当前位置:文档之家› 二重积分与多重积分及其应用总结

二重积分与多重积分及其应用总结

二重积分与多重积分及其应用总结
二重积分与多重积分及其应用总结

二重积分与多重积分及其应用总结

知识要点。

(1) 二重积分

(2) 三重积分

(3) 多重积分的应用。

(4) 三重积分的总结。

一、二重积分

(1) 直角坐标系下的二重积分。(重点)

直角坐标系下的二重积分,积分区域为二维平面。??=D

dxdy y x f I ),(。这种形式的

积分要让x 、y 取遍所有D 上的点(Ω为积分区域)。所以要先让x 为常量,取遍y ,然后在上面的基础上再取遍x 。或者先让y 为常量,取遍x ,然后在上面的基础上再取遍y 。(点动成线,线动成面。与这类似。)针对不同的题目选择不同的方式。而这其中的关键就是要找对积分区域D 和正确的目标函数表达式),(y x f 。

(2) 极坐标系下的二重积分。(理解,计算是重点)

极坐标系下的二重积分,积分区域同样为二维平面。??=D

d d f I θθ ),(。这种形式

的积分要先取长度 的线,然后变角度,就像是扫地一样。或者是角度确定,变长度 一样就像是水波的扩散一样。两种不同的方式一样可以取遍积分区域D 上的所有点。但是单独拿出来的很少理解即可。

(3)直角坐标系下的二重积分与极坐标系下的二重积分之间的转换(重点)。

积分区域D 为圆或圆的一部分是,直角坐标下的积分有时候很难计算,但是化为极坐标会很简单。这就需要极坐标与直角坐标的相互转换。转换公式如下:

?c o s =x ?s i n =y ????=D

D d d f dxdy y x f ??? )sin ,cos (),(

额略长。不过这是省掉积分上下限的。如果在圆域内(尤其是那种圆的一部分),在直角坐标下积分的上下限异常麻烦,而且计算量相当之大。但在极坐标系下将很容易。3/16.

二、三重积分

(1) 直角坐标系下的三重积分。(重点)。

直角坐标系下的三重积分,积分区域为三维立体。???=D

dxdydz z y x f I ),,( 。计算

方式与二重积分无异。就是先固定两个动一个。再固定原先固定的一个,动另一个。最后计算定积分就行了。

(2)柱坐标系下的三重积分。(计算是重点)。

其实就是极坐标系下,再计算一次定积分即可。转换公式为

?c o s =x ?s i n

=y ??????=D

D dz d d z f dxdydz z y x f ??? ),sin ,cos (),,(

(3)球坐标系下的三种积分

球坐标系的三重积分常用于积分区域是球(或球的一部分)、圆锥(或锥的一部分)。转换公式为 ??sin cos =x ??sin sin =y ?cos =z

??????=D

D d d d f dxdydz z y x f ???????? sin )cos ,sin sin ,sin cos (),,(2 看起来很麻烦。其实就是2222r z y x =++ 这才是最常用的。

三、三重积分的应用。

(1) 曲顶柱体体积。(二重积分,直接求)

(2) 曲顶柱体上曲面面积(二重积分,dxdy f f I y x ??++=2

21) (3) 惯量,薄片尾二重积分。物体为三重积分。

(4) 质心。

(5) 万有引力。

还有很多,这只是典型的。只要可以用元素法求,就可以用积分的方法。

四、总结。

1、 做积分题是循序渐进的。知识间都是有关联的。

2、 选取适当的坐标系做题。每一种坐标系都必须要会。为下一章打基础。

3、 解积分的题要先看奇偶性,在选取积分方式(坐标系),最后解题。

4、 做积分题的关键是要搞清区域和目标函数。并且要用恰当的方式将区域表达出来。

以上

多重积分的方法总结

多重积分的方法总结 引言: 高等数学是一门严密的学科,在学习高数过程中,我认为应用最为广泛的是积分,高数中积分包含了曲面积分、曲线积分、二重积分和三重积分等,它们在许多学科中、生活中应用比较广泛,比如,要计算某个不规则物体的体积就可以运用积分来求解,很多方面均可以转化成微积分的面积,体积的思维来求,这就是它的优点,这种面积和体积是一种抽像的概念了,到了更多重积分又会有更多和意义。那么,下面我将以二重积分和三重积分的定义、计算方法、主要应用公式和二重积分与三重积分的关系为核心来介绍多重积分。(其中计算方法将通过例题来解释) 二重积分 定义: 设二元函数z=f(x,y)定义在有界闭区域D 上,将区域D 任意分成n 个子域Δδi(i=1,2,3,…,n),并以Δδi 表示第i 个子域的面积.在Δδi 上任取一点(ξi,ηi),作和lim n →+∞ (n/i=1 Σ(ξi,ηi)Δδi).如果当各个子域的直径中的最大值λ趋于零时,此和式的极限存在,则称此极限为函数f(x,y)在区域D 上的二重积分,记为∫∫f(x,y)d δ,即 ∫∫f(x,y)d δ=lim n →+∞ (Σf(ξi,ηi)Δδi ) 这时,称f(x,y)在D 上可积,其中f(x,y)称被积函数,f(x,y)d δ称为被积表达式,d δ称为面积元素, D 称为积分域,∫∫称为二重积分号. 同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。 二重积分的计算方法 1直角坐标系中累次积分法 对于直角坐标系下的二重积分主要是对于区域的划分,可以分为如下两类区域来计算。平面点集D={}(,)|1()2(),x y y x y y x a x b ≤≤≤≤为x 型区域;平面点集D= {}(,)|1()2(),x y x y x x y c y d ≤≤≤≤为y 型区域。 x 型区域:若(,)f x y 在x 型区域D 上连续,其中[]1(),2(),y x y x a b 在上连续,则 ??D d y x f σ),(=2()(,)1()b y x dx f x y dy a y x ?? 试计算:I= 2 2y D x e d σ-??的值。 解:画出区域图1只能用先对x 后先对积y 分,则 I=21200y y dy x e dx -??=21 30 13y y e dy -? 由分部积分法,即可算得:

复变函数积分方法总结

复变函数积分方法总结
[键入文档副标题]
acer [选取日期]

复变函数积分方法总结
数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新
形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,
也就会有相应的积分函数求解方法。就复变函数:
z=x+iy i2=-1 ,x,y 分别称为 z 的实部和虚部,记作
x=Re(z),y=Im(z)。 arg z=θ? θ?称为主值 -π<θ?≤π ,
Arg=argz+2kπ 。利用直角坐标和极坐标的关系式 x=rcosθ ,
y=rsinθ,故 z= rcosθ+i rsinθ;利用欧拉公式 eiθ=cosθ+isinθ。
z=reiθ。
1.定义法求积分:
定义:设函数 w=f(z)定义在区域 D 内,C 为区域 D 内起点为 A 终点
为 B 的一条光滑的有向曲线,把曲线 C 任意分成 n 个弧段,设分点为
A=z0 ,z1,…,zk-1,zk,…,zn=B,在每个弧段 zk-1 zk(k=1,2…n)上任
取一点?k 并作和式 Sn=
(zk-zk-1)=
?zk 记?zk= zk-
zk-1,弧段 zk-1 zk 的长度 =
{?Sk}(k=1,2…,n),当
0 时,
不论对 c 的分发即?k 的取法如何,Sn 有唯一的极限,则称该极限值为
函数 f(z)沿曲线 C 的积分为:
=
?zk
设 C 负方向(即 B 到 A 的积分记作)
.当 C 为闭曲线时,f(z)
的积分记作
(C 圆周正方向为逆时针方向)
例题:计算积分
,其中 C 表示 a 到 b 的任一曲

定积分的几何应用例题与习题.doc

定积分的几何应用例题与习题 、曲线 的极坐标方程 1 cos ,(0 ), 求该曲线在 所对应的点处的切线 的 1 4 L 2 直角坐标方程,并求曲线 、切线 L 与x 轴所围图形的面积。 2、设直线 y ax 与抛物线 y x 2 所围成的面积为 S 1,它们与直线 x 1所围成的 面积为 S 2 ,并且 a 1 (1)试确定 a 的值,使 S 1 S 2达到最小,并求出最小值; (2)求该最小值所对应的平面图形绕 x 轴旋转一周所得旋转体的体积。 、设 平面上有正方形 D ( x, y) 0 x 1,0 y 1 及直线 L : x y t (t 0) 3 xoy x 若 S(t)表示正方形 D 位于直线 l 左下部分的面积 ,试求 S(t )dt (x 0) 4、 求由曲线 x sin ( 0) 与 轴所围图形绕 轴旋转所得旋转体的体积 y e x x x x V x 5、求由曲线 x a cos 3 t 与直线 y=x 及 y 轴所围成的图形 y asin 3 t ( a 0, 4 t 2 ) 绕 x 轴旋转所得立体的全表面积。 ( S=( 11 2 ) a 2 ) 5 40 6. 曲线 y e x e x 与直线 x 0, x t(t 0)及 y 0围成一曲边梯形,该曲边梯 2 形绕 x 轴旋转一周得一旋转体,其体积为 V (t), 侧面积为 S(t),在 x t 处的底面积为 F (t ) 求 S(t) 的值; 计算极限 S(t ) (1) (2) lim V (t) t F (t ) S(t ) 2, lim S(t ) 1 V (t ) F (t) t 7、求由摆线 x= a(t sin t) ,y= 的一拱 (0 t 2 ) 与横轴所围成的平面图形的面积, a(1 cost) 及该平面图形分别绕 x 轴、 y 轴旋转而成的旋转体的体积。 (1)A 3 a 2 , (2)V x 5 2 a 3 , (3)V y 6 3 a 3 8、设平面图形 由 x 2 y 2 2 x 及 y 所确定,求图形 绕直线 x 2 旋转一周所得 A x A 旋转体的体积。 2 V 2 2 3

二重积分的计算小结

二重积分的计算小结 一、知识要点回顾 1.二重积分的定义; 2.二重积分的几何意义及其物理模型。 二重积分 ??) (σσd y x f ),(的几何意义就是以)(σ为底,以)(s 为顶的曲顶柱体的 体积,其物理模型就是一个曲顶柱体。 3.二重积分在直角坐标系下的计算 (1)若积分区域D 是由两条直线x=a,x=b,以及两条曲线y= φ1(x),y= φ2(x) (φ1(x) ≤φ2(x),a ≤x ≤b)所围成,则 dxdy y)f(x D ??) (, =?b a dx dy y)f(x x x ?) 2(φφ ) (1, (2)若区域D 是由两条直线y=c,y=d 以及两条曲线x=φ1(y),x=φ2(y)(φ1(y) ≤φ2(y), c ≤y ≤d)所围成,则 ?? = D y)dxdy f(x ,dx y)f(x dy d c y y ? ? ) 2() 1(φφ, 4.极坐标下二重积分的计算法

x=θcos r ,y=θsin r 如果区域D 是由从极点出发的两条射线αθ=,βθ=(α<β)和两条曲线 )(2),(1θθr r r r == ()(1θr <)(2θr )所围成,则 dr rd )r f(r y)dxdy f(x D D θθθ?? ??=sin ,cos , rdr )r f(r d r r ?? = β α θθθθθ) (2) (1sin ,cos 5.曲线坐标下二重积分的计算法 设函数),(),,(v u y y v u x x ==在直角坐标平面v O u '上的封闭区域D '上连续,有一阶连续偏导数,而且雅克比行列式 ) ()() ()() ()() () () ,(),(v y u y v x u x v u y x J ????????=??= 则 ?? = D y)dxdy f(x ,?? D dudv J v u y v u f(x )),(),,( 二.二重积分的计算举例 1.. 计算二重积分dxdy y y D ??sin ,其中D 为由直线x y =与曲线2 y x =所围成的区域. 解:画出积分域如图所示 解方程组 { 2, x y x y == 解得图中的两个交点为)1,1(),0,0(,D 可表示为D=}, 10|),{(2 y x y y x y ≤≤≤≤, 于是 . 1sin 1sin sin sin )(sin sin 1 10 102102-=-=-==???????ydy y ydy dy y y y y dx y y dy dxdy y y y y D 图4

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

二重积分学习总结

高等数学论文 《二重积分学习总结》 姓名:徐琛豪 班级:安全工程02班 学号:1201050221 完成时间:2013年6月2日

二重积分 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 1 二重积分的概念与性质 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。 在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ??? 的分法要任意,二是在每个小区域i σ?上的点(,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以 (,)f x y 为曲顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ ??表示平面区域D 的面积。

高等数学重积分总结

第九章二重积分 【本章逻辑框架】 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 9.1 二重积分的概念与性质 【学习方法导引】 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。

在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ???的分法要任意,二是在每个小区域i σ?上的点(,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以 (,)f x y 为曲顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ ??表示平面区域D 的面积。 (2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d D f x y σ??的值是负的,其绝对值为该曲顶柱体的体积 (3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d D f x y σ??表示在这些子区域上曲顶柱体体积的代数和 (即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积). 3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。有序性常用于比较两个二重积分的大小,估值不等式常用于估计一个二重积分的取值范围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数 (,)f x y 在闭区域D 上的最大值、最小值的方法求出其最大值与最小 值,再应用估值不等式得到取值范围。

复变函数积分方法总结

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ? θ?称为主值-π<θ?≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有

向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点?k 并作和式S n =∑f (?k )n k ?1(z k -z k-1)= ∑f (?k )n k ?1?z k 记?z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k ≤n {?S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即?k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为: ∫ f (z )dz c =lim δ 0 ∑ f (?k )n k ?1 ?z k 设C 负方向(即B 到A 的积分记作) ∫f (z )dz c ?.当C 为闭曲线时,f(z)的积分记作∮f (z )dz c (C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f (?k )n k ?1(z k -z k-1)=b-a ∴lim n 0 Sn =b-a,即1)∫dz c =b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设?k =z k-1,则 ∑1= ∑Z n k ?1(k ?1)(z k -z k-1) 有可设?k =z k ,则 ∑2= ∑Z n k ?1(k ?1)(z k -z k-1) 因为S n 的极限存在,且应与∑1及∑2极限相等。所以

多重积分的方式总结

多重积分的方法总结 专业:水文与水资源工程 姓名:赵兆 学号:201103325 任课教师:王银霞

多重积分的方法总结 二重积分和三重积分的概念都有实际的几何或物理的背景,定义分为四个步骤用构造的方法给出,最终表现为“黎曼和”的极限.故多重积分具有极限的基本性质,如唯一性,线性性质等.定义给出了概念的一个准确描述方法,进而从定义出发可以从纯逻辑上考察概念具有的性质以及计算方法.和定积分的概念对应,多重积分和定积分的定义及性质一致,其定义和性质都不难理解.把握这里的概念,需要大家从这几个角度来理解:1. 几何和物理背景;2. 定义形式;3.概念的性质;4.计算方法;5.应用. 计算根据被积区域和被积函数的形式要选择适当的方法处理,这里主要是看被积区域的形式来选择合适的坐标形式,并给区域一个相应的表达,从而可以转化多重积分为多次的积分形式.具体的一些作法在下面给出. 一.二重积分的计算 重积分的计算主要是化为多次的积分.这里首先要看被积区域的形式, 选择合适的坐标系来进行处理.二重积分主要给出了直角坐标系和极坐标系的计算方法.我们都可以从以下几个方面把握相应的具体处理过程:1.被积区域在几何直观上的表现(直观描述,易于把握);2.被积分区域的集合表示(用于下一步确定多次积分的积分次序和相应的积分限);3.化重积分为多次积分. 1. 在直角坐标下:(a) X-型区域 几何直观表现:用平行于y 轴的直线穿过区域内部,与边界的交点最多两 个.从而可以由下面和上面交点位于的曲线确定两个函数和; 1()y y x =2()y y x =被积区域的集合表示:; 12{(,),()()}D x y a x b y x y y x =≤≤≤≤二重积分化为二次积分: . 21() ()(,)(,)b y x a y x D f x y dxdy dx f x y dy =?? ?? (b) Y-型区域 几何直观表现:用平行于x 轴的直线穿过区域内部,与边界的交点最多两 个.从而可以由左右交点位于的曲线确定两个函数和; 1()x x x =2()x x x =被积区域的集合表示:; 12{(,),()()}D x y c y d x x x x x =≤≤≤≤二重积分化为二次积分: . 21() () (,)(,)d x y c x y D f x y dxdy dx f x y dx =??? ? 2. 在极坐标下: 题,而且可保障各类管路习题负荷下高中资料试卷调控试验;对设料试卷总体配置时,需要在最大限度

定积分计算方法总结

定积分计算方法总结 Final revision by standardization team on December 10, 2020.

定积分计算方法总结 一、不定积分计算方法 1.凑微分法 2.裂项法 3.变量代换法 1)三角代换 2)根幂代换 3)倒代换 4.配方后积分 5.有理化 6.和差化积法 7.分部积分法(反、对、幂、指、三) 8.降幂法 二、定积分的计算方法 1.利用函数奇偶性 2.利用函数周期性 3.参考不定积分计算方法 三、定积分与极限 1.积和式极限 2.利用积分中值定理或微分中值定理求极限 3.洛必达法则 4.等价无穷小

四、 定积分的估值及其不等式的应用 1. 不计算积分,比较积分值的大小 1) 比较定理:若在同一区间[a,b]上,总有 f(x)>=g(x),则∫f (f )ff f f >=∫f (f )f f dx 2) 利用被积函数所满足的不等式比较之 a) 当0

3)常数变易法 4)利用泰勒公式展开法 五、变限积分的导数方法

复变函数与积分变换重要知识点归纳

复变函数复习重点 (一)复数的概念 1.复数的概念:z = x ? iy , x, y 是实数,x = Rez,y = lmz.r-_i. 注:一般两个复数不比较大小,但其模(为实数)有大小 2.复数的表示 1)模:z =y/x2+y2; 2)幅角:在z = 0时,矢量与x轴正向的夹角,记为Arg z (多值函数);主值arg z是位于(-二,二]中的幅角。 3)arg z与arctan y之间的关系如下: x y 当x 0, argz=arctan工; x [ y y - 0,arg z = arctan 二当x : 0, x y y :: 0,arg z = arctan 「愿 L x 4)三角表示:z = z COST i sinv ,其中二-arg z ;注:中间一定是“ +"号 5)指数表示:z = z e旧,其中日=arg z。 (二)复数的运算 仁加减法:若z1= x1iy1, z2= x2 iy2,贝寸乙 _ z2 = % _ x2i 比 _ y2 2.乘除法: 1 )若z^x1 iy1 ,z2=x2iy2,则 ZZ2 二XX2 —y』2 i X2% X』2 ; 乙x iy1 % iy1 X2 —iy2 xg yy ?- 丫2为 -- = --------- = ----------------------- = -------------- T i -------------- Z2 x? iy2 X2 iy2 x? - iy? x;y;x;y f 2)若乙=乙e°,z2= z2e°, _则 3.乘幂与方根e i "'2 ; 土評匀) Z2 Z2

1)若z =|z (cos日+isin 日)=|z e旧,则z"=上"(cosnT +i sin 用)=上"d吩。 2)若z =|z (cos日+isin 日)=|ze吩,贝U 阪=z n.'cos日+2" +i si肆+2" )(k =0,1,2[|I n—1)(有n个相异的值)l n n丿 (三)复变函数 1?复变函数:w = f z,在几何上可以看作把z平面上的一个点集D变到w平面上的一个点集G的映射. 2?复初等函数 1)指数函数:e z=e x cosy - isin y ,在z平面处处可导,处处解析;且e z= e z。 注:e z是以2二i为周期的周期函数。(注意与实函数不同) 3)对数函数:Lnz=lnz i(argz 2^:)(k=0, _1,_2[|[)(多值函数); 主值:In z = ln z +iargz。(单值函数) * 1 Lnz的每一个主值分支In z在除去原点及负实轴的z平面内处处解析,且Inz z 注:负复数也有对数存在。(与实函数不同) 3)乘幂与幂函数:a b= e bLna(a = 0);z b= e bLnz(z = 0) 注:在除去原点及负实轴的z平面内处处解析,且z b二bz b‘。 iz -iz iz -iz e -e e e sin z cosz 4)三角函数:sin z ,cos z ,t gz , ctgz = 2i 2 cosz si nz sin z,cos z 在z 平面内解析,且sin z 二cosz, cosz =—si nz 注:有界性sin z兰1, cosz兰1不再成立;(与实函数不同) z -z z - z e -e e +e 4)双曲函数shz ,chz二 2 2 shz奇函数,chz是偶函数。shz, chz在z平面内解析,且shz 二chz, chz = shz。 (四)解析函数的概念 1 ?复变函数的导数

第六章 定积分的应用总结

第六章 定积分的应用 总结 一、定积分的元素法 1.用定积分表示量U 的条件 如果量U 满足: (1) ; (2) ; (3) ,那么就可考虑用定积分表示这个量U . 2.写出量U 的积分表达式的步骤: (1) ; (2) ; (3) . 二、平面图形的面积 1.若平面图形由连续曲线))()()((),(x g x f x g y x f y ≥==及直线)(,b a b x a x <==所围成,则其面积为=A . 2.若平面图形由连续曲线))()()((),(y y y x y x ψ?ψ?≥==及直线)(,d c d y c y <==所围成,则其面积为=A . 3.由连续曲线0)(),(≥=θ?θ?ρ及两射线βθαθ==,围成的曲边扇形的面积为=A . 三、体积 1.旋转体的体积 (1)由连续曲线0)(≥=x f y ,直线)(,b a b x a x <==及x 轴所围成的平面图形绕x 轴旋转一周而成的旋转体的体积为=x V . (2)由连续曲线0)(≥=y x ?,直线)(,d c d y c y <==及y 轴所围成的平面图形绕y 轴

旋转一周而成的旋转体的体积为=V . 2.平行截面面积为已知的立体的体积 适当建立x 轴,使立体在过点)(,b a b x a x <==且垂直于x 轴的两平面之间,)(x A 为该立体过点x 且垂直于x 轴截面的面积,于是该立体的体积为=V . 四、平面曲线的弧长 1.曲线可求长的充分条件: . 2.求光滑曲线弧的长度的公式:(设L 为平面光滑曲线弧) 如果已知L 的参数方程:)(),(), (βαψ?≤≤???==t t y t x ,其中)(t ?和)(t ψ在],[βα上有连续导数, 且0)()(22≠'+'t t ψ?,则L 的长度为=s . 如果已知L 的直角坐标方程:)()(b x a x f y ≤≤=,其中)(x f 在],[b a 上有一阶连续导数,则L 的长度为=s . 如果已知L 的极坐标方程:)()(βθαθρρ≤≤=,其中)(θρ在],[βα上有一阶连续导数,则L 的长度为=s . 四、定积分在物理学上的应用 1.变速直线运动的路程 某物体作直线运动,已知速度)(t v 是时间t 的连续函数,且0)(≥t v ,则该物体从时刻1t 到时刻2t (21t t ≤)的运动路程为=s . 2.变力沿直线作功 如果力F 的方向不变(与x 轴同向)且大小为)(x F ,物体在力F 的作用下由x 轴上的点a 移动到点b ,则力F 对物体作的功为=W . 3.水压力 一般使用定积分的 法得到水压力的定积分表示式,再计算其值. 4.引力 求引力时通常分别求引力在两个坐标轴上的分力,使用定积分的 法.要注意充分利用对称性.

复变函数积分方法总结定稿版

复变函数积分方法总结精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。 arg z=θ θ称为主值-π<θ≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有

向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点k 并作和式S n =∑f ( k )n k ?1(z k -z k-1)= ∑f ( k )n k ?1z k 记z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k ≤n {S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为: ∫ f (z )dz c =lim δ 0 ∑ f ( k )n k ?1 z k 设C 负方向(即B 到A 的积分记作) ∫f (z )dz c ?.当C 为闭曲线时,f(z)的积分记作∮f (z )dz c (C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f (k )n k ?1(z k -z k-1)=b-a ∴lim n 0 Sn =b-a,即1)∫dz c =b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设k =z k-1,则 ∑1= ∑Z n k ?1(k ?1)(z k -z k-1) 有可设k =z k ,则 ∑2= ∑Z n k ?1(k ?1)(z k -z k-1) 因为S n 的极限存在,且应与∑1及∑2极限相等。所以

定积分知识点总结

定积分知识点总结 北京航空航天大学 李权州 一、定积分定义与基本性质 1.定积分定义 设有一函数f(x)给定在某一区间[a,b]上. 我们在a 与b 之间插入一些分点b x x x x a n =<<<<=...210. 而将该区间任意分为若干段. 以||||π表示差数 )1,...,1,0(1-=-=?+n i x x x i i i 中最大者. 在每个分区间],[1+i i x x 中各取一个任意的点i x ξ=. )1,...,1,0(1-=≤≤+n i x x i i i ξ 而做成总和 ∑-=?=1 0)(n i i i x f ξσ 然后建立这个总和的极限概念: σπ0 ||||lim →=I 另用""δε-语言进行定义: 0>?ε,0>?δ,在||||πδ<时,恒有 εσ<-||I 则称该总和σ在0→λ时有极限I . 总和σ在0→λ时的极限即f(x)在区间a 到b 上的定积分,符号表示为 ?=b a dx x f I )( 2.性质 设f(x),g(x)在[a,b]上可积,则有下列性质 (1) 积分的保序性 如果任意)(),(],,[x g x f b a x ∈,则??≥b a b a dx x g dx x f ,)()(

特别地,如果任意,0)(],,[≥∈x f b a x 则?≥b a dx x f 0)( (2) 积分的线性性质 ???±=±b a b a b a dx x g dx x f dx x g x f )()())()((βαβα 特别地,有??=b a b a x f c dx x cf )()(. 设f(x)在[a,b]上可积,且连续, (1)设c 为[a,b]区间中的一个常数,则满足 ???+=b c c a b a dx x f dx x f dx x f )()()( 实际上,将a,b,c 三点互换位置,等式仍然成立. (4)存在],[b a ∈θ,使得 )()()(θf a b dx x f b a -=? 二、达布定理 1.达布和 分别以i m 和i M 表示函数f(x)在区间],[1+i i x x 里的下确界及上确界并且做总和 ∑∑=+=+-=-=n i i i i n i i i i x x m f S x x M f S 1 11 1)(),(,)(),(ππ ),(f S π称为f(x)相应于分割π的达布上和,),(f S π称为f(x)相应于分割π的达布下 和 特别地,当f(x)连续时,这些和就直接是相应于任意分割法的积分和的最小者和最大者,因为在这种情形下f(x)在没一个区间上都可以达到其上下确界. 回到一般情况,有上下界定义知道 i i i M f m ≤≤)(ξ 将这些不等式逐项各乘以i x ?(i x ?是正数)并依i 求其总和,可以得到

定积分的几何应用例题与习题

定积分的几何应用例题与习题 11cos ,(0),2 4 L π π ρθθθΓ=+≤≤ = Γ、曲线的极坐标方程求该曲线在所对应的点处的切线的 直角坐标方程,并求曲线、切线L 与x 轴所围图形的面积。212122,1,1 (1)2y ax y x S x S a a S S x ===<+、设直线与抛物线所围成的面积为它们与直线所围成的 面积为并且试确定的值,使达到最小,并求出最小值; ()求该最小值所对应的平面图形绕轴旋转一周所得旋转体的体积。 {}0 3(,)01,01:(0) (),()(0) x xoy D x y x y L x y t t S t D l S t dt x =≤≤≤≤+=≥≥?、设平面上有正方形及直线若表示正方形位于直线左下部分的面积试求 4 、0)x y e x x -=≥求由曲线与轴所围图形绕x 轴旋转所得旋转体的体积V 3 3 2cos (0,)42sin 11)5x a t a t y a t a πππ?=?>≤≤?=??5、求由曲线与直线y=x 及y 轴所围成的图形绕x 轴旋转所得立体的全表面积。(S=( 6.0,(0)02 (),()() ()()(1)(2)lim () ()()() 2,lim 1 () ()x x t t e e y x x t t y x V t S t x t F t S t S t V t F t S t S t V t F t -→+∞→+∞+===>=====曲线与直线及围成一曲边梯形,该曲边梯 形绕轴旋转一周得一旋转体,其体积为侧面积为,在处的底面积为求的值;计算极限22333 (sin )(1cos )3, (2)5, (3)6x y a t t a t a V a V a ππππ--≤≤===7、求由摆线x=,y=的一拱(0t 2)与横轴所围成的平面图形的面积,及该平面图形分别绕x 轴、y 轴旋转而成的旋转体的体积。(1)A 222 222 23 A x y x y x A x V ππ+≤≥== -8、设平面图形由及所确定,求图形绕直线旋转一周所得旋转体的体积。

浅谈定积分的应用

浅谈定积分的应用 **** **** (天津商业大学经济学院,中国天津 300134) 摘要:定积分在我们日常生活和学习中有很多的用处,本文阐述了定积分的定义和几何意义,并通过举例分析了定积分在高等数学、物理学、经济学等领域的应用条件及其应用场合,通过分析可以看出利用定积分求解一些实际问题是非常方便及其准确的。 关键词 定积分 定积分的应用 求旋转体体积 变力做功 The Application of Definite Integral **** **** (Tianjin University of Commerce ,Tianjin ,300134,China) Abstract:Definite integral in our daily life and learning have a lot of use, this paper expounds the definition of defi nite integral and geometric meaning, and through the example analysis of the definite integral in the higher mathe matics, physics, economics, and other fields of application condition and its applications, through the analysis can be seen that the use of definite integral to solve some practical problems is very convenient and accurate. Keywords: definite integral, the application of definite integral, strives for the body of revolution, volume change forces work 0、前言 众所周知,微积分的两大部分是微分与积分。一元函数情况下,求微分实际上是求一个已知函数的导数,而积分是已知一个函数的导数,求原函数,所以,微分与积分互为逆运算。在我们日常生活当中,定积分的应用是十分广泛的。定积分作为人类智慧最伟大的成就之一,既可以作为基础学科来研究,也可以作为一个解决问题的方法来使用。 微积分是与应用联系着并发展起来的。定积分渗透到我们生活中的方方面面,推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。并在这些学科中有越来越广泛的应用,微积分是一门历史悠久而又不断发展进步的学科,历史上许多著名的数学家把毕生的心血投入到微积分的研究中,从生产实际的角度上看,应用又是重中之重,随着数学的不断前进,微积分的应用也呈现前所未有的发展[1-5] 。本文将举例介绍定积分在 的我们日常学习和生活当中的应用。 1定积分的基本定理和几何意义 1.1、定积分的定义 定积分就是求函数)(x f 在区间[]b a ,中图线下包围的面积。即由0=y ,a x =, b x =,()x f y =所围成图形的面积。 定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是: 如果)(x f 是[]b a ,上的连续函数,并且有())(' x f X F =,那么 ()()()1)( a F b F dx x f b a -=?

重积分的计算方法

重积分的计算方法 重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f(x,y),三元函数(fx,y,z);积分范围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。着重介绍累次积分的计算与变量代换。一.二重积分的计算 1.常用方法 (1)化累次积分计算法 对于常用方法我们先看两个例子

对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下: 第一步:画出积分区域D的草图; 第二步:按区域D和被积函数的情况选择适当的积分次序,并确定积分的上、下限; 第三步:计算累次积分。 需要强调一点的是,累次积分要选择适当的积分次序。积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来”,而对另一种次序却“积不出来”。所以,适当选择积分次序是个很重要的工作。 选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。 (2)变量替换法 着重看下面的例子:

在计算定积分时,求积的困难在于被积函数的原函数不易求得。从而适当地在计算重积分时,求积的困难来自两个方面,除了被积函数的原因以外还在而且,有时候其积分区域往往成为困难的主要方面。 利用换元法的好处是可以把被积函数的形状进行转化,以便于用基本求积公式。 于积分区域的多样性。为此,针对不同的区域要讨论重积分的各种不同算法。 (3)极坐标变换公式(主要是∫∫f(x,y)dxdy=∫∫f(pcosθ,psinθ)pdpdθ)

相关主题
文本预览
相关文档 最新文档