继电保护题库
- 格式:doc
- 大小:105.50 KB
- 文档页数:12
第一章
1.1 继电保护装置在电力系统中所起的作用是什么?
答:继电保护装置就是指能反应电力系统中设备发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置.它的作用包括:1.电力系统正常运行时不动作;2.电力系统不正常运行时发报警信号,通知值班人员处理,使电力系统尽快恢复正常运行;3.电力系统故障时,甄别出发生故障的电力设备,并向故障点与电源点之间、最靠近故障点断路器发出跳闸指令,将故障部分与电网的其他部分隔离。
1.2 继电保护装置通过哪些主要环节完成预定的保护功能,各环节的作用是什么?
答:继电保护装置一般通过测量比较、逻辑判断和执行输出三个部分完成预定的保护功能。测量比较环节是册来那个被保护电器元件的物理参量,并与给定的值进行比较,根据比较的结果,给出“是”、“非”、“0”或“1”性质的一组逻辑信号,从而判别保护装置是否应该启动。逻辑判断环节是根据测量环节输出的逻辑信号,使保护装置按一定的逻辑关系判定故障的类型和范围,最后确定是否应该使断路器跳闸。执行输出环节是根据逻辑部分传来的指令,发出跳开断路器的跳闸脉冲及相应的动作信息、发出警报或不动作。
1.3 后备保护的作用是什么?阐述远后备保护和近后备保护的优缺点。
答:后备保护的作用是在主保护因保护装置拒动、保护回路中的其他环节损坏、断路器拒动等原因不能快速切除故障的情况下,迅速启动来切除故障。
远后备保护的优点是:保护范围覆盖所有下级电力元件的主保护范围,它能解决远后备保护范围内所有故障元件由任何原因造成的不能切除问题。
远后备保护的缺点是:(1)当多个电源向该电力元件供电时,需要在所有的电源侧的上级元件处配置远后备保护;(2)动作将切除所有上级电源测的断路器,造成事故扩大;(3)在高压电网中难以满足灵敏度的要求。
近后备保护的优点是:(1)与主保护安装在同一断路器处,在主保护拒动时近后备保护动作;(2)动作时只能切除主保护要跳开的断路器,不造成事故的扩大;(3)在高压电网中能满足灵敏度的要求。
近后备保护的缺点是:变电所直流系统故障时可能与主保护同时失去作用,无法起到“后备”的作用;断路器失灵时无法切除故障,不能起到保护作用。
1.4 继电保护快速切除故障对电力系统有哪些好处?
答:①提高电力系统的稳定性。
②电压恢复快,电动机容易自启动并迅速恢复正常,从而减少对用户的影响。
③减轻电气设备的损坏程度,防止故障进一步扩大。
第二章
2.1 什么是定时限过电流保护?什么是反时限过电流保护?
答:为了实现过电流保护的动作选择性,各保护段的动作时间一般按阶梯原则进行整定,自负荷向电源方向逐级增大,且每段保护的动作时间是恒定不变的,与短路电流大小无关。具有这种动作时限特性的过电流保护,称为定时限过电流保护。
反时限过电流保护是指动作时间随短路电流的增大而自动减小的保护。使用在输电线路上的反时限过电流保护,能更快地切除被保护线路首端的故障。
2.2 电网保护对功率方向继电器有哪些要求?
①能正确地判断短路功率方向。
②有很高的灵敏度。
③继电器的固有动作时限小。
2.3 小结下列电流保护的基本原理、使用网络并阐述其优缺点:
(1)相间短路的三段式电流保护;
(2)方向性电流保护;
(3)零序电流保护;
(4)方向性零序电流保护;
(5)中性点非直接接地系统中的电流电压保护。
答:(1)相间保护的三段式保护:利用短路故障时电流显著增大的故障特征形成判据构成保护。其中速断保护按照躲开本线路末端最大短路电流整定,保护本线路的部分;限时速断按保护按躲开下级速断保护末端短路整定,保护本线路全长;速断和限时速断的联合工作,保护本线路短路被快速、灵敏切除。过电流保护躲开最大负荷电流作为本线路和相邻线路短路时的后备保护。
主要优点是简单可靠,并且在一般情况下也能满足快速切出故障的要求,因此在电网中特别是在35KV及以下电压等级的网络中获得了广泛的应用。
缺点是它的灵敏度受电网的接线以及电力系统的运行方式变化的影响。灵敏系数和保护范围往往不能满足要求,难以应用于更高等级的复杂网路。
(2)方向性电流保护:及利用故障是电流复制变大的特征,有利用电流与电压间相角的特征,在短路故障的流动方向正是保护应该动作的方向,并且流动幅值大于整定幅值时,保护动作跳闸。适用于多断电源网络。
优点:多数情况下保证了保护动作的选择性、灵敏性和速动性要求。
缺点:应用方向元件是接线复杂、投资增加,同时保护安装地点附近正方向发生是你想短路时,由于母线电压降低至零,方向元件失去判断的依据,保护装置据动,出现电压死区。
(3)零序电流保护:正常运行的三相对称,没有零序电流,在中性点直接接地电网中,发生接地故障时,会有很大的零序电流。故障特征明显,利用这一特征可以构成零序电流保护。适用网络与110KV及以上电压等级的网络。
优点:保护简单,经济,可靠;整定值一般较低,灵敏度较高;受系统运行方式变化的影响较小;系统发生震荡、短时过负荷是不受影响;没有电压死区。
缺点:对于短路线路或运行方式变化较大的情况,保护往往不能满足系统运行方式变化的要求。随着相重合闸的广泛应用,在单项跳开期间系统中可能有较大的零序电流,保护会受较大影响。自耦变压器的使用使保护整定配合复杂化。
(4)方向性零序电流保护:在双侧或单侧的电源的网络中,电源处变压器的中性点一般至少有一台要接地,由于零序电流的实际流向是由故障点流向各个中性点接地的变压器,因此在变压器接地数目比较多的复杂网络中,就需要考虑零序电流保护动作的方向性问题。利用正方向和反方向故障时,零序功率的差别,使用功率方向元件闭锁可能误动作的保护,从而形成方向性零序保护。 优点:避免了不加方向元件,保护可能的误动作。其余的优点同零序电流保护。
缺点:同零序电流保护,接线较复杂。
(5)中性点非直接接地系统中的电流电压保护:在中性点非直接接地系统中,保护相间短路的电流、电压保护与中性点直接接地系统是完全相同的。仅有单相接地时二者有差别,中性点直接接地系统中单相接地形成了短路,有短路电流流过,保护应快速跳闸,除反应相电流幅值的电流保护外,还可以采用专门的零序保护。而在中性点非直接接地系统中单相接地时,没有形成短路,无大的短路电流流过,属于不正常运行,可以发出信号并指出接地所在的线路,以便尽快修复。当有单相接地时全系统出现等于相电压的零序电压,采用零序电压保护报告有单相接地发生,由于没有大短路电流流过故障线路这个明显特征,而甄别接地发生在哪条线路上则困难得多。一般需要专门的“单相接地选线装置”,装置依据接地与非接地线路基波零序电流大小、方向以及高次谐波特征的差异,选出接地线路。
2.4 如图所示,在110KV输电线路中,线路AB的负荷电流为175A,,系统阻抗为:Xs=4,单位线路长度的阻抗为:X=0.4(/km),Kk’=1.25; Kk’’=Kk=1.15; Kzq=1.5; Kh=0.85。
计算:电流速断保护、限时电流速断保护、过电流保护动作值与动作时间。
1.5s
110kV 45km 30km
解:
1.线路AB的保护A速断保护:
)(77.3)4.0454(3/11525.1)(min.)3(max..1'.KAZZEIKIABsBdKAdz 2.线路AB的保护A的II段保护:
求动作电流(与下条线路电流速断动作值配合):
)(25.2)4.0304.0454(3/11525.11.1)(min.)3(max..12''.KAZZZEIKKIBCABscdKKAdz 动作时间:tA''=0.5s
灵敏度校验:
3.134.125.2)454.04311523()23(''.max.'.min..AdzABssAdzBdlmIZZEIIK 3.线路AB的保护A的III段保护: )(487.023085.05.12.1)(max.3.kAIKKKIfhzqKAdz
2.5 如图所示,在110KV 输电线路中,单位线路长度的阻抗为:X1=0.4(/km), 可靠系数Kk’=1.25;系统阻抗为:Zs.max=6, Zs.min=4。
1. 计算:线路AB 的电流速断保护一次动作值与电流速断保护最小保护范围。
1.5s
110kV 45km 30km
解:IdB.max = Es/(Zs.min + z1×LAB)
Idz.A’ = Kk'IdB.max
可解得:
Idz’ = 3.77 (kA)
)23(1max..'1minsAdzsZIEZl
Lmin =23.1(km)
2.6 如图网络,试计算保护1电流速断保护的动作电流,动作时限及最小保护范围,并说明当线路长度减到20KM时情况如何?由此得出什么结论?已知
Kk’=1.2,z1=0.4/km,Zs.min=12, Zs.max=18。
解:IdB.max = Es/(Zs.min + z1×LAB)
Idz.A’ = Kk'IdB.max )23(1max..'1minsAdzsZIEZl
LAB=60 km: LAB=20 km:
Idz’ = 2.21 (kA) Idz’ = 3.98 (kA)
Lmin =19.95 (km) Lmin =-8.92(km)
被保护线路的长度很短时,电流速断保护可能没有保护范围。
第三章 3.1 距离保护是利用正常运行与短路状态间的哪些电气量的差异构成的?
答:电力系统正常运行时,保护安装处的电压接近额定电压,电流为正常负荷电流,电压与电流的比值为负荷阻抗,其值较大,阻抗角为功率因数角,数值较小;电力系统发生短路时,保护安装处的电压变为母线残余电压,电流变为短路电流,电压与电流的比值变为保护安装处与短路点之间一段线路的短路阻抗,其值较小,阻抗角为输电线路的阻抗角,数值较大,距离保护就是利用了正常运行与短路时电压和电流的比值,即测量阻抗之间的差异构成的。
3.2 什么是保护安装处的负荷阻抗、短路阻抗、系统等值阻抗?
答:负荷阻抗是指在电力系统正常运行时,保护安装处的电压(近似为额定电压)与电流(负荷电流)的比值。因为电力系统正常运行时电压较高、电流较小、功率因数较高(即电压与电流之间的相位差较小),负荷阻抗的特点是量值较大,在阻抗复平面上与R轴之间的夹角较小。
短路阻抗是指在电力系统发生短路时保护安装处的电压变为母线残余电压,电流变为短路电流,此时测量电压与测量电流的比值就是短路阻抗。短路阻抗即保护安装处与短路点之间一段线路的阻抗,其值较小,阻抗角交大。
系统等值阻抗:在单个电源供电的情况下,系统等值阻抗即为保护安装处与背侧电源点之间电力元件的阻抗和;在由多个电源点供电的情况下,系统等值阻抗即为保护安装处断路器断开的情况下,其所连接母线处的戴维南等值阻抗,即系统等值电动势与母线处短路电流的比值,一般通过等值、简化的方法求出。
3.3 距离保护装置一般由哪几部分组成?简述各部分的作用。
答:距离保护一般由启动、测量、振荡闭锁、电压回路断线闭锁、配合逻辑和出口等几部分组成,它们的作用分述如下:
(1)启动部分:用来判别系统是否发生故障。系统正常运行时,该部分不动作;而当发生故障时,该部分能够动作。通常情况下,只有启动部分动作后,才将后续的测量、逻辑等部分投入工作。
(2)测量部分:在系统故障的情况下,快速、准确地测定出故障方向和距离,并与预先设定的保护范围相比较,区内故障时给出动作信号,区外故障时不动作。
(3)振荡闭锁部分:在电力系统发生振荡时,距离保护的测量元件有可能误动作,振荡闭锁元件的作用就是正确区分振荡和故障。在系统振荡的情况下,将保护闭锁,即使测量元件动作,也不会出口跳闸;在系统故障的情况下,开放保护,如果测量元件动作且满足其他动作条件,则发出跳闸命令,将故障设备切除。
(4)电压回路断线部分:电压回路断线时,将会造成保护测量电压的消失,从而可能使距离保护的测量部分出现误判断。这种情况下应该将保护闭锁,以防止出现不必要的误动。
(5)配合逻辑部分:用来实现距离保护各个部分之间的逻辑配合以及三段式保护中各段之间的时限配合。
(6)出口部分:包括跳闸出口和信号出口,在保护动作时接通跳闸回路并发出相应的信号。
3.4 什么叫距离保护?
答:距离保护又称阻抗保护。由于线路的阻抗与线路的长度成正比,短路故障时,保护
安装处的电压与电流之比,反映了保护安装处到故障点之间的阻抗,也反映了保护安装处
到故障点间的距离,按距离远近来确定保护的动作时间,有选择地切除故障,我们把这种
保护叫距离保护。