当前位置:文档之家› 钢球轧机轧辊的调整.

钢球轧机轧辊的调整.

钢球轧机轧辊的调整.
钢球轧机轧辊的调整.

钢球轧机轧辊的调整

钢球轧机轧辊的调整是钢球斜轧成型的关键问题之一,它直接影响着产品的形状、尺寸及质量。轧机调整的实质就是使轧辊和导板处在正确的位置,以便轧件顺利地实现塑性变形,轧出合格的产品。

因为斜轧机的调整因素较多,并且各因素又相互影响,所以斜轧机的调整比其它类型轧机的调整要复杂得多。轧机调整的内容包括:轧辊的径向调整、倾角调整、轴向调整、相位调整、喇叭口调整、导板相对位置的调整、试轧调整等。从图4-1斜轧机调整内容示意图中可以看出:轧机调整因素的空间几何关系。有五个自由度需要调整。

4-1 斜轧机调整内容示意图

轧辊的径向调整

轧辊的径向调整是最基本的调整,其目的是控制产品的径向尺寸,同时,轧辊径向调整还直接影响轧制能否正常进行及产品内部质量的好坏。

4.1.1怎样进行轧辊的径向调整

轧辊的径向调整比较简单,其基本调整如下。首先,根据孔型设计的要求,通过侧压螺丝机构,使轧辊移动,达到合理的辊缝尺寸。然后再用卡钳检验,也有用标准样柱检验的。但是按这种方法调整的轧辊径向孔型,有时仍不能轧出合格的产品来。这是因为轧辊径向孔型尺寸在轧制过程中受到轧机的刚性,轧制线的位置,轧辊自身的热胀冷缩等因素的影响。

当轧机的刚性较差,即在轧制过程中辊跳严重时,这时轧辊孔型的径向尺寸应当减去辊跳值。考虑到轧辊热胀的影响,在稳定轧制一定时间后,要适当地放

开轧辊孔型的径向尺寸。当轧辊的热传导达到热平衡状态后,轧辊孔型的径向尺寸处于稳定状态。所以,对于精轧产品,往往需要预先对轧辊进行加热,这样就可以在轧制一开始便消除这一因素的影响,保证精轧产品的质量要求。

当轧机中心线与轧制中心线(即轧件旋转的轴线)位置重合时,这时应用卡钳测得的孔型径向尺寸,就应等于热轧毛坯直径。而当轧件贴一个导板轧制时,轧辊与轧件的接触点将上移或下移。当贴上导板轧制时,接触点便上移;反之,贴下导板轧制时,接触点便下移。

图4-2 测量孔型径向尺寸关系图

从图4-2可以看出,用卡钳测得的轧辊孔型径向尺寸只能是图中A '、B '两点间的距离l ',而轧件与轧辊实际接触点应是A 、B 两点间的距离l 。显然l >l ',如果要使l '等于轧件的直径d ,则孔型径向尺寸便调大了。由于接触点A 、B 间的距离用卡钳是测量不出来的,故只能通过测量尺寸l '间接地控制尺寸l ,l '与轧件最大半径r 之间有如下的关系。 ()()型光型光型

光R R h r R h r R R R l --?-++?-+=--'='2222o o (4-1)

式中 R 光—型辊孔型底半径,mm ;

?h —轧机中心线相对轧制线的偏移量,毫米。

4.1.2径向调整与轧件旋转的关系

棒料送入轧辊后能否旋转,是斜轧的前提条件,而轧辊的径向调整对这个前提条件有直接影响。

在轴承钢球斜轧成形过程中,轧件的旋转条件为a b ≥μ。其中,a 为驱动轧件旋转力矩的力臂,b 为阻止轧件旋转力矩的力臂。当轧辊孔型径向尺寸调得过紧时,如图4-3所示,轧辊由原实线位置,调到图中虚线位置,则出现力臂a

减少与力臂b增大的情况,这样就会出现不能满足旋转条件的情况,即驱动轧件旋转力矩M T小于阻止轧件旋转的力矩M P,则轧件不旋转。此外,当径向调的过紧,就会造成变形金属轴向流动困难,增加了轧件的横向变形和变形阻力,即增大了轧制压力,造成轧件不易旋转。

轴承钢球轧辊孔型的凸棱比较陡,为了便于旋转,在设计轧辊孔型时,在轧辊人口段有一段较长的平直段孔型,在棒料喂入轧辊时就能正常旋转起来。如果孔型径向尺寸调得过松,就会出现轧辊孔型入口的平直段夹不住棒料(孔型底部与轧件不接触),这时轧辊仅靠较陡的孔型凸棱接触轧件,凸棱就象一把刀子一样切入轧件,不利于轧件旋转,所以,轧辊在径向调整时,要力求使轧件与轧辊孔型底部接触。

图4-3 径向调整与轧件的旋转关系

当然,轧件的旋转条件还与其它因素有关,但轧辊孔型径向尺寸是影响轧件旋转的基本工艺因素。

4.1.3径向调整与导板位置的关系

在轧辊径向调整时,还要考虑与导板的相互位置。实践证明这一点是很重要的,即使轧辊孔型径向尺寸调整得符合孔型设计与工艺的要求,若与导板位置的相互关系不正确,同样也不能实现正常的轧制。轴承钢球轧机的轧辊为双腔孔型轧制,孔型的径向调得与导板位置不正确,有时会造成轧件从轧辊与导板之间的缝隙中钻出,即生产中会发生钻料现象。这样不但破坏了正常轧制,而且还会损坏导板或轧辊孔型凸棱,造成事故。

当两个轧辊按逆时针方向旋转时,轧件则按顺时针方向旋转。在轧制过程中,若出现上导板刮轧件现象,必然是上导板的左角造成的;若出现下导板刮轧件现象,必然是下导板的右角造成的。若轧辊旋转方向为顺时针,出现导板刮轧件现

象恰好与此相反。

在轧制过程中,一旦出现导板刮轧件情况,导板就将受到轧件一个水平推力,以轧辊逆时针旋转为例,上导板将会向右弯曲,下导板则向左弯曲。由于导板薄、刚性差,导板受力后将产生较大的弯曲变形。因此,轧件被导板刮伤得更严重,同时轧件给导板的推力也越大,直到轧件卡在导板上停止旋转为止。不旋转的轧件,将被轧辊螺旋孔型的凸棱拽出。有时不旋转的轧件被一个轧辊带动,轧件从轧辊与导板之间的缝隙中钻出,造成钻料事故。

在轧辊径向调整时,若轧辊以逆时针方向旋转,应注意保证上导板与左轧辊的间隙,下导板与右轧辊的间隙,在不相碰的前提下,应越小越好。反之,若两轧辊以顺时针方向旋转,则应保证上导板与右轧辊的间隙,下导板与左轧辊的间隙,在不相碰的前提下,也应越小越好。这就是轧辊孔型径向调整与导板位置相互关系的基本要求。按着上述的要求,轧辊与导板调整顺序如图4-4所示。

首先,固定好下导板位置,移动右轧辊,使右轧辊凸棱与下导板的间隙在不相碰的情况下越小越好。在固定好右轧辊位置后,根据4.1.1所述轧辊径向调整的原则,将左轧辊的位置调整好,并固定下来,最后确定上导板的位置,使上导板与左轧辊的凸棱不相碰的情况下,其缝隙越小越好。调整的关键就是保持两处的间隙越小越好。如果在轧制过程中,需要进行轧辊径向调整,原则上只能移动左轧辊与上导板。因为下导板不便移动,若移动了右轧辊,上述的关系就被搞乱了。

此外,轧辊径向调整还应注意保证轧制线与导板的轴线平行(图4-5a是正确的位置)。若轧制线与导板轴线不平行(如图4-5b所示,这是不正确的位置)。将破坏上述轧辊和导板相互位置的调整要求。

图4-4 轧辊与导板位置调整顺序图

图4-5 轧辊与导板轴向位置图

径向调整对产品质量的影响

轧辊径向调整不但影响钢球尺寸形状,而且也影响钢球内部与外表的质量。调整不当在钢球的内部会产生硫松,严重时会中心破裂形成孔腔或在钢球的表面形成环沟以及其它缺陷。

造成钢球中心疏松或孔腔的因素很多,其中轧辊径向调整是一个重要的工艺因素。如果轧辊径向尺寸调得过小,就意味着孔型的型腔容积变小了。这时孔型内被封闭的金属体积将大于孔型型腔的容积,这部分多余的金属体积,在轴向受到孔型凸棱限制不能流动变形,只能产生切向流动、横向变形,即钢球变成椭圆形。孔型径向调得越小,椭圆的长短轴之比就越大,即椭圆度就越大。这部分多余金属体积在旋转时受到孔型的反复作用,长短轴反复交替变化,钢球就会受到反复拉、压、切应力的作用。由于这部分金属不易从孔型中流出去,造成拉、压、切应力作用效果的不断地积累,最终在钢球内部出现疏松,严重时产生破裂而形成空腔。

另外,轧辊径向调得过紧,钢球中心产生疏松和空腔的另一方面原因。是由于金属在孔型未封闭前,轴向流动后滑困难,结果在孔型封闭后,将造成容纳在孔型中的金属体积过大。在实际生产中,当出现中空的产品时,适当调整轧辊径向孔型尺寸,稍微放大孔型的径向尺寸,将会收到明显的效果。

另一种情况,当轧辊径向尺寸调得过松时,这就意味着孔型的型腔容积变大了。这时型腔内被封闭的金属体积将小于孔型型腔的容积,出现孔型未被充满的现象。在钢球表面上出现环沟,尽管沟环有宽有窄,都是由于金属未充满孔型所造成的。只要适当调小轧辊孔型径向尺寸,同样可以收到显著的效果。

轧辊的倾角调整

斜轧的特点是轧辊轴线与轧制中心线不平行,而在空间交叉一个角度,这个角度称为轧辊倾角。轧辊倾角的调整,是通过轧机倾角调整机构,变化角度的大小。

斜轧倾角调整的理论依据是轧辊的圆周速度在轧制线方向上的分速度等于孔型螺旋前进速度在轧制线方向上的分速度,即

πcos

α

α

Dn=(4-2)

sin nt

因此,斜轧倾角调整的实质就是通过角度α的变化满足上述的等式,也就是说通过角度α的变化,来协调轧件(靠轧辊摩擦力)在轧制线方向的运动和轧辊孔型在轧制线前进方向的运动,并使两种运动匹配。

轧辊倾角调整,对产品质量、设备负荷、轧辊的使用寿命等方面都有很大的

影响。

4.2.1 怎样进行轧辊倾角的调整

轧辊倾角调整的内容有两点,一点是确定轧辊倾角的方向,另一点是确定轧辊倾角大小。

轧辊倾角的方向,就是轧辊轴线的倾斜方向。它与轧辊螺旋孔型左右旋有关。若轧辊孔型为右旋时,从轧辊入口端看,右轧辊入口端应向上,左轧辊入口端应向下。如果轧辊螺旋孔型为左旋时,则与右旋孔型的轧辊倾角方向相反。

轧辊倾角的大小可用式4-3来确定。

βπα==-D

S tg 1 (4-3) 式中 S 为轧辊螺旋孔型的导程,取孔型封闭处的前一变螺距或后一变螺距为宜。

D 是指钢球轧辊的孔型平均直径。

这样首先确定出的轧辊倾角α理论值,在轧制过程中可根据钢球的实际成形情况作适当的微量调整。对于轴承钢球的轧制,左、右轧辊的倾角相等。 倾角调整对产品质量的影响

(1)倾角对产品端面的影响

轧件在轧辊孔型中,一边运动,一边连续成形。轧件的变形过程是由于逐渐升高轧辊孔型凸棱的作用,直径方向逐渐压细,轴向逐渐延伸。轧辊凸棱在轧件端表上的运动轨迹是一条阿基米德螺旋线,而正常的端面应是光滑的表面。

如果轧辊倾角调整不当,会造成轧件的前端面或后端面被孔型凸棱所切,产品的端面不光滑。当轧辊倾角调得过大,轧件的前端面顶着轧辊孔型凸棱前进,这时前端面被凸棱所切。当轧辊倾角调得过小,轧件的后端面被轧辊孔型凸棱推着前进,这时后端面被凸棱所切。

(2)倾角对产品幅长的影响

产品的幅长是指其回转轴线方向上的长度。产品产生幅短现象,除轧辊孔型轴向错位以外,还与倾角的调整有关。

当轧辊倾角调得小于孔型螺旋升角时,则轧件的前进速度小于轧辊螺旋孔型在轧制线上的前进分速度,这时轧件相对轧辊要产生向后滑动。由于轧件的后滑,轧件在孔型未封闭前会渐渐脱离与孔型的轴向侧面接触,造成孔型前部充不满。当轧辊孔型封闭后,轧件继续变形。由于孔型前部空隙,还会在轧件本身变形力的推动下向前滑动,造成孔型凸棱两侧均不与轧件接触,形成产品短幅现象。

当轧辊倾角调得大于孔型螺旋升角时,也会造成钢球短幅。在这种情况下,

则会出现一个产品不短幅,而另一个产品短幅的现象,并且是间隔地出现。

之所以出现上述现象,是由于轧辊倾角调得过大,金属在轴向难于后滑,孔型中金属过满。这部分过充满的金属,由于轧辊孔型凸棱的限制,难于向前变形。金属便向切向流动,产生横向变形,使轧件变成椭圆。当孔型封闭后,这部分多余的金属在孔型中继续变形,在其本身变形力的推动下,还会推动后一个未封闭孔型中的金属向后滑动,从而造成钢球短幅。当这个短幅的钢球被孔型封闭后。多余金属可以向前滑动,不会推后一个钢球向后滑,这样后一个产品就不会短幅。充满孔型不短幅的产品,由于孔型的限制,多余金属变形力只能推动后一个未被孔型封闭的金属向后滑,又会出现产品短幅现象。这样就会周期性地出现一个钢球短幅,一个钢球不短幅的情况。

倾角对钢球疏松的影响

倾角调得过小是不会发生产品疏松的,只是当倾角调得过大时才会发生产品疏松。当倾角调整过大时,孔型封闭的金属过多,这部分多余金属,轴向变形受到孔型凸棱的限制,迫使金属切向流动,产生横向变形。轧件在孔型中受到反复拉、压、切应力的作用。而造成钢球中心断裂,形成疏松或孔腔。

倾角调整对轧制压力与力矩的影响

轧辊倾角对轧制压力和力矩的影响是十分显著的。从相关文献提供的实测数据可知,当轧制坯料为65Mn,轧制温度为1000℃,其它条件不变时,只要改变轧辊倾角,如由2o增加到2o30′,轧制压力和转矩均要增加1.5倍左右。

轧辊的相位调整

所谓相位,是指两个轧辊型腔在圆周方向要对正。如图4-6所示,相位对正是指两轧辊作用于轧件的型腔圆周方向角度一致(如图4-6a)。图4-6b为两个轧辊作用于轧件的型腔圆周方向角度不一致的情况,图4-6b所示为两轧辊相差一个φ角。

图4-6 轧辊相位调整示意图

a)相位对正b)相位未对正

图4-7为斜轧钢球时两个轧辊型腔相位不正的情形。这样造成两个轧辊给轧件的压入值(图4-7中的影线部分)不一致。此时两个轧辊给轧件每半圈的瞬时展宽量不一样。相位滞后的轧辊其展宽量减小,而相位超前的轧辊其展宽量增大。这种非对称轧制会带来下述问题:

○1因为上轧辊比下轧辊对轧件的摩擦力要大,所以造成轧件紧贴一个导板的情形。这样既加重导板磨损,又容易划伤轧件的表面(当然,若相位相羞不多,贴导板的力不大,这对稳定轧制是有一定的好处的)。

○2若上轧辊与下轧辊作用在轧件上的力不在一条线上,轧件未变形部分产生弯曲,造成轧制不稳定。

○3由于沿圆周的变形量不同,上轧辊作用于轧件的轴向力大于下轧辊作用于轧件的轴向力,轧件表面容易产生螺旋痕。

图4-7 斜轧钢球相位错位图

为了保证相位对正,解决办法有两种:第一是在加工轧辊与安装轧辊时应严

格要求保证安装相位准确。

轧辊的轴向调整

轧辊轴向调整也是基本调整之一。它的基本要求是两个轧辊型腔凸棱轴向要对正。生产中检验孔型轴向错位的方法如下:

斜轧孔型轴向错位的判断

○1从产品形状判断孔型轴向是否错位

若轧辊孔型轴向发生错位,那么可以从轧出产品的头尾形状来判断,如图4-8所示。

图中可见:当孔型轴向错位时,轧出的产品幅短,而且两端均带有圆柱形的凸台。当采用深浅孔型轧制时(即一个轧辊型腔凸棱高于轧制中心线,另一个轧辊型腔凸棱低于轧制中心线)轧辊型腔错位后,就会使轧件的前端或后端出现小凸台,并且轧件的幅短。从图可以明显看出孔型轴向错位轧出带小尾巴的产品情形。

当右轧辊超前时(图4-9a),圆柱形小凸台在钢球的头部三当右轧辊滞后时(图4-9b),圆柱形小凸台在钢球的尾部。

图4-8 钢球在轴向错位孔型中的示意图

图4-9深浅孔型轴向错位示意图

a)右轧辊轴向超前,b)右轧辊轴向滞后

○2从轧件运动状态判断孔型轴向是否错位

轧制钢球轧辊孔型产生轴向错位时,如图4-10所示,右轧辊型腔较左轧辊型腔错向出口,这样就会使轧件与右轧辊型腔的后部接触,而与左轧辊型腔的前部接触,出现左轧辊型腔的后半部与右轧辊型腔的前半部与轧件接触不上的状态。

轧件与轧辊孔型在这种状态下接触,在轧件的斜对角线方向上,右轧辊将轧件往下带动,左轧辊将轧件往上带动,在轧件最后出孔型时,就会向斜后方向翻转。同理,当轧制的钢球向斜前方翻转,就可以判断为左轧辊型腔相对右轧辊型

腔错向出口。

4.4.2轧辊孔型轴向错位与轴向力

正常稳定状态轧制时,如果轧辊孔型没有轴向错位,并且忽略轧件与导板的摩擦力,则轧辊两端的轴承基本不承受轴向力。因为轧件变形产生对轧辊的轴向力与轧辊型腔本身自相平衡。但是,当轧辊孔型轴向发生错位时,产生有轴向力,其作用力状态如图4-11所示。作用于轧辊轴向力的方向与错位方向相反。

图4-10 轧辊孔型轴向错位

图4-11 轧辊孔型轴向错位产生的轴向力

在轧辊孔型调整中,可利用轧辊孔型轴向错位产生的轴向力,来调整轧辊孔型轴向对正。具体办法就是在轧制中使一个轧辊相对机座固定,而使另一个轧辊相对机座轴向浮动。若轧辊孔型轴向错位,就会靠产生的轴向力自动找正。

小型轧钢机的设计方案

小型轧钢机的设计 1 绪论 1.1轧钢机的定义 轧钢机也称为轧钢机械,一般把将被加工的材料在旋转的轧辊间受压力产生的塑性变形即轧制加工机器称为轧钢机,这是简单定义。大多数情况下,轧制生产过程要经过几个轧制过成,还要完成一系列的的辅助工序,如将原材料由仓库运出加热,轧件送往轧辊,轧制、翻转、剪切、打印,轧件收集、卷取成卷等。 一个轧件的全过程由多种机械按工艺顺序而成机组来完成,这种机组或机器体系叫轧钢机械或称轧钢机。第一种情况轧钢机由一个或几个工作机座(执行机构)传动机构(齿轮传动、连轴器)和使轧辊转动的电动机组,后一情况轧钢机是由若干台工做机组成,这些机组数目与加工轧材工艺过成生产率相适应,因此,轧钢机按顺序排列并且用辊道或其他运输装置连成一条工艺流水线机器组成机组。 轧钢机是机械中使金属在旋转的轧辊中产生变形的那部分设备。主要使设备排列成一定形式的工作线称为轧钢机的主机列。用以完成其他工序的机械设备称为辅助机械。 1.2轧钢机的标称 轧钢机的类别与规格与轧钢机的断面尺寸有关,因此轧钢机的初轧和型钢的类是以轧钢的名义直径。也就是说轧钢机的大小是常用与轧件有关的尺寸参数来标称。 初轧机和型钢轧机的主要性能参数是轧辊名义直径,因为轧辊的名义直径的大小与其能够轧制的最大断面有关,因此,初轧机和型钢轧机是以轧辊的名义直径标称的。 小型轧钢机的名义直径为:180——450mm. 1.3轧钢机的用途 轧钢机形式有两种:冷轧与热轧,热轧主要用于开坯,兼生产一部形钢,这这种轧机的型号有630-650型轧机,500-550型轧机、650中型轧机与2300中板轧机等,冷轧主要用于

终级轧制,轧带钢的产品很多,具有代表性的冷轧板带钢产品金属镀层薄板(包括镀锡板、镀锌板等)、深冲板(以汽车钢板最多)、电工硅钢板、不锈钢和涂层钢板。现也促使冷轧机的装备技术和控制技术向更高的方向发展。型号有1400mmNKW、1250mmHC单辊可逆式轧机. 1150mm二十辊冷轧机,。 设计的轧钢机为300×3轧钢机,轧辊的直径为300 mm.,轧钢机主要用来为轧制小型线材。25—50毫米的圆钢,20—40毫米的方钢;螺纹钢等。 其结构的特点为: (1)采用三辊式工作机座,主电机不可逆转,中上辊与中下辊交替过钢,实现多道次的轧制。 (2)由于轧辊的转向和转速不可逆转,可采用造价较底的高速交流主电机在传动装置中装有减速机和齿轮机座。考虑到第一机座轧件较短,轧制次数较多,负荷很不均匀,为了均衡电机负荷,减少电机的容量,在减速机和电动机之间加有飞轮。 (3)多数300型钢轧机要求既开坯又轧件,具有一机多能的特性,因此,轧机急需要较强的能力,又需要较强的刚度,而且由于经常需要更换品种,在轧机结构上需考虑换辊方便。 (4)为了便于换辊,三个机座的轧辊都采用梅花接轴连接。 1.4小型轧钢机的主机列 轧钢机的主要设备是由一个或数个主机列组成的。轧钢机的主机列是由原动机,传动装置和执行机构三个基本部分组成的。 (1)工作机座:工作机座为轧钢机的执行机构,它由轧辊及其轴承轧辊的调整机构和上轧辊的平衡机构,引导轧件的轧件进入轧辊用的导装置,工座机座的机架及支撑机座并把机座固定在地基上用的轨零、部件的和机构组成。 (2)传动装置:联轴器:联轴器包括电机联轴器和主联轴器,电机联轴器用来连接电动机与减速器的主动齿轮轴;而主联轴器则用来连接减速器与机轮机座的传动轴,既自减速器将

轧机辊缝自动控制的设计与应用

轧机辊缝自动控制的设计与应用 前言轧机的辊缝控制是钢板厚度性能控制的关键程序之一,在一级过程自动控制中,轧机辊缝的控制涉及到的主要设备主要有液压缸,轧机机架, 工作辊支撑辊的安装、各类压力、位置传感器等。主要包括轧机辊缝的清零、 轧制中心线的确定、电动压下和液压压下的位置控制等几个方面。下面做一些 简单的介绍。轧机的辊缝调节主要通过操作侧和传动侧的两根压下螺丝来调整。轧机辊缝位置的控制主要有两种方式:一种是电动压下EPC位置控制,另一种是液压辊缝控制HGC。这两种方式在辊缝自动控制中同时存在,相辅相成,电动压下走的行程较远,可以作为辊缝的粗调或初始设置行走时使用;液压辊 缝的移动距离主要受到液压缸大小的限制,一般只有50mm行程,适用于最终 辊缝设定时的精细调整。 1.电动压下的位置控制EPC 压下螺丝用来进行位置的控制,该控制叠加在变速控制上。位置控制为速度控制器提供速度设置点。速度变化是传动控制的一部分,主要的传动装置有制动器和电磁耦合器。位 置控制使用线形或旋转编码器来测量压下螺丝的实际位置。液压和电气传动系 统分别设定了两个不同的分工,通过电动压下装置调节较大的位置变化,通过 液压压下装置进行精调和荷载状况下的调节。电动压下和液压压下的控制分工如下图1所示,电动压下的位置偏差会通过液压定位控制予以补偿。图1 压下螺丝位置控制的块状图(液压和电动) 2.液压辊缝控制HGC 水平机架液压辊缝控制分别由操作侧和传动侧的两个液压缸进行控制,每个液压缸由两个 并行连接的伺服阀操作,由控制系统来选择哪一个为主伺服阀。对于一般的厚度控制,一个伺服阀可以完成所要求的控制任务。第二个伺服阀主要用于咬 钢或长距离移动如换辊时使用。每个液压缸配有独立的位置控制和压力控制。轧制时位置控制是常用的操作模式,而在轧机压靠进程时自动选择轧制力控制。

我国轧辊行业的基本情况

我国轧辊行业的基本情况 添加日期:2010-11-1 10:35:55 访问次数:365次 近年来,我国的钢铁工业以每年递增超过20%~30%的速度发展,钢铁产量已经连续8年排名世界第1。目前,国内钢铁市场普通钢材产能过剩,优质钢材供应不足,部分依赖进口,仍是不争的事实。2006年,在中央宏观调控的强力干预下,粗钢产量仍然达到了4.2亿t,钢材产量达到4.6亿t,分别比2005年增长18%和24%。2006年,世界粗钢产量为12.4亿t。我国粗钢产量已占全世界的30%,远远超过排名第2~第6位的日本、美国、俄罗斯、韩国、德国5个国家粗钢产量的总和。图1示出了近年来中国粗钢产量占世界的比重。我国钢铁、轧钢业的迅速发展,钢材产量的逐年增加,对轧辊制造业是有利的,按照国内各类轧钢机轧制辊耗的粗略统计轧制1 t钢材消耗1.2-1.3 kg轧辊估算,生产4.6 亿t钢材,需消耗约60万t轧辊。轧辊作为轧钢机的重要工具及消耗件,将伴随着轧钢技术的进步和轧钢装备的不断更新换代而发展。因此,我国的轧辊制造企业只有密切关注和深入了解轧钢行业的发展趋势,才有可能为自身的发展和技术进步确定方向。 1 轧钢装备的基本情况 自改革开放以来,我国轧钢行业历经30年的技术改造和技术创新,轧钢过程连续、可测及可控的高效变形过程,随着现代高新技术和计算机技术的溶入得以实现。我国拥有世界上最先进的轧钢机和轧钢生产线。下面按轧机类型介绍各类轧机的数量及产能情况。 (1)中厚板轧机 2000年,我国有中厚板轧机26套。现已投产和在建的中厚板轧机已达到59套,数量翻了一番多,其中,

16套2.3 m轧机,13套2.8~3.0 m轧机,19套3.5~3.8 m轧机,7套4.0~4.8 m轧机, 4套5.0~5.5 m轧机。产能达到6 000万t/a。 (2)带钢轧机 按照国家带钢标准规定,宽度300~600 mm为中宽带钢,宽度超过600 mm为宽带钢。随着市场需求和轧钢装备的发展,人们习惯把宽度不到500 mm的带钢称作窄带钢,宽度在500~1 000 mm的称作中宽带钢,宽度超过1 000 mm的称作宽带钢。生产以上各种规格的带钢轧机也分别称作窄带钢、中宽带钢和宽带钢轧机。我国已建成投产的热轧宽带钢轧机有22套,年生产能力为6 000万t;正在建设的16套,生产能力5 000万t;规划和拟建的20套,生产能力5 500万t,其中一些已经投入生产。我国已建成投产的中宽带钢轧机有15套;在建和拟建的7套,年生产能力2 000万t。我国还有热轧窄带钢轧机数百套,年生产能力为数千万吨。 我国已建成投产的冷轧带钢连轧机有18套,生产能力4 500万t;正在建设中的33套,生产能力8 600万t;规划中的11套,生产能力3 000万t。全部建成后冷轧带钢的生产能力将达到1.6亿t。依据我国“十 一.五”规划,到2010年,板带钢的产量将占钢材总产量的50%以上,那时板带钢产量将接近2.5亿t。 (3)型钢轧机 我国现有H型轧机生产线15套,已投产11套,在建的4套,其中大型的3套,莱钢和津西钢铁公司的大型H型钢的高度已达到1 m。2006年,我国热轧H型钢产量约600 万t,占钢材总量的1.3%。在欧洲、日本等发达国家,热轧H型钢的消费量占钢材总量的4%~8%,可见我国H型钢产品还有较宽范围的发展空间。 (4)钢管、棒线材轧机 我国有小型型钢(棒材)连续式和半连续式轧机100多套,高速线材轧机80多套,无缝钢管轧机10余套。我国冷、热轧带钢连轧机的成品出口速度已经接近30 m/s,高速线材轧机成品出口速度最高可达150 m/s。

第二部分 机械原理课程设计题目

第二部分机械原理课程设计题目 1.半自动平压模切机机构设计 1.1简介 图2.1 图2.2 半自动平压模切机是印刷、包装行业压制纸盒、纸箱等纸制品的专用设备。该机可对各种规格的白纸纸板、厚度在4mm以下的楞瓦纸板,以及各种高级精细的印刷品进行压痕、切线、压凹凸。经过压痕、切线的纸板,用手工或机械沿切线处去边料后,沿着压出的压痕可折叠成各种纸盒、纸箱,或制成凹凸的商标。 压制纸板的工艺过程分为“走纸”和“模切”两部分。如图2.1所示,4为工作台面,工作台上方的1为双列链传动,2为主动链轮,3为走纸模块(共五个),其两端分别固定在前后两根链条上,横块上有若干个加紧片。主动链轮由间歇机构带动,使双列链条作同步的间歇运动。每次停歇时,链上的一个走纸横块刚好运行到主动链轮下方的位置上。这时,工作台面下方的控制机构控制其执行构件7作往复运动,推动横块上的夹紧装置,使夹紧片张开,操作者可将纸板8喂入,待夹紧后,主动链轮又开始转动,将纸板送到具有上模5(装调以后是固定不动的)和下模6的位置,链轮再次停歇。这时,在工作台面下部的主传动系统中的执行构件——滑块6和下模为一体向上移动,实现纸板的压痕、切线,称为模压或压切。压切完成以后,链条再次运行,当夹有纸板的横块走到某一位置时,受另一机构(图上未表示)作用,使夹紧

片张开,纸板落到收纸台上,完成一个工作循环。与此同时,后一个横块进入第二个工作循环,将已夹紧的纸板输入压切处,如此实现连续循环工作。 1.2 原始数据和设计要求 1)每小时压制纸板3000张。 2)传动机构所用电动机转速n=1450r/min ,滑块推动下模块向上运动时所受生产阻力 如图2.2所示,图中N P C 6 102?=, 回程时不受力,回程的平均速度为工作行程平均速度的1.2倍,下模移动的行程长度mm H 5.050±=。下模和滑块质量约为120kg ,各杆件质量按18kg/m 计算。 3) 机器运转不均匀系数0.1 4) 工作台面离地面的距离约为1200mm 。 5) 所设计机构的性能要良好,结构简单紧凑,节省动力,寿命长,便于制造。 1.3 设计步骤及应完成的工作量 1) 拟定运动系统方案,并进行方案的分析比较,拟定运动循环图。 2) 机构设计 a. 用解析法和图解法相结合设计连杆机构(即下压模传动机构)。 b. 用图解法或解析法设计凸轮机构 3) 对执行压模传动机构进行运动分析和动态静力分析。提供如下结果:机构尺寸, 电机型号;位移、速度和加速度曲线,原动件平衡力矩曲线,机架总反力曲线,等效驱动力矩和阻力矩曲线,等效转动惯量和飞轮转动惯量。 4) 正确绘制机构运动简图 a. 拟定自电动机至曲柄轴的传动链方案,并进行传动比分配。 b. 进行传动机构的最终布置,画出机构的运动循环图。 c. 按比例绘制运动简图,每人完成2号图纸一张(图纸内容包括:设计的机构 简图,机构传动系统图,运动循环图)。 5) 编写设计计算说明书。

轧钢机轧辊辊缝调整装置-----压下装置

课程设计任务书 设计题目:轧钢机轧辊辊缝调整装置-----压下装置 机械学院:机械设计制造及自动化052 设计者:秦海山(2005441453) 指导老师:陈祥伟 2008-6-25 设计说明书 设计题目:轧钢机轧辊辊缝调整装置-----压下装置 一、设计目的 此次课程设计目的主要是让同学们对轧辊机械的压下装置有进一步的了解,通过此次课程设计,让我们对整个压下机构的工作原理和一些主要零部件的结构有更深刻的认识。 二、设计内容及要求 1、制定三种方案,选择其一 2、计算压下机构驱动功率; 3、对压下机构的工作系统或零件进行机构设计及关键零件力能参数的验算 4、画出压下机构装配图或工作系统简图 5、画出关键零件的零件图(选择一个) 6、完成4000—5000字左右的设计说明书 三、设计参数 热轧带钢生产成精轧机组的轧制力设计能力为20MNM,上轧辊向调整升降速变为1mm/s,最大工作行程为20mm。电动压下是最常使用的上辊调整装置,通常包括,电动机、减速器、制动器、压下螺丝、压下螺母、压下位置指示器、球面垫块和测压仪等部件。 四、传动方案的拟定及说明 在设计中选择压下装置的电动机和减速器配置方案是十分重要的。因为在设计压下机构时,不仅应满足压下的工艺要求(压下速度、加速度、压下能力及压下螺丝的调整方式等),而且还应考虑其他因素,如:电动机、减速机能否布置得开;换辊、检修导卫和处理事故时,吊车吊钩能进入;检修是否方便等。 四辊板带轧机的电动压下大多采用圆柱齿轮-蜗轮副传动或两级蜗轮副传动的形式。这两种传动形式可以有多种配置方案。图1示出了三种配置方案。其中配置方案3是电动机直接传动的(只用在小型板带轧机上);配置方案1和配置方案2是圆柱齿轮-蜗轮副传动。 四、对压下装置的要求是:1、采用惯性较小的传动系统,以便频繁地启动,制动;2、 有较高的传动效率和工作可靠性;3、必须有克服压下螺丝阻塞事故(“坐辊”或“卡钢”)的措施。 电动压下装置配置方案简图如下:

轧辊强度校核习题详解

验算Φ500×3三辊型钢开坯机第一机座的下轧辊强度。已知: 1)按轧制工艺,该辊K13、K9、K5三个道次同时走钢; 2)各道的轧制力:P13 =1100KN , P9=800KN , P5 =600 KN ; 3)各道的轧制力矩:M13 = 60.0KN .m , M9 = 30KN.m , M5= 20KN.m ,忽略摩擦力矩; 4)轧辊有关尺寸见图所示。其中各道次的辊身工作直径为:D13=340 mm , D9=384 mm , D5=425 mm 轧辊辊颈直径:d=300 mm 辊颈长度l =300 mm,轧辊梅花头外径d1=280 mm,其抗扭断面系数W n = 0.07d13 。 5)轧辊右侧为传动端; 6)轧辊材质为铸钢,其强度极限为 σ b = 5 00 ~ 600 MPa; 7)轧辊安全系数取n =5; 8)许用应力[τ] = 0.6[σ]。 (要求画出轧辊的弯矩图和扭矩图) 1)由静力学平衡方程求得轧辊辊颈处的支反力: R1*(286+507+654+353)-P5*(507+654+353)- P9*(654+353)- P13 *(353)=0 即:R1=(600 *1514+ 800 *1007 + 1100*353)/(286+507+654+353)=1167.94 KN R2= (P5+P9+P13)- R1= (600+800+1100)-1167.94=1332.06KN 2)轧辊各位置点的弯矩值: Ma = R1*300/2/1000 = 1167.94 *0.15 =175.191KN.m Mb= R1* 286/1000 = 1167.94 *0.286 =334.03KN.m Mc= R1*(286+507)/1000- P5*507/1000 = 1167.94*0.793-600*0.507=621.98 KN.m 或(Mc= R2*(353+654)/1000- P13*654/1000 = 1332.06*1.007-1100*0.654=621.98 KN.m) Md = R2*353/1000 = 1332.06 *0.353 = 470.22KN.m

钢球轧机轧辊的调整

钢球轧机轧辊的调整 钢球轧机轧辊的调整是钢球斜轧成型的关键问题之一,它直接影响着产品的形状、尺寸及质量。轧机调整的实质就是使轧辊和导板处在正确的位置,以便轧件顺利地实现塑性变形,轧出合格的产品。 因为斜轧机的调整因素较多,并且各因素又相互影响,所以斜轧机的调整比其它类型轧机的调整要复杂得多。轧机调整的内容包括:轧辊的径向调整、倾角调整、轴向调整、相位调整、喇叭口调整、导板相对位置的调整、试轧调整等。从图4-1斜轧机调整内容示意图中可以看出:轧机调整因素的空间几何关系。有五个自由度需要调整。 4-1 斜轧机调整内容示意图 轧辊的径向调整 轧辊的径向调整是最基本的调整,其目的是控制产品的径向尺寸,同时,轧辊径向调整还直接影响轧制能否正常进行及产品内部质量的好坏。 4.1.1怎样进行轧辊的径向调整 轧辊的径向调整比较简单,其基本调整如下。首先,根据孔型设计的要求,通过侧压螺丝机构,使轧辊移动,达到合理的辊缝尺寸。然后再用卡钳检验,也有用标准样柱检验的。但是按这种方法调整的轧辊径向孔型,有时仍不能轧出合格的产品来。这是因为轧辊径向孔型尺寸在轧制过程中受到轧机的刚性,轧制线的位置,轧辊自身的热胀冷缩等因素的影响。 当轧机的刚性较差,即在轧制过程中辊跳严重时,这时轧辊孔型的径向尺寸应当减去辊跳值。考虑到轧辊热胀的影响,在稳定轧制一定时间后,要适当地放

开轧辊孔型的径向尺寸。当轧辊的热传导达到热平衡状态后,轧辊孔型的径向尺寸处于稳定状态。所以,对于精轧产品,往往需要预先对轧辊进行加热,这样就可以在轧制一开始便消除这一因素的影响,保证精轧产品的质量要求。 当轧机中心线与轧制中心线(即轧件旋转的轴线)位置重合时,这时应用卡钳测得的孔型径向尺寸,就应等于热轧毛坯直径。而当轧件贴一个导板轧制时,轧辊与轧件的接触点将上移或下移。当贴上导板轧制时,接触点便上移;反之,贴下导板轧制时,接触点便下移。 图4-2 测量孔型径向尺寸关系图 从图4-2可以看出,用卡钳测得的轧辊孔型径向尺寸只能是图中A '、B '两点间的距离l ',而轧件与轧辊实际接触点应是A 、B 两点间的距离l 。显然l >l ',如果要使l '等于轧件的直径d ,则孔型径向尺寸便调大了。由于接触点A 、B 间的距离用卡钳是测量不出来的,故只能通过测量尺寸l '间接地控制尺寸l ,l '与轧件最大半径r 之间有如下的关系。 ()()型光型光型 光R R h r R h r R R R l --?-++?-+=--'='2222o o (4-1) 式中 R 光—型辊孔型底半径,mm ; ?h —轧机中心线相对轧制线的偏移量,毫米。 4.1.2径向调整与轧件旋转的关系 棒料送入轧辊后能否旋转,是斜轧的前提条件,而轧辊的径向调整对这个前提条件有直接影响。 在轴承钢球斜轧成形过程中,轧件的旋转条件为a b ≥μ。其中,a 为驱动轧件旋转力矩的力臂,b 为阻止轧件旋转力矩的力臂。当轧辊孔型径向尺寸调得过紧时,如图4-3所示,轧辊由原实线位置,调到图中虚线位置,则出现力臂a

轧辊种类

轧辊分类 1.合金铸钢轧辊Alloy Cast Steel Roll 合金铸钢轧辊是采用电弧炉冶炼优质钢水,采用先进的铸造、热处理工艺技术制造,具有很高的强度、优良的抗热裂性、韧性、耐磨性、适用于型钢粗、中轧机,热轧带钢粗轧机架用辊及热轧带钢支承辊。辊身金相组织为珠光体或回火索氏体。 2.半钢轧辊Adamite Rolls 半钢轧辊是性能介于钢辊和铁辊之间的一种轧辊材质,含有镍、铬、钼等合金元素,其基体组织中含有一定量的碳化物,采用特殊的热处理工艺,有高的耐磨性、强的韧性和好的热抗性,最大的特点是在工作层中几乎没有硬度降落。适合带钢热连轧机粗轧、精轧前段;棒线轧机粗轧、中轧、预精轧机架;万能轧机、悬臂轧机辊环、辊套。 3.石墨钢轧辊Graphite Steel Rolls 石墨钢轧辊的性能与半钢轧辊类似,其最大特征是组织中有少量细小石磨存在。它可以提高轧辊的热轧辊的抗热裂性能和抗氧化铁皮黏附性能,主要适用于粗轧或初轧机架。 4.高速钢轧辊High Speed Steel Rolls 高速钢轧辊在高温下具有很高的硬度和耐磨性。它是用离心方法生产的,芯部材质为球墨铸铁。通过成分和热处理工艺控制,工作层硬度可达80-85HSC,马氏体基体上分布有钒、钨、铌、钼复合碳化物,保证了工作层硬度均一,孔型磨损均匀。这种辊用于精轧机架,增加作业时间,改善轧材表面质量。 5.GNV轧辊GNV Rolls 粗轧机架用轧辊需要一些特性相互结合,其中某些特性会相互抵消对方的作用,这些特性包括耐磨性、耐热裂性、耐冲击性、热硬度和热强度等。过多的网状碳化物能提高耐磨性、耐冲击性,但它严重降低了断裂韧性,这在粗轧情况下,会促使热裂纹形成发展。要减小过多碳化物的影响,又能保持耐磨性,就要加入镍、钼等合金元素,使基体形态为贝氏体/马氏体(针状),比通常的珠光体基体更耐磨。钼元素还有助于提高轧辊高温硬度。 GNV轧辊就是采用高合金材质加上特殊热处理制造出来的,基体组织中碳化物的含量小于5%,满足粗轧机架要求。 6.合金无限冷硬铸铁轧辊Alloy Indefinite Chilled Cast Iron Rolls 合金无限冷硬轧辊,其工作层中有细小晶间石墨。石墨和碳化物的大小、形状、分布可通过激冷作用和合金含量来控制。由于添加了锰、铬、镍、钼等合金元素,基体组织可以从珠光体、贝氏体变为马氏体。加上有少量细小石墨存在,不仅提高了轧辊抗剥落性、抗热裂性和耐磨性能,而且辊身工作层硬度落差很小。适用于棒、线材、型钢轧机中轧、精轧机架。 7.合金冷硬铸铁轧辊Alloy Chilled Cast Iron Rolls 合金冷硬铸铁轧辊辊身工作层基体组织内基本上没有游离石墨,其硬度高,具有优良的耐磨性能。用于小型棒、线材轧机及窄带钢精轧机架。金相组织是细珠光体和碳化物。 8.珠光体球墨铸铁轧辊(离心)Pearlitic Nodular Cast Iron Rolls(Centrifugal) 球墨铸铁中加入镍、铬、钼合金元素,经过特殊热处理得到珠光体球铁轧辊。珠光体球墨铸铁轧辊具有良好的强度、高温性能和抗事故性能,工作层硬度落差小。 9.针状贝氏体球墨铸铁轧辊(离心)Spiculate Bainitic Nodular Cast Iron Rolls(Centrifugal) 针状贝氏体球铁轧辊加入镍、锰、铬、钼等合金元素,它是具有针状组织(贝氏体+少量马氏体)基体,比珠光体球铁轧辊强度更高,韧性更好,耐磨性也明显提高。可采用静态铸造可离心铸造生产。 10.合金球墨铸铁轧辊(离心)Alloy Nodular Cast Iron Rolls(Centrifugal) 这种轧辊的特征是石墨呈球状,它的性质与合金无限冷硬轧辊相似,其强度高与无限冷硬辊。一般采用静态或动态的铸造。

轧辊基础知识

轧辊基础知识 1-什么是轧辊,轧辊的种类有哪些? 轧辊是使(轧材)金属产生塑性变形的工具,是决定轧机效率和轧材质量的重要消耗部件。轧辊种类按成型方法可分为铸造轧辊和锻造轧辊;按工艺方法分为整体轧辊、冶金复合轧辊和组合轧辊。整体轧辊分为整体铸造和整体锻造轧辊两种。 冶金复合铸造轧辊主要有半冲洗复合铸造、溢流(全冲洗法)复合铸造、离心复合铸造三种,此外还有连续浇铸包覆(CPC-Continuous PouringProcess for Cladding)、喷射沉积法、热等静压(HIP-Hot Isostatically Pressed)、电渣熔焊等特殊复合方法制造的复合轧辊种类。组合轧辊主要是镶套组合轧辊。 2-什么是整体轧辊? 整体轧辊是相对于复合轧辊而言的,整体轧辊的辊身外层与心部以及辊颈采用单一材质铸造或锻造而成,辊身外层和辊颈不同的组织、性能通过铸造或锻造工艺以及热处理工艺过程来控制和调整。 锻造轧辊和静态铸造的轧辊均属于整体轧辊。 3-轧辊按材质主要分为哪几种类别? 轧辊按制造材料主要划分为铸钢系列轧辊、铸铁系列轧辊和锻造系列轧辊三大类别。 4-什么是铸造轧辊,铸造轧辊主要有哪些种类? 铸造轧辊是指将冶炼钢水或熔炼铁水直接浇注成型这一生产方式制造的轧辊种类。铸造轧辊按材质又可分为铸钢轧辊和铸铁轧辊两类;按制造方法又可分为整体铸造轧辊和复合铸造轧辊两类。 5-哪些轧辊适合于整体铸造生产? 初轧机、钢坯连轧机、大型型钢和轨梁轧机、热轧板带钢轧机破鳞和轧边机、型钢万能轧机的轧边机,还有小型型钢、线棒材轧机的粗轧机架等轧机使用的轧辊,大多采用整体铸造方法生产,这类轧辊使用层较厚,孔型较深。另外,热轧板带轧机的二辊粗轧辊也适合于整体铸造生产。 整体铸造轧辊的工艺方法相对简单,制造成本低。 6-什么是复合铸造轧辊? 复合铸造轧辊指轧辊辊身外层与心部以及辊颈采用两种或两种以上材质复合铸造而成,辊身外层和辊颈分别通过不同材质的成分设计和热处理工艺获得要求的组织和性能。复合铸造方法有半冲洗复合铸造、离心复合与溢流复合三种,复合铸造轧辊需要特殊的工艺装备,工艺相对复杂,控制难度大,需要较高的制造成本。 7-复合铸造适合于哪些轧辊的生产? 复合铸造适合于生产那些工作负荷大、轧材质量要求高的轧辊。这类轧辊辊身和辊颈性能要求相差悬殊,辊身表面硬度要求高,辊颈又要求较高的强度和韧性。例如热带连轧机的工作辊、支撑辊;中厚板、宽厚板轧机的工作辊;平整轧机的工作辊和支撑辊;型钢万能轧机的辊环;小型型钢、棒线材轧机的精轧辊及无缝钢管轧机连轧管轧辊和张减径辊环等。 近几年离心复合高铬铸铁小立辊在国内外热带连轧机上得到越来越多的采用,表现出优良的耐

六辊轧机轧辊装置的设计

毕业设计 题目:六辊轧机轧辊装置的设计 学生: 学号: 院(系): 专业: 指导教师: 2011 年 6 月 3日

目录 摘要 (1) ABSTRACT (2) 1.概述 (4) 1.1国内外发展现状及特点 (4) 1.2 轧辊装置的组成和工作原理 (4) 2.方案设计 (5) 2.1轧辊传动方案的设计 (5) 2.2压下量调整机构的设计 (5) 2.3中间辊横移机构的结构设计 (6) 2.4轧件宽度调整机构的设计 (7) 3.零件结构和尺寸的设计 (9) 3.1工作辊 (9) 3.1.1工作辊的设计 (9) 3.1.2工作辊轴承的选用 (11) 3.2中间辊 (12) 3.2.1中间辊的设计 (12) 3.2.2中间辊轴承的选用 (14) 3.2.3中间辊横移机构 (14) 3.3支承辊 (16) 3.3.1支承辊的设计 (16) 3.3.2支承辊轴承的选用 (18) 3.4轧件宽度调整机构 (19) 4.校核 (20) 4.1轧制力计算 (20) 4.2轧辊强度分析 (22) 4.3支承辊弯曲强度的验算 (25) 4.4轧辊辊面接触强度的验算 (26) 4.4.1 工作辊与中间辊之间的辊面接触强度 (26) 4.4.2 中间辊与支撑辊之间的辊面接触强度 (27) 5安装与调试 (29) 5.1维护和保养 (29) 5.2液压系统维护 (29)

5.3润滑系统维护 (29) 6.总结 (30) 7.致谢 (31) 参考文献 (32)

六辊轧机轧辊装置的设计 摘要 国产六辊冷轧机从上世纪80年代起就在国内成功运行,但只是一些单机架的 中小型冷轧机。进入21世纪以来,经济快速发展,对高质量板(带)材的需求也 在迅速增长。具有国际先进水平的高速现代化冷轧机的开发和研制成为当务之急。 采用辊缝连续可变凸度控制技术的六辊冷轧机在生产实践中不断的凸显出它 的优点:由于辊缝断面可以连续调整,对规定的轧制参数具有高度适应性;由于 使用经过优选的工作辊,压下量可以很大;轧出的带材,有良好的平直度和表面 质量;轧件边部减薄明显改善;由于轧辊的库存量可以明显减少,即整个产品范 围可以用同一个辊轧制,因而降低了轧辊的成本。目前,具有板形控制功能的轧 机有日立HITACHI的HC(UC)、德国SMS公司的CVC轧机、法国CLECM公司开发 的DSR轧机、以北科大为代表的VCL以及依靠鞍钢和一重等国内力量自主开发的VCMS新一代六辊冷轧机。 为了满足对冷轧机高速、高效、高质量、低成本、低能耗、易维护等一些生 产要求,经过对比,我们发现采用辊缝连续可变凸度控制技术的六辊冷轧机可以 兼顾满足我们的生产需求。所以高速现代化的六辊冷轧机必是目前以及将来的重 点发展方向。 通过六辊轧机轧辊装置的设计,使我在结构设计和装配、制造工艺以及零件 设计计算、机械制图和编写技术文件等方面得到综合训练;并对已经学过的基本 知识、基本理论和基本技能进行综合运用。从而培养我具有结构分析和结构设计 的初步能力;使我树立正确的设计思想、理论联系实际和实事求是的工作作风。 本装置主要由五个部分组成。第一部分是工作辊;第二部分是中间辊及其横移机构;第三部分是支承辊;第四部分是压下量调整机构;第五部分是机架。 关键字:六辊冷轧机,中间辊横移,凸度控制

轧辊基本知识

轧辊轧制时有关工艺问题 轧辊是轧钢厂轧机的最主要生产工具,直接对轧件进行轧制加工,完成轧制过程的基本工序——金属的塑性变形。它不仅与产品质量,产量,经济效益等都有直接的关系,是生产过程中非常重要的一个因素。轧辊的好坏将直接影响产品的机械性能,尺寸精度,板型以及表面质量。其次轧辊好坏也将直接影响生产的产量,如轧辊换辊次数的增加将使生产产量直接下降。在板带热轧中一般一个换辊周期可轧2000-2500吨的轧制产量,如采用ORG在线磨辊技术产量可扩大到3500吨以上,同样如采用高速钢轧辊产量还能上升,相反如采用低质量轧辊,换辊次数就明显增加,产量就下降。由于轧辊本身是一个生产消耗件,辊耗大小就直接影响工序成本,经济效益就会明显变化。因此,希望轧辊制造厂能不断开发出新的高效的轧辊产品,和不断提高轧辊质量水平,同时钢铁生产厂又能不断加强轧辊管理,那对钢铁企业和轧辊企业均能产生很好的经济效益。 一,轧辊基本知识 1,轧辊定义和分类 轧辊是直接对轧件进行轧制加工,完成轧制过程的金属的塑性变形的主要部件。按轧钢机类型可分为钢板轧辊和型钢轧辊,如图1所示。钢板轧辊的辊身一般呈圆柱形,如图1a所示,主要参数为辊身长度,也是轧机的标称,如1580轧机,1700轧机,2050轧机等。有时热轧轧辊的辊身呈微凹,当受热膨胀时,可保持轧辊较好的板型。而冷轧轧辊的辊身呈微凸,当它受力弯曲时,也可保持轧辊较好的板型。型

钢轧机的轧辊辊身上有轧槽,根据工艺要求配置相应的孔型,粗轧机有较多的轧槽,精轧机则较少,如图1b所示,型钢轧机主要参数为轧辊的直径,也是轧辊的名义直径或轧机的标称,如1300初轧机,650型钢轧机等,如在一条生产线上有若干个工作机座,则以最后一架的轧辊名义直径作为轧钢机的标称。由于初轧机,型钢轧机是有槽的,而且轧辊在使用过程中由粗变细是变化的。故该类轧机的轧辊名义直径是以齿轮座的中心距作为轧辊名义直径,初轧机以轧辊辊环外径定为轧辊的名义直径。 图1轧辊类型图a钢板轧辊,b型钢轧辊, 板带轧机则没有名义直径之称呼,轧机主要参数是辊身长度,各机架辊身长度是一致的。各类轧机轧辊名义直径D与辊身长度L是有一定比例的,可参考表1所示: 表1各类轧机的L/D之比

小型轧钢机毕业设计

小型轧钢机毕业设计 小型轧钢机毕业设计 摘要 设计的轧钢机为300×3型钢轧钢机,轧辊的直径为300 mm。轧钢机主要用来为轧制小型线材,采用三辊式工作机座。轧钢机的主要设备是由一个主机列组成的。轧钢机的主机列是由原动机,传动装置和执行机构三个基本部分组成的。采用的配置方式为电动机——减速机——齿轮机座——轧机。由于轧辊的转向和转速不可逆转,原动机采用造价较底的高速交流主电机。考虑到轧制负荷很不均匀,为了均衡电机负荷,减少电机的容量,在减速机和电动机之间加有飞轮。齿轮机座:其用途是传递转矩给工作辊,设计采用三个直径相等的圆柱形人字齿轮在垂直面排成一排,装在密闭的箱体内。联轴器:在减速器与齿轮机座之间采用的是安全连轴器。而主联轴器采用的的梅花接轴联轴器。关键词:轧钢机齿轮机座飞轮

小型轧钢机毕业设计 Abstract Rolling mill designed for 300 x 3 payments rolling mill, roller diameter of 300 mm. Rolling mill for rolling mainly to small wire rod, a three roller-working machine Block. Rolling mill equipment is a major component of the mainframe out. Rolling mill is the former mainframe is motivated transmission devices and the three basic components of the implementing agencies. Allocation method used for electric motors -- slowdown plane -- plus seat -- rolling mill.The roller to the irreversible and rotational speed, the original motivation for the introduction of a more rapid exchange of the costs of Electrical. Taking into account the rolling load is uneven, to balance electrical loads and reduce the electrical capacity slowdown in the increase between a flywheel and electric motors. Flywheel design and installation of electric motors in decelerator between its role in the adoption roller and roller idling, a mobile storage device in a balanced transmission loads; gear seat : its purpose is to transmit torque to the work revolve, the equivalent diameter cylindrical design used three words plus people lined up in the vertical plane, packed in sealed .Shaft coupling : in the Block reducer and gear is used between security company axle vehicles. Key words:Rolling mill gear seat flywheel.

棒材轧机轧辊的选择和使用

棒材轧机轧辊材质的选择和冷却 刘新强 (张店钢铁总厂轧钢厂,山东淄博255007) 摘要针对我厂棒材轧机的品种和工艺特点,分析了各机组、各架次对轧辊性能的不同要求和轧辊材质选择,介绍了轧辊在生产中的冷却要求。 关键词棒材轧机轧辊材质轧辊冷却 1前言 张钢轧钢厂棒材生产线设计年产量为100万t,其中规格为Φ12~40mm 的带肋钢筋80万t,规格为Φ16~50mm 的光面圆钢20万t,是张钢总厂搬迁工程的第一个项目。棒材生产线主要工艺设备有:步进式双蓄热加热炉,长28m、宽13m,生产能力170t/h;全线纵列短应力线轧机18架,分粗轧、中轧、精轧机组,实现了全连续高速无扭轧制,各机组分别由平—立交替布置的轧机组成,其中第16、18架为平/立可转换轧机,均采用专用交流变频电机驱动,棒材生产实现了连续化、自动化和高效化。棒材生产中轧辊是非常重要的工艺件,它直接影响着棒材生产作业率、生产成本和企业的经济效益。轧辊的消耗不仅与棒材品种、轧制工艺技术和轧钢设备状况有关,还与轧辊制造技术、轧辊材料以及使用管理水平有关。目前可供棒材轧机选择的轧辊较多,单槽过钢量差别很大,根据我厂的生产实际,从提高作业率和降低辊耗的角度对轧辊材质的选择和使用进行分析,并介绍了轧辊的冷却要求。 2轧机对轧辊性能的要求和选型 我厂棒材机组分粗轧、中轧、精轧机组,粗轧机组主要是在高温状态对钢坯缩料,轧制力大、轧制速度低,轧辊一般要求考虑轧辊的强度和抗热裂性,同时也要求一定的耐磨性。国内较早使用的普通铸钢系列,由于轧辊辊身硬度低(约为35~40HS)、耐磨性差,在现代连续化、自动化棒材生产线已经不采用了。普通冷硬铸铁轧辊耐磨性优于铸钢轧辊,其辊身硬度为52~60HS,主要合金元素Cr、Ni、Mo含量偏低、轧辊抗拉强度和耐磨性较低,且从辊身表面向里硬度梯度较大(落差大),在实际生产中表现新轧辊耐磨,使用后旧辊耐磨性明显降低,针对上述特点我厂从实用和经济方面考虑,粗轧机组采用镍铬钼无限冷硬铸铁辊,辊身硬度为60~70HS,采用无孔型(平辊)轧制时,单槽过钢量可达15000~20000吨。 棒材中轧机组,主要承担轧件延伸和为精轧机组提供精确料型的任务,轧制力适中,但轧制速度明显高于粗轧机组,要求轧机轧辊具有较高的耐磨性、导热性和抗冷热疲劳性,各生产厂家较多的采用中镍铬钼无限冷硬铸铁辊,其生产工艺采用离心铸造+去应力退火,主要合金成分为0.30%~1.20%Cr,1.01%~2.00%Ni,0.20%~0.60%Mo;组织为细珠光体+25~35%碳化物+片状石墨。辊身硬度为62~75HS,中镍铬钼无限冷硬铸铁辊Cr含量较高,碳化物含量较高,其韧性有所降低。用于中轧机组需要较好的冷却条件。 棒材精轧机组轧制品种较多,孔型形状复杂,变形分配不均匀,轧制速度高,轧制力变化大,因此对轧辊要求具有优异的耐磨性和抗剥落性能,并且具有一定的耐热疲劳性,以提高成品轧辊单槽过钢量、减少产品尺寸波动。轧辊选择材质有球磨铸铁辊、高合金无限冷硬铸铁辊、高速钢复合辊以及耐磨性最好的碳化钨复合辊。对于简单断面的延伸孔型一般选择高合金无限冷硬铸铁辊,对于圆钢或带肋钢筋的成品前孔,可以选用耐磨性能好的高速钢复

轧机液压辊缝控制系统的原理及应用

轧机液压辊缝控制系统的原理及应用 许战军 (河北钢铁集团 邯钢公司 西区冷轧厂 河北 邯郸 056002) 摘 要: 介绍邯宝公司2080冷轧酸轧联合机组轧机液压辊缝控制,通过分析HGC液压缸可以在位置控制模式和轧制力控制模式下运行的模式,由液压辊缝控制(HGC)系统调节轧机对带钢的压下量,直接影响到板型效果。 关键词: 轧机;液压辊缝控制;压下量 中图分类号:TG333 文献标识码:A 文章编号:1671-7597(2012)1110010-02 用。在咬钢的瞬间从位置控制转换到轧制控制,反过来也一 0 前言 样。由于控制模式转换必须在任何时候都可用,所以控制回路邯钢新区冷轧厂采用德国SMS集团最新的轧制技术,5架串 必须时刻调整输出来平衡设定值和实际值。位置控制和轧辊轧列式6辊轧机,通过弯辊系统、窜辊系统和螺旋压下系统来轧制 制力控制从属于更高一级的控制如厚度控制或秒流量控制。 带钢改善板型。螺旋压下系统主要靠液压辊缝控制(HGC)系 同步/倾斜控制系统是建立在位置控制和轧制力控制上统来调节轧机对带钢的压下量。冷轧就是带钢在再结晶温度进 的,以确保两个调节液压缸平行动作,这样可使轧机的上支承行轧制,所以液压辊缝控制的精度直接影响产品的厚度,液压 辊保持在轧机中心线上,并可变化。伺服阀的电源由UPS来提辊缝控制的倾斜控制配合弯辊和窜辊直接影响板型效果。 供,下表是伺服阀在各种模式下的电流值。 1 液压辊缝机械和液压系统结构 轧机机架配备了两个HGC液压缸。液压缸安装在轧机机架 上部。 HGC液压缸是用伺服阀进行闭环控制的,伺服阀仅控制液 压缸塞侧的压力。其中液压缸的油压必须是由轧机区高压液压 系统提供的。轧机机架的畜能器,直接在伺服阀之前,确保持 续的缓冲油量。 液压缸的杆侧是用一个独立的低压缓冲畜能器管路联结 的,可以尽心润滑并且避免真空。做打开动作时,例如当换辊 时HGC液压缸打开,杆侧管路压力会上增加,以提升辊缝开张 速度。 HGC液压系统图如下: 2.1 位置控制系统 位置控制用来控制液压缸位置,在操作侧和驱动侧都有位 置控制和倾斜控制。位置控制的输出限制值是可调节的,其大 小随倾斜量变化,最大约为伺服阀全开度的70%。 位置实际值是由2个HGC缸上的2个位置传感器(sony磁 尺)测量的,其精度可达1μm。每个传感器都安装在每个液压缸 中心,测量的是液压缸中心的高度。 当传感器错误时,HGC缸将停止运动。“传感器错误”信 号是通过对传感器系统里面的传感信号实时监测,监测电源和 位置差最大差异位置检测来实现的。液压缸完全收回的缸程是 由位置传感器侧量得。 2.2 轧制力控制 轧制压力控制是对驱动侧和操作侧的单独轧制力进行求和 并通过倾斜控制来修正而得来的。轧制力控制的输出限制值是 2 液压辊缝电气控制原理 可调节的,其大小随倾斜量变化,最大约为伺服阀全开度的HGC液压缸可以在位置控制模式和轧制力控制模式下运 70%。 行,当辊缝张开时液压缸一般是在位置控制模式下运行的。 轧制力是由安装在HGC缸塞侧的压力传感器测量得。一旦HGC缸的轧制力控制模式只有在辊缝关闭时才有可能 使

轧辊机机械设计

机械原理 课程设计 课程设计名称:轧辊机设计 学生姓名:谢自力 学院:材料科学与工程学院 班级:09913 学号:10909010329 指导老师:黄霞

目录 1.设计题目………………………………………………………… 2.工作原理及工艺动作分解……………………….……………... 3.执行机构选型…………………………………………………… 4.机构运动方案的选择和评定…………………………………… 5.机构运动简图…………………………………………………… 6.机械运动原理…………………………………………………… 7.轧辊机机构的尺度设计………………………………………… 8.原动机的选择与装配要求……………………………………… 9.参考文献与资料…………………………………………………

一·设计题目:轧辊机设计 1)工作原理及工艺动作过程 图1 所示轧辊机是由送料辊送进铸坯,由工作辊将铸坯轧制成一定尺寸的方形、矩形或圆形截面坯料的初轧轧机。它在水平面内和铅垂面内各布置一对轧辊(图中只画了铅垂面内的一对轧辊)。两对轧辊交替轧制。轧机中工作辊中心M应沿轨迹mm运动,以适应轧制工作的需要。坯料的截面形状由轧辊的形状来保证。 因此,轧辊机主要由工作辊和送料辊机构组成。

2)原始数据及设计要求 根据轧制工艺,并考虑减轻设备的载荷对轧辊中心点M的轨迹可提出如下基本要求: (a)在金属变形区末段,应是与轧制中心线平行的直线段,在此直线段内轧辊对轧件进行平整,以消除轧件表面因周期间歇轧制引起的波纹。因此,希望该平整段L尽可能长些。 (b)轧制是在铅垂面和水平面内交替进行的,当一个面内的一对轧辊在轧制时,另一面内的轧辊正处于空回行程中。从实际结构上考虑,轧辊的轴向尺寸总大于轧制品截面的宽度,所以,要防止两对轧辊在交错而过时发生碰撞。为此,轧辊中心轨迹曲线mm除要有适当的形状外,还应有足够的开口度h,使轧辊在空行程中能让出足够的空间,保证与轧制行程中的轧辊不发生“拦路”相撞的情况。 (c)在轧制过程中,轧件要受到向后的推力,为使推力尽量小些,以减轻送料辊的载荷,故要求轧辊与轧件开始接触时的啮入角γ尽量小些。γ约取25o左右,坯料的单边最大压下量约50mm,从咬入到平整段结束的长度约270mm。 (d)为调整制造误差引起的轨迹变化或更换轧辊后要求开口度有稍许变化,所选机构应能便于调节轧辊中心的轨迹。 (e)要求在一个轧制周期中,轧辊的轧制时间尽可能长些。 3)设计方案提示 (a)能实现给定平面轨迹要求的机构可以有铰链连杆机构、双凸轮 机构、凸轮—连杆机构、齿轮—连杆机构等。 (b)采用两自由度的五杆机构,可精确实现要求的任意轨迹,且构 件尺寸可在很大范围内任选,但需要给两个主动件,联系两主动件间运动关系的机构常用齿轮机构、凸轮机构、连杆机构等。

相关主题
文本预览
相关文档 最新文档