当前位置:文档之家› 射频燃气表工作原理及系统应用分析

射频燃气表工作原理及系统应用分析

射频燃气表工作原理及系统应用分析
射频燃气表工作原理及系统应用分析

射频燃气表工作原理及系统应用分析

摘要:文章介绍了射频燃气表的工作原理、运行特点、计量溯源问题及无线抄表系统的实现方式,并对射频技术的进一步应用进行了分析和展望。

关键词:无线远传;射频燃气表;无线模块;无线抄表器;计量溯源;无线抄表系统

无线远传抄表是近些年出现的新型燃气抄表方式,它使用具有无线远传功能的燃气表,利用无线手抄器进行远程抄表控制。其中射频燃气表就是一种典型的无线远传燃气表,它除了具有普通膜式燃气表的所有计量功能外,还具有计量数据机电转换、无线传输、气路通断等功能,可安装在户内而从户外遥读计量数据,并遥控阀门开闭(带控制阀类),所以近年来在城市小区中得到了广泛的应用。

1工作原理

射频燃气表中的“射频”指英文Radio Frequency,缩写为RF,表示可以辐射到空间的电磁频率,频率范围从300 kHz~30 GHz之间。电磁频率高于100 kHz 时,电磁波可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力。射频技术已在无线通信领域中被广泛使用。

射频燃气表是以膜式燃气表为计量基表,加装电子控制器(ECU)所组成的一种以短距离无线方式传输数字信号、具有计量数据遥读及控制功能的燃气计量装置,分带控制阀和不带控制阀两类,由基表、无线模块及无线抄表器三部分组成。

基表:也称传感器,一般采用皮膜式结构,其特性应符合GB/T 6968-2011《膜式燃气表》标准要求。

无线模块:也称附加装置,连接在基表上,用于采集燃气表的用量并存储。典型的结构方式可以在基表计数器0.001 m3字轮最末位嵌入一颗永磁铁,两只干簧继电器呈180 ̊安装在字轮附近,字轮每旋转一周,产生2个脉冲,为一组完整的脉冲信号,代表0.01 m3体积流量,由此实现机-电信号实时转换。电子数据贮存在ECU的存储器(EEROM)中,由无线抄表器或其它数据采集装置在需要时读取。无线模块的功耗很低,一般电池供电可维持4~6年。

无线抄表器:一般采用手持触摸屏/触笔操作,所有功能都在屏幕上显示。它是通过无线射频方式发送/接收数据或指令的,在它和无线模块之间建立一套通信协议就可以和燃气表无线模块进行通信,抄取数据。

典型射频燃气表抄表过程:无线模块平时均处于睡眠状态;燃气表每使用一定量时,传感器就会发出脉冲信号,脉冲信号将睡眠的无线模块唤醒,模块将该次使用量记下,然后又继续进入睡眠状态;它在睡眠时,还会周期性自动醒来,

无线膜式燃气表说明书-钢壳

1前言 本产品适用于城市管道燃气、天燃气和液化石油气的自动计量和收费控制。该产品的使用提高了供气行业的现代管理水平,同时方便了用户的使用,解决了抄表难、入户难、监控难、收费难等诸多问题。本产品执行标准GB/T6968‐2011膜式燃气表,采用公共频道的无线通信方式。 金卡高科技股份有限公司是国家级软件企业,浙江省高新技术企业,是集研发、生产、销售于一体的无线表专业厂家。 本产品符合GB3836.1-2010《爆炸性环境第1部分:设备通用要求》和GB3836.4-2010《爆炸性环境第4部分:由本质安全型“i”保护的设备》标准;防爆标志为ExibIIBT3Gb。 型式批准证书编号: 2014F380-33JW-G1.6、2.5、4G 2014F380-33JWML1.6、2.5、4FG 企业宗旨是:人才为本,科技导航 质量创牌,用户满意。 金卡高科技股份有限公司真诚感谢阁下对我们的支持,为确保正确安装及使用,请详阅本说明书。 2工作原理 2.1产品组成部分: JW系列无线膜式燃气表JWML系列IC卡无线膜式燃气表 膜式燃气基表√√ 智能控制模块√√ 电机阀√√ IC卡模块√ 无线收发模块√√ 2.2工作原理: JW系列无线膜式燃气表、JWML系列IC无线膜式燃气表有四个气室,由两个皮膜分隔而成。燃气流经时,在四个气室内产生不同的压强,使皮膜做往复运动,经过一系列的传动机构,再经传感系统,把机械运动转化为电信号送至智能控制模块。实现计量、查询、提示和开关阀等各种功能。

3产品尺寸 4技术指标 参数名称单位 1.6型 2.5型4型公称流量m3/h 1.6 2.54最大流量m3/h 2.546最小流量m3/h0.0160.0250.04最大工作压力kPa15 基本误差限%q min≤q<0.1q max时±3 0.1q max≤q≤q max时±1.5 密封性kPa22.5kPa压力下3min内不泄漏 最小读数dm30.2 最大读数m399999 使用温度℃‐25~55 使用气体各类燃气、空气、无腐蚀性气体进出气管螺纹mm M30×2 进出气管中心距mm130 计量范围m30~99999.999m3 计量精度级 1.5 总压力损失Pa<250 工作电压V DC4.8V–6.3V(4节碱性电池) 静态电流uA≤20 数据保存年>10 5产品使用环境和安装条件 5.1环境温度:‐25℃~55℃ 5.2环境湿度:30%~85%RH 5.3最大工作压力:15kPa 5.4燃气表在运输途中不得倾倒、遭受严重碰撞和振动。 5.5安装前应检查封印是否完好,强制检定标签是否具备。

荧光光谱分析仪工作原理

X 荧光光谱分析仪工作原理 用x 射线照射试样时,试样可以被激发出各种波长得荧光x 射线,需要把混合得x 射线 按波长(或能量)分开,分别测量不同波长(或能虽:)得X 射线得强度,以进行左性与定疑 分析,为此使用得仪器叫X 射线荧光光谱仪。由于X 光具有一泄波长,同时又有一立能量, 因此,X 射线荧光光谱仪有两种基本类型:波长色散型与能量色散型。下图就是这两类仪器 得原理图. 用X 射线照射试样时,试样可以被激发出各种波长得荧光X 射线,需要把混合得X 射 线按波长(或能疑)分开,分别测量不同波长(或能量)得X 射线得强度,以进行定性与左疑 分析,为此使用得仪器叫X 射线荧光光谱仪。由于X 光具有一左波长,同时又有一左能量, 因此,X 射线荧光光谱仪有两种基本类型:波长色散型与能量色散型。下图就是这两类仪器 得原理图。 (a )波长色散谱仪 (b )能虽色散谱仪 波长色散型和能量色散型谱仪原理图 现将两种类型X 射线光谱仪得主要部件及工作原理叙述如下: X 射线管 酥高分析器 分光晶体 计算机 再陋电源

丝电源 灯丝 电了悚 X则线 BeiV 輪窗型X射线管结构示意图 两种类型得X射线荧光光谱仪都需要用X射线管作为激发光源?上图就是X射线管得结构示意图。灯丝与靶极密封在抽成貞?空得金属罩内,灯丝与靶极之间加高压(一般为4OKV), 灯丝发射得电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生得一次X射线, 作为激发X射线荧光得辐射源.只有当一次X射线得波长稍短于受激元素吸收限Imi n时,才能有效得激发出X射线荧光?笥?SPAN Ian g =EN-U S >lmin得一次X射线其能量不足以使受激元素激发。 X射线管得靶材与管工作电压决立了能有效激发受激元素得那部分一次X射线得强度。管 工作电压升高,短波长一次X射线比例增加,故产生得荧光X射线得强度也增强。但并不就是说管工作电压越髙越好,因为入射X射线得荧光激发效率与苴波长有关,越靠近被测元素吸收限波长,激发效率越髙。A X射线管产生得X射线透过彼窗入射到样品上, 激发岀样品元素得特征X射线,正常工作时,X射线管所消耗功率得0、2%左右转变为X 射线辐射,其余均变为热能使X射线管升温,因此必须不断得通冷却水冷却靶电极。 2、分光系统 第?准讥器 平面晶体反射X线示意图 分光系统得主要部件就是晶体分光器,它得作用就是通过晶体衍射现彖把不同波长得X射线分开.根据布拉格衍射左律2d S in 0 =n X ,当波长为X得X射线以0角射到晶体,如果晶面间距为d,则在出射角为0得方向,可以观测到波长为X =2dsi n 0得一级衍射及波长为X/2, X /3 ------ ―等髙级衍射。改变()角,可以观测到另外波长得X

细拆家用膜式燃气表

细拆家用膜式燃气表 家庭“三表”(水、电、气)与人们的生活密切相关,其中燃气表最为神秘。不仅由于安全防爆严格、经营高度垄断;其特殊的计量原理,不为一般人所知;换下的旧表,也被回收销毁,很少有人拆解。 最近,小区换气表,从旧表堆里捡了一只,经过详细拆解,终于搞清楚了内部结构及计量原理。为安全使用增长了知识。 一、外形,这是最常用的J2.5型家用膜式燃气表(这几年出厂的电子式、IC卡式等型号,只要计量箱是膜式,基本原理相同,只是显示、储存、抄表信息功能不同) 该表生产厂:重庆前卫克罗姆表业有限责任公司,全球排名第四的燃气计量器具供应商。是由德国埃尔斯特公司(成立于1848年,是全球最大的燃气表制造商、埃尔斯特集团的重要成员。是全球领先的高精度燃气表、电表、水表的制造商。)与重庆前卫仪表有限责任公司(隶属中国船舶重工集团)于2001年1月共同投资组建的合资企业。

二、膜式燃气表结构: 膜式燃气表属于一种容积式机械仪表,由两个容器(计量箱)组成计量系统。每个容器由凹型膜片横隔中间---又将每个容器分成两个能互补形状的计量室。膜片运动的推动力依靠燃气表进出口处的气体压力差。在压力差的作用下,膜片产生不断的交替运动,推动两组滑阀把充满计量室内的燃气不断地分隔成单个的计量体积(循环体积)排向出口,再通过机械传动机构与计数器相连,实行对单个计量体积的计数,从而测得流过管道的燃气总量。

三、煤气表工作原理(视频附后): 煤气表内有两个计量箱,每个计量箱内中心线装有合成橡胶制成的皮膜,将其分隔成两个计量气室。煤气流过时,皮膜伸缩,因而改变皮膜与计量箱之间的体积,同时推动滑阀盖改变位置。当左滑阀盖右移时,A室进气、B室排气,右滑阀盖在中间,C和D室停止进排气。A室进气后,左滑阀盖左移至中间,右滑阀盖左移,此时D室进气、C室排气,A和B室停止进排气。接着左滑阀盖再左移,右滑阀盖右移至中间,此时B室进气,A室排气,C和D 室停止进排气。然后左滑阀盖移至中间,右滑阀盖右移,此时C室进气,D室排气,A和B 室停止进排气。这样,一个循环排出两个计量箱体积的煤气,同时曲柄摆动一次,带动计数器的齿轮旋转,计数器的读数即为排出煤气的体积量。

各种仪器分析的基本原理及谱图表示方法!!!紫外吸收光谱UV分析

各种仪器分析的基本原理及谱图表示方法!!! 紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息 质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e 分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e 的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关反气相色谱法IGC 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数裂解气相色谱法PGC 分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型凝胶色谱法GPC 分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布热重法TG 分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区热差分析DTA 分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化 谱图的表示方法:温差随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息示差扫描量热分析DSC 分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化 谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息静态热―力分析TMA 分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态

教你认识交流接触器

教你认识交流接触器

结构与工作原理 (一)如图l所示为交流接触器的外形与结构示意图。交流接触器由以下四部分组成: 图1 CJ10-20型交流接触器

1一灭弧罩 2一触点压力弹簧片 3一主触点 4一反作用弹 簧 5一线圈 6一短路环 7一静铁心 8一弹簧 9一动铁心 10一辅助常开触点 11一辅助常闭触点 (1)电磁机构电磁机构由线圈、动铁心(衔铁)和静铁心组成,其作用是将电磁能转换成机械能,产生电磁吸力带动触点动作。 (2)触点系统包括主触点和辅助触点。主触点用于通断主电路,通常为三对常开触点。辅助触点用于控制电路,起电气联锁作用,故又称联锁触点,一般常开、常闭各两对。 (3)灭弧装置容量在10A以上的接触器都有灭弧装置,对于小容量的接触器,常采用双断口触点灭弧、电动力灭弧、相间弧板隔弧及土灭弧罩灭弧。对于大容量的接触器,采用纵缝灭弧罩及栅片灭弧。 (4)其他部件包括反作用弹簧、缓冲弹簧、触点压力弹簧、传动机构及外

壳等。 电磁式接触器的工作原理如下:线圈通电后,在铁芯中产生磁通及电磁吸力。此电磁吸力克服弹簧反力使得衔铁吸合,带动触点机构动作,常闭触点打开,常开触点闭合,互锁或接通线路。线圈失电或线圈两端电压显著降低时,电磁吸力小于弹簧反力,使得衔铁释放,触点机构复位,断开线路或解除互锁。 (二)直流接触器 直流接触器的结构和工作原理基本上与交流接触器相同。在结构上也是由电磁机构、触点系统和灭弧装置等部分组成。由于直流电弧比交流电弧难以熄灭,直流接触器常采用磁吹式灭弧装置灭弧。 交流接触器的分类及基本参数 1.交流接触器的分类 交流接触器的种类很多,其分类方法也不尽相同。按照一般的分类方法,大致有以下几种。 ①按主触点极数分可分为单极、双极、三极、四极和五极接触器。单极接触器主要用于单相负荷,如照明负荷、焊机等,在电动机能耗制动中也可采用;双极接触器用于绕线式异步电机的转子回路中,起动时用于短接起动绕组;三极接触器用于三相负荷,例如在电动机的控制及其它场合,使用最为广泛;四极接触器主要用于三相四线制的照明线路,也可用来控制双回路电动机负载;五极交流接触器用来组成自耦补偿起动器或控制双笼型电动机,以变换绕组接法。 ②按灭弧介质分可分为空气式接触器、真空式接触器等。依靠空气绝缘的接

膜式燃气表的工作原理及结构原理

模式燃气表的工作原理 1.膜式燃气表的工作原理: 燃气表是利用气体在表体内流动过程中的压力差作为动力,由阀座、阀盖的相对位置来控制气体流向的分配。燃气表的膜盒由左右相同的两个气体测量室组成,每个气体测量室由一张柔软的膜片将其分为两个相同的小计量室。当分配的气体依次进入四个小计量室,推动膜片自由的摆动,膜片组件的运动通过摇杆带动连杆机构(双曲柄摇杆机构)并使阀盖做旋转运动从而控制各计量室依次充气和排气,使燃气表连续循环运动,同时连杆机构的偏心转动齿轮通过齿轮的传动驱动机械式单向计数器计数,最终通过计数器显示燃气表的排气量。 2.预付费膜式燃气表的工作原理: 燃气表采用逻辑加密卡(简称IC卡)作为信息载体,当系统在电压监测电路的监测下正常工作时,控制模块从IC卡中读入数据,并进行数据交换,将燃气表的相关气量信息和工作状态等信息写入IC 卡,并通过IC卡反馈到售气管理系统中。当用气时,控制模块接收来自采集模块的信号,对表内的气量信息作相应的计量处理,当表内剩余气量降至0时,控制模块发出关闭阀门的指令以切断气路,阻止用气,直到用户重新向燃气表输入所购的气量时,才可恢复用气,从而实现预付费管理。当控制模块接收到磁场干扰等信号时,则会发出关阀指令以关断气路,并将燃气表相应的状态信息送到LCD显示,当用户插入IC卡时,控制模块会将这些状态信息写入IC卡,当再次购气时,售气管理系统会读取IC卡中的这些状态信息并存蓄到数据库,

实现信息的反馈。

膜式燃气表结构原理与设计制造 一、前言 煤气是一种可应用的气体燃料(也称为燃气)。它可分为天然煤气和人工煤气两大类,天然煤气是指地下蕴藏的天然气、矿层气、沼气等,人工煤气主要包括焦炉煤气、发生炉煤气、水煤气、液化气、油制气以及人工合成的可燃烧的其它气体等。现在人们主要更多使用的还是天然气、焦炉煤气和人工合成燃气。煤气的计量是是随着煤气的应用而不断发展起来的。 二、流量计的分类 流量计------所有的测量流体流量的仪表统称为流量计或流量表。 流量------流体流过一定截面的量称为流量(flow rate)。 流量计从工作原理上可分为: 1.容积式流量计; 2.速度式流量计; 3.差压式流量计; 4.质量流量计等。 其中: 容积式流量计属于定排量类流量计,在流量仪表中是准确度较高的一类。它主要有:膜式燃气表、活塞表、齿轮表、腰轮表、湿式流量计等。 在容积式流量计内部具有构成一定标准体积的空间,通常称其为容积式流量计的“计量空间”或“计量室”。在给定流量计条件下,该计量空间的体积上确定的。

频谱分析仪的原理及应用

频谱分析仪的原理及应用 (远程互动方式) 一、实验目的: 1、熟悉远程电子实验系统客户端程序的操作,了解如何控制远地服务器主机,操作与其连接的电子综合实验板和PCI-1200数据采集卡,具体可参照实验操作说明。 2、了解FFT 快速傅立叶变换理论及数字式频谱分析仪的工作原理,同时了解信号波形的数字合成方法以及程控信号源的工作原理。 3、在客户端程序上进行远程实验操作,由程控信号源分别产生正弦波、方波、三角波等几种典型电压波形,并由数字频谱分析仪对这几种典型电压波形进行频谱分析,并对测量结果做记录。 二、实验原理: 1、理论概要 数字式频谱分析仪是通过A/D 采样器件,将模拟信号转换为数字信号,传给微处理器系统或计算机来处理和显示,与模拟仪器相比,数据的量化更精确,而且很容易实现存储、传输、控制等智能化的功能。电压测量的分辨率取决于A/D 采样器件的位数,例如12位A/D 采样的分辨率是1/4096。在对交流信号的测量中,根据奈奎斯特采样定理,采样速率必须是信号频率的两倍以上,采样频率越高,时间轴上的信号分辨力就越高,所获得的信号就越接近原始信号,在频谱上展现的频带就越宽。 本实验系统基于虚拟仪器构建,数字频谱分析仪是通过PCI-1200数据采集卡来实现的。通过虚拟仪器软件提供的网络通信功能,实现客户端与服务器之间的远程通信。由客户端程序发出操作请求,由服务器接受并按照要求控制硬件实验系统,然后将采集到的实验数据发给客户端,由客户端程序进行处理。 频谱分析仪是在频域进行信号分析测量的仪器之一,它采用滤波或傅立叶变换的方法,分析信号中所含各个频率份量的幅值、功率、能量和相位关系。频谱仪按工作原理,大致可分为滤波法和计算法两大类,本实验所用的数字频谱分析仪采用的是计算法。 计算法频谱分析仪的构成如图1所示: 图1 计算法频谱分析仪构成方框图 数据采集部分由数据采集部分由抗混低通滤波(LP )、采样保持(S/H )和模数转换(A/D )几个部分组成。 数字信号处理(DSP )部分的核心是FFT 运算。 有限离散序列Xn 和它的频谱X m 之间的傅立叶变换可表示如下: N-1 nm X m = ∑ Xn ·W N n=0 -j2π/N 式中W N = C n,m = 0,1,……,N-1 1 N-1 -nm Xn = - ∑ X m ·W N N m=0 X m 有N 个复数值,由它可获得振幅和相位谱∣X m ∣,φm 。由于时间信号Xn 总是实函数,X m 的N 个值的前后半部分共轭对称。 由于数据采集进行的是有限时间内的信号采集,而不是无限时间信号,在进行FFT 变

空开 接触器 热继电器按钮等元器件的结构和原理

空开、接触器、热继电器、按钮等元器件的结构和原理 授课人:王凯控制电器按其工作电压的高低,以交流1200V、直流1500V为界,可划分为高压控制电器和低压控制电器两大类。 今天我们所说的空开、接触器、热继电器、按钮都属于低压电器。低压电器是一种能根据外界的信号和要求,手动或自动地接通、断开电路,以实现对电路或非电对象的切换、控制、保护、检测、变换和调节的元件或设备。 一、空开的结构和原理 空开的全名叫做空气开关,又称自动空气断路器,是低压配电网络和电力拖动系统中非常重要的一种电器,它集控制和多种保护功能于一身。除了能完成接触和分断电路外,尚能对电路或电气设备发生的短路.严重过载及欠电压等进行保护,同时也可以用于不频繁地启动电动机。 1、空气开关的结构 DZ5-20型自动空气开关 以DZ5-20型自动空气开关为例,其外形及结构如图(一)(二)所示。 DZ5-20型自动空气开关其结构采用立体布置,操作机构在中间。外壳顶部突出红色分断按钮和绿色停止按钮,通过贮能弹簧连同杠杆机构实现开关的接通和分断;壳内底座上部为热脱扣器,由热元件和双金属片构成,作过载保护,还有一电流调节盘,用以调节整定电流;下部为电磁脱扣器,由电流线圈和铁芯组成,作短路保护用,也有一电流调节装置,用以调节瞬时脱扣整定电流;主触头系统在操作机构的下面,由动触头和静触头组成,用以接通和分断主电路的大电流并采用栅片灭弧;另外,还有常开和常闭触头各一对,可以作为信号指示或控制电路用;主.辅触头接线柱伸出壳外,便于接线。 2、空气开关的动作原理

如图(三)所示,1、2为自动空气开关的三副主触头(1为动触头,2为静触头),它们串联在被控制的三相电路中。当按下接触按钮14时,外力使锁扣3克服反力弹簧16的斥力,将固定在锁扣上面的动触头1与静触头2闭合,并由锁扣锁住搭钩4,使开关处于接通状态。 当开关接通电源后,电磁脱扣器.热脱扣器及欠电压脱扣器若无异常反应,开关运行正常。当线路发生短路或严重过载电流时,短路电流超过瞬时脱扣整定电流值,电磁脱扣器6产生足够大的吸力,将衔铁8吸合并撞击杠杆7,使搭钩4绕转轴座5向上转动与锁扣3脱开,锁扣在反力弹簧16的作用下将三副主触头分断,切断电源。 当线路发生一般性过载时,过载电流虽不能使电磁脱扣器动作,但能使热元件13产生一定热量,促使双金属片12受热向上弯曲,推动杠杆7使搭钩与锁扣脱开,将主触头分断,切断电源。 欠电压脱扣器11的工作过程与电磁脱扣器恰恰相反,当线路电压正常时电压脱扣器11产生足够的吸力,克服拉力弹簧9的作用将衔铁10吸合,衔铁与杠杆脱离,锁扣与搭钩才得以锁住,主触头方能闭合。当线路上电压全部消失或电压下降至某一数值时,欠电压脱扣器吸力消失或减小,衔铁被拉力弹簧9拉开并撞击杠杆,主电路电源被分断。同样道理,在无电源电压或电压过低时,自动空气开关也不能接通电源。 3、使用原则 1、自动空气开关的额定工作电压≥线路额定电压。 2、自动空气开关的额定电流≥线路负载电流。 3、热脱扣器的整定电流=所控制负载的额定电流。 4、电磁脱扣器的瞬时脱扣整定电流>负载电路正常工作时的峰值电流。 二、接触器的结构和原理 1、分类 通用接触器可大致分以下两类。

光谱仪的工作原理

光谱仪的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

光谱仪的工作原理元素的原子在激发光源的作用下发射谱线,谱线经光栅分光后形成光谱,每种元素都有自己的特征谱线,谱线的强度可以代表试样中元素的含量,用光电检测器将谱线的辐射能转换成电能。检测输出的信号,经加工处理,在读出装置上显示出来。然后根据相应的标准物质制作的分析曲线,得出分析试样中待测元素的含量。 表面轮廓仪介绍 表面轮廓仪 - 简介 表面轮廓仪LK-200M型表面轮廓仪采用广精精密最新的基于windows版本的测量软件,具有强大卓越的数据处理分析功能。测量时,零件装夹位置即使任意放置,也能得到满意的测量结果;即使需要测量长度为220mm的工件,测量软件也能保证其1μm的采样步长。 LK-200H型表面轮廓仪采用耐用可靠的16位A/D功能板,其极高的分辨率量程比(1/65536),用户即使需要大量程测量,仍能保持极高的测量精度。 LK-200M型表面轮廓仪采用工控计算机处理测量数据及仪器控制操作。其高质量、高可靠性及突出的防尘、防振、防油、防静电能力使广精精密用户将使用维护成本降至最低。 表面轮廓仪 - 原理 表面轮廓仪LK-200M型表面轮廓仪采用直角坐标法,传感器移动式。直线运动导轨采用高精度气浮导轨,作为测量基准; 电器部分由高级计算机组成;测量软件采用基于中文版Windows操作系统平台的系统测量软件,完成数据采集、处理及测量数据管理等工作。 表面轮廓仪 - 功能 角度处理:两直线夹角、直线与Y轴夹角、直线与X轴夹角 点线处理:两直线交点、交点到直线距离、交点到交点距离、交点到圆心距离、交点到点距离 圆处理:圆心距离、圆心到直线的距离、交点到圆心的距离、直线到切点的距离线处理:直线度、凸度、LG凸度、对数曲线 表面轮廓仪 - 技术规格 表面轮廓仪测量长度:≤200mm

交流接触器结构与工作基础学习知识原理

交流接触器结构与工作原理 (一)如图l所示为交流接触器的外形与结构示意图。交流接触器由以下四部分组成: 图1 CJ10-20型交流接触器 1一灭弧罩2一触点压力弹簧片3一主触点4一反作用弹簧 5一线圈6一短路环7一静铁心8一弹簧9一动铁心 10一辅助常开触点11一辅助常闭触点 (1)电磁机构电磁机构由线圈、动铁心(衔铁)和静铁心组成,其作用是将电磁能转换成机械能,产生电磁吸力带动触点动作。 (2)触点系统包括主触点和辅助触点。主触点用于通断主电路,通常为三对常开触点。辅助触点用于控制电路,起电气联锁作用,故又称联锁触点,一般常 开、常闭各两对。

(3)灭弧装置容量在10A以上的接触器都有灭弧装置,对于小容量的接触器,常采用双断口触点灭弧、电动力灭弧、相间弧板隔弧及陶土灭弧罩灭弧。对于大容量的接触器,采用纵缝灭弧罩及栅片灭弧。 (4)其他部件包括反作用弹簧、缓冲弹簧、触点压力弹簧、传动机构及外壳 等。 电磁式接触器的工作原理如下:线圈通电后,在铁芯中产生磁通及电磁吸力。此电磁吸力克服弹簧反力使得衔铁吸合,带动触点机构动作,常闭触点打开,常开触点闭合,互锁或接通线路。线圈失电或线圈两端电压显著降低时,电磁吸力小于弹簧反力,使得衔铁释放,触点机构复位,断开线路或解除互锁。 (二)直流接触器 直流接触器的结构和工作原理基本上与交流接触器相同。在结构上也是由电磁机构、触点系统和灭弧装置等部分组成。由于直流电弧比交流电弧难以熄灭,直 流接触器常采用磁吹式灭弧装置灭弧。 交流接触器的分类及基本参数 1.交流接触器的分类 交流接触器的种类很多,其分类方法也不尽相同。按照一般的分类方法,大致有以下几种。 ①按主触点极数分可分为单极、双极、三极、四极和五极接触器。单极接触器主要用于单相负荷,如照明负荷、焊机等,在电动机能耗制动中也可采用;双极接触器用于绕线式异步电机的转子回路中,起动时用于短接起动绕组;三极接

燃气表基础知识

一、膜式燃气表的“G2.5”是什么意思?它的流量范围多大? 膜式煤气表的型号是G2.5。“G”为煤气-英文Gas的字头,“2.5”为煤气表的规格,一般是该规格煤气表的公称流量。即流量为每小时2.5立方米(m3/h)。但它的最大流量)4 m3/h,最小流量(Qmin)0.025 m3/h。 是(Q max 二、试说明膜式燃气表的工作原理。 膜式燃气表是一种自动机械仪表,皮膜运动的推动力是依靠燃气表进出口处的气体压力差。它的源动力是由高于常压的被测气体进入皮膜的一侧内腔所产生的压强,推动皮膜向另一侧移动而产生推动力(也就是皮膜所牵动的皮膜转轴原地转动的扭距),当皮膜移动到另一侧的极限(也就是通常说的死点)的位置时,力矩不再产生能让皮膜返回来的力,这就需要第二个皮膜相继产生同样的力来带动第一个皮膜返回移动,同时第一个皮膜的出气口变成进气口,进气口变出气口。此时第一个皮膜可做返回运动,当第二个皮膜达到极限位置时,也可带动第二个皮膜产生返回的力。两个皮膜相互作用牵动的皮膜转轴做往复摆动,通过皮膜摆杆,皮膜摇杆及连杆去牵动一个共同的曲柄,当曲柄接收到的扭距相差一定的相位(90度)时,就能做到连续转动,并由曲柄带动转阀连续运动,并按一定的方式改变皮膜模腔所对应的进出气口的方向和带动计数装置,从而达到连续自动计量的目的。 三、说明“回转体积”的概念,它与计数装置是如何达到同步的? 当膜式煤气表中的两个皮膜都作了一次往复运动,曲柄旋转一周时所通过出气口排出的气体体积量称做“回转体积”。一回转体积量的气体是通过曲柄的转动、再经过中间一些轴与齿轮去拨动计数装置的,就是这样传递出来的。计数装置上有小数位(升位),一般是由个位、十位、百位组成,一回转体积和第一位小数位是不大可能相等或成整倍的,中间需要用齿轮或加有蜗轮付的变比来达到一致的,也就是说用不同齿的齿轮来调整回转体积与计数装置的进位来达到同步的。 四、皮膜的作用是什么?对它有哪些要求? 在封闭的计量室里的皮膜一侧充进气体、另一侧排出气体并通过皮膜带动连杆汇交力系,将气体的回转量传到计数装置上,达到计量的目的。它是煤气表中的关键部件。对它要求:质地柔软,翻转省力;耐磨耐折;在使用的压力范围内,不伸长变形;不透气;耐煤气腐蚀等。 五、滑阀与阀座是做什么用的?对它有哪些要求?(气路分配系统)

频谱分析仪使用注意

正确使用频谱分析仪需注意的几点 首先,电源对于频谱分析仪来说是非常重要的,在给频谱分析仪加电之前,一定要确保电源接确,保证地线可靠接地。频谱仪配置的是三芯电源线,开机之前,必须将电源线插头插入标准的三相插座中,不要使用没有保护地的电源线,以防止可能造成的人身伤害。 其次,对信号进行精确测量前,开机后应预热三十分钟,当测试环境温度改变3—5度时,频谱仪应重新进行校准。 三,任何频谱仪在输入端口都有一个允许输入的最大安全功率,称为最大输入电平。如国产多功能频谱分析仪AV4032要求连续波输入信号的最大功率不能超过+30dBmW(1W),且不允许直流输入。若输入信号值超出了频谱仪所允许的最大输入电平值,则会造成仪器损坏;对于不允许直流输入的频谱仪,若输入信号中含有直流成份,则也会对频谱仪造成损伤。 一般频谱仪的最大输入电平值通常在前面板靠近输入连接口的地方标出。如果频谱仪不允许信号中含有直流电压,当测量带有直流分量的信号时,应外接一个恰当数值的电容器用于隔直流。 当对所测信号的性质不太了解时,可采用以下的办法来保证频谱分析仪的安全使用:如果有RF功率计,可以用它来先测一下信号电平,如果没有功率计,则在信号电缆与频谱仪的输入端之间应接上一个一定量值的外部衰减器,频谱仪应选择最大的射频衰减和可能的最大基准电平,并且使用最宽的频率扫宽(SPAN),保证可能偏出屏幕的信号可以清晰看见。我们也可以使用示波器、电压表等仪器来检查DC及AC信号电平。 频谱分析仪的工作原理 频谱分析仪架构犹如时域用途的示波器,外观如图1.2所示,面板上布建许多功能控制按键,作为系统功能之调整与控制,系统主要的功能是在频域里显示输入信号的频谱特性.频谱分

光谱仪的原理、功能以及分类【详尽版】

光谱仪的原理光谱仪的主要功能以及具体的分类 内容来源网络,由SIMM深圳机械展整理 更多相关展示,就在深圳机械展! 光谱仪器是进行光谱研究和物质结构分析,利用光学色散原理及现代先进电子技术设计的光电仪器,光谱仪的主要功能是什么,在它工作原理的基础上怎么对其进行分类的,本文将详细的为大家介绍。 光谱仪的主要功能 它的基本作用是测量被研究光(所研究物质反射、吸收、散射或受激发的荧光等)的光谱特性,包括波长、强度等谱线特征。因此,光谱仪器应具有以下功能: (1)分光:把被研究光按一定波长或波数的发布规律在一定空间内分开。 (2)感光:将光信号转换成易于测量的电信号,相应测量出各波长光的强度,得到光能量按波长的发布规律。 (3)绘谱线图:把分开的光波及其强度按波长或波数的发布规律记录保存或显示对应光谱图。 要具备上述功能,一般光谱仪器都可分成四部分组成:光源和照明系统,分光系统,探测接收系统和传输存储显示系统。 主要分类 根据光谱仪器的工作原理可以分成两大类:一类是基于空间色散和干涉分光的光谱仪;另一类是基于调制原理分光的新型光谱仪。本设计是一套利用光栅分光的光谱仪,其基本结构如

图。 光源和照明系统可以是研究的对象,也可以作为研究的工具照射被研究的物质。一般来说,在研究物质的发射光谱如气体火焰、交直流电弧以及电火花等激发试样时,光源就是研究的对象;而在研究吸收光谱、拉曼光谱或荧光光谱时,光源则作为照明工具(如汞灯、红外干燥灯、乌灯、氙灯、LED、激光器等等)。为了尽可能多地会聚光源照射的光强度,并传递给后面的分光系统,就需要设计照明系统。 分光系统是任何光谱仪的核心部分,它一般是由准直系统、色散系统、成像系统三部分组成,作用是将照射来的光在一定空间内按照一定波长规律分开。如图2-1所示,准直系统一般由入射狭缝和准直物镜组成,入射狭缝位于准直物镜的焦平面上。光源和照明系统发出的光通过狭缝照射到准直物镜,变成平行光束投射到色散系统上。色散系统的作用是将入射的单束复合光分解为多束单色光。多束单色光经过成像物镜按照波长的顺序成像在透镜焦平面上;这样,单束的复合光经过分光系统后变成了多束单色光的像。目前主要的色散系统主要有物质色散(如棱镜)、多缝衍射(如光栅)和多光束干涉(如干涉仪)。 探测接收系统的作用是将成像系统焦平面上接收的光谱能量转换成易于测量的电信号,并测

膜式燃气表检验台技术报告pp

计量标准技术报告 计量标准名称:钟罩式燃气表检定装置建立计量标准单位: 计量标准负责人: 筹建起止日期:2011年7月

目录 一、建标计量标准的目的 (1) 二、计量标准的工作原理及其组成 (1) 三、选用的计量标准器及主要配套设备 (2) 四、计量标准的主要技术指标 (3) 五、环境条件 (4) 六、计量标准的量值溯源和传递框图 (5) 七、计量标准的测量重复性考核 (6) 八、计量标准的稳定性考核 (7) 九、测量不确定度评定 (8) 十、检定或校准结果的验证 (10) 十一、结论 (11) 十二、附加说明 (11)

一、建立计量标准的目的 燃气表的准确计量关系到千家万户的经济利益,国家计量法律法规将它列入重点计量器具,实行强制检定管理。钟罩气体流量装置由于钟罩本身具有计量检定特性稳定,易于标定的特点,钟罩流量标准装置较为广泛的用于各计量检测机构和燃气表生产厂家。按照JJG 557-2005 《《膜式燃气表》计量检定规程的要求,我院配置了检定燃气表所需的标准器和配套设备,建立了燃气表检验台检定装置。从而对地方燃气表检测事业的发展起到了积极的作用,提供一个公正、科学、准确、可靠的检测服务,保证了量值的准确可靠。 二、计量标准的工作原理及其组成 1 系统组成:该标准装置由压缩气源、标准装置、试验管路系统、光电编码器、环境指示仪,控制系统、工作台和计算机等部分组成。 2工作原理:该标准装置的工作原理:装置由钟罩和检定工作台两部分组成。以钟罩内有效容积作为标准体积,当钟罩下降时,钟罩内气体通过连接管路流经被检燃气表,通过光电编码器,将钟罩下降高度转换成电脉冲信号,再由控制系统将电脉冲信号转换成钟罩体积(标准体积)通过比较该体积与被检燃气表指示的体积得出被检燃气表的误差。 3系统原理框图 标准装置编码器PLC可编控制器 (数据采集) 计算机 出气电子阀被检表 进气电子阀静音空气压缩机

手机射频系统工作原理和无信号、不发射等故障的检修

天线感应接收到1900MHz~1915MHz的高频信号,经过L101、C103、L105选频网络选择相应频率的高频信号,XFl01滤波器对信号提纯,进入功放ICl01的7脚,功放内部的奉线开关在CPU的控制下,自动闭合到接收通路,信号经过天线开关从20脚输出,由C117、L1 10耦合到ICl01的22脚。信号在ICl01内部,进行第一次的高频放在,然后进行第一次混频。 1900MHz~1915MHz的高频信号和1659.5MHz~1674.02MHz的一本振信号混频后(1C101的1脚输入),输出一个243.95MHz的中频信号,经过一级放大后,由ICl01的26脚输出。 该中频信号通过电容C123、C102耦合,中频滤波器XFl02滤波,输出信号再经过C130、C104、C132、L117耦合,从40脚进入中频ICl02内部,开始第二次混频。二本振信号频率为233.15MHz,经过混频后,从ICl02的38脚输出10.8MHz低频信号,低滤波器XFl03对该信号滤波后,再从36脚进入ICl02的内部进行二次中频放大,最后从31脚输出已放大的低频信号RXDATA,送入到逻辑电路进行解调(D/A转换,解码,放大)恢复为音频信号。 一本振、二本振信号由相应的本地振荡电路产生。 发射电路工作原理 CPU的8脚、9脚、11脚、12脚分别输出HQ+、HQ-、HI+、HI-四路已编码的模拟信号,分别从3脚、4脚、1脚、2脚进入中频ICl02,在中频ICl02内部经过三次混频电路、加法运算电路、运放电路调制后,低频率信号提升到1900MHz的频率,然后从46脚输出一路已经调制好的高频载波信号。 已调制的高频载波信号通过电感L105、L114、电阻R1、电容C128、C125耦合到高通滤波器XFl04,滤波后再次经过L121、Rll0耦合后,由14脚送入到功放ICl01内部进行功率电平放大,完成功率计整,天线开关闭合到发射通路,高频发射信号经过天开关XFl01滤波后,从天线发射出去。 中频ICl02内部三次混频电路所需的本振信号有两个,一是由接收二本振信号(223.15MH z)在中频ICl02内部的倍频器倍频后提供的,二是由一本振信号(1659.05MHz~1674.02MHz)提供,它作为本振信号直接参与最后一次混频。 总的看来,本机的收发混频都共用同样的本振信号,只不过是发射状态时本振信号还需要在ICl02的内部进行具体的频率变化的处理。 一、接收机电路工作原理与无接收信号、电话不能打入故障的检修 1、一本振电路原理 无论是接收信号,还是发射信号,都是要共用一本振电路提供混频时所需要的本振信号。 X102是压控振荡器(VC01),4脚是输入脚,l脚是输出脚,6脚是供电脚,2脚、3脚、5脚接地。 工作电平送入X102的4脚后,X102发生振荡频率。1脚输出振荡信号,其一部分反馈送回IC102的27脚,在中频ICl02的内部进行鉴相,和原来的工作电平进行比较,产生频率误差控制电压。然后从25脚输出、C22、R205、C223组成的环路滤波器,送X102的4脚。该误差控制电压改变X102内部的变容二极管的电容量,使得输出振荡信号的频率变化较小,从而稳定振荡信号的频率。 VCO PS为VCO启动允许电平,高电平有效(3V脉冲),由CPU的34脚送出。VCC_SYN为中频供电电压。Q103在VCO_PS高电平时导通,集电极输出3V电压作为VCO(X102)工作电压。 X102的1脚输出的振荡信号频率为1659.05MHz~1674.02MHz,它通过C150、R135耦合,从1脚输入到高频信号放大ICl06,4脚输出的就是一个已放大的一本振信号。ICl06的6脚为电压脚,2脚、3脚、5脚接地。

实验室常用光谱仪及其它们各自的原理

实验室常用光谱仪及其它们各自的原理 光谱仪,又称分光仪。以光电倍增管等光探测器在不同波长位置,测量谱线强度的装置。其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。分为单色仪和多色仪两种。 下面就介绍几种实验室常用的光谱仪的工作原理,它们分别是:荧光直读光谱仪、红外光谱仪、直读光谱仪、成像光谱仪。 荧光直读光谱仪的原理: 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为(10)-12-(10)-14s,然后自发地由能量高的状态 跃迁到能量低的状态.这个过程称为发射过程.发射过程既可以是非辐射跃迁,也可以是辐射跃迁. 当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子.它的能量是特征的,与入射辐射的能量无关.当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X 射线荧光,其能量等于两能级之间的能量差.因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系. K层电子被逐出后,其空穴可以被外层中任一电子所填充,ad4yjmk从而可产生一系列的谱线,称为K系谱线: 由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线同样,L层电子被逐出可以产生L系辐射.如果入射的X 射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα 射线,同样还可以产生Kβ射线,L系射线等. 莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下: λ=K(Z-s)-2 这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础.此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析. 红外光谱仪的原理: 红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。

超外差频谱分析仪的原理及组成

显示器 扫描产生器 3.1 超外差式频谱分析仪的原理及组成 3.1.1 超外差频谱分析仪的原理结构图 图3-1所示,为超外差频谱分析仪的简单原理结构图。 图3-1 超外差频谱分析仪的简单原理结构图 由图3-1可知:超外差频谱分析仪一般由射频输入衰减器、低通滤波器或预选器、混频器、中频增益放大器、中频滤波器、本地振荡器、扫描产生器、检波器、视频滤波器和显示器组成。 超外差频谱分析仪的工作原理是:射频输入信号通过输入衰减器,经过低通滤波器或预选器到达混频器,输入信号同来自本地振荡器的本振信号混频,由于混频器是一个非线性器件,因此其输出信号不仅包含源信号频率(输入信号和本振信号),而且还包含输入信号和本 第3章 超外差式频谱分析仪的原理

振信号的和频与差频,如果混频器的输出信号在中频滤波器的带宽内,则频谱分析仪进一步处理此信号,即通过包络检波器、视频滤波器,最后在频谱分析仪显示器CRT 的垂直轴显示信号幅度,在水平轴显示信号的频率,从而达到测量信号的目的。 3.1.2 RF 输入衰减器 超外差频谱分析仪的第一部分就是RF 输入衰减器。可变输入衰减器的作用是保证混频器有一个合适的信号输入电平,以防止混频器过载、增益压缩和失真。由于衰减器是频谱分析仪的输入保护电路,因此基于参考电平,它的设置通常是自动的,但是也可以用手动的方式设置频谱分析仪的输入衰减大小,其设置步长是10dB 、5dB 、2dB ,甚至是1dB ,不同频谱分析仪其设置步长是不一样的。如Agilent 8560系列频谱分析仪的输入衰减的设置步长是10dB 。 图3-2是一个最大衰减为70dB ,步长为2dB 的输入衰减器电路的例子。电路中的电容器是用来避免频谱分析仪被直流信号烧毁,但可惜的是它不仅衰减了低频信号,而且使某些频谱分析仪最小可使用频率增加到100Hz ,而其他频谱分析仪增加到9kHz 。 图3-2 RF 输入衰减器电路 图3-3所示,当频谱分析仪RF 输入信号和本振信号加到混频器的输入时,可以调整RF 输入衰减器,使混频器的输入信号电平合适或最佳,这样就可以提高测量精度。 0到70dB 衰减,步长2dB 电容器

相关主题
文本预览
相关文档 最新文档