过零点触发,确定晶闸管电压过零点的方法有两种,一种是从电网电压取得同步信号,一种是从晶闸管的阳极和阴极取得过零信号。 本文分析现存的各种触发电路的特点,由此推出一种新型的从主回路晶闸管上获取晶闸管电压过零信号的电路,以该电路支撑产生一系列触发电路,取得了优秀的触发效果。首先: 1. 介绍晶闸管投切电容器的原理和快速过零触发要求 晶闸管投切电容器组的关键技术是必须做到电流无冲击。晶闸管投切电容器组的机理如图一所示,

真空断路器投切电容器组时发生爆炸的原因

真空断路器投切电容器组时发生爆炸的原因 爆炸的原因,在运行电网上进行了10 k V真空断路器投切电容器组的试验。5 组样机为不同批号和洁净度的真空灭弧室,将其安装于同一组真空断路器上投切同一组电容器组。通过分析试验结果,得出结论:爆炸原因是真空断路器投切电容器组时发生重击穿并产生较高的过电压;真空灭弧室内部洁净度是影响真空断路器投切电容器组重击穿率的重要因素;真空断路器在投运前进行50次以上的电气老练试验是必要的。 关键词:真空灭弧室;洁净度;重击穿 真空断路器具有体积小、质量轻、维护简单、可频繁操作、不污染环境、无火灾和爆炸危险等优点,在电力系统中应用广泛。广东电网大量采用了10 kV 真空断路器,并用作投切电容器组。 真空断路器在广东电网运行中,也暴露了一些问题。例如在投切电容器组时,发生了电容器组爆炸事故。是因为电容器组质量不良,或是真空断路器有问题导致电容器组爆炸?为探讨其原因所在及其产生机理,开展了真空断路器投切电容器组试验验证工作。 1 试验条件及试验结果 众所周知,真空灭弧室是真空断路器的心脏,真空断路器的电气性能主要取决于真空灭弧室的设计及其生产工艺。本次试验是把注意力集中到灭弧室上,也就是说整个试验过程是研究真空灭弧室。把5组不同批号的普通型或高洁净度型的真空灭弧室作为样机,按先后次序安装于同一组真空断路器上进行投切同一组电容器组试验,每次更换灭弧室后均保证真空断路器机械特性参数前后一致,只有这样才能得到较真实的结果。 本次试验验证现场是在原事故的某变电站某事故间隔的10 k V真空断路器及该组电容器组(事故后已更换为新的电容器)上进行投切试验,试验时的运行方式与事故当时的运行方式相同。 2 试验结果分析及结论 2.1 真空灭弧室洁净度对投切的重击穿率的影响 1~3号样机为普通型真空灭弧室,试验过程均发生重击穿,其中1号样机情况最为严重,重击穿率达91.6%,且产生较高的过电压倍数,会损坏电气设备的绝缘;4号、5号样机为高洁净度真空灭弧室,分别进行了120相次投切电容器组,无重击穿现象发生。可见洁净度高,则重击穿率低,其过电压倍数也低,反之亦然。由此表明真空灭弧室的洁净度是何等重要,其洁净度高低关系到电气性能的好坏。 a)被试真空断路器型号均为ZN11-10,被试真空灭弧室型号均为BD401,投切电容器组容量均为7.8 Mvar。 b)对于真空灭弧室,普通型是采用原工艺生产,洁净处理欠佳;高洁净度型比普通型工艺有改进,灭弧室零件用清洗剂清洗净,并严格控制老练处理,清洁度较高。

电容器投切方式比较分析

电容器投切方式比较分析 关键词:静止无功补偿装置静止无功发生器晶闸管开关可控硅开关复合开关 近年来,随着对供电质量要求的不断提高和节能降耗的需要,无功补偿装置的使用量快速增长。随后各种不同无功补偿装置不断研发推出应用,如:静止无功补偿装置SVC、静止无功发生器SVG、晶闸管投切电容装置TSC等。但由于技术成熟悸或投入大等各种因素影响,目前使用范围最广,投入成本低,最易普及的仍是低压无功补偿装置。本文仅对目前国内存在的几种类型的低压电容投切装置的性能及优缺点进行分析,供用户和设计人员参考,以达到合理使用、提高企业经济效益、节约资源的效果。 一、性能比较 目前,国内的电容投切装置所采用的开关元件可以分为三大类: 1、机械式接触器投切电容装置(MSC) 接触器投入过程中,电容器的初始电压为零,触点闭合瞬间,绝大多数情况下电压不为零、有时可能处在高峰值(极少为零),因而产生非常大的电流,也就是常说的合闸涌流。实验表明合闸涌流严重时可达电容器额定电流的50倍。这不仅影响电容器和接触器的寿命,而且对电网造成冲击,影响其它设备的正常工作。因此,后来采用串接电抗器和加入限流电阻来抑制涌流,这虽然可以控制合闸涌流在额定电流的20倍以内,但从长期运行情况来看,其故障率仍然非常高,维修费用较高。 总的实践应用反映,其性能如下:优点:价格低,初期投入成本上升少,无漏电流 缺点:涌流大,寿命短,故障多,维修费用高 2、电子式无触点可控硅投切电容器装置(TSC) 可控硅投切电容器,是利用了电子开关反应速度快的特点。采用过零触发电路,检测当施加到可控硅两端电压为零时,发出触发信号,可控硅导通。此时电容器的电压与电网电压相等,因此不会产生合闸涌流,解决了接触器合闸涌流的问题。但是,可控硅在导通运行时,可控硅结间会产生一伏左右的压降,通常15KV AR三角形接法的电容器,额定电流22A,则一个可控硅消耗功率约为22W。如以一个150KV AR电容柜来算,运行时可控硅投切装置消耗的功率可达600W,而且都变成热量,使机柜温度升高。同时可控硅有漏电流存在,当

晶闸管投切电容器

绪论 电网中电力设备大多是根据电磁感应原理工作的,它们在能量转换过程中建立交变磁场,在一个周期内吸收的功率和释放的功率相等。电源能量在通过纯电感或纯电容电路时并没有能量消耗,仅在用电负荷和电源之间往复交换,由于这种交换功率不对外做功,因此称为无功功率。无功功率反映了内部与外部往返交换能量的情况,它并不像有功功率那样表示单位时间所做的平均功率,但是它和有功功率一样是维护电力系统稳定,保证电能质量和安全运行必不可少的。 如果电网中的无功功率不足,致使用电设备没有足够的无功功率来建立和维持正常的电磁场,就会造成设备的端电压下降,不能保证电力设备在额定的技术参数下工作,从而影响用电设备的正常工作。具体表现在以下三方面:(1)降低有功功率,使电力系统内的电气设备容量不能得到充分利用。在额定电压和额定电流下,由 P=Ulcos?,若功率因数降低,则有功功率随之降低,是设备容量不能充分利用。 (2)增加输、配线电路中的有功功率和电能损耗。设备功率因数降低,在线路输送同样有功功率时,线路中就会流过更多的电流,是线路中的有功功率损耗增加。 (3)是线路的电压损失增加。使负载端的电压下降,有时甚至低于允许值,从而严重影响电动机及其他用电设备的正常运行。特别是在用电高峰季节,功率因数太低,会出现大面积的电压偏低。

基于上述情况,在电力系统中经常要进行无功补偿。无功补偿的主要作用就是提高功率因数以减少设备容量和功率损耗、稳定电压和提高供电质量,在长距离输电中提高系统输电稳定性和输电能力以及平衡三相负载的有功功率和无功功率。安装并联电容器进行无功补偿,可限制无功功率在电网中传输,相应减小了线路的电压损耗,提高了配电网的电压质量。无功补偿应根据分级就地和便于调整电压的原则进行配置。集中补偿和分散补偿相结合,以分散补偿为主;高压补偿与低压补偿相结合,以低压补偿为主;调压与降损相结合;并且与配电网建设改造工程同步规划、设计、施工、同步投运。无功补偿的作用具体体现在以下四方面: (1)提高电压质量配电网中无功补偿设备的合理配置,与电网的供电电压质量关系十分密切。合理安装补偿设备可以改善电压质量。由于越靠近线路末端,线路的电抗 X 越大,因此,越靠近线路末端装设无功补偿装置效果越好。 (2)降低电能损耗安装无功补偿主要是为了降损节能,如输送的有功功率 P 为定值,加装无功补偿设备后功率因数由cos?提高到cos咖,因为P=Ulcos?负荷电流I与cos?成反比,又由于P=I2R,线路的有功损失与电流I的平方成正比。当cos?升高,负荷电流I降低,即电流I降低线路有功损耗就成倍降低。反之当负荷的功率因数从1降低到cos?时,电网元件中 功率损耗将增加的百分数为△ P L %,计算公式如下: △ P L % = (1/ cos2?-1 ) *100% (3)提高发供电设备运行效率 1)在设备容量不变的条件下,由于提高了功率因数可以少送无功功 率,因此可以多送有功功率。可多送的有功功率△P可由下式计算,其 中P1 为补偿前的有功功率 △ P=P-P二S* ( COS&COS? ) 2)如需要的有功不变,则由于需要的无功减少,所需配电变压器容量厶S

电容柜投切操作流程(汇编)

电容柜投切操作流程 一、电容柜在投入时须先投一次部分,再投二次部分;切出反之。 2二、操作电容柜的投切顺序: 1、手动投入:投隔离开关→将二次控制开关至手动位置依次投入各组电容器。 2、手动切除:将二次控制开关至手动位置依次切除各组电容→切出隔离开关。 3、自动投切:投隔离开关→将二次控制开关至自动位置,功补仪将自动投切电容器。 注:电容柜运行时如需退出运行,可在功补仪上按清零键或将二次控制开关调至零位档退出电容器。不可用隔离开关直接退出运行运行中的电容器! 4、手动或自动投切时,应注意电容器组在短时间内反复投切,投切延时时间不少于30秒,最好为60秒以上,让电容器有足够的放电时间。

电容柜的停送电操作 1、电容柜送电前断路器应处于断开位置,操作面板上指令开关置于“停止”位置,无功功率自动补偿控制器开关处于“OFF”位置。 2、应在系统全部供电且运行正常后才能给电容柜送电。 3、电容柜的手动操作:合上电容柜的断路器,将操作面板上的指令开关转到1、2……位置时,将可手动投入1、2……组电容器投入补偿;将指令开关置于“试验”位置时,电容柜将对电容器组进行试验。 4、电容柜的自动操作:合上电容柜的断路器,将操作面板上的指令开关转到“自动”位置,合上无功功率自动补偿控制器开关(ON),将指令开关置于“运行”位置时,电容柜将根据系统设置对系统进行无功功率自动补偿。 5、电容柜仅在自动补偿失去作用时,方可采用手动投入补偿。 6、将电容柜操作面板上的指令开关转到“停止”位置时,电容柜将停止运行。

电容器操作规程 1、目的:所有值班人员能够正确操作电容柜,并保证设备及人身安全。 2、操作程序: (1)正常运行时,由电容器柜上自动投切装置按照运行状况自动循环投切电容组。 (2)正常停电操作时,应先拉开电容器组开关,后拉开各路馈电开关,送电时,操作顺序相反。 (3)事故情况下,如突然停电,必须先将电容器组的开关拉开,以免突然来电时,电压过高超过电容器允许值。 3、注意事项: (1)电容器组开关跳闸后,在未查明原因前不准强行送电。(2)电容器组严禁带电荷合闸,电容器组再次合闸时,必须在断开电源三分钟后进行。 4、巡检制度: (1)电容器的巡查内容如下:

真空断路器投切电容器组性能的现状与对策

真空断路器投切电容器组性能的现状与对策 所属分类:技术交流来源:中国智能电工网更新日期:2010-12-13 l 前言 由于真空断路器适用于频繁操作,因此在并联电容器补偿装置中,基本上均采用真空断路器来投切电容器组。在开断电容器组等容性负载发生重燃时,会产生高幅值的重燃过电压,威胁并补装置和系统的安全,因此对于投切电容器组的真空断路器要求无重燃(或低重燃率),国家相应制定有GB7675—1987(交流高压断路器的开合电容器组试验》标准,专门用于考核断路器投切电容器组的性能(必须不发生重燃)。通过分析试验情况发现,真空断路器投切电容器组的性能近几年出现滑坡现象,应引起各方面的足够重视。 2 国产真空断路器的发展及投切电容器组性能的现状 通过技术引进,国内在20世纪90年代初已完全掌握了12kV真空断路器及灭弧室的制造技术,产品质量趋于稳定可靠,规格日益丰富、齐全,不但广泛应用于并联电容器组的投切,并已基本取代油断路器成为10 kV配电网的主力。前几年,国产l2kV真空断路器投切电容器组重燃率基本稳定在约1.0%,质量好的厂家可以做到0.5%以下,已基本满足投切电容器组的低重燃率要求,与国外产品0.1%以下的重燃率及无重燃率相比仍有差距,且近几年来进展不大,部分制造厂产品质量甚至出现大幅下滑,重燃率明显上升。 相对于12 kV断路器,40.5 kV真空断路器由于工艺要求更高,制造难度更大,其发展速度及质量均落后于12 kV断路器,进展较为困难。具体表现为重燃率很高,一般在5%以上,操动机构不可靠。进入90年代后期,通过制造厂家的不断努力,产品质量逐渐提高,性能趋于稳定,操动机构可靠性也大大提高,重燃率下降,2002年降至2.6% ,进步明显。但与采用进口灭弧室重燃率约1.0%相比,仍显不足,与投切电容器组的低重燃率要求差距仍较大。 随着市场的扩大及日益开放,进口及合资品牌的真空灭弧室、断路器大量增加,国内制造厂家面临日益严峻的竞争与挑战。 3 投切电容器组型式试验状况 绍兴电力局系统试验站于20世纪70年代未就开始从事真空断路器切合电容器组的试验研究,于1990年开始从事断路器投切电容器组型式质检试验。表l是近年来l2 kV真空断路器切合电容器组试验一次性通过的情况。可以看出,一次性通过率比较低,原因在于某些制造厂技术力量不够,对真空断路器切合电容器组的特殊性认识不足,选用的真空灭弧室质量不佳或机构调整不良。 4 投切电容器组的老炼试验状况

电力电子技术期末考试试题 答案

1.IGBT 的开启电压UGE (th )随温度升高而略有下降,开关速度小于电力MOSFET 。 2.在如下器件:电力二极管(Power Diode )、晶闸管(SCR )、门极可关断晶闸管(GTO )、电力晶体管(GTR )、电力场效应管(电力MOSFET )、绝缘栅双极型晶体管(IGBT )中,属于不可控器件的是电力二极管,属于半控型器件的是晶闸管,属于全控型器件的是GTO GTR 电力MOSFET IGBT ;属于单极型电力电子器件的有电力MOSFET ,属于双极型器件的有电力二极管 晶闸管 GTO GTR ,属于复合型电力电子器件得有 IGBT _;在可控的器件中,容量最大的是_晶闸管_,工作频率最高的是电力MOSFET ,属于电压驱动的是电力MOSFET 、IGBT ,属于电流驱动的是晶闸管、GTO 、GTR 。 3.电阻负载的特点是_电压和电流成正比且波形相同_。阻感负载的特点是_流过电感的电流不能突变,在单相半波可控整流带阻感负载并联续流二极管的电路中,晶闸管控制角α的最大移相范围是__0-180O _ ,其承受的最大正反向电压均为_22U __,续流二极管承受的最大反向电压为__22U _(设U 2为相电压有效值)。 4.单相桥式全控整流电路中,带纯电阻负载时,α角移相范围为0-180O ,单个晶闸管所承受的最大正向电压和反向电压分别为222U 和22U ;带阻感负载时,α角移相范围为0-90O ,单个晶闸管所承受的最大正向电压和反向电压分别为22U 和22U ;带反电动势负载时,欲使电阻上的电流不出现断续现象,可在主电路中直流输出侧串联一个平波电抗器。 5.单相全控桥反电动势负载电路中,当控制角α大于不导电角时,晶闸管的导通角 =π-α-; 当控制角 小于不 导电角 时,晶闸管的导通角 = π-2 。 6.电阻性负载三相半波可控整流电路中,晶闸管所承受的最大正向电压UFm 等于22U ,晶闸管控制角α的最大移相范围是0-150o ,使负载电流连续的条件为o 30≤α(U2为相电压有效值)。 7.三相桥式全控整流电路带电阻负载工作中,共阴极组中处于通态的晶闸管对应的是最高的相电压,而共阳极组中处于导通的晶闸管对应的是最低的相电压;这种电路 角的移相范围是0-120o ,u d 波形连续的条件是α≤60°。 8.对于三相半波可控整流电路,换相重迭角的影响,将使用输出电压平均值下降_ 9.滤波单相不可控整流带电阻负载电路中,空载时,输出电压为__22U _,随负载加重Ud 逐渐趋近于_0.9 U 2_,通常设计时,应取RC≥1.5-2.5 T ,此时输出电压为Ud≈1.2_U 2(U 2为相电压有效值,T 为交流电源的周期)。 10.实际工作中,整流电路输出的电压是周期性的非正弦函数,当从0°~90°变化时,整流输出的电压ud 的 谐波幅值随的增大而 增大,当 从90°~180°变化时,整流输出的电压 ud 的谐波幅值随 的增大 而减小。 11.逆变电路中,当交流侧和电网连结时,这种电路称为有源逆变,欲实现有源逆变,只能采用全控电路;对于单相全波电路,当控制角 0<< 时,电路工作在整流状态; 时,电路工作在 逆变状态。 12.在整流电路中,能够实现有源逆变的有单相全波、三相桥式整流电路等(可控整流电路均可),其工作在有源逆变状态的条件是有直流电动势,其极性和晶闸管导通方向一致,其值大于变流器直流侧平均电压和晶闸管的控制角a > 90O ,使输出平均电压U d 为负值。 13.晶闸管直流电动机系统工作于整流状态,当电流连续时,电动机的机械特性为一组平行的直线,当电流断续时,电

电容器投切对无功补偿的影响

电容器投切对无功补偿的影响 【摘要】电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。因此,电容器作为电力系统的无功补偿势在必行。当前,利用投切并联电容器来调节无功补偿已经非常普遍。 【关键词】电容器;无功补偿;投切 在电路中接入电容可以为设备提供无功功率,提高功率因数。由于我们的设备不可能是纯容性或纯感性的,且设备运行的状态也是不可预知的,如开、关机,或开机时不同工作状态所需要的无功功率都不相同。当补偿器提供的无功功率大于设备所需时,也会对电网造成极大影响。所以我们需要适时的调整无功功率的补偿来匹配设备所需的无功功率,即电容组投切方式。 1 无功在供电系统中的影响 1)接在电网中的许多用电设备是根据电磁感应原理工作的,我们最常见的变压器就是通过磁场才能改变电压并且将能量送出去,电动机才能转动并带动机械负荷。电容器在交流电网中接通时,在一个周期内的,上半周期的充电功率和下半周期的放电功率相等,不消耗能量,这种充放电功率叫做容性无功功率。 2)无功功率增大,即供电系统的功率因数降低将会引起: (1)增加电力网中输电线路上的有功功率损耗和电能损耗。若设备的功率因数降低,在保证输送同样的有功功率时,无功功率就要增加,这样势必就要在输电线路中传输更大的电流,使得此输电线路上有功功率损耗和电能损耗增大。 (2)系统中输送的总电流增加,使得供电系统中的电气元件,如变压器、电气设备、导线等容量增大,从而使用户的起动控制设备、测量仪表等规格尺寸增大,因而增大了初投资费用。 (3)功率因数过低还将使线路的电压损耗增大,结果负荷端的电压就要下降,甚至会低于允许偏移值,从而严重影响异步电动机及其它用电设备的正常运行。特别在用电高峰季节,功率因数太低会出现大面积地区的电压偏低,将给油田的生产造成很大的损失。 (4)使电力系统内的电气设备容量不能充分利用,因为发电机或变压器都有一定的额定电压、额定电流和额定容量,在正常情况下,这些参数是不容许超过的,若功率因数降低,则有功出力也将随之降低,使设备容量不能得到充分利用。 2 减少无功,提高功率因数的方法

真空断路器投切电容器组性能现状与对策

筑龙网 W W W .Z H U L O N G .C O M 真空断路器投切电容器组性能现状与对策 摘 要 根据真空断路器投切电容器组型式试验与老炼试验情况总结,分析了影响重燃的因素及重燃率上升原因,提出降低的方法和对策。 关键词 真空断路器 投切 电容器组 重燃 0 前言 真空断路器具有体积小、灭弧性能好、寿命长、维护量小、使用安全等优点,在中压系统及配电电网中应用日益广泛。特别是由于其适合频繁操作的特点,在并联电容器补偿装置中基本采用真空断路器来投切电容器组。 众所周知,不同与其他负载,开断电容器组等容性负载时,由于电容器存在残余充电电荷,在断路器断口会出现含直流分量的较高恢复过电压。真空断路器投切电容器组的大量试验研究表明,真空断路器存在弧后延时重击穿并能高频熄弧的特殊现象,即重燃现象。一旦发生重燃,会产生高幅值的重燃过电压,特别是多次重燃或多相重燃,其过电压严重威胁并补装置和系统安全。因此对于投切电容器组的真空断路器要求无重燃或低重燃率,国家相应制定有GB7675-87《交流高压断路器的开合电容器组试验》标准,专门用于考核投切电容器组的断路器性能(必须不发生重燃)。系统试验站作为国电公司无功补偿成套装置质检中心,长期从事以真空断路器为主的开合电容器组质检试验、研究,积累了大量数据及丰富经验,通过分析近几年试验情况发现,真空断路器投切电容器组的性能近几年出现滑坡现象,应引起各方面的足够重视。 1 性能现状 我国从六十开始研究真空断路器, 到七十年正式提供产品在现场试运行, 于八十年代开始实用化,但在性能上与国外产品相差甚远。通过引进技术,加快了我国真空断路器的发展,至九十年代,制造技术日趋成熟,开始进入大规模生产阶段, 产品的种类开始增加, 技术指标不断提高, 可靠性基本得到保证。 10kV 真空断路器及灭弧室的制造技术国内在九十年代初完全掌握,产品质

TBBZ柱上式自动投切高压并联电容器装置

TBBZ自动投切高压并联电容器装置 安装使用说明书 1 概述 TBBZ柱上式自动投切高压并联电容器装置(以下简称装置)适用于10千伏或6千伏配电线路中,作提高功率因数、降低线路损耗、改善电压质量之用。 本装置可根据线路需要,由用户自行设置,实现并联电容器的自动投切。同时还具有短路、过电流、过电压、欠电压等保护功能。所采用的JCZ1系列真空接触器,具有合闸无弹跳、分闸不重燃、寿命长等特点;高压并联电容器带内熔丝和放电电阻;无功补偿自动控制器抗干扰能力强,性能可靠;装置还配有户外式控制电源变压器。本装置结构紧凑、安装方便。 符合标准JB/T7111-1993《高压并联电容器装置》、DL/T604-1996《高压并联电容器装置订货技术条件》。 2 使用环境条件 2.1 周围空气温度:上限+45℃,下限-40℃。 2.2 海拔高度:不高于1000m。 2.3 风速:不大于35m/s。 2.4 日照:幅度(最大)为0.1W/cm2。 2.5 地震:地震烈度不超过8度。 2.6 化学条件:安装场所无有害气体和蒸气,无导电性或爆炸性尘埃。 3 型号含义及主要技术参数 3.1 型号含义 Y接线方式 装置的额定容量kvar 额定电压kV 柱上式 并联电容器装置 3.2 主要技术参数 主要技术参数见表1。

表1 装置主要技术参数表 4 结构和工作原理 4.1 本装置由全膜高压并联电容器(带放电电阻及内熔丝)、跌落式保险,真空接触器、电压互感器,氧化锌避雷器、电流互感器,放电线圈、高压无功补偿控制器、保护回路及金具组成。 4.2 本装置有双杆安装及单杆安装两种结构型式(详见附图1、2),一次接线见附图3。 4.3 工作原理 4.3.1 关合跌落式熔断器,装置高压电源被接通,电压互感器向高压无功补偿自动控制器(简称自控器)及真空接触器操动机构提供交流100V电源。当线路的电压、或功率因数、或运行时间处于预先设定的投切范围时,自控器接通操动机构电源,使真空接触器合闸,将电容器组投入线路运行。当线路的电压、或功率因数、或运行时间处于切除范围时,自控器接通分励脱扣器电源,使真空接触器分闸,将电容器组退出运行。从而实现电容器的自动投切,达到提高功率因数、降低线损、改善电压质量的目的,同时防止无功倒送。

晶闸管投切滤波器TSF的研究

48 江苏电器 (2007 No.3)作者简介:蔡超(1985- ),男,硕士研究生,研究方向为嵌入式微处理器的应用,工业控制; 张亚迪(1981- ),男,博士研究生,研究方向为电能质量与控制、电力电子在电力系统中的应用、灵活交流输电技术。 0 引言 配电网功率因数低和存在大量谐波电流是困扰用户和供电系统的严重问题。因为功率因数降低会导致电网损耗的增大,谐波电流会使电机的寿命减小和影响其它电力用户。提高功率因数所采用的主要装置有:投切电容器组、SVG(静止无功补偿器)和可控电抗器。投切电容器组的特点:(1)采用机械式投切电容器组,投切时会产生很大的冲击电流和拉弧过电压,动态响应速度慢,达不到快速补偿的目的,接触器动作次数有限,使用寿命短,可靠性差[1];(2)在负荷谐波电流较大的情况下,电容器组易发生谐波放大现象或可能与系统发生串联谐振。SVG的特点:(1)响应速度快,时间为0.02s;(2)结构较复杂,成本较高,可靠性有待提高;(3) 输出无功功率连续可调。 消除或抑制负荷谐波电流的装置主要是无源和有源滤波器(其中典型代表为APF),前者结构简单,可靠性高,但存在易于系统发生谐振等缺点;后者结构复杂,成本较高,不会与系统发生谐振,但成本较高、可靠性不高[2]。 本文提出一种新型谐波、无功补偿器TSF,不仅能够动态地补偿负荷所消耗的无功功率,还能吸收负荷所产生的大量谐波电流。 1 TSF滤波器的结构和基本工作原理 TSF装置是一种动态无功和谐波补偿装置[3],它利用电力电子器件作为开关器件将串联电容和电感与系统连接起来,通过改变电力电子器件的导通角达到改变负荷大小的目的[4-5]。图1所示为TSF装置的原理结构图。 家控制系统来避免投切振荡,从仿真试验和实际运行的结果来看采用新控制系统后,不仅装置的投入过渡过程大大减小,而且负荷的电流波形总畸变率有了明显地降低,功率因数达到国家要求。仿真和实验结果表明了TSF在改善电能质量方面的有效性和可行性。 晶闸管投切滤波器TSF的研究 分析了晶闸管投切滤波器TSF (Thyristor Switched Filters)其主接线和特点,采用专电能质量;功率因数;谐波;晶闸管投切滤波器 蔡超,张亚迪 (武汉大学,湖北 武汉 430072) 中图分类号:T-652.4 文献标识码:A 文章编号:1007-3175(2007)03-0048-04 摘 要:关键词:Research of the Thyristor Switched Filters Abstract: TSF (Thyristor Switched Filters) main circuit and characteristics is analyzed. Then expert systems are applied to the control system in order to avoid operation surge. According to the results of simulations experiments and actual run, the transition procession current’s peak value are cut down greatly with new control system. With the TSF was used, the current total harmonic distortion is obviously reduced, and the power factor met the national requirements. The results of simulations and experiments show that TSF is feasible and effective on improving power quality. Key words: power quality; power factor; harmonic; thyristor switched filters (TSF) CAI Chao, ZHANG Ya-di (Wuhan University, Wuhan 430072, China ) 晶闸管投切滤波器TSF的研究

相关主题
文本预览
相关文档 最新文档