当前位置:文档之家› 高考必刷题物理牛顿运动定律的应用题及解析

高考必刷题物理牛顿运动定律的应用题及解析

高考必刷题物理牛顿运动定律的应用题及解析
高考必刷题物理牛顿运动定律的应用题及解析

高考必刷题物理牛顿运动定律的应用题及解析

一、高中物理精讲专题测试牛顿运动定律的应用

1.如图所示,水平面与倾角θ=37°的斜面在B 处平滑相连,水平面上A 、B 两点间距离s 0=8 m .质量m =1 kg 的物体(可视为质点)在F =6.5 N 的水平拉力作用下由A 点从静止开始运动,到达B 点时立即撤去F ,物体将沿粗糙斜面继续上滑(物体经过B 处时速率保持不变).已知物体与水平面及斜面间的动摩擦因数μ均为0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:

(1)物体在水平面上运动的加速度大小a 1; (2)物体运动到B 处的速度大小v B ; (3)物体在斜面上运动的时间t .

【答案】(1)4m/s 2 (2)8m/s (3)2.4s 【解析】 【分析】

(1)在水平面上,根据牛顿第二定律求出加速度;(2)根据速度位移公式求出B 点的速度;(3)物体在斜面上先向上减速,再反向加速度,求出这两段的时间,即为物体在斜面上的总时间. 【详解】

(1)在水平面上,根据牛顿第二定律得:1F mg ma μ-=

代及数据解得:2

14/a m s =

(2)根据运动学公式:2

102B v a s =

代入数据解得:8/B v m s =

(3)物体在斜面上向上做匀减速直线运动过程中,根据牛顿第二定律得:

23737mgsin mgcos ma μ?+?=①

物体沿斜面向上运动的时间:22

B

v t a =

② 物体沿斜面向上运动的最大位移为:2

22212

s a t = ③

因3737mgsin mgcos μ?>?,物体运动到斜面最高点后将沿斜面向下做初速度为0的匀加速直线运动

根据牛顿第二定律得:33737mgsin mgcos ma μ?-?=④ 物体沿斜面下滑的时间为:22331

2

s a t =

⑤ 物体在斜面上运动的时间:23t t t =+⑥

联立方程①-⑥代入数据解得:(2312 2.4t t t s s =+=+≈

【点睛】

本题主要考查了牛顿第二定律及运动学基本公式的直接应用,注意第二问求的是在斜面上的总时间,不是上滑时间.

2.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s2)求: (1)长板2开始运动时的加速度大小; (2)长板2的长度0L ;

(3)当物体3落地时,物体1在长板2的位置.

【答案】(1)26m /s (2)1m (3)1m 【解析】 【分析】 【详解】 设向右为正方向

(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2 物体2:T +μmg = ma 2 物体3:mg –T = ma 3 且a 2= a 3

由以上两式可得:22

g g

a μ+=

=6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t 代入数据解t 1=0.5s v 1=3m/s

1

12

v v x t +=

=1.75m 122

v t

x =

=0.75m 所以木板2的长度L 0=x 1-x 2=1m

(3)此后,假设物体123相对静止一起加速 T =2m a mg —T =ma 即mg =3m a

得3

g a =

对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2 物体2:T —μmg = ma 4 物体3:mg –T = ma 5 且a 4= a 5 得:42

g g

a μ-=

=4m/s 2 整体下落高度h =H —x 2=5m 根据2124212

h v t a t =+ 解得t 2=1s

物体1的位移2

3123212

x v t a t =+

=4m h -x 3=1m 物体1在长木板2的最左端 【点睛】

本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.

3.如图所示,质量为M =10kg 的小车停放在光滑水平面上.在小车右端施加一个F =10N 的水平恒力.当小车向右运动的速度达到2.8m/s 时,在其右端轻轻放上一质量m =2.0kg 的小黑煤块(小黑煤块视为质点且初速度为零),煤块与小车间动摩擦因数μ=0.20.假定小车足够长.

(1)求经过多长时间煤块与小车保持相对静止 (2) 求3s 内煤块前进的位移 (3)煤块最终在小车上留下的痕迹长度 【答案】(1) 2s (2) 8.4m (3) 2.8m 【解析】 【分析】

分别对滑块和平板车进行受力分析,根据牛顿第二定律求出各自加速度,物块在小车上停止相对滑动时,速度相同,根据运动学基本公式即可以求出时间.通过运动学公式求出位移. 【详解】

(1)根据牛顿第二定律,刚开始运动时对小黑煤块有:

1N F ma μ=

F N -mg =0

代入数据解得:a 1=2m/s 2 刚开始运动时对小车有:

2N F F Ma μ-=

解得:a 2=0.6m/s 2

经过时间t ,小黑煤块和车的速度相等,小黑煤块的速度为:

v 1=a 1t

车的速度为:

v 2=v +a 2t

解得:t =2s ;

(2)在2s 内小黑煤块前进的位移为:

2111

4m 2

x a t ==

2s 时的速度为:

11122m/s 4m/s v a t ==?=

此后加速运动的加速度为:

235

m/s 6

F a M m =

=+ 然后和小车共同运动t 2=1s 时间,此1s 时间内位移为:

2

212321 4.4m 2

x v t a t =+=

所以煤块的总位移为:

128.4m x x +=

(3)在2s 内小黑煤块前进的位移为:

2111

4m 2

x a t ==

小车前进的位移为:

2111

6.8m 2

x v t a t '=+=

两者的相对位移为:

m 1 2.8x x x '?=-=

即煤块最终在小车上留下的痕迹长度2.8m . 【点睛】

该题是相对运动的典型例题,要认真分析两个物体的受力情况,正确判断两物体的运动情况,再根据运动学基本公式求解.

4.如图所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC ,其中轨道C 端切线水平。小物块通过圆弧轨道后以6m/s 的速度滑上与C 点等高、静止在粗糙

水平面的长木板M 上.已知长木板的质量M =2kg ,物块与长木板之间的动摩擦因数μ1=0.5,长木板与地面间的动摩擦因数μ2=0.1,OB 与竖直方向OC 间的夹角θ=37°,取g =10m/s 2,sin37°=0.6,cos37°=0.8,则:

(1)求小物块运动至B 点时的速度;

(2)若小物块恰好不滑出长木板,求此情景中自小物块滑上长木板起、到它们最终都停下来的全过程中,它们之间的摩擦力做功的代数和? 【答案】(1) 0

5m/s cos B v v θ

=

= 过B 点时的速度方向与水平方向成37度 (2) 12=15J W W W +=-总

【解析】 【详解】

(1)分解v B ,得:0

cos x y y

v v v v θ== 变形得:0

5m/s cos B v v θ

=

= 过B 点时的速度方向与水平方向成37°

(2)因()125N>3N mg M m g μμ=+=,故木板将在地面上滑行,则

对小物块有:11mg ma μ=,得 2

15m/s a =

对长木板有:()22M m g Ma μ+=,得 2

21m/s a =

设它们经过时间t ,共速v 共,则有:

12=C v v a t a t 共-=,

解得:1t s =,=1m/s v 共 则对小物块在相对滑动有:1 3.5m 2

C v v x t +=?=共

, 故11117.5J W mgx μ=-=- 则对长木板在相对滑动有:200.5m 2

v x t +=?=共

, 故212 2.5J W mgx μ==

共速后,假设它们一起减速运动,对系统有:()()2M m g M m a μ+=+共,

21m/s a 共=,则它们间的摩擦力1f ma mg μ=<共,所以假设成立,之后它们相对静止一

起滑行至停下,此过程中它们间的静摩擦力对堆放做功一定大小相等、一正一负,代数和

为零.

综上所述,自小物块滑上长木板起,到它们最终停下来的全过程中,它们之间的摩擦力做功的代数和12=15J W W W +=-总

5.如图所示,一速度v =4m/s 顺时针匀速转动的水平传送带与倾角θ=37°的粗糙足长斜面平滑连接,一质量m =2Kg 的可视为质点的物块,与斜面间的动摩擦因数为μ1=0.5,与传送带间的动摩擦因数为μ2=0.4,小物块以初速度v 0=10m/s 从斜面底端上滑求:(g =10m/s 2) (1)小物块以初速度v 0沿斜面上滑的最大距离?

(2)要使物块由斜面下滑到传送带上时不会从左端滑下,传送带至少多长?

(3)若物块不从传送带左端滑下,物块从离传送带右侧最远点到再次上滑到斜面最高点所需时间?

【答案】(1) x 1=5m (2) L =2.5m (3)t =1.525s

【解析】(1)小物块以初速度v 0沿斜面上滑时,以小物块为研究对象,由牛顿第二定律

得: 1sin cos mg mg ma θμθ+=,解得2

110/a m s =

设小物块沿沿斜面上滑距离为x 1,则2

11020a x v -=-,解得15x m =

(2)物块沿斜面下滑时以小物块为研究对象,由牛顿第二定律得:

2sin cos mg mg ma θμθ-=,解得: 222/a m s =

设小物块下滑至斜面底端时的速度为v 1,则2

1212v a x =解得: 125/v m s =

设小物块在传送带上滑动时的加速度为a 3, 由牛顿第二定律得: 23μmg ma =,解得: 234/a m s =

设物块在传送带向左滑动的最大距离为L ,则2

3120a L v -=-,解得: 2.5L m = 传送带至少2.5m 物块不会由传送带左端滑下

(3)设物块从传送带左端向右加速运动到和传送带共速运动的距离为x 2,则2

22ax v =,

解得: 22 2.5x m m =<,故小物体先加速再随传送带做匀速运动。 设小物体加速至与传送带共速用时t 1,则1v at =,解得11t s = 设小物体匀速运动用时t 2,则22L x vt -=,解得20.125t s =

设小物体由底端上滑到斜面最高点所时间t 3,则130v a t =-,解得30.4t s = 物块从离传送带右侧最远点到再次上滑到斜面最高点所需时间123 1.525t t t t s =++=

6.如图所示,质量为m=5kg 的长木板B 放在水平地面上,在木板的最右端放一质量也为

m=5kg 的物块A (可视为质点).木板与地面间的动摩擦因数μ1=0.3,物块与木板间的动摩擦因数μ2.=0.2,现用一水平力F=60N 作用在木板上,使木板由静止开始匀加速运动,经过t=1s ,撤去拉力,设物块与木板间的最大静摩擦力等于滑动摩擦力,2

10/g m s =,求:

(1)拉力撤去时,木板的速度v B ;

(2)要使物块不从木板上掉下,木板的长度L 至少为多大; (3)在满足(2)的条件下,物块最终将停在右端多远处.

【答案】(1)V B =4m/s ;(2)L=1.2m ;(3)d=0.48m 【解析】

【分析】对整体运用牛顿第二定律,求出加速度,判断物块与木板是否相对滑动,对物块和系统分别运用动量定理求出拉力撤去时,长木板的速度;从撤去拉力到达到共同速度过程,对物块和长木板分别运用动量定理求出撤去拉力后到达到共同速度的时间t 1,分别求出撤去拉力前后物块相对木板的位移,从而求出木板的长度对木板和物块,根据动能定理求出物块和木板的相对位移,再由几何关系求出最终停止的位置. (1)若相对滑动,对木板有:212B F mg mg ma μμ--?=,

得:2

4/B a m s =

对木块有2A mg ma μ=,2

2/A a m s =

所以木块相对木板滑动

撤去拉力时,木板的速度4/B B v a t m s ==,2/A A v a t m s == (2)撤去F 后,经时间t 2达到共同速度v ;由动量定理22B mgt mv mv μ=-

22122B mgt mgt mv mv μμ--=-,

可得20.2t s =,v=2.4m/s

在撤掉F 之前,二者的相对位移11122

B A v v x t t ?=- 撤去F 之后,二者的相对位移22222

B A v v v v x t t ++?=- 木板长度12 1.2L x x m =?+?=

(3)获得共同速度后,对木块,有2

2102

A mgx mv μ-=-, 对木板有()2211202

B mg mg x mv μμ-=- 二者的相对位移3A B x x x ?=-

木块最终离木板右端的距离1230.48d x x x m =?+?-?=

【点睛】本题综合性很强,涉及到物理学中重要考点,如牛顿第二定律、动能定理、动量定理、运动学公式,关键是明确木板和木块的运动规律和受力特点.

7.如图1所示, 质量为M 的长木板,静止放置在粗糙水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度v 0从左端冲上木板。从物块冲上木板到物块和木板达到共同速度的过程中,物块和木板的v -t 图象分别如图2中的折线acd 和bcd 所示,a 、b 、c 、d 的坐标为a (0,10)、b (0,0)、c (4,4)、d (12,0),根据v -t 图象,求: (1)物块相对长木板滑行的距离△s ; (2)物块质量m 与长木板质量M 之比。

【答案】(1)20m (2)3:2 【解析】 【详解】

(1)由v-t 图象的物理意义可得,物块在木板上滑行的距离

10444m 4m 20m 22

s +?-?=V =

(2)设物块与木板之间的动摩擦因数μ1,木板和地面之间的动摩擦因数为μ2;物块冲上木板做匀减速直线运动的加速度大小为a 1,木板做匀加速直线运动的加速度大小为a 2,达相同速度后一起匀减速直线运动的加速度大小为a ,根据牛顿第二定律 对物块:

μ1mg =ma 1①

对木板:

μ1mg -μ2(m +M )g =Ma 2 ②

对整体:

μ2(m +M )g =(M +m )a ③

由图象的斜率等于加速度可得,a 1=1.5m/s 2,a 2=1m/s 2,a =0.5m/s 2。 由以上各式解得

3

2

m M =

8.如图所示,水平传送带长为L =11.5m ,以速度v =7.5m/s 沿顺时针方向匀速转动.在传送带的A 端无初速释放一个质量为m =1kg 的滑块(可视为质点),在将滑块放到传送带的同

时,对滑块施加一个大小为F =5N 、方向与水平面成θ=370的拉力,滑块与传送带间的动摩擦因数为μ=0.5,重力加速度大小为g =10m/s 2,sin37°=0.6,cos37°=0.8.求滑块从A 端运动到B 端的过程中:

(1)滑块运动的时间;

(2)滑块相对传送带滑过的路程. 【答案】(1)2s (2)4m 【解析】 【分析】

(1)滑块滑上传送带后,先向左匀减速运动至速度为零,以后向右匀加速运动.根据牛顿第二定律可求得加速度,再根据速度公式可求出滑块刚滑上传送带时的速度以及速度相同时所用的时间; 再对共速之后的过程进行分析,明确滑块可能的运动情况,再由动力学公式即可求得滑块滑到B 端所用的时间,从而求出总时间.

(2)先求出滑块相对传送带向左的位移,再求出滑块相对传送带向右的位移,即可求出滑块相对于传送带的位移. 【详解】

(1)滑块与传送带达到共同速度前 , 设滑块加速度为1a ,由牛顿第二定律:

()13737Fcos mg Fsin ma μ?+-?=

解得:2

17.5/a m s =

滑块与传送带达到共同速度的时间:11

1v

t s a == 此过程中滑块向右运动的位移:11 3.752

v

s t m =

= 共速后 , 因 ()3737Fcos mg Fsin μ?>-? ,滑块继续向右加速运动, 由牛顿第二定律:()23737Fcos mg Fsin ma μ?--?=

解得:2

20.5/a m s =

根据速度位移关系可得:()22212B

v

v a L s -=-

滑块到达 B 端的速度:8/B v m s = 滑块从共速位置到 B 端所用的时间:22

1B v v

t s a -=

= 滑块从 A 端到 B 端的时间:122t t t s =+=

(2)0~1s 内滑块相对传送带向左的位移:111 3.75s vt s m =-=V ,

1s ~2s 内滑块相对传送带向右的位移: ()2120.25s L s vt m =--=V

0~2s 内滑块相对传送带的路程: 124s s s m =+=V V V

9.如图所示,光滑水平面上放有光滑直角斜面体,倾角θ=30°,质量M =2.5kg .平行于斜面的轻质弹簧上端固定,下端与质量m =1.5kg 的铁球相连,静止时弹簧的伸长量Δl 0=2cm.重力加速度g 取10m/s 2.现用向左的水平力F 拉着斜面体向左运动,铁球与斜面体保持相对静止,当铁球对斜面体的压力为0时,求:

(1)水平力F 的大小; (2)弹簧的伸长量Δl .

【答案】(1)403N (2)8cm 【解析】 【分析】

斜面M 、物体m 在水平推力作用下一起加速,由牛顿第二定律可求出它们的加速度,然后结合质量可算出物体m 的合力,最后利用物体的重力与合力可求出F 和弹簧的弹力. 【详解】

(1)当铁球与斜面体一起向左加速运动,对斜面体压力为0时,弹簧拉力为T ,铁球受力如图:

由平衡条件、牛顿第二定律得:sin T mg θ=

cos T ma θ=

对铁球与斜面体整体,由牛顿第二定律得:F M m a =+() 联立以上两式并代入数据得:403F N = (2)铁球静止时,弹簧拉力为T 0,铁球受力如图:

由平衡条件得: 0sin T mg θ= 由胡克定律得:00T k l =?

T k l =?

联立以上两式并代入数据得:8?cm l ?= 【点睛】

从整体与隔离两角度对研究对象进行受力分析,同时掌握运用牛顿第二定律解题方法.

10.如图a 所示,质量为M=1kg 的木板静止在光滑水平面上,质量为m=1kg 的物块以初速度v 0=2.0m/s 滑上木板的左端,物块与木板之间的动摩擦因数为0.2,μ=在物块滑上木板的同时,给木板施加一个水平向右的恒力F ,当恒力F 取某一值时,物块在木板上相对于木板滑动的路程为s ,给木板施加不同大小的恒力F,得到

1

F s

-的关系如图b 所示,当恒力F=0N 时,物块恰不会从木板的右端滑下.将物块视为质点,最大静摩擦力等于滑动摩擦力,重力加速度g 取10m/s 2,试求:

(1)求木板长度;

(2)要使物块不从木板上滑下,恒力F 的范围; (3)图b 中CD 为直线,求该段的

1

F s

-的函数关系式. 【答案】(1)0.5m (2)F≤4N ;(3)144

F s += 【解析】 【分析】

(1)当恒力F=0N 时,物块恰不会从木板的右端滑下,根据动能定理牛顿第二定律求解物块和木板的加速度,当两物体共速时,物块相对木板的位移恰为木板的长度;(2)当F=0时,物块恰能滑到木板右端,当F 增大时,物块减速、木板加速,两者在木板上某一位置具有共同速度;当两者共速后能保持相对静止(静摩擦力作用)一起以相同加速度a 做匀加速运动,根据牛顿第二定律求解F 的最大值;

(2)当0≤F≤F m 时,随着F 力增大,S 减小,当F=F m 时,出现S 突变,说明此时物块、木板在达到共同速度后,恰好再次发生相对运动,物块将会从木板左端掉下.对二者恰好发生相对运动时,由牛顿第二定律列式结合运动公式即可求解. 【详解】

(1)当恒力F=0N 时,物块恰不会从木板的右端滑下,则物块的加速度

212/mg

a g m s m

μμ=

== ;

木板的加速度:222/mg

a m s M

μ=

=;

物块与木板共速时v 0-a 1t 1=a 2t 1 解得t 1=0.5s ,

则木板的长度:22

011121110.522

L v t a t a t m =-

-= (2)当F=0时,物块恰能滑到木板右端,当F 增大时,物块减速、木板加速,两者在木板上某一位置具有共同速度;当两者共速后能保持相对静止(静摩擦力作用)一起以相同加

速度a 做匀加速运动,则:F

a M m

+=

,而f=ma , 由于静摩擦力存在最大值,所以:f≤f max =μmg=2N , 联立解得:F≤4N ;

(3)当0≤F≤4N 时,最终两物体达到共速,并最后一起相对静止加速运动,对应着图(b)中的AB 段,当F >4N 时对应(b)中的CD 段,当两都速度相等后,物块相对于木板向左滑动,木板上相对于木板滑动的路程为s=2Δx

当两者具有共同速度v ,历时t , 则:2M F mg

a F M

μ+=+= a m =

mg

m

μ=μg =2m /s 2

根据速度时间关系可得:v 0-a m t=a M t 根据位移关系可得:Δx =v 0t ?12a m t 2?1

2

a M t 2 s=2Δx

联立

1s ?F 函数关系式解得:14

4F s += 【点睛】

本题考查牛顿运动定律.滑块问题是物理模型中非常重要的模型,是学生物理建模能力培养的典型模型.滑块问题的解决非常灵活,针对受力分析、运动分析以及牛顿第二定律的掌握,还有相对运动的分析,特别是摩擦力的变化与转型,都是难点所在.本题通过非常规的图象来分析滑块的运动,能从图中读懂物体的运动.

相关主题
文本预览
相关文档 最新文档