当前位置:文档之家› 第十七章 塔设备强度设计计算

第十七章 塔设备强度设计计算

第十七章 塔设备强度设计计算
第十七章 塔设备强度设计计算

第十七章塔设备强度设计计算

一、塔体的强度计算

安装在室外的高度与直径比(H/D)较大的塔设备,除承受操作压力外,还要承受质量载荷、风载荷、地震载荷和偏心载荷等,见塔设备各种载荷示意图。因此,在进行塔设备设计时必须根据受载情况进行强度计算与校核。

塔设备各种载荷示意图

㈠按设计压力计算筒体及封头壁厚

按本篇第十五章"容器设计基础"中内压、外压容器的设计方法,计算塔体和封头的有效厚度。

㈡塔设备所承受的各种载荷计算

以下要讨论的载荷主要有:操作压力;质量载荷;风载荷;地震载荷;偏心载荷。

1.操作压力

当塔为内压时,在塔壁上引起周向及轴向拉应力;当塔为外压时,在塔壁上引起周向及轴向压应力。操作压力对裙座不起作用。

2.质量载荷

塔设备的质量包括塔体、裙座体、内构件、保温材料、扶梯和平台及各种附件等的质量,还包括在操作、停修或水压试验等不同工况时的物料或充水质量。

设备操作时的质量

m0=m1+m2+m3+m4+m5+m a+m e(4-42)

设备的最大质量(水压

试验时)

m max

(4-43)

=m1+m2+m3+m4+m w+m a+m e

设备最小质量m min =m1+0.2m2+m3+m4+m a+m e(4-44)

式中:

m1:塔体和裙座质量,K g;

m2:内件质量,K g;

m3:保温材料质量,K g;

m4:平台、扶梯质量,K g;

m5:操作时塔内物料质量,K g;

m a:人孔、接管、法兰等附件质量,K g;

m e:偏心质量,K g;

m w:液压试验时,塔内充液质量,K g;

0.2m 2:考虑内件焊在塔体上的部分质量,如塔盘支承圈、降液管等。 当空塔吊装时,如未装保温层、平台、扶梯等,则m min 应扣除m 3和m 4。

在计算m 2、m 4及m 5时,若无实际资料,可参考表4-25进行估算。

表4-25 塔设备部分内件、附件质量参考值

㈢ 圆筒的应力

1.塔设备由内压或外压引起的轴向应力

(4-55)

式中 σ1-由内压或外压引起的轴向应力,MP a ; p -设计压力,MP a ; D i -筒体内径,mm ; δei -i -i 截面处筒体有效壁厚,mm 。

2.操作或非操作时,重量及垂直地震力引起的轴向应力(压应力)

(4-56)

式中:

σ2-重量及垂直地震力引起的轴向应力,MP a ;

m o i-i-任意计算截面i-i以上塔体承受的操作或非操作时的质量,Kg。其中F v i-i仅在最大弯矩为地震弯矩参与组合时计入此项。

3.最大弯矩在筒体内引起的轴向应力

各种载荷在塔设备上引起的弯矩有风弯矩M W、地震弯矩M E、偏心弯矩M e。由于所给的气象资料是该地区的最大平均风速和可能出现的最大地震烈度,而实际上,风载荷和地震载荷同时达到最大值的几率是极小的。如按两者相加计算,未免过于保守。通常,在正常操作条件下最大弯矩按下式取值:

(4-57)

水压试验的时间往往是人为选定的,而且实验时间较短,所以,在实验情况下最大弯矩取值

(4-58)

最大弯矩在筒体中引起的轴向应力

(4-59)

式中 3-最大弯矩在筒体中引起的轴向应力,MP a;

㈣筒体壁厚校核

1.最大轴向组合应力的计算

各种载荷引起的轴向应力,以"+"表示拉应力,以"-"表示压应力,各种轴向应力的符号见表4-33。

表4-33 各种载荷引起的轴向应力符号

(1) 内压操作的塔设备

① 最大组合轴向拉应力,出现在正常操作时的迎风侧,即

(4-60)

② 最大组合轴向压应力,出现在停修时的背风侧,即

(4-61)

(2) 外压操作的塔设备

① 最大组合轴向压应力,出现在正常操作时的背风侧,即

(4-62)

② 最大组合轴向拉应力,出现在停修时的迎风侧,即

(4-63)

2. 强度与稳定性效核

根据正常操作时或停车检修时的各种危险情况,求出的最大组合轴向应力,必须满足强度条件与稳定性条件,如表4-34所示。周向拉应力只进行强度校核,因为不存在稳定性问题。轴向压应力既要满足强度要求,又必须满足稳定性要求,进行双重校核。

表4-34 轴向最大应力的校核条件

K

3. 水压试验时应力校核

(1) 关于拉应力

① 环向拉应力的验算,在第十五章有过阐述,见式(4-16)。

② 最大组合轴向拉应力

(4-64)

(2) 设备充水(未加压)后最大质量和最大弯矩在壳体中引起的组合轴向压应力

(4-65)

式中K为载荷组合系数,取K=1.2。

对于塔体而言,其最大的风弯矩引起的弯曲应力σ3i-i发生在裙座和塔体的连接截面2-2上。对于裙座来讲,σ3i-i的最大应力发生在裙座底截面0-0或人孔截面1-1上。

质量载荷:

塔设备的质量包括塔体、裙座体、内构件、保温材料、扶梯和平台及各种附件等的质量,还包括在操作、停修或水压试验等不同工况时的物料或充水质量。

设备操作时的质量

m0=m1+m2+m3+m4+m5+m a+m e(4-42)

设备的最大质量(水压

试验时)

m max

(4-43)

=m1+m2+m3+m4+m w+m a+m e

设备最小质量m min =m1+0.2m2+m3+m4+m a+m e(4-44)

式中:

m1:塔体和裙座质量,K g;

m2:内件质量,K g;

m3:保温材料质量,K g;

m4:平台、扶梯质量,K g;

m5:操作时塔内物料质量,K g;

m a:人孔、接管、法兰等附件质量,K g;

m e:偏心质量,K g;

m w:液压试验时,塔内充液质量,K g;

0.2m2:考虑内件焊在塔体上的部分质量,如塔盘支承圈、降液管等。当空塔吊装时,如未装保温层、平台、扶梯等,则m min应扣除m3和m4。

在计算m2、m4及m5时,若无实际资料,可参考表4-25进行估算。

表4-25 塔设备部分内件、附件质量参考值

风载荷:

安装在室外的自支承式塔设备,可视为支承在地基上的悬臂梁。塔设备在风力作用下,一方面产生顺风向的弯矩,即风弯矩,它在迎风面塔壁和裙座体壁上产生拉应力,背风面一侧产生压应力。另一方面是气流在塔的背后引起周期性旋涡,产生垂直于风向的诱发振动弯矩。诱发振动弯矩只在塔的H/D较大、风速较大时比较明显,一般可忽略不计。需要考虑时,可将诱发共振弯矩与风弯矩按矢量叠加。

(1)水平风力的计算

风吹在塔上,在迎风面产生风压。风压的大小与风速、空气密度、所在的地区和季节有关。根据各地区离地面高度为10m处30年一遇10分钟内的平均风速最大值作为计算风压,得到该地区的基本风压q0,见表4-26。

N/m2

表4-26 10米高度处我国各地基本风压q

风的粘滞作用使风速随地面高度而变化。如果塔设备高于10m ,则应分段计算各段的风载荷,视离地面高度的不同乘以高度变化系数f i ,见表4-27。

4-27 风压高度变化系数 f i

风压的大小还与塔设备的高度、直径、形状以及自振周期有关。两相邻计算截面间的水平风力为:

(4-45)

式中:

P i -水平风力,N ;

q 0-基本风压值,N /m2,见表4-26,但均不应小于250N /m2; L i -第计算段长度(见风弯矩计算简图),mm ;

图4-60 风弯矩计算简图

f i-风压高度变化系数,按表4-27选取;

表4-27 风压高度变化系数f i

K1-体型系数,圆柱直立设备取0.7;

D e i-塔设备各计算段的有效直径,mm;

当笼式扶梯与塔顶管线布置成180°时,可取

当笼式扶梯与塔顶管线布置成90°时,取下列两式中的较大值:

式中:

D oi-塔设备各计算段的外径,mm;

d0-塔顶管线外径,mm;

δps-管线保温层厚度,mm;

δsi-塔设备器第i段保温层厚度,mm;

K3-笼式扶梯当量宽度;当无确切数据时,可取K3=400mm;

K4-操作平台当量宽度,mm;可取;

∑A-第i段内平台构件的投影面积(不计空档投影面积),mm2;

l0-操作平台所在计算段长度,mm;

K2i-塔设备各计算段的风振系数,当塔高H≤20m时,取K2i=1.7;当H>20m时,按下式计算

ζ-脉动增大系数,按表4-28查取;

表4-28 脉动增大系数ζ

V i-第i段脉动影响系数,按表4-29查取;

表4-29 脉动影响系数νi

φzi- 第i段振型系数,根据H i/H与μ查表4-30;

表4-30 振型系数φz i

(2)风弯矩

在计算风载荷时,常常将塔设备沿塔高分成若干段,如下图所示。一般习惯自地面起每隔10m分成一段,把每段内的风压值看为定值。按式(4-45)分段求出风载荷P i后,即可近似的视为合力P i作用在该段的1/2处而求风弯矩。任意截面的风弯矩

(4-46)

对于等直径、等壁厚的塔体和裙座体,风弯矩的最大值在各自的最低处,所以塔体和裙座体的最低截面为最危险截面。但在变截面的塔体及开有人孔的裙座体,由于各截面的受载断面和风弯矩都各不相同,很难判别那个是最危险截面。为此,必须选取各个可疑的截面作为计算截面并各自进行应力校核,各截面应能满足校核条件。上图中0-0、1-1、2-2各截面都是薄弱部位,可选为计算截面。

地震载荷

如果塔设备安装在地震烈度为七度及以上地区,设计时必须考虑地震载荷对塔设备的影响。塔设备在地震波的作用下有三个方向的运动:水平方向振动、垂直方向振动和扭转,其中以水平方向振动危害较大。为此,计算地震力时,仅考虑水平地震力对塔设备的影响,并把塔设备看成是固定在基础底面上的悬臂梁。

(1)水平地震力

对于实际应用的塔,全塔质量并不集中于顶点,而是按全塔或分段均布。计算地震载荷与计算风载荷一样,也是将全塔沿高度分成若干段,每一段质量视为集中于该段1/2处。即将塔设备化为多质点的弹性体系,见下面的多质点的弹性体系图。由于多质点体系有多种振型,按照振动理论,对于任意高度h K处的集中质量m K引起基本振型的水平地震力为

(4-47)

式中:

F K1-集中质量m K引起的基本振型水平地震力,N;

C z-综合影响系数,对圆筒形直立设备取C z=0.5;

m K-距离地面h K处的集中质量(见下左图),Kg;

ηK1-基本振型参与系数,按计算;

α1-对应与塔设备基本自振周期T1的地震影响系数α值。α值可查下右图,图中的曲线部分按

计算,但不得小于;

αmax-地震影响系数的最大值,见表4-31;

表4-31 地震影响系数α的最大值

T g-各类场地土的特征周期,见表4-32;

表4-32 场地土的特征周期

T1-设备基本自振周期,s。

对于等直径、等壁厚的塔设备:

不等直径或不等厚度的塔设备:

H-塔的总高,mm;

m0-塔在操作时的总质量,kg;

E-塔壁材料的弹性模量,MP a;

δe-筒体有效壁厚,mm;

D i-设备内径,mm;

E i、E i-1-第i段、第i-1段的材料在设计温度下的弹性模量,MP a;

I i、I i-1-第i、第i-1段的截面惯性矩,mm4;

圆筒段、圆锥段D e i-锥壳大端内直径,mm;D if-锥壳小端内直径,mm;δei-各计算截面设定的圆筒或锥壳有效壁厚,mm。

(2)垂直地震力

设防烈度为8度或9度区的塔设备应考虑上下两个方向垂直地震力作用,见下图。

塔设备底截面处的垂直地震力按下式计算:

(4-48)

式中:

αvmax-垂直地震影响系数最大值,取αvmax=0.65αmax;

m e p-塔设备的当量质量,取m e p=0.75m0,Kg。

任意质量i处垂直地震力按下式计算:

(4-49)(3)地震弯矩

塔设备任意计算截面i-i的基本振型地震弯矩按式(4-50)计算:

(4-50)

式中M E i i-i-任意计算截面i-i的基本振型地震弯矩,N·mm。

对于等直径、等厚度塔设备的任意截面i-i和底截面0-0的基本振型地震弯矩分别按式(4-51)和式(4-52)计算:

(4-51)

(4-52)

当塔设备H/D>15,或高度大于等于20m时,还需考虑高振型的影响,在进行稳定或其他验算时,地震弯矩可按式(4-53)计算

(4-53)

偏心载荷:

当塔设备外部装有附属设备时(如塔顶冷凝器偏心安装、塔低外侧悬挂再沸器),这些偏心载荷除了引起轴向压应力外,还要产生轴向弯矩M e,这弯矩不沿塔的高度而变化,其值可按下式计算

(4-54)

式中:

M e-偏心弯矩,N·mm;m e-偏心质量,Kg;

g-重力加速度,m/s2;e-偏心矩,即偏心质量的中心距塔设备轴线的距离,mm。

塔设备强度计算-裙座基础环和螺栓计算

㈡基础环板设计 1. 基础环板内、外径的确定 裙座通过基础环将塔体承受的外力传递到混凝土基础上,基础环的主要尺寸为内、外直径(见下图),其大小一般可参考下式选用 (4-68) 式中: D ob-基础环的外径,mm; D ib-基础环的内径,mm; D is-裙座底截面的外径, mm。 2. 基础环板厚度计算 在操作或试压时,基础环板由于设备自重及各种弯矩的作用,在背风侧外缘的压应力最大,其组合轴向压应力为: (4-69) 式中: A b-基础环面积,mm2; W b-基础环的截面系数,mm3; (1)基础环板上无筋板 基础环板上无筋板时,可将基础环板简化为一悬臂梁,在均布载荷σbmax的作用下,基础环厚度: (4-70) 式中: δb-基础环厚度,mm; [σ]b-基础环材料的许用应力,MPa。对低碳钢取[σ]b=140MPa。 (2)基础环板上有筋板 基础环板上有筋板时,筋板可增加裙座底部刚性,从而减薄基础环厚度。此时,可将基础环板简化为一受均布载荷σbmax作用的矩形板(b×l)。基础环厚度:

(4-71) 式中: δb-基础环厚度,mm; M s-计算力矩,取矩形板X、Y轴的弯矩M x、M y中绝对值较大者,M x、M y按表4-35计算,N·mm/mm。无论无筋板或有筋板的基础环厚度均不得小于16mm。 ㈢地脚螺栓 地脚螺栓的作用是使设备能够牢固地固定在基础底座上,以免其受外力作用时发生倾倒。在风载荷、自重、地震载荷等作用下,塔设备的迎风侧可能出现零值甚至拉力作用,因而必须安装足够数量和一定直径的地脚螺栓。塔设备在基础面上由螺栓承受的最大拉应力为: (4-72) 式中: σB-地脚螺栓承受的最大拉应力,MPa。 当σB≤0时,塔设备可自身稳定,但为固定塔设备位置,应设置一定数量的地脚螺栓。 当σB>0时,塔设备必须设置地脚螺栓。地脚螺栓的螺纹小径可按式(4-73)计算: (4-73) 式中: d1-地脚螺栓螺纹小径,mm; C2-地脚螺栓腐蚀裕量,取3mm; n-地脚螺栓个数,一般取4的倍数;对小直径塔设备可取n=6; [σ]bt-地脚螺栓材料的许用应力,选取Q-235-A时,取[σ]bt=147MPa;选取16Mn时,取[σ]bt=170MPa。圆整后地脚螺栓的公称直径不得小于M24。 ㈣裙座体与塔体底封头的焊接结构 裙座体与塔体的焊接形式有下表所示的两种: 名称结构要求特点适用对象 对接焊 缝裙座与塔体直径相等,二者对 齐焊在一起 焊缝承受压应力作用,可承受较高 的轴向载荷 大型塔设备 搭接焊 缝 裙座内径稍大于塔体外径焊缝承受剪应力作用,受力条件差小型塔设备 1.裙座体与塔体对接焊缝(如附图)J-J 截面的拉应力校核 (4-74)

塔设备强度设计计算

塔设备强度设计计算 管理提醒: 本帖被tandongchi 从图纸专区移动到本区(2010-07-21) 一、塔体的强度计算 安装在室外的高度与直径比(H/D)较大的塔设备,除承受操作压力外,还要承受质量载荷、风载荷、地震载荷和偏心载荷等,见塔设备各种载荷示意图。因此,在进行塔设备设计时必须根据受载情况进行强度计算与校核。 ㈠按设计压力计算筒体及封头壁厚 按本篇第十五章"容器设计基础"中内压、外压容器的设计方法,计算塔体和封头的有效厚度。 ㈡塔设备所承受的各种载荷计算 以下要讨论的载荷主要有:操作压力;质量载荷;风载荷;地震载荷;偏心载荷。 1.操作压力 当塔为内压时,在塔壁上引起周向及轴向拉应力;当塔为外压时,在塔壁上引起周向及轴向压应力。操作压力对裙座不起作用。 2.质量载荷 塔设备的质量包括塔体、裙座体、内构件、保温材料、扶梯和平台及各种附件等的质量,还包括在操作、停修或水压试验等不同工况时的物料或充水质量。 设备操作时的质量 m0=m1+m2+m3+m4+m5+ma+me (4-42) 设备的最大质量(水压试验时) mmax =m1+m2+m3+m4+mw+ma+me (4-43) 设备最小质量 mmin =m1+0.2m2+m3+m4+ma+me (4-44) 式中: m1:塔体和裙座质量,Kg; m2:内件质量,Kg; m3:保温材料质量,Kg; m4:平台、扶梯质量,Kg; m5:操作时塔内物料质量,Kg; ma:人孔、接管、法兰等附件质量,Kg; me:偏心质量,Kg; mw:液压试验时,塔内充液质量,Kg; 0.2m2:考虑内件焊在塔体上的部分质量,如塔盘支承圈、降液管等。 当空塔吊装时,如未装保温层、平台、扶梯等,则mmin应扣除m3和m4。 在计算m2、m4及m5时,若无实际资料,可参考表4-25进行估算。 表4-25 塔设备部分内件、附件质量参考值 名称笼式扶梯开式扶梯钢制平台圆形泡罩塔盘条形泡罩塔盘筛板塔盘浮阀塔盘舌型塔盘塔盘充液 单位质量 40Kg/m 15~24 Kg/m 150Kg/m2 150Kg/m2 150Kg/m2 65Kg/m2 75Kg/m2 75Kg/m2 7 0Kg/m2

机械设计强度计算

第3章 剪切和挤压的实用计算 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面 相切的内力Q F (图3-1c)的作用。Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。 剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a 所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 剪切和挤压的强度计算

剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 2F F Q = 图3-2 由于受剪构件的变形及受力比较复杂,剪切面上的应力分布规律很难用理论方法确定,因而工程上一般采用实用计算方法来计算受剪构件的应力。在这种计算方法中,假设应力在剪切面内是均匀分布的。若以A 表示销钉横截面面积,则应力为 A F Q =τ (3-1) τ与剪切面相切故为切应力。以上计算是以假设“切应力在剪切面上均匀分布”为基础的,实际上它只是剪切面内的一个“平均切应力”,所以也称为名义切应力。 当F 达到b F 时的切应力称剪切极限应力,记为b τ。对于上述剪切试验,剪切极限应力为 A F b b 2= τ 将b τ除以安全系数n ,即得到许用切应力

塔器设计时应具备那些知识点.doc

一、塔器的分类及用途 1.塔设备的作用: 2.塔器的分类:①按操作压力分②按单元操作分③按内件结构分:填料塔和 板式塔 3.填料塔的结构:①塔体②支座③人孔或手孔④吊柱及扶梯⑤操作平台 ⑥填料⑦除沫器,等等 4.板式塔的结构:①塔体②支座③人孔或手孔④吊柱及扶梯⑤操作平台⑥ 塔盘等。 5.填料塔使用场合:①分离程度要求高的情况②具有腐蚀性的物料的情况 ③容易发泡的物料的情况 6.板式塔使用场合:①液相负荷较小时②含固体颗粒,容易结垢,有结晶 的物料等。 二、填料塔 1.填料塔的特点: 2.填料分类:散装填料和规整填料 散装填料的分类:(1)环形填料(2)开孔环形填料(3)鞍形填料 (4)金属环矩鞍填料 规整填料分类:(1)丝网波纹填料(2)板波纹填料 填料的选用: 3.液体的分布器分类:(1)管式液体分布器:重力型和压力型(2)槽式液体 分布器(3)喷洒式液体分布器(4)盘式液体分布器 4.液体的分布器作用: 5.了解填料支撑的种类,结构 三、板式塔的种类 1、泡罩塔的结构 优点: 缺点: 2、浮阀塔的结构 优点: 缺点: 3、筛板塔的结构 优点: 缺点: 4、无降液管塔 5、导向筛板塔 6、斜喷型塔 四、板式塔的塔盘 1、板式塔的塔盘分类:溢流型和穿流型 2、板式塔的塔盘结构分类:①整块式塔盘:定距管式塔盘和重叠式塔盘 ②分块式塔盘 3、塔盘支撑结构种类,结构 五、塔设备的附件 1、除沫器的作用: 2、常用的除沫装置:丝网除沫器、折流板式除沫器、旋流板除沫器

3、吊柱的结构: 六、塔设备的计算 塔设备的各种载荷,计算中需要知道设计哪些载荷 塔设备标准的适用范围,什么样的设备,才算是塔设备 设计压力,设计温度如何考虑 材料的选择,负偏差,腐蚀裕量,最小厚度 1.了解塔设备的受力模型,塔设备受力模型的理论基础 地震受力模型 地震水平力如何计算, 地震垂直力如何计算;什么情况下考虑地震垂直作用力 地震弯矩如何计算 多质点的地震弯矩是如何叠加的 风载受力模型 风作用力的计算 风弯矩的计算 地震作用和风载作用是如何叠加的 2.塔设备强度计算包括哪些步骤 3.塔的固有周期,振型的概念是什么,又是如何参与到塔设备计算中的 七、塔设备零部件 1.裙座 1.1 裙座材料的选择,地脚螺栓的选择,许用应力的确定 1.2 裙座的类型,每种类型适用场合,每种结构有何要求 1.3 裙座与塔壳的连接形式,焊缝有和要求 1.4 排气孔,排气管和隔火圈的规格数量的确定 1.5 裙座上面引出管的结构如何设计 1.6检查孔规格,数量的确定 1.7地脚螺栓座的结构有哪些,每种结构尺寸如何确定的 2.塔壳 通常包括的元件有哪些,塔壳结构有哪些 3.静电接地板如何设置 4.地脚螺栓模板的用途,结构如何考虑 5.设置吊柱的目的(分段塔可不设置吊柱),结构尺寸的确定 6.塔设备吊耳如何选择,如何计算 八、设备法兰(专题讨论) 1)设备法兰的类型,以及各种类型的优缺点,各适用什么场合 2)设备法兰的标准号,在选用标准设备法兰需要注意什么 3)非标设备法兰如何计算,结构尺寸如何确定,怎样才算是最优设计 4)设备法兰材料有哪些,如何选择 5)设备法兰的制造,法兰的制造技术要求有哪些 九、螺栓和螺母, 1)螺栓材料选择,标准的选择,载荷计算

轴结构设计和强度校核

一、轴的分类 按承受的载荷不同, 轴可分为: 转轴——工作时既承受弯矩又承受扭矩的轴。如减速器中的轴。虚拟现实。 心轴——工作时仅承受弯矩的轴。按工作时轴是否转动,心轴又可分为: 转动心轴——工作时轴承受弯矩,且轴转动。如火车轮轴。 固定心轴——工作时轴承受弯矩,且轴固定。如自行车轴。虚拟现实。 传动轴——工作时仅承受扭矩的轴。如汽车变速箱至后桥的传动轴。 固定心轴转动心轴

转轴 传动轴 二、轴的材料 轴的材料主要是碳钢和合金钢。钢轴的毛坯多数用轧制圆钢和锻件,有的则直接用圆钢。 由于碳钢比合金钢价廉,对应力集中的敏感性较低,同时也可以用热处理或化学热处理的办法提高其耐磨性和抗疲劳强度,故采用碳钢制造尤为广泛,其中最常用的是45号钢。 合金钢比碳钢具有更高的力学性能和更好的淬火性能。因此,在传递大动力,并要求减小尺寸与质量,提高轴颈的耐磨性,以及处于高温或低温条件下工作的轴,常采用合金钢。 必须指出:在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此在选择钢的种类和决定钢的热处理方法时,所根据的是强度与耐磨性,而不是轴的弯曲或扭转刚度。但也应当注意,在既定条件下,有时也可以选择强度较低的钢材,而用适当增大轴的截面面积的办法来提高轴的刚度。

各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(如喷丸、滚压等),对提高轴的抗疲劳强度都有着显著的效果。 高强度铸铁和球墨铸铁容易作成复杂的形状,且具有价廉,良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,可用于制造外形复杂的轴。 轴的常用材料及其主要力学性能见表。

结构设计及强度校核

专业综合训练任务书: 49.9米150吨冷藏船结构设计及总纵强度计算 一、综合训练目的 1、通过综合训练,进一步巩固所学基础知识,培养学生分析解决实际工程问题的能力,掌握静水力曲线的计算与绘制方法。 2、通过综合训练,培养学生耐心细致的工作作风和重视实践的思想。 3、为后续课程的学习和走上工作岗位打下良好的基础。 二、综合训练任务 1.150吨冷藏船结构设计,提供主要构件的计算书。 2.参考该船图纸和相关静水力资料、邦戎曲线图,按照《钢质内河船舶建造规范》的要求进行总纵 强度计算,提供总纵强度计算书。 3.参考资料: 1)中国船级社. 钢质海船入级与建造规范 2009 2)王杰德等. 船体强度与结构设计北京:国防工业出版社,1995 3)聂武等. 船舶计算结构力学哈尔滨:哈尔滨工程大学出版社,2000 三、要求: 1、专业综合训练学分重,应予以足够重视; 2、计算书格式要符合要求; 如船体结构设计计算书应包括:(a)对设计船特征(船型、主尺度、结构形式等)的概述,设计所根据的规范版本的说明等;(b)应按船底、船侧、甲板的次序,分别写出确定每一构件尺寸的具体过程,并明确标出所选用的尺寸。(c)计算书应简明、清晰、便于检查。 3、强度计算: a)按第一、二章的要求和相关表格做,如静水平衡计算,静水弯矩计算等; b)波浪弯矩等可按规范估算; c)相关表格用计算器计算,表格绘制于“课程设计”本上 注意:请班长到教材室领取课程设计的本子和资料袋(档案袋),各位同学认真填写资料袋封面。 4、专业综合训练总结:300~500字。 四、组织方式和辅导计划: 1、参考资料: a)船体强度与结构设计教材 b)某船的构件设计书 c)某船的总纵强度计算书 d)《钢质内河船舶建造规范》,最好2009版 2、辅导答疑地点:等学校安排。 五、考核方式和成绩评定: 1、平时考核成绩:参考个人进度。 2、须经老师验收合格,故应提前一周交资料,不合格的则需回去修改。 3、第18周星期三下午4:00前必须交资料,资料目录见第2页。 4、一旦发现打印、复印、数据格式完全相同等抄袭现象,均按规定以不及格计。 5、成绩由指导教师根据学生完成质量以及学生的工作态度与表现综合评定,分为优、良、中、及格、 不及格五个等级。 六、设计进度安排: 1、有详细辅导计划,但具体进度可根据个人情况可以自己定。 附录:档案袋内资料前2页如下

强度标准差计算公式

直接转的:看看对你有帮助没有。 Sfcu=[(∑ fcu?i2-n?mfcu2)/(n-1)]1/2 公式表述显示不明,用语言表述下,即公式中的2和1/2都应为上角表,分别表示平方和根号(开平方)。 语言表述如下:fcu.i的平方求和再减去n 乘以fcu平均值的平方,用他们的差再除以(n-1)这样得出的除数开方;也可以是fcu.i-fcu平均值差的平方求和得出的数再除以(n-1)这样得出的除数开方。当Sfcu<0.06fcu,k时,取Sfcu=0.06fcu,k 具体参数表述如下: fcu,k一混凝土立方体抗压强度标准值 fcu为设计强度标准值 mfcu为平均值 n为试块组数 Sfcu为n组试块的强度值标准差 fcu.i : 第i组试块的立方体抗压强度值

在线规范网https://www.doczj.com/doc/d8905373.html, 协助网站:给排水On Line 5.4 混凝土强度换算及推定 5.4.1 混凝土强度换算值可采用以下三类测强曲线计算: 1 统一测强曲线:由全国有代表性的材料、成型养护工艺配制的混凝土试件,通过试验所建立的曲线。其允许的强度平均相对误差(δ)应为±15.0%,相对标准差(er)不应大于18.0%。 2 地区测强曲线:由本地区常用的材料、成型养护工艺配制的混凝土试件,通过试验所建立的曲线。其允许的强度平均相对误差(δ)应为±14.0%,相对标准差(er)不应大于17.0%。 3 专用测强曲线:由与结构或构件混凝土相同的材料、成型养护工艺配制的混凝土试件,通过试验所建立的曲线。其允许的强度平均相对误差(δ)应为±12.0%,相对标准差(er)不应大于14.0%。 4 平均相对误差(δ)和相对标准差(er)的计算应符合本规程附录F的规定。 5 各检测单位应按专用测强曲线、地区测强曲线、统一测强曲线的次序选用测强曲线。 5.4.2 地区和专用测强曲线应与制定该类测强曲线条件相同的混凝土相适应,不得超出该类测强曲线的适用范围。应经常抽取一定数量的同条件试件进行校核,当发现有显著差异时,应及时查找原因,并不得继续使用。 5.4.3 符合下列条件的混凝土应采用本规程附录G进行测区混凝土强度换算: 1 混凝土采用的材料、拌和用水符合国家现行的有关标准; 2 不掺引气型外加剂; 3 采用普通成型工艺; 4 采用符合现行的《铁路混凝土与砌体工程施工质量验收标准》(TB10424)规定的模板; 5 自然养护或蒸汽养护出池后经自然养护7d以上,且混凝土表层为干燥状态; 6 龄期为14~1000d; 7 抗压强度为10~60MPa。 5.4.4 当有下列情况之一时,测区混凝土强度值不得按本规程附录G换算,但可制定专用测强曲线或通过试验进行修正,专用测强曲线的制定方法宜符合本规程附录F的有关规定:

机械设计强度计算.doc

第 3 章剪切和挤压的实用计算 3.1剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴 线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用( 图 3-1a) ,构件的变形主要表现为沿着与外力作用线平行的剪切面( m n 面)发生相对错动( 图3-1b) 。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构 件。构件剪切面上的内力可用截面法求得。将构件沿剪切面 m n 假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面 相切的内力 F Q(图3-1c) 的作用。 F Q称为剪力,根据平衡方程Y 0 ,可求得F Q F 。剪切破坏时,构件将沿剪切面( 如图 3-la 所示的m n面 ) 被剪断。只有一个剪切面的 情况,称为单剪切。图3-1a 所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1 中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和 内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析 是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的 比较简便的计算方法,称为剪切的实用计算或工程计算。 3.2 剪切和挤压的强度计算 3.2.1剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a为一种剪切试验装置的简图,试件的受力情况如图3-2b所示,这是模拟某种销钉联接的工作情 形。当载荷 F 增大至破坏载荷F b时,试件在剪切面m m 及 n n 处被剪断。这种具 有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 F F Q 2

混凝土抗压强度标准值计算

1 总则 1.0.1~本规范系根据国家标准《水利水电工程结构可靠度设计统一标准(GB50199—94)》(简称《水工统标》)的规定,对《水工钢筋混凝土结构设计规范(SDJ20—78)》(简称原规范)的设计基本原则进行了修改,并依据科学研究和工程实践增补有关内容后,编制而成。其适用范围扩大到预应力混凝土结构和地震区的结构,其它与原规范相同。但不适用于混凝土坝的设计,也不适用于碾压混凝土结构。 当结构的受力情况、材料性能等基本条件与本规范的编制依据有出入时,则需要根据具体情况,通过专门试验或分析加以解决。 1.0.4 本规范的施行,必须与按《水工统标》制订、修订的水工建筑物荷载设计规范等各种水工建筑物设计标准、规范配套使用,不得与未按《水工统标》制订、修订的各种水工建筑物设计标准、规范混用。 3 材料 混凝土 按照国际标准(ISO3893)的规定,且为了与其它规范相协调,将原规范混凝土标号的名称改为混凝土强度等级。在确定混凝土强度等级时作了两点重大修改; (1)混凝土试件标准尺寸,由边长200mm的立方体改为边长150mm的立方体; (2)混凝土强度等级的确定原则由原规范规定的强度总体分布的平均值减去倍标准差(保证率90%),改为强度总体分布的平均值减去倍标准差(保证率95%)。用公式表示,即: f cu,k=μfcu, 15-σfcu =μfcu, 15 (1-δfcu) (3.1.2-1)

式中 f cu,k ──混凝土立方体抗压强度标准值,即混凝土强度等级值(N /mm 2); μfcu,15──混凝土立方体(边长150mm )抗压强度总体分布的平均值; σfcu ──混凝土立方体抗压强度的标准差; δfcu ──混凝土立方体抗压强度的变异系数。 混凝土强度等级由立方体抗压强度标准值确定,立方体抗压强度标准值是本规范混凝土 其他力学指标的基本代表值。 R (原规范的混凝土村号)与C (本规范的混凝土强度等级)之间的换算关系为: )1.0() 27.11(95.0645.1115,15,R C fcu fcu δδ--= (3.1.2-2) 式中为试件尺寸由200mm 立方体改为150mm 立方体的尺寸效应影响系数;为计量单位换算系数。 由此可得出R 与C 的换算关系如表3.1.2所列 表3.1.2 R 与C 换算表

塔设备设计说明书

《化工设备机械基础》 塔设备设计 课程设计说明书 学院:木工学院 班级:林产化工0 8 学号: 姓名:万永燕郑舒元 分组:第四组 目录 前言............................................................... 错误!未定义书签。 摘要 (2) 关键字 (2) 第二章设计参数及要求 (2) 1.1符号说明 (2) 1.2.设计参数及要求 (3) 3 3 第二章材料选择 (4) 2.1概论 (4) 2.2塔体材料选择 (4) 2.3 裙座材料的选择 (4) 第三章塔体的结构设计及计算 (5) 3.1 按计算压力计算塔体和封头厚度 (5) 3.2 塔设备质量载荷计算 (5) 3.3 风载荷和风弯矩 (6) 3.4 地震弯矩计算 (7) 3.5 各种载荷引起的轴向应力 (7) 3.6 塔体和裙座危险截面的强度与稳定校核 (8) 3.7 塔体水压试验和吊装时的应力校核 (9) 3.7.1 水压试验时各种载荷引起的应力 (9) 9 3.8塔设备结构上的设计 (10) 10 10 板式塔的总体结构 (11) 小结 (11) 附录 (11) 附录一有关部件的质量 (11)

附录二矩形力矩计算表 (12) 附录三螺纹小径与公称直径对照表 (12) 参考文献 (12) 前言 摘要 塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便 关键字 塔体、封头、裙座、。 第二章设计参数及要求 1.1符号说明 Pc ----- 计算压力,MPa; Di ----- 圆筒或球壳内径,mm; [Pw]-----圆筒或球壳的最大允许工作压力,MPa; δ ----- 圆筒或球壳的计算厚度,mm; δn ----- 圆筒或球壳的名义厚度,mm; δe ----- 圆筒或球壳的有效厚度,mm;

机械设计强度计算

第3章 剪切和挤压的实用计算 3.1 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面 相切的内力Q F (图3-1c)的作用。Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。 剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a 所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 3.2 剪切和挤压的强度计算 3.2.1 剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 2 F F Q =

曲轴设计加工及强度仿真校核方法

Value Engineering 0引言 曲轴的破坏形式主要是疲劳断裂和轴颈严重磨损,疲劳断裂抗力或疲劳寿命及其耐磨性,主要取决于以下两点:①合理选择曲轴的材质,并用先进的加工技术和强化 工艺。 ②曲轴的结构。主要取决于产品的设计问题曲轴有组合式和整体式之分。前者用于重型和低速发动机中,后者主要用于中大功率发动机中。对于整体结构的曲轴,球铁材质的可以制成空心的,它比实心结构的疲劳强度(抗力)能提高10%左右,如果适当加大曲轴连杆轴颈的过渡圆半径,还能提高疲劳抗力5%。在曲轴上合理地开卸载槽也能提高疲劳抗力。 1内燃机曲轴结构设计的基本要求 对内燃机曲轴的抗弯疲劳强度和扭转刚度有影响的,主要是内燃机曲轴部分的结构形状和主要尺寸,因而内燃机曲轴设计须主要满足以下要求: ①合理配置平衡块,减轻主轴承负荷和振动。应根据各种内燃机的不同特点,结合总体设计综合考虑,上述各项设计要求相互关联,又相互制约。②合理的曲柄排列,改善轴系的扭振情况,扭矩均匀,使其工作时运转平稳。③轴颈—轴承副油孔布置合理,具有足够的承压面积和较高的 耐磨性。④为保证活塞连杆组和曲轴各轴承可靠工作, 应保证足够的刚度,减少曲轴挠曲变形,以尽量避免在工作转速范围内发生共振,提高曲轴的自振频率。⑤功率输出端的静强度、扭转疲劳强度以及曲柄部分的弯曲疲劳强度,都要进行保证。 2曲轴材料和加工工艺的选择①锻钢曲轴(如图1所示)按照曲轴的工作条件,材料在通过强化处理后,应具有优良的综合机械性能,较高的强度和韧性;良好的疲劳抗力,防止疲 劳断裂,提高寿命;良好的耐磨性。 曲轴的材料一般为中碳钢与合金钢,如35CrMoA 、42CrMoA 等。大功率、大排量柴油机多采用综合机械性能较高的锻钢曲轴,但其消耗大量优质合金材料和加工工时,生产周期长,昂贵的设备,使得一般企业难以具备。 ②锻造曲轴(如图2所示)锻造曲轴具有成本低,耐磨性好,吸振能力强,缺口敏感性低以及抗扭转疲劳强度高,变形小,有良好的自润滑能力,抗氧化性好等优点,因此,国内 外中小型内燃机多倾向采用锻造球铁曲轴,这是由于用球铁制造曲轴,可充分利用锻造工艺的优越性,制作复杂的曲柄和内部油腔等,能够得到理想的结构形状,使应力分布更加合理,材料利用的更加充分,同时加工余量小,加工方便,生产周期短,便于大量生产。表1为部分锻造球铁与锻钢曲轴材料的性能比较。 通过上表可以看出,运用不同材料和加工工艺得到的 曲轴在机械性能和硬度方面有较大的差异。 3曲轴的应力分析及强度校核 为对内燃机曲轴进行应力分析及强度校核,内燃机曲 轴的应力分析及强度校核广泛应用CAE 软件-ANSYS , 下面以单缸机分析为例来具体说明。即利用建立的有限元模性来进行校核和分析。 3.1三维模型的建立将在UG5.0中建立的曲轴模型另存为CATIA 模型文件(*.model )格式,导入到AN -SYS10.0如图3所示。 —————————————————————— —作者简介:尤杨(1984-),女,河北唐山人,工学学士,助教,研究方 向为汽车底盘电控和发动机电控。 浅谈曲轴设计加工及强度仿真校核方法 Process and Strength Simulation Test Method in Crankshaft Design 尤杨YOU Yang (天津机电职业技术学院,天津300410) (Tianjin Institute of Mechanical &Electrical Engineering , Tianjin 300410,China )摘要:在内燃机曲轴设计时曲轴的结构强度和材料选择具有重要的作用,一方面通过对内燃机曲轴疲劳破坏形式及其主要原因 的分析;另一方面通过计算机仿真来进行强度振动分析,曲轴的质量优劣直接影响着发动机的性能和寿命。 Abstract:Crankshaft quality directly affects the engine performance and life.In the design of internal combustion engine crankshaft, crankshaft structure strength and material selection plays an important role.On the one hand,the paper analyzes the internal combustion engine crankshaft fatigue failure forms and main reason;on the other hand,it makes strength vibration analysis through the computer simulation. 关键词:内燃机;曲轴设计;强度仿真Key words:internal combustion engine ;crankshaft design ;strength simulation 中图分类号:TG519.5+4文献标识码:A 文章编号:1006-4311(2013)02-0051-02 图1锻钢曲轴 表1锻造球铁与锻钢曲轴材料的性能比较 材料机械性能硬度HB 抗拉强度 σb (N/mm 2 )屈服强度 σs (N/mm 2 )延伸率δ5(%)35CrMoA 42CrMoA QT700-2QT800-2 9801080700800 835930420480 121222 170-217280-320225-305245-335 图2锻造曲轴 ·51·

抗压强度计算2015(DOC)

第四部分外窗的抗风压强度计算 第一节标准与方法 一、相关标准: 《建筑结构荷载规范》GB 50009-2012: ——用于计算建筑物围护结构的风荷载标准值 《建筑外窗抗风压强度、挠度计算方法》(建筑用塑料窗附录B)——用于进行门窗抗风压强度计算、受力杆件挠度校核《建筑玻璃应用技术规程》JGJ113-2009 ——用于玻璃的设计

《建筑外门窗气密、水密、抗风压性能分级及检测方法》GB/T 7016-2008——用于门窗性能检测及性能分级 《门窗、幕墙风荷载标准值》04J906 ——用于直接查询建筑物的风荷载标准值,编制时间较早(2004年按GB50009-2001编制)。三、计算与分级 一)、计算方法有两种: 第一种是挠度校核,即在规定的风荷载标准值作用下,受力杆件的挠度不大于规定值; 第二种是抗风压值计算,即挠度达到最大值(等于L/150,且小于或等于20mm)时的风荷载值。二)、分级 抗风压强度计算与分级可分三步进行:

1、确定建筑物围护结构风荷载标准值。依据《建筑结构荷载规范》GB 50009计算,可由设计院或甲方提供,也可从相关规范、规定获取。。 2、按照《建筑外窗抗风压强度、挠度计算方法》进行门窗受力杆件挠度的校核或门窗抗风压值的计算 3、依据《建筑玻璃应用技术规程》JGJ113确定玻璃风荷载设计值,并进行玻璃强度计算。 4、按《建筑外门窗气密、水密、抗风压性能分级及检测方法》进行级别的判定。 第二节风荷载标准值 一、风荷载标准值的确定 ★甲方或设计院提供(当地有规定的按规定执行)。

★按《建筑结构荷载规范》GB 50009计算确定 按规范计算的风荷载标准值是最小值,根据建筑物的具体情况,可在计算的基础上,乘以安全系数确定。 ★风荷载标准值的直接选用 中国建筑标准设计研究院,在2004年以《建筑结构荷载规范》GB 50009-2001为依据,编制了《门窗、幕墙风荷载标准值》04J906(虽然荷载规范修订了,也许此图册会修订)。 《门窗、幕墙风荷载标准值》04J906是采用基本风压、地面粗糙度类别、建筑物高度三个参数,查表确定该建筑物的风荷载标准值。 在查表的过程中,没有用到建筑物的体形系数,是因为《门窗、幕墙风荷载标准值》04J906是取最大值计算的,即外表面是按负压区墙角边部位-1.8取值,内表面按+0.2取值的。

过程设备设计答案(简答题和计算题)

1.压力容器主要由哪几部分组成?分别起什么作用?答:压力容器由筒体、封头、密封装置、开孔接管、支座、安全 附件六大部件组成。筒体的作用:用以储存物料或完成化学反应所需要的主要压力空间。封头的作用:与筒体直接焊在一起,起到构成完整容器压力空间的作用。密封装置的作用:保证承压容器不泄漏。开孔接管的作用:满足工艺要求和检修需要。支座的作用:支承并把压力容器固定在基础上。安全附件的作用:保证压力容器的使用安全和测量、控制工作介质的参数,保证压力容器的使用安全和工艺过程的正常进行。 2.介质的毒性程度和易燃特性对压力容器的设计、制造、使用和管理有何影响? 答:介质毒性程度越高,压力容器爆炸或泄漏所造成的危害愈严重,对材料选用、制造、检验和管理的要求愈高。如Q235-A或Q235-B钢板不得用于制造毒性程度为极度或高度危害介质的压力容器;盛装毒性程度为极度或高度危害介质的容器制造时,碳素钢和低合金钢板应力逐张进行超声检测,整体必须进行焊后热处理,容器上的A、B类焊接接头还应进行100%射线或超声检测,且液压试验合格后还得进行气密性试验。而制造毒性程度为中度或轻度的容器,其要求要低得多。毒性程度对法兰的选用影响也甚大,主要体现在法兰的公称压力等级上,如内部介质为中度毒性危害,选用的管法兰的公称压力应不小于;内部介质为高度或极度毒性危害,选用的管法兰的公称压力应不小于,且还应尽量选用带颈对焊法兰等。易燃介质对压力容器的选材、设计、制造和管理等提出了较高的要求。如Q235-A·F不得用于易燃介质容器;Q235-A不得用于制造液化石油气容器;易燃介质压力容器的所有焊缝(包括角焊缝)均应采用全焊透结构等。 3.《压力容器安全技术监察规程》在确定压力容器类别时,为什么不仅要根据压力高低,还要视压力与容积的乘积pV大小进行分类?答:因为pV乘积值越大,则容器破裂时爆炸能量愈大,危害性也愈大,对容器的设计、制造、检验、使用和管理的要求愈高。 1.一壳体成为回转薄壳轴对称问题的条件是什么?几何形状承受载荷边界支承材料性质均对旋转轴对称 2.推导无力矩理论的基本方程时,在微元截取时,能否采用两个相邻的垂直于轴线的横截面代替教材中与经线垂直、同壳体正交的圆锥面?为什么?答:不能。如果采用两个相邻的垂直于轴线的横截面代替教材中与经线垂直、同壳体正交的圆锥面,这两截面与壳体的两表面相交后得到的两壳体表面间的距离大于实际壳体厚度,不是实际壳体厚度。建立的平衡方程的内力与这两截面正交,而不是与正交壳体两表面的平面正交,在该截面上存在正应力和剪应力,而不是只有正应力,使问题复杂化。 3.试分析标准椭圆形封头采用长短轴之比a/b=2的原因。答:a/b=2时,椭圆形封头中的最大压应力和最大拉应力 相等,使椭圆形封头在同样壁厚的情况下承受的内压力最大,因此GB150称这种椭圆形封头为标准椭圆形封头 4.何谓回转壳的不连续效应?不连续应力有哪些特征,其中β与两个参数的物理意义是什么? 答:回转壳的不连续效应:附加力和力矩产生的变形在组合壳连接处附近较大,很快变小,对应的边缘应力也由较高值很快衰减下来,称为“不连续效应”或“边缘效应”。

齿轮结构设计和校核

直齿锥齿轮传动是以大端参数为标准值的。在强度计算时,则以齿宽中点处的当量齿轮作为计算的依据。对轴交角刀=90。的直齿锥齿轮传动,其 齿数比u锥距R(图<直齿锥齿轮传动的几何参数>)、分度圆直d i,d2、平均分度圆直径 d ml, d m2、当量齿轮的分度圆直径d vl, d v2之间的关系分别为: Zj "亠 =■? 现以g表示当量直齿圆柱齿轮的模数,亦即锥齿轮平均分度圆上轮齿的模数(简称平均模数),则当量齿数z v为(a) 丘二胆*勇诃娠屁丙pl 2 2 1________________ R (b) V 2 2 _ dm2 _ R - ~ =~R- 令? R=b/R,称为锥齿轮传动的齿宽系数,通常取? R=0.25-0.35,最常用的值为~c = ? R=1/3 由右图可 找出当量 直齿圆柱 齿轮得分 度圆半径 r v与平均 分度圆直 径d m的关 系式为 AjIL 2cos8 --(e)直齿锥齿轮传动的几何参数

(0 显然,为使锥齿轮不至发生根切,应使当量齿数不小于直齿圆柱齿轮 的根切齿数。另外,由式(d)极易得出平均模数mm和大端模数m的关系为 111^=111(1-0.5^)------------------------------------ (h) 、直齿圆锥齿轮的背锥及当量齿数 为了便于设计和加工,需要用平面曲线来近似球面曲线,如下图 OAB为分度圆锥,和为轮齿在球面上的齿顶高和齿根高,过点A作直线AO丄AO与圆锥齿轮轴线交于点O,设想以OO为轴线,OA为母线作一圆锥OAB,称为直齿圆锥齿轮的背锥。由图可见A、B附近背锥面与球面非常接近。因此,可以用背锥上的齿形近似地代替直齿圆锥齿轮大端球面上的齿形。从而实现了平面近似球面。

传动轴的设计及校核

第一章轻型货车原始数据及设计要求 发动机的输出扭矩:最大扭矩·m/2000r/min;轴距:3300mm;变速器传动比: 五挡1 ,一挡,轮距:前轮1440毫米,后轮1395毫米,载重量2500千克 设计要求: 第二章万向传动轴的结构特点及基本要求 万向传动轴一般是由万向节、传动轴和中间支承组成。主要用于在工作过程中相对位置不节组成。伸缩套能自动调节变速器与驱动桥之间距离的变化。万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角的变化,并实现两轴的等角速传动。一般万向节由十字轴、十字轴承和凸缘叉等组成。 传动轴是一个高转速、少支承的旋转体,因断改变的两根轴间传递转矩和旋转运动。重型载货汽车根据驱动形式的不同选择不同型式的传动轴。一般来讲4×2驱动形式的汽车仅有一根主传动轴。6×4驱动形式的汽车有中间传动轴、主传动轴和中、后桥传动轴。6×6驱动形式的汽车不仅有中间传动轴、主传动轴和中、后桥传动轴,而且还有前桥驱动传动轴。在长轴距车辆的中间传动轴一般设有传动轴中间支承.它是由支承架、轴承和橡胶支承组成。 传动轴是由轴管、伸缩套和万向此它的动平衡是至关重要的。一般传动轴在出厂前都要进行动平衡试验,并在平衡机上进行了调整。因此,一组传动轴是配套出厂的,在使用中就应特别注意。 图 2-1 万向传动装置的工作原理及功用 图 2-2 变速器与驱动桥之间的万向传动装置 基本要求: 1.保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传递动力。 2.保证所连接两轴尽可能等速运转。 3.由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内。 4.传动效率高,使用寿命长,结构简单,制造方便,维修容易等 第三章轻型货车万向传动轴结构分析及选型 由于货车轴距不算太长,且载重量吨属轻型货车,所以不选中间支承,只选用一根主传动轴,货车发动机一般为前置后驱,由于悬架不断变形,变速器或分动器输出轴轴线之间的相对位置经常变化,根据货车的总体布置要求,将离合器

轴结构设计和强度校核样本

一、轴分类 按承受载荷不同,轴可分为: 转轴——工作时既承受弯矩又承受扭矩轴。如减速器中轴。虚拟现实。心轴——工作时仅承受弯矩轴。按工作时轴与否转动,心轴又可分为:转动心轴——工作时轴承受弯矩,且轴转动。如火车轮轴。 固定心轴——工作时轴承受弯矩,且轴固定。如自行车轴。虚拟现实。传动轴——工作时仅承受扭矩轴。如汽车变速箱至后桥传动轴。 固定心轴转动心轴 转轴

传动轴 二、轴材料 轴材料重要是碳钢和合金钢。钢轴毛坯多数用轧制圆钢和锻件,有则直接用圆钢。 由于碳钢比合金钢价廉,相应力集中敏感性较低,同步也可以用热解决或化学热解决办法提高其耐磨性和抗疲劳强度,故采用碳钢制造尤为广泛,其中最惯用是45号钢。 合金钢比碳钢具备更高力学性能和更好淬火性能。因而,在传递大动力,并规定减小尺寸与质量,提高轴颈耐磨性,以及处在高温或低温条件下工作轴,常采用合金钢。 必要指出:在普通工作温度下(低于200℃),各种碳钢和合金钢弹性模量均相差不多,因而在选取钢种类和决定钢热解决办法时,所依照是强度与耐磨性,而不是轴弯曲或扭转刚度。但也应当注意,在既定条件下,有时也可以选取强度较低钢材,而用恰当增大轴截面面积办法来提高轴刚度。 各种热解决(如高频淬火、渗碳、氮化、氰化等)以及表面强化解决(如喷丸、滚压等),对提高轴抗疲劳强度均有着明显效果。 高强度铸铁和球墨铸铁容易作成复杂形状,且具备价廉,良好吸振性和耐磨性,以及相应力集中敏感性较低等长处,可用于制造外形复杂轴。 轴惯用材料及其重要力学性能见表。

三、轴构造设计 轴构造设计涉及定出轴合理外形和所有构造尺寸。 轴构造重要取决于如下因素:轴在机器中安装位置及形式;轴上安装零件类型、尺寸、数量以及和轴联接办法;载荷性质、大小、方向及分布状况;轴加工工艺等。由于影响轴构造因素较多,且其构造形式又要随着详细状况不同而异,因此轴没有原则构造形式。设计时,必要针对不同状况进行详细分析。但是,无论何种详细条件,轴构造都应满足:

相关主题
文本预览
相关文档 最新文档