当前位置:文档之家› 无铅焊料的焊接品质评价

无铅焊料的焊接品质评价

无铅焊料的焊接品质评价
无铅焊料的焊接品质评价

无铅焊料及焊接质量综合评价方法

何秀坤

(信息产业部专用材料质量监督检验中心 天津55信箱 300192)

1、引言

随着欧盟2006年电子信息产品无铅化期限的日益临近,从电子产品制造业2000年开始导入无铅化制程开始,至今关键产品已基本实施无铅化制造。目前,日本知名电子厂商已在在其本土及欧美市场上推出"绿色环保"家电产品吸引消费者。中国作为电子信息产品的世界制造加工中心,我国政府已开始拟定《电子信息产品生产污染防治管理法》,推动无铅制造进程。

今后,鉴于环境保护的要求,含铅电子产品将无法进入高端市场。对电子信息产品制造企业,无铅电子组装技术的应用已迫在眉睫经。与传统的锡铅合金焊接工艺相比,无铅焊接工艺在经济和技术方面均有许多问题需要解决。本文将对无铅焊料性能检测以及无铅焊接的可靠性评价方法进行系统介绍。

2、实验

2.1、无铅焊料检测

2.11、焊料合金组分和杂质定量测量

对于无铅焊料,不仅要严格控制其合金组分,而且对杂质含量也要进行严格的限制。无铅焊料合金组分可采用经典的化学分析方法进行测量,该方法准确度好,但测量过程比较繁杂;采用仪器分析方法(如等离子体发射光谱)测量无铅焊料的合金组分,测量简洁快速,且准确度也能基本满足要求。无铅焊料合金杂质分析,目前一般多采用等离子体发射光谱和原子吸收法,测量精度和速度均能满足实际需求。

根据目前国际公认和日本向国际标准组织IEC提交的无铅焊料标准,无铅焊料无铅的含义是焊料合金中铅含量应小于0.1%,对其它杂质含量的要求与锡铅焊料相同。根据我们对不同企业无铅焊料产品检测结果分析,铅含量小于0.1%是比较容易达到的。

目前,人们对无铅焊料铅含量的理解存在误区,盲目最求铅含量的最小化。一些焊料生产企业,为了迎合用户的心理,把无铅焊料的铅含量“低”作为卖点推销自己的产品,有的甚至承诺铅含量小于0.005%并写进供货协议。由于无铅焊料的主体是锡,而要将锡中的铅杂质控制在0.005%以内虽然

在技术上可以实现,但提纯需要增加较多的成本。无铅焊料如采用这种高纯锡作为原料,将使其成本增加,大大降低产品的竞争力,很少有企业使用高纯锡生产无铅焊料产品。从我们目前对无铅焊料检测所获得结果发现,铅含量小于0.005%是比较困难的。鉴于这种情况如果将无铅焊料的铅含量小于0.005%写进供货协议,对焊料生产企业潜在的危害是无法避免的。

2.12、无铅焊料性能试验

无铅焊料性能测量主要有熔点、扩展率、润湿性和力学特性。有于无铅焊料的熔点一般不超过300℃,采用普通差热分析和热机械分析均可对无铅焊料的熔点进行精确测量;焊料的力学性能测量与普通锡铅的合金焊料相同,测量试件的制备需特别注意,应控制好浇注温度和试样的表面光洁度,否则将对测量结果造成较大的影响。

2.2焊点可靠性评价方法

无铅焊料焊点的可靠性评价主要包括焊点拉伸和剪切试验、QFP引线焊点45度拉伸试验、片式焊点剪切试验和疲劳试验。这些试验对无铅焊料焊点质量的评价是非常重要的,在首次使用无铅焊料时这些试验是必需,否则会因改变焊料影响产品的可靠性。上述试验,测量试件的制备直接影响测量结果的准确性,制样需特别注意。具体试验方法不再一一介绍,仅对焊点的抗疲劳试验方法和结果进行一些介绍。焊点抗疲劳特性评价,一般采用机械疲劳和热疲劳方法,即对试验板分别进行弯曲试验和热冲击试验后对焊点进行截面分析,观察焊点是否有裂纹出现。

3、典型无铅焊料的实验结果分析

1)Sn/Cu二元系无铅焊料Sn/Cu二元系合金是目前已批量应用成本最低的无铅焊料,但其以下几个个方面的因素抵消了其成本优势并限制了其应用范围。第一,227℃的较高熔点,使其在许多温度敏感场合应用会受到限制;第二,这种焊料的湿润性较差,在很多时候要求使用氮气和活化程度高的助焊剂,并可能引起与湿润有关的问题;第三,Sn/Cu的毛细作用力很低,难于吸入微孔中,同时它缺乏表面安装组件所需要的抗疲劳性。另外,除了Sn/Cu本身的缺点之外,在组装中应用两种焊料合金(如SMT用Sn/Ag/Cu而波峰焊用Sn/Cu)也会产生问题。最好不要将Sn/Ag/Cu和Sn/Cu混杂使用,因为这会引起焊点合金不均匀,出现这种情况后,焊点可能因无法释放应力和应变而容易受疲劳失效的影响。

图1是热冲击试验后Sn/Cu焊点端面典型裂纹照片。

图1 -55℃~+125℃ 500周期(15min/周期)

Sn/Cu焊点端面典型裂纹照片

2)Sn/ Ag/Cu三元系无铅焊料

Sn/Ag/Cu合金是目前人们普遍接受的无铅焊料之一,虽然由于加入 3.5%左右的银使其成本较Sn/Cu合金增加了许多,但其优良的焊接强度和很好的疲劳特性等因素得到人们的普遍认可,其应用前景广阔。

4、结束语

无铅焊料虽然已开始批量应用,但仍然存在许多技术和知识产权问题,这些问题都需要时间解决。可喜的是由于需求的牵引,无铅焊料应用中所存在的问题已经得到人们的足够认识并投入力量进行解决。

关于焊接方法中无铅锡问题与对策

关于焊接方法中无铅锡问题与对策 随着产品小型化,高密度实装基板、微细间距部品、多层基板开发的急速发展,伴随着锡丝的无铅化、锡焊接自身就变得更困难了,因此必须重新研究焊接方法。 在SMT再流焊的附加焊接工程及局部焊接的领域,微细化程度 高且多种多样的手工焊与机器人的无铅锡焊接技术的确立也成了当务之急。 1 研究目的 关于无铅锡焊接,我们想就焊接机器人与手工焊的锡焊接方法中面临的问题、具体分析其原因、从对现场有帮助务实的观点出发介绍无铅锡焊接的对策:①锡丝飞溅对策;②漏焊、短接等的对策;③ 烙铁头氧化及助焊剂碳化的防止;④烙铁头寿命的延长;⑤对产品的热影响。 实验中使用的共晶锡丝为 UXE-51《Sn-Ag3-Cu0.5》。 UXE-21《Sn60-Pb40》、无铅锡丝为 2 研究内容 2 .1 焊接温度的上升与锡球、助焊剂的飞溅 往高温的烙铁头上供给含助焊剂的锡丝(以后简称:锡丝),则锡丝中的助焊剂会因受热膨胀而破裂。这造成锡丝飞溅的原因之一。众所周知,跟以前的共晶锡丝相比,无铅锡丝的溶点高。然而,锡丝中所含有的助焊剂会因为温度的升高而导致其活性降低的问题尚未受到重视。可以认为如果按无铅锡丝的溶点来提高烙铁头温度,助焊剂的活性反而会降低而失去作业性。(注:开发用于焊接机器人的含助焊剂的锡丝即使在高温下也不会失去活性力,比用于手工焊的锡丝在

一定程度更具有耐热性。) 通常,烙铁头温度多被设定在 320?340C上下,比锡丝的溶点高150C 左右。此时,锡丝的温度若与室温一致视为25C,那么两者的 温度差则为300C以上。如果烙铁头温度设定为400C,温度差就变得更大,对锡丝的热冲击也就更大。我们做了以下实验,把烙铁头温度分别设定为320C和400C,往烙铁头上送同量的锡丝,观察锡球、助焊剂等飞溅程度。其结果如图1、图2所示。经观察,烙铁头温度设定为400C,飞溅很明显地增加。由此可知,高温时的热冲击是造成助焊剂及锡球飞溅的原因之一。 锡丝送入V形槽的方法,但是在使用无铅锡丝时锡丝会迅速硬化,所 以不能称之为万全。因此,下面我们介绍通过加热锡丝从而减轻热冲击的预热方法。图3为本公司的焊接机器人烙铁部中,通过加热器- 边加热一边送锡的照片。 阳、e蜒壮林上皆最曲倩什科熾耳 如图所示,在对锡丝进行预热的情况下,我们做了相同的飞溅实验。结果,与没有对锡丝进行预热时相比,具有很明显的差别。 比较图1与图4、图2与图5,可发现锡球、助焊剂的飞溅大量减少了。由此可知,对锡丝进行预热后的飞溅量比没有预热时明显减少。 那么,应该如何去缓和此热冲击呢?为了防止锡丝的飞溅,虽然有把 带境..;<?i^ii 玛〕;'? i ptfr* 1 q

pcb表面处理方式一是osp二是hasl此两种表面处理之区别在那呢 (1)

PCB表面处理方式:一是OSP ,二是HASL,此两种表面处理之区别在那呢? 1热风整平(HAL) 热风整平(HAL)或热风焊料整平(HASL)是20世纪80年代发展起来的一种先进工艺,到了90年代中、后期,它占据着整个PCB 表面涂(镀)覆层的90%以上。只是到了90年代的末期,由于表面安装技术(SMT)的深入发展,才使HAL在PCB中的占有率逐步降低下来,但是,目前HAL在PCB表面涂(镀)覆中的占有率仍在50%左右。尽管SMT的高密度发展会使HAL在PCB中的应用机率不断下降,但是HAL技术在PCB生产中的应用仍有很长的生命力,即使禁用铅的焊料(无铅的绿色焊料),无铅的HAL技术和工艺也会开发和应用起来。 1.1热风整平工艺和应用 热风整平技术是指把PCB(一般为在制板 panel)浸入熔融的低共熔点(183℃,如图1所示)Sn/Pb(比例应等于或接近于63/37,操作温度为230∽250℃之间)合金中,然后拉出经热风(控制热风温度、风速和风刀角度,其中风刀结构与PCB板距离等已优化而固定下来)吹去多余的Sn/Pb合金,得到所要求组成和厚度的Sn/Pb合金层。在热风整平生产过程中要控制和维护好Sn/Pb合金组成的成份比例(一般要定期补充纯锡,因为才锡比铅更易于氧化,加上锡也易于与其它金属形成合金,所以锡消耗比铅要快)。同时,在高温热风整平的过程中,PCB上的铜也会熔入到Sn/Pb 合金中去,使Sn/Pb合金中含有铜的组分,由于铜和锡会形成高熔点的合金化合物,如Cu6/Sn5、Cu4/Sn3、Cu3/Sn等。当Sn/Pb合金中的铜含量≥0.3%(重量百分比)时,不仅会是使热风整平温度提高(如超过250℃以上)才能得到平整而光亮的涂覆Sn/Pb合金层,甚至会形成粗糙不平或沙石状的表面。因此应定期进行分析Sn和Pb含量与比例,以保证其比例处于62∽64/38∽36之间。同时,由于锡比铅更易于氧化,因此,熔融的锡/铅合金表面应具有耐高温的防氧化剂或耐热助焊剂等加以保护。另外,还要经常清除去在熔融的锡/铅合金表面上的氧化物和锡与铜的合金化合物(要采用比HAL更高的温度和一定保温时间,使铜与锡能充分反应,并漂浮在熔融的锡/铅合金表面上。然后降低温度到230℃左右清除去表面层或残渣),以保证熔融的锡/铅合金的组成比例和纯洁。 HAL的锡/铅合金厚度的控制是极其重要的。对于THT(通孔插装技术)来说,HAL的锡/铅合金厚度一般为5∽7um或更大些。但对于SMT(表面安装技术)来说,HAL的锡/铅合金厚度应控制在3∽5μm之间为宜,厚度太厚或太薄都会带来PCB焊接的可靠性问题。 1.2 热风整平问题和挑战 HAL的锡/铅合金的最大的优点是它具有与焊料相同的组成和成分比例,同时,它能够很好覆盖于新鲜的铜的表面上而保护了铜不被氧化和污染。因此,HAL的锡/铅合金具有极好的保护性、可焊性和可靠性。 但是,HAL的锡/铅合金层在SMT的应用中也遇到了问题和挑战,主要是来自熔融锡/铅合金的表面张力太大(约为水的表面张力的6∽8倍)和在高温下产生锡/铜金属间化合物(IMC,intermetallic compound)以及在HAL过程中PCB受到高温(230∽250℃)的热冲击等三大方面。 (1)熔融的锡/铅合金表面张力太大带来的问题和挑战。当表面安装用的PCB不断向高密度发展时,PCB的连接盘(焊盘)的密度越来越大,而其尺寸越来越小,在涂覆相同要求厚度的熔融锡/铅合金下,由于表面张力的作用,使尺寸小的连接盘上锡/铅合金层呈显“龟背”现象(如图2所示)。这种“龟背”现象将随着高密度化(或连接盘微小化)的发展而严重化起来,其结果会导致元器件(特别是SMD 表面安置器件)的引脚与连接盘之间形成“点”的接触,从而影响焊接的可靠性(特别是在高密度化焊接时,会引起位移和错等位)问题.

波峰焊十大缺陷原因分析及解决方法

波峰焊十大缺陷原因分析及解决方法 波峰焊是让插件板的焊接面直接与高温液态锡接触达到焊接目的,其高温液态锡保持一个斜面,并由特殊装置使液态锡形成一道道类似波浪的现象,所以叫“波峰焊”,其主要材料是焊锡条。下面小编为大家分析下线路板波峰焊接后常见缺陷及解决办法:一、元件脚间焊接点桥接连锡原因:桥接连锡是波峰焊中个比较常见的缺陷,元件引脚间距过近或者波不稳都有可能导致桥接连锡,可能原因如下,焊接温度设置过低,焊接时间过短,焊接完成后下降时间过快,助焊剂喷涂量过少。般这种情况下要检查波和确认焊接坐标是否正确,可以通过提高焊接温度或预热温度,提高焊接时间,增加下降时间,提高助焊剂喷涂量的方法来改善。 二、线路板焊锡面的上锡高度达不到原因:对于二以上产品来说这也是个比较常见的缺陷,般来讲些金属材质的大元件如电源模块等,由于他们大多与接地脚相接散热较快上锡困难,当然般上锡高度标准会有相应的放松。除此外焊接温度低,助焊剂喷涂量少,波高度低都会导致上锡高度不够。提高预热和焊接温度,多喷涂些助焊剂等可以解决问题。 三、线路板过波峰焊时正面元件浮高原因:元件过轻或波抬高会导致波将元件冲击浮高上去,或者在插装元件的时候元件没有插到位,轨道速度过快或不稳导致元件歪斜抬高。可以制作夹具将原件压住,由于夹具的吸热可能需要提高预热或焊接温度。推荐阅读:再次焊锡产生的不良原因 四、波峰焊接后线路板有焊点空洞原因:元件引脚太短尚不能伸出通孔或元件引脚横截面被氧化不上锡,可以加喷助焊剂。 五、波峰焊接后焊点拉原因:这是个和桥接样发生频率较高的缺陷种类,预热和焊接温度过低,焊接时间太短会导致拉的发生。 六、波峰焊接后线路板上有锡珠原因:有锡珠时要检查助焊剂的质量或者板子表面是否沾上锡膏,助焊剂中含水在焊接时会炸裂导致锡珠。

电子产品中的无铅焊料及其应用与发展

- 5 - 电子产品中的无铅焊料及其应用与发展 苏佳佳1,2,文建国2 (1.广东工程职业技术学院,广州 510520;2.广东工业大学,广州 510006) 摘 要:由于传统焊接技术使用的Sn-Pb 焊料中的铅会对环境造成污染而被禁止使用,近年来无铅焊料成为了研究热点。文中介绍了运用于电子产品中的无铅焊料的发展背景、特点及要求。根据应用温度不同,无铅焊料可以分为低温、中温和高温无铅焊料。文章综述了它们各自的应用特点、场合及存在的问题和发展前景。 关键词:无铅焊料;锡银合金;锡锌合金;锡铋合金 中图分类号:TN305.94 文献标识码:A 文章编号:1681-1070(2007)08-0005-04 Application Feature and Development of Lead-Free Solders Used in Electronical Product SU Jia-jia 1,2 , WEN Jian-guo 2 (1. Guangdong Polytechnic College , Guangzhou 510520, China ;2. Guangdong University of technology , Guangzhou 510006, China ) Abstract: Due to the destroyed to environment, the solders of Sn-Pb which have been used in traditional welding technology are forbidden. And the lead-free solders have been extensively research in these years. In this paper, the developing-background, feature and requirement of lead-free solders which used in electronic product were introduced. According to the application temperature, the solders have three types, which are low-temperature, mid-temperature and high-temperature. And their application features, fields and existing problems were presented respectively. The development of lead-free solders was also described.Key words: lead-free solder; S n-Ag; Sn-Zn; Sn-Bi 收稿日期:2007-05-11 1 引言 焊料从发明到使用,已有几千年的历史。Sn-Pb 焊料以其优异的性能和低廉的成本,得到了广泛的使用。但是,铅及其化合物属于有毒物质,长期使用会给人类生活环境和安全带来危害。因此,限制铅使用的呼声越来越高,各个国家已积极通过立法来减少和禁止铅等有害元素的使用。20世纪90年代初,美国国会提出了关于铅的使用限制法案(HR2479-Lead Based Paint Hazard Abatement Trust Fund Act ,S-1347-Lead Abate-ment Trust Fund Act ,S-729-lead Exposure Reduction Act ),并由NCMS (the National Center for Manu facturing Sciences )Lead Free Solder Project 等进行无铅焊料的研究开发活动。目前,研究替代Sn-Pb 焊料的无铅焊料主要集中在Sn-Ag 、Sn-Bi 、Sn-Zn 几种合金焊料上[1]。 2 无铅焊料的特点 理想的无铅焊料最好与原来的Sn-Pb 共晶焊料有相同或相近的性能,比如具备低熔点,能像纯金属那样在单一温度下熔融、凝固,具有与Sn-Pb 相同的熔融温度范围、良好的接合性能和浸润性等。对于

揭开PCB最后表面处理之迷

揭开PCB最后表面处理之迷 By Eric Stafstrom 电子工业都把注意力集中在作为潜在的HASL替代的OSP、浸银和浸锡上面。 虽然以产品生命周期短和迅猛的技术改变闻名,电子工业还不得不采用一种工业应用广泛的热空气焊锡均涂(HASL, hot air solder leveling)的替代技术。在过去十年,有无数的论文发表,预言HASL会由有机可焊性保护层(OSP, organic solderability preservatives)、无电镀镍/浸金(ENIG, electroless nickel/immersion gold)或新的金属浸泡技术诸如银与锡所取代。到目前为止,还没有一个预言变成现实。 HASL是在世界范围内主要应用的最终表面处理技术。一个可预计的、知名的涂层,HASL今天使用于亿万计的焊接点上。尽管如此,三个主要动力:成本、技术和无铅材料的需要,推动着电子工业考虑HASL的替代技术。 从成本的观点来看,许多电子元件诸如移动通信和个人计算机正变成任意使用的商品,以成本或更低的价格销售,来保证互连网或电话服务合约。这个策略使得这些商品大量生产和日用品化。因此,必须考虑成本和对环境的长期影响。环境的关注通常集中在潜在的铅泄漏到环境中去。仅管在北美的立法禁止铅的使用还是几年后的事情,但是原设备制造商(OEM, original equipment manufacturer)必须满足欧洲和日本的环境法令,以使其产品作全球销售。这个考虑已经孕育出许多课题,评估在每一个主要的OEM那里消除铅的可选方法。 HASL的替代方法允许无铅印刷电路板(PWB, printed wiring board),也提供平坦的共面性表面,满足增加的技术要求。更密的间距和区域阵列元件已允许增加电子功能性。通常,越高的技术对立着降低成本。可是,大多数替代方法改进高技术装配和长期的可靠 性,而还会降低成本。 成本节约是整个过程成本的函数,包括过程化学、劳 力和企业一般管理费用(图一)。象OSP、浸银和浸锡等替 代技术可提供最终表面处理成本的20 ~ 30%的减少。虽然 每块板的节约百分比在高层数多层电路板产品上可能低, 日用电子的成本节约,随着更大的功能性和铅的消除,将 驱使替代方法使用的急剧增加。 替代方法的使用将不仅会增加,而且将取代HASL作为最终表面处理的选择。今天替代的问题是选择的数量和已经发表的数据的纯卷积。诸如ENIG、OSP、浸锡和浸银等替代方法都提供无铅、高可焊性、平整、共面的表面,在生产中对第一次通过装配合格率提供重大改进。为了揭开最终表面处理的神秘面纱,这些HASL的替代方法可通过比较每个涂层对装配要求和PWB设计的优点来区分。 装配要求 HASL替代方法对装配过程的作用反映表面的可焊性和它如何与使用的焊接材料相互作用。每一类替代的表面涂层— OSP、有机金属的organometallic)(浸锡和银)或金属的(ENIG) —具有不同的焊接机制。焊接机制的这种差异影响装配过程的设定和焊接点的可靠性。 OSP是焊接过程中必须去掉的保护性涂层。助焊剂必须直接接触到OSP表面,以渗透和焊接到PWB 表面的铜箔上。1

波峰焊焊接桥连现象的分析和解决

波峰焊焊接桥连现象的分析和解决 同行经常问我并列举波峰焊接焊接缺陷,是不是波峰焊焊接会存在这些问题呢? 回答:波峰焊是器件焊接主要的设备,因为自动化程度高,相应对操作员的操作技术有更高的要求,一台经过调整后的波峰焊,焊接缺陷就很少,但如果PCB设计与助焊剂,锡条材质所影响的问题就要进行分析,所以整理了相关的文章给广大网友作参考。定义: 桥连即相邻的两个焊点连接在一起,具体来说就是焊锡在毗邻的不同导线或元件之间形成非正常连接现象,随着元件引脚间距的变小及PCB 线路密度的提高,这种缺陷出现的几率逐渐增加。在波峰焊中,桥连经常产生于SMD 元件朝向不正确的方向、不正确的焊盘设计,元件之间的距离不足够远也会产生桥连。(注:桥接不一定短路,而短路一定桥接) 成因: (1) PCB 板焊接面没有考虑钎料流的排放,线路分布太密,引脚太近或不规律;(2) PCB焊盘太大或元件引脚过长(一般为008~3mm),焊接时造成沾锡过多;(3) PCB 板浸入钎料太深,焊接时造成板面沾锡太多; (4) PCB 板面或元件引脚上有残留物;

(5) PCB 板面插装元件引脚不规则或插装歪斜,焊接前引脚之间已经接近或已经接触; (6)焊材可焊性不良或预热温度不够或是助焊剂活性不够; (7)焊接温度过低或传送带速度过快,焊点热量吸收不足。在SnCu 钎料中,由于流动性较差,对温度更为敏感,这种现象非常明显; (8)钎料被污染,比如Fe(铁)污染形成的污染物或钎料的氧化物会造成桥连现象。注:一定搭配的焊盘与引脚焊点在一定条件下能承载的钎料(锡膏)量是一定的,如果处理不当,多余的部分都可能造成桥连现象。 防止措施: (1) QFP 和PLCC 与波峰成45°,钎料流排放必须放置特殊设计在引脚角上;(2) SOIC 元件与波峰之间应该成90°,最后离开波峰的两个焊盘应该稍微加宽以承载多余钎料; (3)引脚间距小于008mm 的IC 建议不要采用波峰焊(最小为0065mm); (4)适当提高预热温度,同时考虑在一定范围内提高焊接温度(250oC→260~270oC)以提高钎料流动性,但注意高温对电路板造成损伤及对焊接设备造成的腐蚀; (5) SnCu 中可以添加微量Ni(镍)以提高钎料流动性; (6)采用活性更高的助焊剂; (7)减短引脚长度(推荐为105mm,并成外分开15°),减小焊盘面积。 返修: 桥连可用一种特殊的电烙铁来返修处理。先增加一点助焊剂到桥连的地方,加热钎料合金并且沿着引脚移走电烙铁,一直到焊角顶端提起,带走多余的钎料。通过移走焊

爆板原因分析

摘要随着欧盟RoHs法令从2006年7月开始实施,印制电路板装配不得不随之无铅化,传统已使用超过50年的63Sn/37Pb焊接材料被SnAgCu(Sn96.5%/Ag3.0%/ Cu0.5%)代替,熔点由原来的187℃提升到21 7℃,相应的焊接温度由220℃~230℃提升到240℃-260℃,印制电路板必须经历熔点以上的焊接时间多出了50多秒,印制电路板吸收热大增,印制电路板必须提高耐热性能与之配合。在过去的一年中,印制电路板分层问题一直困扰着电路板制造商。 印制板分层的机理是电路板吸热后,不同材料之间产生不同的膨胀系数而形成内应力,如果树脂与树脂,树脂与铜箔的粘接力不足以抵抗这种内应力将产生分层,所以解决分层的思路是:1.生产流程控制尽可能保证板子有最佳的抵抗内应力的能力:2.使用性能优越的材料减少内应力。文章希望通过研究,在成本和品质双重约束下,找到最佳的解决方案,用最低的成本来解决分层问题。思路是从研究分层的原因着手,通过实验设计的方法,对分层的因素从材料选择、印制电路板制造过程控制到电路板装配的整个过程,进行系统分析。本研究项目耗费25万元的试验材料成本,历时三个多月,最终从成本和品质控制,提升公司竞争力的角度,提出解决分层的三套方案。在将实验结果运用到A公司的实践中后,产生了良好的经济效益,每月减少客诉成本约30万元,减少成本浪费约80万元,取得超过预期效益。 关键词分层;无铅焊接;实验设计:印制电路板 1引言 1.1研究的背景和意义 1.1.1 PCB行业回顾与展望 1936年一1940年,英国Paul博士从印刷技术得到启发,首先提出了“印刷电路”的概念,开创了制造印刷电路板的先河。 1967年美国人Beadles.R.L,提出了多层板生产制造工艺(MLB),将印刷电路板推上了更高一层楼。 1984年日本PCB专家项土冢田裕尝试在多层板上采用盲孔结构,HDI技术兴起(High Den sityInterconnection) 印制电路板从诞生之日起就依托其互联和承载的功能成为电子产品的航空母舰,任何功能强大的芯片只有集成到印制电路板上,才能展现其威力。从手机、电话到飞机、火箭其无处不在,深刻地影响着人类的活动。 由于欧盟于2003年2月13日颁布RoHS即《禁止在电气电子设备中使用特定有害物质指令》和WEEE即《废弃电气电子设备指令》两个指令,从2006年7月l目起伴随着印

波峰焊工艺管控要点

1.目的 保持工艺过程的稳定,实行对缺陷的预防。检验波峰焊制程是否符合产品的焊接质量要求,工艺制程管控按照此制程为依据。 2.范围 本公司波峰焊所有生产的产品。 3.权责 生产部:波峰焊操作人员负责执行监控; 工程部:工程师负责工艺制程编制,处理和调整生产过程中波峰焊不能满足控制要求等异常状况;监控锡料槽杂志的含量、送样检测成分、检测报告分析及异常处置。4.内容 4.1影响波峰焊接效果的主要因素(鱼刺图) 元器件引线PCB

图形大小浸入状态湿度人际关系 图形间隔退出状态振动社会状态 图形密度喷流波形照明包装状态工作态度 图形形状夹送倾角噪音搬运状态家庭状态 图形大小浸入状态湿度人际关系 图形间隔退出状态振动社会状态 图形方向浸入时间存放技术水平 安装方式压波深度心情 波峰平稳度 设计波峰焊接环璋储存和搬运操作者4.2波峰焊相关工作参数设置和控制要求 4.2.1波峰焊设备设置 1)定义:焊点预热温度均指产品上的实际温度,波峰焊预热温度设定值以获得合格波峰曲线时设定温度为准。 2)有铅波峰焊锡炉温度控制在235-245℃,测温曲线PCB板上焊点温度的最低值为215℃;无铅锡炉温度控制在255-265℃,PCB板上焊点温度的最低值为235℃。 3)如客户或产品对温度曲线参数有单独规定和要求,应根据公司波峰焊机的实际性能与客户协商确定的标准,以满足客户和产品的要求。 4)波峰焊基本设置要求: a.浸锡时间为:波峰1控制在0.3~1秒,波峰2控制在2~3秒; b.传送速度为:0.8~1.7米/分钟; c:导轨倾斜角度4-6度; d:助焊剂喷雾压力为0.3-0.6MPa,助焊剂容量在4.5L; e.针阀压力为2-4Psi; f:除以上参数设置标准范围外,如客户对其产品有特殊指定要求则由工艺工程师在产

波峰焊常见焊接缺陷原因分析及预防对策

波峰焊常见焊接缺陷原因分析及预防对策 A、焊料不足:焊点干瘪/不完整/有空洞,插装孔及导通孔焊料不饱满,焊料未爬到元件面的焊盘上原因:a) P CB 预热和焊接温度过高,使焊料的黏度过低; b) 插装孔的孔径过大,焊料从孔中流岀; c) 插装元件细引线大焊盘,焊料被拉到焊盘上,使焊点干瘪; d) 金属化孔质量差或阻焊剂流入孔中; e) PCB 爬坡角度偏小,不利于焊剂排气。 对策:a) 预热温度90-130 C,元件较多时取上限,锡波温度250+/-5 C,焊接时间3?5S。 b) 插装孔的孔径比引脚直径大0.15?0.4mm,细引线取下限,粗引线取上线。 c) 焊盘尺寸与引脚直径应匹配,要有利于形成弯月面; d) 反映给PCB加工厂,提高加工质量; e) PCB的爬坡角度为3?7 Co B、焊料过多:元件焊端和引脚有过多的焊料包围,润湿角大于90 原因:a) 焊接温度过低或传送带速度过快,使熔融焊料的黏度过大; b) PCB 预热温度过低,焊接时元件与PCB 吸热,使实际焊接温度降低; c) 助焊剂的活性差或比重过小; d) 焊盘、插装孔或引脚可焊性差,不能充分浸润,产生的气泡裹在焊点中; e) 焊料中锡的比例减少,或焊料中杂质CU的成份高,使焊料黏度增加、流动性变差。 f) 焊料残渣太多。 对策:a) 锡波温度250+/-5 C,焊接时间3?5S。 b) 根据PCB 尺寸、板层、元件多少、有无贴装元件等设置预热温度,PCB 底面温度在90-130。 c) 更换焊剂或调整适当的比例; d) 提高PCB 板的加工质量,元器件先到先用,不要存放在潮湿的环境中; e) 锡的比例<61.4%时,可适量添加一些纯锡,杂质过高时应更换焊料; f) 每天结束工作时应清理残渣。 C焊点桥接或短路 原因:a) PCB设计不合理,焊盘间距过窄; b) 插装元件引脚不规则或插装歪斜,焊接前引脚之间已经接近或已经碰上; c) PCB 预热温度过低,焊接时元件与PCB 吸热,使实际焊接温度降低; d) 焊接温度过低或传送带速度过快,使熔融焊料的黏度降低; e) 阻焊剂活性差。 对策:a) 按照PCB设计规范进行设计。两个端头ChiP元件的长轴应尽量与焊接时PCB运行方向垂直,SOT、SOP的长轴应与PCB运行方向平行。将SOP最后一个引脚的焊盘加宽(设计一个窃锡焊盘)。 b) 插装元件引脚应根据PCB 的孔距及装配要求成型,如采用短插一次焊工艺,焊接面元件引 脚露岀PCB表面0.8?3mm ,插装时要求元件体端正。 C)根据PCB尺寸、板层、元件多少、有无贴装元件等设置预热温度,PCB底面温度在90-130。 d)锡波温度250+/-5 C,焊接时间3?5S。温度略低时,传送带速度应调慢些。 D、润湿不良、漏焊、虚焊 原因:a) 元件焊端、引脚、印制板基板的焊盘氧化或污染,或PCB 受潮。 b) Chip 元件端头金属电极附着力差或采用单层电极,在焊接温度下产生脱帽现象。 C) PCB 设计不合理,波峰焊时阴影效应造成漏焊。

从元素周期表认识无铅焊料的性能

从元素周期表认识无铅焊料的性能 人们对无铅焊料已做了广泛的研究,并已开发出三大系列无铅焊料(表1)。但这几大系列无铅焊料的部分性能,特别是焊接性能/润湿性、焊接温度/工艺性以及经济性等方面,尚不及SnPb焊料。考察这些元素在元素周期表中的位置,我们不难看出,为什么已开发出的无铅焊料在性能上只能部分达到SnPb焊料的水平?或者说,为什么寻找真正能与SnPb合金相同性能的物质是非常非常的困难? 焊料合金元素在元素周期表中的位置 目前,已经开发成功的无铅焊料的合金成份,基本上由下列元素组成(图1)。元素周期表(表2)显示,这几种元素作为焊膏的合金成分几乎是“非君莫属”。 图1 无铅焊料的基本元素 SnPb合金最符合“相似相融”原则 Sn-Pb焊料几乎有了几千年的历史,至今尚无法完全取代它们,表观上与他们的物化性能有关,而最根本的原因是与Sn、Pb两元素在周期表中的位置有关,它们均是第Ⅳ主族元素,排列位置紧紧相连(Sn 在第五周期内,Pb在第六周期内),就好象同一家族内的弟兄俩一样,血脉相通,它们之间互熔性能好,合金本身不存在金属间化合物(IMC)。 但又由于Pb在元素周期表中是第82号元素位,碳族的末端,属第六周期。而Sn在元素周期表中是

第50号元素,排列在次末端,属第五周期。因为Pb的核电荷数为82,远大于核电荷为50的Sn,故通常Sn可以失去最外层的4个电子形成Sn4+离子,如SnO2,故Sn呈现出明显的金属性能,而Pb原子外层也有4个电子,但因核电荷数有82个,对最外层4个电子有大的引力,故通常Pb只能失去2个电子,形成Pb2+离子,如PbO,故Pb元素的活泼性不及Sn元素的活泼性,因此在使用SnPb焊料焊接金属Cu时,实际上只有Sn参与被焊金属Cu等的结合,而Pb不参与反应,Sn与Cu通过相互扩散的原理,形成金属间化合物Cu6Sn5,焊接学中这种扩散又称之为选择性的扩散,但微观的原因仍是由Sn、Pb元素的原子结构所决定,不同的原子结构显示出Sn的活性要高于Pb。 为何Sn仍将是焊料的基材? 由于Pb的有害性而将被取代,然而Sn仍是作用优良的焊料基材而被利用,这是因为Sn和其它许多金属之间有良好的亲和作用,它的熔点低,无毒无公害,特别是在地球上储藏量大,价格低,因而仍是一种无法取代的焊料基材,因此所谓的无铅焊料仍是以Sn为基材的焊料,既然Sn的位置已定,从元素周期表来看,任何元素都无法代替Pb而构成类似Sn-Pb合金的焊料。 以Bi为例,Bi是除Pb以外离Sn较近元素,Bi是元素周期中排在第Ⅴ主族(氮族)元素的末位,若从周期上看,Bi排在第六周期期第15列与Pb在同一周期,但Pb排在第14列,根据上述的规律Bi与Sn 不是同族元素,并且Bi的金属性比Pb要弱,表3为Sn、Pb、Bi三者的部分物理常数。 从表3中看出,Bi的非金属性明显比Pb强,Bi是菱状晶体(类似金属晶体),具有脆性,SnBi合金的导电/导热性能不及SnPb合金,Bi与Sn有较好的互熔性,但Sn-Bi合金硬度高,延伸性低,不能拉成丝,一句话SnBi合金焊料不及SnPb合金焊料那样好。 只要将相关金属的熔点同它们与Sn构成的共晶合金比例进行比较(图1),就会发现有一个有趣的规律,即随着金属熔点的降低或者更准确地说,随着金属熔点向Sn熔点的靠近,这些金属与Sn的共晶成份的比例就明显提高(表4),这也形象地验证了“相似相融”的原则。 挑选合金配方不是改进无铅焊料性能的唯一方法 已开发出来的Sn-Zn、Sn-Ag、Sn-Cu合金等无铅焊料的部分性能,特别是焊接性能尚达不到Sn-Pb 焊料的水平,这与它们在元素周期表中的位置以及原子结构有着密切的关系。

覆铜板常见质量问题及解决方法

覆铜板常见质量问题及解决方法(一) 一、耐漫焊性 1.耐浸焊性的重要性 耐浸焊性是目前国内普遍存在的问题。也是许多生产厂家十分注重的工艺技术问题。电子产品的性能可靠性在相当大的程度上取决于印制电路板的质量可靠性。电器部件插装在印制电路板上以后,要进行自动焊接(波峰焊或浸焊)。在这些过程中若出现铜箔的起泡,甚至是焊盘、铜筒线条翘起以及导线脱落,除与印制电路板加工工艺不合理有关外,还与覆铜板耐浸焊性有关。国内波峰焊的时间和温度的上限为5 5/260 "c ,通常采用2.5~4.5 5/230 - 250 "c ,最佳条件一般在3 5/240 "c附近,按照我国国家标准一般纸基覆铜板的耐浸焊性的指标是10 5/260 "c ,即在10 5 以内不分层、不起泡。 提高和稳定覆铜板的耐浸焊性的重要性有如下几点。 ①电视机、录音机等大部分的元器件等都插装在印制电路板上,若因板的耐浸焊性差或不稳定,就会使整个元器件以及印制板损坏或报废并影响整个组装生产线正常进行。 ②若在自动焊接后未检查出印制板的该质量问题,就会在整机组装后,甚至自动焊接后未检查出印制板的该质量问题,造成更大的浪费和损失。 ③有些整机厂发现一些印制板在过波峰焊中出现该质量问题,有时就不得不采取降低焊接温度、降低波峰没人板的深度等措施。使焊料不能充分接触焊盘,焊料流动性差,造成润湿不良的缺陷,导致整机的质量稳定性降低。各覆铜板生产厂对浸焊性的质量问题是非常重视的。这项性能的稳定与平整度几乎成为衡量同类纸基覆铜板质量的两大敏感性的重要项目。它直接严重影响着各生产厂的产品声誉。 2. 在热冲击条件下,覆铜板"起泡"是界面严重破坏的结果纸基覆铜板是由溶液或熔融状态的树脂通过上胶(包括对粗化铜筒的涂胶)、压制,与纸纤维强材料,铜箔固化成型在一起的复合材料。从板的结构看,通过上述加工后,多种组分,就形成多种界面结构。所指的界面,是树脂与纸纤维增强材料的界面,胶粘剂与铜箔的界面,以及树脂和胶粘剂通过热压产生化学反应交联的整体与增强材料、铜锚各为一侧的界面。 当树脂与增强材料固化成一体时,树脂基本会产生收缩,而且树脂与纸纤维、铜箔的热膨胀系数也相差很大,因此,在固化过程中各个界面上就会产生附加应力。另一方面,巳固化成型的纸板,也会在外力、受热作用下,产生板内的应力分布不均匀的情况,甚至在界面上某些部位集中了较高的应力。所产生的上述两种应力,会使界面局部的化学键遭到破坏,引起板的内部材料形成微裂纹。 在制板过程中,残留在板界面的孔隙中的水分子以及一些低分子物也对界面的破坏造成很大的促进。 上述界面产生的附加应力和界面间由于残留的低分子物而产生的界面的裂纹孔隙,在热冲击条件下(即放入高温的焊锡中) ,就会产生更大的集中应力,破坏界面间化学键或机械嵌合,使界面的粘接强度很快下降,而界面间残留的低分子挥发气体体积不断增大,活动能量也不断得到补充

无铅手工焊面临的问题与解决方法

无铅手工焊面临的问题与解决方法 一、无铅焊料使用时的问题点 无铅手工焊接在焊料的选择上有一定的限制,譬如Sn-Zn系合金、Sn-Bi系合金的线体成形性较困难,且合金本身易氧化。或者使用中与焊剂的反应存在问题。一般不采纳这二种无铅焊料。目前推举使用的是熔点在210~230℃ Sn-Cu系合金和Sn-Ag-Cu系合金焊料。 众所周知,由于无铅焊料的流淌性差,使焊接时的扩展性(润湿性)大大不如原来的63-37共晶焊料,其扩展性只有原来的三分之一程度。 这种性质的焊料在展开手工焊时,不仅会对应组装基板与元件,也会体现在焊接用烙铁头部,尽管作业中想提高一些焊接温度,但对改善焊料的扩展性作用是不大的。 无铅焊料的熔点,比原来的焊料要高出20~45℃,因此手工焊时必须提高烙铁头的温度,通常使用的焊接温度是焊料的熔点温度加上50℃左右较妥当。考虑到焊接用烙铁头温度会由于本身功率及头部重量而存在差异,故温度的设定要比焊接温度高100℃左右。原来63-37共晶焊料的烙铁头温度约在340℃左右,使用Sn-O.7Cu焊料时的温度约

在380℃.关于手工焊接来讲,超过350℃以上时已作为界限温度,这种状态下的焊接可加快烙铁头的损耗,在超出焊剂的活性范围时易产生焊剂的碳化,降低焊剂的活性效果,这也会成为焊接中常见的焊剂或焊料飞溅的缘故。 二、手工焊接的注意点及解决方法 由上所述,在采纳直接加热方式进行无铅手工焊时,稍不注意就会产生各种各样的问题。这些问题的发生讲明了正是由于无铅焊料所具的固有特性,使用中就容易出现不良。我们在制定焊接工艺时,能够抓住下面几个差不多要点: ①烙铁头温度的治理 ②焊接基板、部品等表面状态的治理 ③焊剂的选择、效果衡量及作用 另外,要做到良好的无铅手工焊,作为重要因素的使用工具方面,以下几个要点是必须考虑的。 2.1 使用热恢复性能优良的烙铁 在无铅手工焊场合,烙铁头的温度势必要比焊料的熔点高出20~45℃,考虑到被焊元件本身的耐热性和稳定地进行焊接操作,烙铁温度最好设定在350℃~360℃范围,这是为了执行良好的手工焊接而采纳偏低温度的一种做法。掌握的重点有以下三项: *使用热恢复性良好的烙铁。

常见波峰焊不良

波峰焊-波峰焊过程中,十五种常见不良分析概要 一、焊后PCB板面残留多板子脏: 1.FLUX固含量高,不挥发物太多。 2.焊接前未预热或预热温度过低(浸焊时,时间太短)。 3.走板速度太快(FLUX未能充分挥发)。 4.锡炉温度不够。 5.锡炉中杂质太多或锡的度数低。 6.加了防氧化剂或防氧化油造成的。 7.助焊剂涂布太多。 8.PCB上扦座或开放性元件太多,没有上预热。 9.元件脚和板孔不成比例(孔太大)使助焊剂上升。 10.PCB本身有预涂松香。 11.在搪锡工艺中,FLUX润湿性过强。 12.PCB工艺问题,过孔太少,造成FLUX挥发不畅。 13.手浸时PCB入锡液角度不对。 14.FLUX使用过程中,较长时间未添加稀释剂。 二、着火: 1.助焊剂闪点太低未加阻燃剂。 2.没有风刀,造成助焊剂涂布量过多,预热时滴到加热管上。 3.风刀的角度不对(使助焊剂在PCB上涂布不均匀)。 4.PCB上胶条太多,把胶条引燃了。 5.PCB上助焊剂太多,往下滴到加热管上。 6.走板速度太快(FLUX未完全挥发,FLUX滴下)或太慢(造成板面热温度 7.预热温度太高。 8.工艺问题(PCB板材不好,发热管与PCB距离太近)。 三、腐蚀(元器件发绿,焊点发黑) 1. 铜与FLUX起化学反应,形成绿色的铜的化合物。 2. 铅锡与FLUX起化学反应,形成黑色的铅锡的化合物。 3. 预热不充分(预热温度低,走板速度快)造成FLUX残留多,4.残留物发生吸水现象,(水溶物电导率未达标) 5.用了需要清洗的FLUX,焊完后未清洗或未及时清洗。 6.FLUX活性太强。 7.电子元器件与FLUX中活性物质反应。 四、连电,漏电(绝缘性不好) 1. FLUX在板上成离子残留;或FLUX残留吸水,吸水导电。

无铅手工焊面临的问题与解决方法修订版

无铅手工焊面临的问题 与解决方法 Document number:PBGCG-0857-BTDO-0089-PTT1998

无铅手工焊面临的问题与解决方法 一、无铅焊料使用时的问题点 无铅手工焊接在焊料的选择上有一定的限制,譬如Sn-Zn系合金、Sn-Bi系合金的线体成形性较困难,且合金本身易氧化。或者使用中与焊剂的反应存在问题。一般不采用这二种无铅焊料。目前推荐使用的是熔点在210~230℃ Sn-Cu系合金和Sn-Ag-Cu系合金焊料。 众所周知,由于无铅焊料的流动性差,使焊接时的扩展性(润湿性)大大不如原来的63-37共晶焊料,其扩展性只有原来的三分之一程度。 这种性质的焊料在展开手工焊时,不仅会对应组装基板与元件,也会体现在焊接用烙铁头部,尽管作业中想提高一些焊接温度,但对改善焊料的扩展性作用是不大的。 无铅焊料的熔点,比原来的焊料要高出20~45℃,因此手工焊时必须提高烙铁头的温度,通常使用的焊接温度是焊料的熔点温度加上50℃左右较妥当。考虑到焊接用烙铁头温度会由于本身功率及头部重量而存在差异,故温度的设定要比焊接温度高100℃左右。原来63-37共晶焊料的烙铁头温度约在340℃左右,使用焊料时的温度约在380℃.对于手工焊接来说,超过350℃以上时已作为界限温度,这种状态下的焊接可加快烙铁头的损耗,在超出焊剂的活性范围时易产生焊剂的碳化,降低焊剂的活性效果,这也会成为焊接中常见的焊剂或焊料飞溅的原因。

二、手工焊接的注意点及解决方法 由上所述,在采用直接加热方式进行无铅手工焊时,稍不注意就会产生各种各样的问题。这些问题的发生说明了正是由于无铅焊料所具的固有特性,使用中就容易出现不良。我们在制定焊接工艺时,可以抓住下面几个基本要点: ①烙铁头温度的管理 ②焊接基板、部品等表面状态的管理 ③焊剂的选择、效果衡量及作用 另外,要做到良好的无铅手工焊,作为重要因素的使用工具方面,以下几个要点是必须考虑的。 使用热恢复性能优良的烙铁 在无铅手工焊场合,烙铁头的温度势必要比焊料的熔点高出20~45℃,考虑到被焊元件本身的耐热性和稳定地进行焊接操作,烙铁温度最好设定在350℃~360℃范围,这是为了执行良好的手工焊接而采用偏低温度的一种做法。掌握的重点有以下三项: *使用热恢复性良好的烙铁。 *使用热容量大的烙铁。 *烙铁头部的形状应该与被焊接部相符。 图一是适合于无铅手工焊接、具良好热恢复性的912型烙铁(品种号),为了与原来性能的烙铁相比较,可以按照图二表示的温度测定方法,对图中1、4、7三个点装上传感器,用3秒钟的时间间隔,对7个点进行焊接,同时测定烙铁头温度的变化,测定结果可参阅图三。912型是热恢复性好的烙铁,907、908型是原来型号的烙铁,908比907的热容量要大。测定结果表示,在相同烙铁头温度场合的焊接部温度,用912型连续焊接的

混合工艺之有铅锡膏与无铅BGA的焊接-陶鹏

混合工艺之有铅锡膏与无铅BGA 的焊接 北京德天泉机电设备有限公司 陶 鹏 引言 在当前表面贴装技术(SMT)中,我们对有铅无铅的混合焊接方式并不陌生,尤为代表性的是:有铅锡膏与无铅BGA 的焊接。这也是我们今天所要介绍的主题与实际案例。 1. 从有铅与无铅的特殊性来分析,我们可以先看以下几点 首先,从润湿性的角度看,我们先考虑焊料的特性:相对来说含铅焊料的表面张力较小;而无铅焊料的表面张力相对较大。从其特性可以看出焊膏的流动性与实际焊接的润湿能力存在最直接的关系。所以与锡铅或是普通的低熔点焊料合金相比,无铅焊料合金的润湿效果较差。 其次,我们从其本身的自我矫正的角度来看,与之润湿能力成正相关,以BGA 焊接为例,有铅BGA 的自我矫正(焊球对位)焊接能力明显强于无铅BGA 的自矫正能力。 再之,我们来看它们在可靠性方面的特点,对于无铅焊料合金的长期可靠性目前还没有定论,但其焊点在受力的情况下表现出较大的离散性而容易损伤,值得一提的是在所受应力较低的情况下,SAC 合金的可靠性能与SnPb 合金水平相当或者比它稍好。 针对这种混合制程的焊接方法,我们知道很多产品因为设计的需求或考虑其成本等各方面因素不可避免的采用有铅无铅混做的方式对产品进行焊接加工,所以在可制造性方面形成了阻力,而各个厂家以及各类辅材供应商也就此做出了针对性的试验与改良。 2. 下面,我们通过针对有铅制程无铅BGA 的实际焊接过程进行详述 (1)通常我们使用的锡铅焊膏的回流温度范围在215-235℃。 (2)BGA 焊球SAC 合金的回流温度范围在235±5℃。 以上是我们在回流制程中的重要参数和基本条件。 我们调出在进行混合制程生产过程中曾出现过的问题标本: 首先了解一下产品的相关基础数据: ① PCB 为四层板,厚度1.6mm,长宽210*185mm,PCB 表面处理采用浸锡工艺; ② BGA(SAC)尺寸27*27 225球,pitch1.5mm;(如图2.1,图2.2) U n R e g i s t e r e d

PCB设计之一基材选择

PCB设计之一基材选择 本人在工作中经常遇到PCB设计问题,故对其流程和知识点做了一个肤浅的总结,一是为了作为自己工作的参考,另外的目的就是希望抛砖引玉,得到高手的批评和指点,以期达到进步的目的。 基材就是印制板用的基板材料。基材对成品印制板的耐电压、绝缘电阻、介电常数、介质损耗等电性能以及耐热性、吸湿性及环保等有很大影响。正确的选择基材是印制板设计的重要内容,这对于高速印制板设计更为重要。 首先看一下基材的分类。基材有很多种分类方法,最常用的是按照基材的结构特征分类。如下表: 名称特性、用途 覆铜箔层压板(CCL, Copper Clad Laminate) 增强材料浸以某种树脂溶液,预烘干后制成半固化片,再根据厚度要求将多个半固化片叠放在一起,在其最外层一面或2面覆以铜箔,经加热、加压形成的板状复合材料。 CCL是目前国内外应用最广泛、用量最大的以减成法(铜箔刻蚀法)生产印制板所用基材。 附树脂铜箔(RCC,Resin Coated Copper) 在电解铜箔上经过表面处理,涂覆上一层有机树脂制成B阶段树脂结构的附有铜箔的半固化片,是20世纪末期发展起来的材料,

主要用于积层法制造高密度互连印制板,适合于印制板的小型化、薄型化要求,比如高速电路的通信设备以及不同用途的HDI板。 半固化片(P.P,Prepreg) 脱脂增强材料浸以某种树脂溶液,预烘干后制成预浸渍材料的薄片,表面不覆铜箔,有多种厚度规格,用于多层板的中间层黏结材料。 无铜箔的特殊基材 光敏性绝缘基板,含有光敏催化剂的绝缘材料,表面无铜箔,在制作印制板的过程中根据需要沉积、电镀上铜箔。该材料适用于全加成法制作印制板以及制作HDI板。 目前覆铜箔层压板还是应用最为广泛的基材,我在工作中用的都是这种基材(因为我们的产品并没有太特别的要求)。因此有必要对其分类和用途再做一个梳理,见下表: 分类增强材料典型代号特性、用途 刚性覆铜板纸基FR【1】-1、FR-2、FR-3 用浸渍纤维纸做增强材料,经覆铜箔层压制成的板材。以单面板为主。玻璃布G10、FR4、FR5 用玻璃纤维纺织而成的布做增强材料,用高性能树脂(如环氧树脂)作为浸渍材料。常用于可靠性要求较高的电子产品或高速印制板制造。 复合CEM-1、CEM-3 采用2种以上的增强材料,如芯层纸基,表层玻璃布的CEM-1。这

相关主题
文本预览
相关文档 最新文档