博弈论各章节课后习题答案 (5)
- 格式:pdf
- 大小:201.95 KB
- 文档页数:10
博弈论教程答案【篇一:《经济博弈论》课后答案、补充习题答案】 2345篇二:经济博弈论(谢织予)课后答案及补充习题答篇三:博弈论课后习题么是博弈?博弈论的主要研究内容是什么?2、设定一个博弈模型必须确定哪几个方面?3、举出烟草、餐饮、股市、房地产、广告、电视等行业的竞争中策略相互依存的例子。
4、“囚徒的困境”的内在根源是什么?举出现实中囚徒的困境的具体例子。
5、博弈有哪些分类方法,有哪些主要的类型?6、你正在考虑是否投资100万元开设一家饭店。
假设情况是这样的:你决定开,则0.35的概率你讲收益300万元(包括投资),而0.65的概率你将全部亏损;如果你不开,则你能保住本钱但也不会有利润,请你(a)用得益矩阵和扩展形式表示该博弈;(b)如果你是风险中性的,你会怎样选择?(c)如果你是风险规避的,且期望得益的折扣系数为0.9,你的策略选择是什么?(d)如果你是风险偏好的,期望得益折算系数为1.2,你的选择又是什么?7、一逃犯从关押他的监狱中逃走,一看守奉命追捕。
如果逃犯逃跑有两条可选择的路线,看守只要追捕方向正确就一定能抓住逃犯。
逃犯逃脱可以少坐10年牢,但一旦被抓住则要加刑10年;看守抓住逃犯能得到1000元奖金。
请分别用得益矩阵和扩展形式表示该博弈,并作简单分析。
第二章完全信息静态博弈1、上策均衡、严格下策反复消去法和纳什均衡相互之间的关系是什么?2、为什么说纳什均衡是博弈分析中最重要的概念?3、找出现实经济或生活中可以用帕累托上策均衡、风险上策均衡分析的例子。
4、多重纳什均衡是否会影响纳什均衡的一致预测性质,对博弈分析有什么不利影响?5、下面的得益矩阵表示两博弈方之间的一个静态博弈。
该博弈有没有纯策略纳什均衡?博弈的结果是什么?6、求出下图中得益矩阵所表示的博弈中的混合策略纳什均衡。
7、博弈方1和2就如何分10 000元进行讨价还价。
假设确定了以下规则:双方同时提出自己要求的数额s1和s2,,如果s1+s2≤10 000,则两博弈方的要求都得到满足,即分别得到s1和s2,但如果是s1+s2>10 000,则该笔钱就被没收。
博弈论——策略互动的艺术_哈尔滨工业大学中国大学mooc课后章节答案期末考试题库2023年1.观察如下的一个博弈树,【图片】下面结论正确的是()。
答案:该博弈实质上是一个二人同时进行的博弈,其中参与人1的策略集为{a,b},参与人2的策略集为{c, d}2.关于纳什均衡、子博弈完美均衡、完美贝叶斯均衡三个概念,下面说法正确的是()。
答案:完美贝叶斯均衡一定是子博弈完美均衡3.关于博弈论纳什均衡的论述,下列说法中,()是正确的。
答案:纳什均衡中任意一个参与人的对应策略,一定是关于该均衡中其他参与人在均衡中的策略或策略组合的最佳应对(best reply)4.下面例子,()不属于博弈行为。
答案:樵夫在森林砍柴,樵夫和树木的关系5.再考虑孩子教育博弈问题,假设博弈支付矩阵如下所示孩子认真学习沉迷游戏母亲溺爱e, 21, f冷酷的爱a, bc, d如果在博弈均衡情况下,孩子的均衡策略是“认真学习”和“沉迷游戏”策略的完全非退化随机化(孩子均以严格正概率选择这两个策略),且博弈只存在一个纳什均衡,那么下面表述为真的选项是( )答案:母亲也必须对“溺爱”和“冷酷的爱”进行完全非退化的随机化(以严格正概率选择“溺爱”和“冷酷的爱”)6.考虑如下的孩子教育博弈,支付矩阵如下(a,b,c均大于0)孩子认真学习沉迷游戏母亲溺爱3, 21, 3冷酷的爱a, bc, d如果希望博弈均衡为(冷酷的爱,认真学习),那么a~d需要满足的条件为()答案:a≥3且b≥d7.对于如下图所示的博弈【图片】若参与人1选择行动L、M和R的概率分别为0.2,0.3和0.5,那么根据“策略-信念”的一致性要求,当博弈到达参与人2的信息集时,下面选项正确的是()。
答案:参与人2认为她在左边决策节点的概率和右边节点的概率分别为0.4和0.6 8.目前新能源汽车在世界范围内处于方兴未艾的状态,关于新能源汽车行业,从博弈“竞合”角度,下面说法合理的是()(可多选)答案:提升电动汽车电池续航能力会增加汽车的价值_适度的国内竞争,会有利于我国新能源汽车行业的发展_在相对偏僻的商场增设充电桩,会实现商场和新能源汽车销售企业的共赢9.关于博弈“竞合”的表述,最为贴切的表述是()答案:竞合的含义是,竞争与合作同时存在的过程10.下面选项哪个不属于破解囚徒困境的方法()答案:事先制定君子协定11.改变博弈的PARTS法中,S的含义是()答案:Scope 博弈的范围12.下面关于博弈树的说法,正确的是()。
博弈论课后习题1.考虑下图的收益矩阵,I可以选择策略U, M, D,II可以选择策略L、R。
回答下列问题:1)策略D对于I来说,是II选择L策略时的最佳应对?()A.对B.错2)策略D对于I来说,是II选择R策略时的最佳应对?()A.对B.错3)这个博弈的任何纯策略纳什均衡中,无论怎样,I都不会选择策略D。
()A.对B.错4)这个博弈存在以下纳什均衡:(多选)()A.(U, R)B.(M,L)C.(U, L)D.(D, R)5)这个收益矩阵下,存在混合策略均衡:I选择策略U的概率是:()。
I选择策略M的概率是:()。
I选择策略D的概率是:()。
II选择策略L的概率是:()。
2.考虑下图交通网络。
所有车辆需要从A城行驶到B城。
每辆车有两种路线选择策略:上面经过C城的路线或者下面经过D城的路线。
如下有向图所示,若有x辆车在A-C边上行驶,每辆车行驶时间为x/100;同样,若有y辆车在D-B边上行驶,则每辆车的行驶时间为y/200。
每辆车在A-D边上的行驶时间是3,在C-B边上的行驶时间为1,与车辆数无关。
每个司机都想选择一条行驶时间最短的路线,并且所有司机都是同步选择。
1)假设总共有100辆车希望从A到B,那么,他们全部都会选择路线A-C-B。
判断:这是均衡策略()。
A.对B.错2)假设总共有500辆车希望从A到B。
此时达到均衡状态下,有多少车辆选择路线A-C-B?有多少车辆选择A-D-B?选择A-C-B的车辆数:(),选择A-D-B的车辆数:()。
3)假设仍然总共有500辆车希望从A到B。
但是增设一条从A直接到达B的路线,若有z辆车在A-B边上行驶,则每辆车的行驶时间为z/100。
加入A-B这条新路线之后,达到均衡状态下,有多少车辆选择路线A-C-B?()有多少车辆选择路线A-D-B?()有多少车辆选择路线A-B?()。
3.根据不同拍卖方式的特征,下述四个场景分别适合哪一类拍卖?A、英式拍卖B、荷兰式拍卖C、首价密封拍卖D、次价密封拍卖百度广告位拍卖()明代某花瓶拍卖()政府某项目招标()花卉市场鲜花拍卖()4.请你思考一个拍卖中,一个竞拍者不理性的行为会对其他竞拍者的最优行为有什么影响。
1.假设古诺寡头模型中有n 个企业,令i q 代表企业i 的产量,且1n Q q q =++表示市场总产量,假设需求函数为()p Q a Q =-(其中Q a <)。
假设企业i 的成本函数为()i i i C q cq =,即没有固定成本,且边际成本为常数c ,我们假设c 小于需求函数中的常数a 。
根据古诺模型,所有企业同时做出产量决策。
求纳什均衡。
当n 趋于无穷时,将会出现什么情况? 【参考答案】第i 个企业的利润最大化问题为:**Max (,)()i i i i i i i q q a q q q cq π--=---,其中*i q -表示所有其他企业的产量之和。
注意这个式子利用了纳什均衡的定义。
由一阶条件0iiq π∂=∂,可得 **2i ia q c q ---=(1)将(1)式两侧同乘以2,再减去*i q 可得:***()i i i q a q q c -=-+-注意,在上式中***=i i q q Q -+,因此,我们有**i q a Q c =--(2)由此可知,每一个企业的最优产量都相等,因此**=i Q nq ,代入(2)式可得:*1()1i q a c n =-+ 由此可得()**1i nQ nq a c n ==-+ *11a n p c n n =+++ 因此,当n →∞时,*=p c ,即均衡价格等于边际成本,市场为完全竞争市场。
作业1 .P(q)=120-q, q=q1+q2, Ci(qi)=0, i=1,2 用反复删除严格劣势求古诺均衡。
2. 找出BOS 博弈的混合策略均衡。
r D 1-r Z3.某产品市场中只有三个企业,市场的需求函数为()p Q a Q =-,其中123Q q q q =++。
每一个企业的的成本函数为()i i i C q cq =,其中c 为常数,1,2,3i =。
企业的产量决策顺序为:(1)企业1先选择自己的产量1q ;(2)企业2和企业3观察到1q ,并同时选择2q 和3q 。
解:(1)成为先行者意味着 3 点:1.企业可以赚取比古诺状态下更多的利润,否则没有动机成为先行者;2.追随企业没有办法威胁 先行企业,即选取产量使己方产量为正,它方产量为负 3.如果另一企业成为先行者,该企业可以成功威胁另一企业max 1q1, q2 100 0.5q1 0.5q2 q1 5q1 q1先求古诺均衡:q195 0.5q2max 2 q1, q2 100 0.5q1 0.5q2 q2 0.5q22q2q1 80, q2 30,因此为满足条件 1,对于任何先行动者来说,必须有 q1 80, q2 30 (否则追随者可以选取产量,使价格等于古诺价格,此时先行者利润低于古诺均衡时情况)a.如果企业 2 成为领导者,观察企业 1 能否采取威胁战略使己方利益为正,对方利益为负: 1 q1, q2 100 0.5q1 0.5q2 q1 5q1 0即: 2 q1, q2 100 0.5q10.5q2 q20.5q2 20 200 2q2 q1 190 q2对于企业 2 的任何产量先行决策 q2 10 ,只要企业 1 威胁其产量 q1 将满足上式,则企业 2 将不敢先行动若 q2 10 ,与先行动者的 q2 30 矛盾。
因此企业 2 不会是先行者b.考虑企业 1 能否成为先行者,由 a 已经知道企业 1 可以成功在企业 1 先行时成功威胁企业 2。
故只需考虑如果企业 1 先行,企业 2 能否威胁企业 1当企业 1 先行动时,企业 2 决策max 2 q1, q2 100 0.5q1 0.5q2 q2 0.5q22 q2 q2 50 0.25q1企业 1 决策:max 1q1, q2 100 0.5q1 0.5q2 q1 5q1 q1 max 70 0.375q1 q1 q1 q1 380 93.33 3因此企业 1 的产量决策范围为 80 q1 93.33而企业 2 要惩罚企业 1 为领导者必须满足2 q1, q2 1 q1, q2 100 0.5q1100 0.5q1 0.5q2 0.5q2q2q1 0.5q22 5q1 00 190 q1 q2 100 0.5q1 q1 180这与 80 q1 93.33 矛盾。
博弈论习题答案博弈论习题答案博弈论是一门研究决策制定和策略选择的学科,它通常应用于经济学、政治学和生物学等领域。
在博弈论中,人们通过分析参与者之间的相互作用和利益冲突来预测他们的行为。
下面是一些常见的博弈论习题及其答案,希望能对读者有所帮助。
1. 零和游戏零和游戏是一种博弈论中的基本概念,指的是参与者的利益完全相反,一方的利益的增加必然导致另一方的利益减少。
一个经典的例子是赌博,赌徒的损失就是庄家的收益,反之亦然。
2. 囚徒困境囚徒困境是博弈论中的一个重要概念,描述了两个囚徒面临的决策问题。
假设两个囚徒被警察逮捕,警察缺乏直接证据,但有足够的证据定罪他们。
如果两个囚徒都保持沉默,他们只会被判轻罪;如果一个人供认而另一个人保持沉默,供认者将获得减刑而沉默者将被判重罪;如果两人都供认,他们将被判重罪。
在这种情况下,最理性的策略是保持沉默,但由于彼此之间的信任缺失,往往导致两人都供认,结果双输。
3. 纳什均衡纳什均衡是博弈论中的一个重要概念,指的是在参与者选择最佳策略的情况下,没有人可以通过单方面改变策略来获得更好的结果。
简单来说,就是每个人都在给定其他人的策略时,选择了自己的最佳策略。
纳什均衡在博弈论中具有重要的理论和实践意义。
4. 合作博弈与非合作博弈合作博弈是指参与者之间可以通过合作来获得更好结果的博弈情形,而非合作博弈则指的是参与者之间没有合作的情况。
在合作博弈中,参与者可以通过协商和合作来达成最优解,而在非合作博弈中,参与者通常会采取自私的策略,追求个人最大利益。
5. 混合策略混合策略是指在博弈中,参与者以一定的概率选择不同的策略。
通过采取混合策略,参与者可以增加对手的不确定性,从而获得更好的结果。
混合策略在博弈论中被广泛应用,例如在扑克牌游戏中,玩家可以通过随机选择不同的策略来增加对手的不确定性。
以上是一些常见的博弈论习题及其答案,博弈论作为一门复杂而有趣的学科,可以帮助我们更好地理解人类行为和决策制定过程。
博弈论?习题一、单项选择题1.博弈论中,局中人从一个博弈中得至口的结果常被称为〔〕. A?效用B.支付C.决策D.利润2.博弈中通常包括下面的内容,除了〔〕.A.局中人B.占优战略均衡C策略D?支付3.在具有占优战略均衡的囚徒困境博弈中〔〕.A.只有一个囚徒会坦白氏两个囚徒都没有坦白C?两个囚徒都会坦白D.任何坦白都被法庭否决了4.在屡次重复的双头博弈中,每一个博弈者努力〔〕.A.使行业的总利润到达最大B?使另一个博弈者的利润最小C?使其市场份额最大D.使其利润最大5.一个博弈中,直接决定局中人支付的因素是〔〕A.策略组合B.策略C信息D.行动6.对博弈中的每一个博弈者而言,无论对手作何选择,其总是拥有惟一最正确行为,此时的博弈具有〔〕0A.囚徒困境式的均衡B.一报还一报的均衡C.占优策略均衡D?激发战略均衡7.如果另一个博弈者在前一期合作,博弈者就在现期合作;但如果另一个博弈者在前一期违约,博弈者在现期也违约的策略称为〔〕.A.一报还一报的策略B.激发策略8.在囚徒困境的博弈中,合作策略会导致〔〕oA博弈双方都获胜B博弈双方都失败C使得先米取行动者获胜D使得后米取行动者获胜9.在什么时候,囚徒困境式博弈均衡最可能实现〔〕oA.当一个垄断竞争行业是由一个主导企业限制时B.当一个寡头行业面对的是重复博弈时C.当一个垄断行业被迫重复地与一个寡头行业博弈时D.当一个寡头行业进行一次博弈时一个企业米取的彳丁为10.与另一个企业在前一阶段采取的行为一致〞这种策略是一种〔〕A.主导策略B.激发策略C.一报还一报策略D.主导策略11-关于策略式博弈,正确的说法是〔〕0A.策略式博弈无法刻划动态博弈B.策略式博弈无法说明行动顺序C.策略式博弈更容易求解D.策略式博弈就是一个支付矩阵12.以下关于策略的表达哪个是错误的〔〕:A.策略是局中人选择的一套行动方案;B.参与博弈的每一个局中人都有假设干个策略;C.一个局中人在原博弈中的策略和在子博弈中的策略是相同的;D.策略与行动是两个不同的概念,策略是行动的规那么,而不是行动本身.13.囚徒困境说明〔〕:A.双方都独立依照自己的利益行事,那么双方不能得到最好的结果;B.如果没有某种约束,局中人也可在〔抵赖,抵赖〕的根底上到达均衡;C.双方都依照自己的利益行事,结果一方赢,一方输;D.每个局中人在做决策时,不需考虑对手的反响14.一个博弈中,直接决定局中人损益的因素是〔〕:A.策略组合B.策略C信息D.行动15.动态博弈参与者在关于博弈过程的信息方面是〔〕A不对称的B对称的C不确定的D无序的16.古诺模型表达了寡头企业的〔〕决策模型A本钱B价格C产量D质量17.伯特兰德模型表达了寡头企业〔〕决策模型.A本钱价格C产量 D 质量18.用囚徒困境来说明两个寡头企业的情况,说明了:〔〕A、每个企业在做决策时,不需考虑竞争对手的反响E. 一个企业制定的价格对其它企业没有影响C、企业为了预防最差的结果,将不能得到更好的结果D、一个企业制定的产量对其它企业的产量没有影响19.子博弈精炼纳什均衡〔〕:A.是一个一般意义上的纳什均衡;B.和纳什均衡没有什么关系;C.要求某一策略组合在每一个子博弈上都构成一个纳什均衡;D.要求某一策略组合在原博弈上都构成一个纳什均衡.20.在一般产品销售市场上,以下哪种原因导致了逆向选择.〔〕A产品质量的不确定性B私人信息C公共信息D产品价格21.完全信息动态博弈参与者的行动是〔〕A无序的B有先后顺序的C不确定的D因环境改变的22.市场交易中普遍存在的讨价还价属于哪种博弈.〔〕A完全信息静态博弈B完全信息动态博弈C不完全信息静态博弈D不完全信息动态博弈23.下面哪种模型是一种动态的寡头市场博弈模型〔〕A古诺模型B伯川德模型C斯塔克尔伯格模型D田忌齐威王赛马24?博弈方根据一组选定的在两种或两种以上可能行为中随机选择的策略为血玄〔、A纯策略B混合策略C激发策略D 一报还一报策略25.影响重复博弈均衡结果的主要因素是〔〕A博弈重复的次数B信息的完备性C支付的大小DA和B26.在动态博弈战略行动中,只有当局中人从实施某一威胁所能获得的总收益()不实施该威胁所获得的总收益时,该威胁才是可信的.A大于B等于C小于D以上都有可能二、判断正误并简要说明理由I,纳什均衡一定是上策均衡,上策均衡一定是纳什均衡.2?在一个博弈中博弈方可以有很多个.3.在一个博弈中只可能存在一个纳什均衡.4.由于零和博弈中博弈方之间关系都是竞争性的、对立的,因此零和博弈就是非合作博弈.5.在一个博弈中如果存在多个纳什均衡那么不存在上策均衡.6.曲于两个罪犯只打算犯罪一次〞所以被捕后才出现了不合作的问题即囚徒困境.但如果他们打算重复合伙屡次,比方说20次,那么对策论预测他们将采取彼此合作的态度,即谁都不招供.7,在博弈中纳什均衡是博弈双方能获得的最好结果.8.在博弈中如果某博弈方改变策略后得益增加那么另一博弈方得益减少.9,纳什均衡即任一博弈方单独改变策略都只能得到更小利益的策略组合.10.囚徒的困境博弈中两个囚徒之所以会处于困境,无法得到较理想的结果,是由于两囚徒都不在乎坐牢时间长短本身,只在乎不能比对方坐牢的时间更长.11.斯塔克博格产量领导者所获得的利润的下限是古诺均衡下它得到的利润.12.在有限次重复博弈中,存在最后一次重复正是破坏重复博弈中局中人利益和行为的相互制约关系〞使重复博弈无法实现更高效率均衡的关键问题.13.子博弈精炼纳什均衡不是一个纳什均衡.14.零和博弈的无限次重复博弈中,可能发生合作,局中人不一定会一直重复原博弈的混合战略纳什均衡.15.原博弈惟一的纳什均衡本身是帕雷托效率意义上最正确战略组合,符合各局中人最大利益:采用原博弈的纯战略纳什均衡本身是各局中人能实现的最好结果,符合所有局中人的利益,因此,不管是重复有限次还是无限次,不会和一次性博弈有区别.16.在动态博弈中,由于后行动的博弈方可以先观察对方行为后再选择行为 ,因此总是有利的.入计算与分析题1、A、B两企业利用广告进行竞争.假设A、B两企业都做广告,在未来销售中,A企业可以获得20万元利润,B企业可获得8万元利润;假设A企业做广告,B企业不做广告,A企业可获得25万元利润,B企业可获得2万元利润;假设A企业不做广告,B企业做广告,A企业可获得10万元利润,B企业可获得12万元利润;假设A、B两企业都不做广告,A企业可获得30万元利润,B企业可获得6万元利润.〔,〕画出A、B两企业的损益矩阵.〔2 〕求纯策略纳什均衡.2、可口可乐与百事可乐〔参与者〕的价格决策:双方都可以保持价格不变或者提升价格〔策略〕;博弈的目标和得失情况表达为利润的多少〔收益〕;利润的大小取决于双方的策略组合〔收益函数〕;博弈有四种策略组合,其结局是:〔1〕双方都不涨价,各得利润10单位;〔2 〕可口可乐不涨价,百事可乐涨价,可口可乐利润100,百事可乐利润-30 ;(3 )可口可乐涨价,百事可乐不涨价,可口可乐利润-20,百事可乐利润30 ;(4 )双方都涨价,可口可乐利润140,百事可乐利润35 ;画出两企业的损益矩阵求纳什均衡.3、假定某博弈的报酬矩阵如下:(1)如果(上,左)是上策均衡,那么,a>?, b>?, g<?, f>?(2 )如果(上,左)是纳什均衡,上述哪几个不等式必须满足4、北方航空公司和新华航空公司分享了从北京到南方冬天度假胜地的市场.如果它们合作,各获得500000元的垄断利润,但不受限制的竞争会使每一方的利润降至60000元.如果一方在价格决策方面选择合作而另一方却选择降低价格,那么合作的厂商获利将为零,竞争厂商将获利900000元.(1)将这一市场用囚徒困境的博弈加以表示.(2 )解释为什么均衡结果可能是两家公司都选择竞争性策略.5、博弈的收益矩阵如下表:⑴如果(上/左)是占优策略均衡/那么a、b、c、d、G、f、g、h之间必然满足哪些关系〔尽量把所有必要的关系式都写出来〕〔2 〕如果〔上,左〕是纳什均衡,那么〔1〕中的关系式哪些必须满足〔3 〕如果〔上,左〕是上策均衡,那么它是否必定是纳什均衡为什么〔4 〕在什么情况下,纯策略纳什均衡不存在6、猪圈里有一头大猪和_头小猪,猪圈的一头有一个饲料槽,另一头装有限制饲料供给的按钮.按一下按钮就会有,0个单位饲料进槽,但谁按谁就要付出2个单位的本钱.谁去按按纽那么谁后到;都去按那么同时到.假设大猪先到,大猪吃到9个单位,小猪吃到一个单位;假设同时到,大猪吃7个单位,小猪吃3个单位;假设小猪先到,大猪吃六个单位,小猪吃4个单位.求〔1〕各种情况组合扣除本钱后的支付矩阵〔2 〕求纳什均衡.7、设啤酒市场上有两家厂商,各自选择是生产高价啤酒还是低价啤酒,相应的利润〔单位:万元〕由以下图的得益矩阵给出:1〕有哪些结果是纳什均衡(2 )两厂商合作的结果是什么8、求出以下博弈的所有纯策略纳什均衡.9、求出下面博弈的纳什均衡(含纯策略和混合10、根据两人博弈的损益绸邛仲I答问题:(1) ◎出两人各自的金部策略.图示均衡点.(2 )求出斯塔克博格rstackelberg )均衡情况下的产量、价格和利润.(3)说明导致上述两种均衡结果差异的原因.13.下面的得益矩阵两博弈方之间的一个静态博弈,该博弈有没有纯策略的纳什均衡,博弈的结果是什么14.两个兄弟分一块冰激凌.哥哥先提出一个分割比例 ,弟弟可以接受或拒绝,接受那么按哥哥的提议分割,假设拒绝就自己提出一个比例.但这时候冰激凌已化得只剩1/2 了,对弟弟提议的比例哥哥也可以接受或拒绝,假设接受那么按弟弟的建议分割,假设拒绝冰激凌会全部化光.由于兄弟之间不应该做损人不利己的是“因此我们假设接受和拒绝利益相同时兄弟俩都会接受.求该博弈的子博弈完美纳什均衡.15?如果学生在测试之前全面复习,考好的概率为90%,如果学生只复习一局部重点,那么有50% 的概率考好.全面复习花费的时间tl = 100小时,重点复习之需要花费t2=20小时.学生的效用函数为:U二W-2巳其中W是测试成绩,有上下两种分数Wh和Wl, e为努力学习的时间.问老师如何才能促使学生全面复习16?在以下监工与工人之间的博弈中,试用划线法分析该博弈有无纯策略纳什均衡;如果没有,那么写出混合策略纳什均衡的结果.监工17 ?求解以下博弈的纳什均衡.博弈方29 18 ?某人正在打一场官司,不请律师肯定会输,请律师后的结果与律师的努力程度有关.假设当律师努力工作〔100小时〕时有50%的概率能赢,律师不努力工作<10小时〕那么只有15%的概率能赢.如果诉讼获胜可得到250万元赔偿,失败那么没有赔偿.由于委托方无法监督律师的工作,因此双方约定根据结果付费,赢官司律师可获赔偿金额的10%,失败那么律师一分钱也得不到.如果律师的效用函数为m 0.05e,其中m是报酬e是努力小时数,且律师有时机本钱5万元.求这个博弈的均衡.四、论述题Is解释"囚犯困境;并举商业案例说明.2、用〃小偷与守卫的博弈"说明〃鼓励〔监管〕悖论"博弈论?习题参考答案>单项选择题r 5 B. B. C.D ' A.11 15. B. C. A.6 10 C. A. A.D. C.16 20 C. B. C.21 26. B. B. C. B. D. A.,判断正误并简要说明理由1. F 上策均衡是比纳什均衡更严格的均衡.所以上策均衡一定是纳什均衡 一定是上策均衡,2. T 博弈类型按局中人数多少分为单人博弈、双人博弈和多人博弈3. IF 博弈双方偏好存在差异的条件下,一个博弈模型中可能存在多个纳什均衡4. T 零和博弈才旨参与博弈各方在严格竞争下,一方收益等于另一方损失与损失之和恒为零,所以双方不存在合作可能性而纳什均衡不 ,如性别战.,博弈各方收益 ,只能有一个5.T上策均衡是通过严格下策消去法〔重复剔除下策〕所得到的占优策略纳什均衡6.IF只要两囚犯只打算合作有限次,其最优策略均为招供.比方最后一次合谋,两小偷被抓住了,由于将来没有合作时机了,最优策略均为招供.回退到倒数第二次,既然已经知道下次不会合作,这次为什么要合作呢.依此类推,对于有限次内的任何一次,两小偷均不可能合作.7.F纳什均衡是上策的集合,指在给定的别人策略情况下,博弈方总是选择利益相对较大的策略,并不保证结果是最好的.团F局中人总是以自己的利益最大化选择自己的策略,并不以对方收益的变化为目标9.T纳什均衡是上策的集合,指在给定的别人策略情况下,没有人会改变自己的策略而减低自己的收益10.F局中人总是以自己的利益最大化选择自己的策略,并不以对方收益的变化为目标11.T虽然斯塔格伯格模型各方利润总和小于古诺模型〞但是领导者的利润比古诺模型时12..T无限次重复博弈没有结束重复确实定时间;而在有限次重复博弈中,存在最后一次重复,并且正是有结束重复确实定时间,使重复博弈无法实现更高效率均衡.13.F子博弈精炼纳什均衡一定是一个纳什均衡.14.F零和博弈的无限次重复博弈中,所有阶段都不可能发生合作,局中人会一直重复原博弈的混合战略纳什均衡.15.T原博弈惟一的纳什均衡本身是帕雷托效率意义上最正确战略组合,因此不管是重复有限次还是无限次,不会和一次性博弈有区别.16.F动态博弈是指各博弈方的选择和行动又先后次序的博弈.动态博弈的信息盯以是不对称的.所以策略分为先发制人和.斯塔克伯格博弈揭示“先发制人〞更有禾L而"后发制人"后行动的博弈方可以先观察对方行为后再选择行为反而处于不利境地.三、计算与分析题Is (1)(2)纯策略纳什均衡为(做广告,做广告),(不做广告,不做广告)得长价-20, 30140,35纳什均衡〔不涨价,不涨价〕,〔涨价,涨价〕.从帕累托均衡角度,为〔涨价,涨价〕3、〔 1〕如果〔上/左〕是上策均衡,那么,a>e b>d, g<c, f>h 〔2 〕如果〔上〕左〕是纳什均衡,a>e b>d,不等式必须满足新华航空北方航空 合作竞争50, 50 90, 00, 90 6, 65、 略纳什均衡为〔按,等〕 7、略8、纯策略纳什均衡〔氏甲〕,〔⑴不存在纯策略纳什均衡合作肓争⑵设甲选择"U"的概率为概率为1-P1乙选择"『的概率为P2,贝V选择" R" 的概率为1-P2对甲而言,最正确策略是按定的概率选〃上"和‘下’,使乙选择“左〃和〃右"的期望值相等即PI*8+ (l-PI) *0-P1*1+ (1-P1) *5解得PI = 5/12即⑸12, 7/12 )按5/12概率选〃上“、7/12概率选〃下"为甲的混合策略Nash均衡对乙而言,最正确策略是按一定的概率选“左“和“右",使乙选择〃上"和‘下’的期望值相等即P2*5+(l-P2)*0- P2*2 + (l-P2)*4即(4/7, 3/7肢4/7概率选‘左’、3/7概率选"右"为乙的混合策略Nash均衡10、略.11、见笔记12、见笔记.13、首先,运用严格下策反复消去法的思想,不难发现在博弈方1的策略中,B是相对于T的严格下策.把博弈方1的B策略消去后又可以发现,博弈方2的策略中C是相对于R的严格下策,从而也可以消去.两个博弈方各消去一个策略后的博弈是如下的两人2X 2博弈,己经不存在任何严格下策.再运用划线或箭头法,很容易发现这个2X2博弈有两个纯策略纳什均衡(M,L )和(1R ) 0由于两个纯策略纳什均衡之间没有帕累托效率意义上的优劣关系,一次性静态博弈的结果不能肯定.由于双方在该博弈中可能采取混合策略,因此实际上该博弈的结果可以是4个纯策略组合中的任何一个.14.假设哥的方案是SI: 1-S1淇中S1是自己的份额,弟的方案是S2: 1-S2, S2是哥的份额,那么可用如下的扩展形表示该博弈:Hi SiC5V2eS? 2)CO O)运用逆推归纳法先分析最后一阶段哥的选择.由于只要接受的利益不少于不接受的利益哥就会接受,因此在这个阶段只要弟的方案满足S2/2 $0,也就是S2$0,哥就会接受,否那么不会接受.由于冰激凌的份额不可能是负数,也就是说由于哥不接受弟的方案冰激凌会全部化掉〞因此任何方案哥都会接受.现在回到前一阶段弟的选择.由于弟知道后一阶段哥的选择方法,因此知道如果不接受前一阶段哥提出的比例,自己可以取S2=0,独享此时还未化掉的1/2块冰激凌;如果选择接受前一阶段哥的提议,那么自己将得到出1,显然只要l-Sn/2 ,即S1W1/2,弟就会接受哥的提议.再回到第一阶段哥的选择.哥清楚后两个阶段双方的选择逻辑和结果 ,因此他在这一阶段选择Sl = 1/2,正是能够被弟接受的自己的最大限度份额,超过这个份额将什么都不能得到,因此SI二1/2是最正确选择.综上,该博弈的子博弈完美纳什均衡是:哥哥开始时就提议按(1/2J/2)分割,弟弟接受.15.此题中老帅的调控于段高分和低分的差距.该博弈的扩•展形如下:只有当Ul» U2时学生才会选择全面复习.根据Ul» U2我们可以算出Wh- WD 400o这就是老师能有效全面复习需要满足的条件.其实在奖学金与成绩挂钩时,Wh- W1也可以理解成不同等奖学金的差额.16泄有纯策略均衡,只有混合策略均衡((0. 25,0.75 ),(0. 5,0. 5 ))17. 可以根据画线法求得有唯一纯策略均衡(上,左)18.参见第15题四、论述题1、解释〃囚犯困境〃,并举商业案例说明.(1)假设条件举例:两囚徒被指控是一宗罪案的同案犯.他们被分别关在不同的牢房无法互通信息.各囚徒都被要求坦白罪行.如果两囚徒都坦白,各将被判入狱5年;如果两人都不坦白,两囚徒可以期望被从轻发落入狱2年;如果一个囚徒坦白而另一个囚徒不坦白,坦白的这个囚徒就只需入狱1年,而不坦白的囚徒将被判入狱10年.(2)囚徒困境的策略矩阵表.每个囚徒都有两种策略:坦白或不坦白.表中的数字分别代表囚徒甲和乙的得益.囚徒乙3〕分析:通过划线法可知:在囚徒困境这个模型中,纳什均衡就是双方都〃坦白〃.给定甲坦白的情况下,乙的最优策略是坦白;给定乙坦白的情况下,甲的最优策略也是坦白.这里双方都坦白不仅是纳什均衡,而且是一个上策均衡,即不管对方如何选择,个人的最优选择是坦白.其结果是双方都坦白.4〕商业案例:寡头垄断厂商经常发现它们自己处于一种囚徒的困境.当寡头厂商选择产量时,如果寡头厂商们联合起来形成卡特尔,选择垄断利润最大化产量,每个厂商都可以得到更多的利润.但卡特尔协定不是一个纳什均衡,由于给尢双方遵守协议的情况下,每个厂商都想增加生产,结果是每个厂商都只得到纳什均衡产量的利润,它远小于卡特尔产量下的利润.2用〞小偷与守卫的博弈〃说明〃鼓励〔监管〕悖论〃.〔1〕假设条件举例:偷窃和预防偷窃是小偷和门卫之间进行博弈的一场游戏.门卫可以不睡觉,或者睡觉.小偷可以采取偷、不偷两种策略.如果小偷知道门卫睡觉, 他的最正确选择就是偷;如果门卫不睡觉,他最好还是不偷.对于门卫,如果他知道小偷想偷,他的最正确选择是不睡觉,如果小偷采取不偷,自己最好去睡觉.〔2 〕小偷与门卫的支付矩阵表〔假定小偷在门卫睡觉时一定偷成功,在门卫不睡觉时偷一定会被抓住〕:。
第五章合作博弈1.设三人联盟博弈的特征函数v的值是:v({i})=0,i=1,2,3;v({1,2})=2/3,v({1,3})=7/12,v({2,3})=1/2,v({1,2,3})=1。求出该联盟博弈的核心,并用图形表示出来。
解:博弈G的核心C(v)。博弈G的转归集I[N,v]为:
123123123[,]{(,,)0,0,0,1}INvxxxxxxxxxx==≥≥≥++=
若,则的充分条件为:],[),,(321vNIxxxx∈=)(vCx∈x1≥0;x2≥0;x3≥0;x1+x2≥2/3;x1+x3≥7/12;x2+x3≥1/2;x1+x2+x3=1由后面几个不等式得到x1≤1/2;x2≤5/12,x3≤1/3.
该联盟博弈的核心C(v)={(x1,x2,x3)|0≤x1≤1/2,0≤x2≤5/12,0≤x3≤1/3,x1+x2+x3=1}1
23x33
1≤
x212
5≤
x12
1≤
核心C(v)是图中阴影区域(含边界)。2.假设有一3人合作博弈,其特征函数为:v({1,2,3})=200,v({1,2})=150,v({1,3})=110,v({2,3})=20,v({1})=100,v({2})=10,v({3})=0。计算该合作博弈的Shapley值,核心,最小ε-核心,稳定集,内核和核仁。
1、Shapley值φ1(v)=1/3(100-0)+1/6(150-10)+1/6(110-0)+1/3(200-20)=135φ2(v)=1/3(10-0)+1/6(150-100)+1/6(20-0)+1/3(200-110)=45φ3(v)=1/3(0-0)+1/6(20-10)+1/6(110-100)+1/3(200-150)=20所以该博弈的Shapley值φ(v)=(135,45,20)2、博弈G的核心C(v)。博弈G的转归集I[N,v]为:}200,0,10,100),,({],[321321321=++≥≥≥==xxxxxxxxxxvNI
若,则的充分条件为:],[),,(321vNIxxxx∈=)(vCx∈x1≥100;x2≥10;x3≥0;x1+x2≥150;x1+x3≥110;x2+x3≥20;x1+x2+x3=200对此可作高为200的重心三角形Δ123。并在此重心三角形内绘制核心为多边形)(vCABCDEF。
3、定义强核心为ε'[,]CNv
ε
*(){|()(),,,(,)}CvxvSxSSSNSxINvεεφ=≤+∀⊂≠∈
并记LC`为最小强核心,即,其中是使的最小值。ε0''[,]LCCNvε=0ε'[,]CNvε≠∅ε解线性规划为:Z=minεx1+ε≥100;x2+ε≥10;x3+ε≥0;x1+x2+2ε≥150;x1+x3+2ε≥110;x2+x3+2ε≥20;x1+x2+x3=200xi≥0,i=1,2,3,4解得:minε=ε0=-16.6667,那么LC`=(133.5953,49.7381,16.6667)3、稳定集V(v)由定理可知,,核心是稳定集中的子集,即上图中多边形ABCDEF为稳定()()CvVv⊆集的子集,C`为BG上的点,D`为LK上的点,E`为HJ上的点,F`为OA上的点,如图所示:
稳定集````)(FFEEDDCCABCDEFvV∪∪∪∪为:多边形4、内核K(v)首先考虑。1{|(,),()(),ijjiKxxINvSxSx=∈=,}ijN∀∈
(1)时1331()()sxsx=
5050100150)150,100max()}),2,1((),),1((max{)(2212121113≥≤⎩⎨⎧−−−=
−−−==
xxxxxxxxxexexS
202020)20,0max()}),3,2((),),3((max{)(2233232331≥≤⎩⎨⎧−−−=
−−−==
xxxxxxxxxexexS
因此,当时,等价于:2002≤≤x1331()()sxsx=322120150xxxx−−=−−解得:13013=−xx当时,等价于:50202≤≤x1331()()sxsx=321150xxx−=−−解得:150321=−+xxx即:253=x当时,等价于:200502≤≤x1331()()sxsx=
31100xx−=−解得:10031=−xx(2)时1221()()sxsx=
1010100110)110,100max()}),3,1((),),1((max{)(3313131112≥≤⎩⎨⎧−−−=
−−−==
xxxxxxxxxexexS
10101020)20,10max()}),3,2((),),2((max{)(3323232221≥≤⎩⎨⎧−−−=
−−−==
xxxxxxxxxexexS
因此,当时,等价于:1003≤≤x1221()()sxsx=323120110xxxx−−=−−解得:9021=−xx当时,等价于:200103≤≤x1221()()sxsx=
2110100xx−=−解得:9021=−xx(3)时2332()()sxsx=
14014010150)150,10max()}),2,1((),),2((max{)(1122121223≥≤⎩⎨⎧−−−=
−−−==
xxxxxxxxxexexS110110110)110,0max()}),3,1((),),3((max{)(1133131332≥≤⎩⎨⎧−−−=
−−−==
xxxxxxxxxexexS
因此,当时,等价于:11001≤≤x2332()()sxsx=3121110150xxxx−−=−−解得:4032=−xx当时,等价于:1401101≤≤x2332()()sxsx=
321150xxx−=−−解得:150321=−+xxx即:253=x当时,等价于:2001401≤≤x2332()()sxsx=
3210xx−=−解得:1032=−xx于是可在高为200的重心三角形中作出满足、和123∆1331()()sxsx=1221()()sxsx=
的折线。2332()()sxsx=
三条折线的交点即为内核。)}30,40,130{()(=vK5、核仁Nu(v)给定一个转归x=(x1,x2,x3,x4)∈I[N,v],其超出值分别为:e(Φ,x)=0;e({1},x)=100-x1;e({2},x)=10-x2;e({3},x)=0-x3;e({1,2},x)=150-x1-x2=-50+x3;e({1,3},x)=110-x1-x3=-90+x2;e({2,3},x)=20-x2-x3=-180+x1;e(N,x)=0分析:minmax{e({1},x),e({2,3},x)}=-40(x1=140)minmax{e({2},x),e({1,3},x)}=-40(x2=50)minmax{e({3},x),e({1,2},x)}=-25(x3=25)所有,x3=25是字典序最小,那么x1+x2=175,这时e({1},x)=100-x1;e({2},x)=10-x2=-165+x1;e({1,3},x)=110-x1-x3=-90+x2=85-x1;e({2,3},x)=20-x2-x3=-180+x1
那么当x1=265/2时,上面四个式子的最大值为最小,这时x2=85/2
这时的字典序为(0,0,-25,-25,-65/2,-65/2,-95/2,-95/2)Nu(v)=(265/2,85/2,25)3.考虑有如下特征函数v的4人合作博弈:v({1,2,3,4})=2,v({1,2,3})=1,v({1,2,4})=2,v({1,3,4})=0,v({2,3,4})=1,v({1,2})=0,v({1,3})=-1,v({1,4})=1,v({2,3})=0,v({2,4})=1,v({3,4})=0,v({1})=-1,v({2})=0,v({3})=-1,v({4})=0.证明:v是超可加函数。
证:根据超可加函数定义:在合作博弈中,若对任意的,,,都有:[,]GNv=STN⊂STφ=∩。则称特征函数是具有超可加性(supperadditivity)。相对应的博弈称()()()vSvTvST+≤∪为具有超可加性的合作博弈。1○当S={Φ}时,
T={1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},(1,2,3,4)