当前位置:文档之家› 1—3章概率论课后习题及答案

1—3章概率论课后习题及答案

1—3章概率论课后习题及答案
1—3章概率论课后习题及答案

第一章 随机事件及其概率

§1.1-2 随机试验、随机事件

1. 多项选择题:

⑴ 以下命题正确的是 ( )

A .()()A

B AB A =U ; B .,A B AB A ?=若则;

C .,A B B A ??若则;

D .,A B A B B ?=U 若则.

⑵某学生做了三道题,以i A 表示“第i 题做对了的事件”)3,2,1(=i ,则该生至少做对了两道题的事件可表示为 ( )

A .123123123A A A A A A A A A U U ;

B .122331A A A A A A U U ;

C .122331A A A A A A U U ;

D .123123123123A A A A A A A A A A A A U U U . 2. A 、B 、C 为三个事件,说明下述运算关系的含义:

⑴ A ; ⑵ B C ; ⑶ AB C ; ⑷ A B C ; ⑸ A B C U U ; ⑹ABC .

3. 一个工人生产了三个零件,以i A 与i A )3,2,1(=i 分别表示他生产的第i 个零件为正 品、次品的事件.试用i A 与i A )3,2,1(=i 表示以下事件:⑴ 全是正品;⑵ 至少有一个零件是次品;⑶ 恰有一个零件是次品;⑷ 至少有两个零件是次品.

§1.3-4 事件的概率、古典概型

1. 多项选择题:

⑴ 下列命题中,正确的是 ( )

A .

B B A B A Y Y =;B .B A B A Y =;

C .C B A C B A =Y ;

D .()?=)(B A AB .

⑵ 若事件A 与B 相容,则有 ( ) A .()()()P A B P A P B =+U ; B .()()()()P A B P A P B P AB =+-U ; C .()1()()P A B P A P B =--U ; D .()1()()P A B P A P B =-U .

⑶ 事件A 与B 互相对立的充要条件是 ( ) A .()()()P AB P A P B = ; B .()0()1P AB P A B ==U 且; C .AB A B =?=ΩU 且; D . AB =?.

2. 袋中有12只球,其中红球5只,白球4只,黑球3只. 从中任取9只,求其中恰好有4只红球,3只白球,2只黑球的概率.

3. 求寝室里的六个同学中至少有两个同学的生日恰好同在一个月的概率.

4. 10把钥匙中有三把能打开门,今任取两把,求能打开门的概率.

5. 将三封信随机地放入标号为1、2、3、4的四个空邮筒中,求以下概率:(1) 恰有三个邮筒各有一封信;(2)第二个邮筒恰有两封信;(3)恰好有一个邮筒有三封信.

6. 将20个足球球队随机地分成两组,每组10个队,进行比赛.求上一届分别为第一、 二名的两个队被分在同一小组的概率.

§1.5 条件概率

1. 多项选择题:

⑴ 已知0)(>B P 且?=21A A ,则( )成立.

A .1(|)0P A

B ≥; B .1212(()|)(|)(|)P A A B P A B A B =+U ;

C .12(|)0P A A B =;

D . 12(|)1P A A B =I .

⑵ 若0)(,0(>>B P A P )且)(|(A P B A P =),则( )成立.

A .(|)()P

B A P B =;B .(|)()P A B P A =;

C .,A B 相容;

D .,A B 不相容.

2. 已知6

1

)|(.41)|(,31)(===B A P A B P A P ,求)(B A P Y

3. 某种灯泡能用到3000小时的概率为0.8,能用到3500小时的概率为0.7.求一只已用到了3000小时还未坏的灯泡还可以再用500小时的概率.

4.两个箱子中装有同类型的零件,第一箱装有60只,其中15只一等品;第二箱装有40只,其中15只一等品.求在以下两种取法下恰好取到一只一等品的概率:⑴ 将两个箱子都打开,取出所有的零件混放在一堆,从中任取一只零件;⑵ 从两个箱子中任意挑出一个箱子,然后从该箱中随机地取出一只零件.

5.某市男性的色盲发病率为7 %,女性的色盲发病率为0.5 % .今有一人到医院求治色盲,求此人为女性的概率.(设该市性别结构为 男:女=0.502:0.498)

6.袋中有a 只黑球,b 只白球,甲、乙、丙三人依次从袋中取出一只球(取后不放回),分别求出他们各自取到白球的概率.

§1.6 独立性

1. 多项选择题 :

⑴ 对于事件A 与B ,以下命题正确的是( ).

A .若

B A 、互不相容,则B A 、也互不相容;B .若B A 、相容,则B A 、也相容;

C .若B A 、独立,则B A 、也独立;

D .若B A 、对立,则B A 、也对立.

⑵ 若事件A 与B 独立,且0)(,0)(>>B P A P , 则( )成立.

A .(|)()P

B A P B =;B .(|)()P A B P A =;

C .B A 、相容;

D .B A 、不相容.

2. 已知C B A 、、互相独立,证明C B A 、、也互相独立.

3. 一射手对同一目标进行四次独立的射击,若至少射中一次的概率为81

80

,求此射手每次射击的命中率.

*4. 设C B A 、、为互相独立的事件,求证B A AB B A -、、Y 都与C 独立.

5. 甲、乙、丙三人同时各用一发子弹对目标进行射击,三人各自击中目标的概率分别 是0.4、0.5、0.7.目标被击中一发而冒烟的概率为0.2,被击中两发而冒烟的概率为0.6,被击中三发则必定冒烟,求目标冒烟的概率.

6. 甲、乙、丙三人抢答一道智力竞赛题,他们抢到答题权的概率分别为0.2、0.3、0.5 ;而他们能将题答对的概率则分别为0.9、0.4、0.4.现在这道题已经答对,问甲、乙、丙三人谁答对的可能性最大.

7. 某学校五年级有两个班,一班50名学生,其中10名女生;二班30名学生,其中18名女生.在两班中任选一个班,然后从中先后挑选两名学生,求(1)先选出的是女生的概率;(2)在已知先选出的是女生的条件下,后选出的也是女生的概率.

第二章 一维随机变量及其分布

§2.1 离散型随机变量及其概率分布

1.填空题:

⑴ 当c = 时()/,(1,,)P X k c N k N ===L 是随机变量X 的概率分布, 当c = 时()(1)/,(1,,)P Y k c N k N ==-=L 是随机变量Y 的概率分布;

⑵ 当a = 时)0,,1,0(!

)(>===λλΛk k a

k Y P k

是随机变量Y 的概率分布;

⑶ 进行重复的独立试验,并设每次试验成功的概率都是0.6. 以X 表示直到试验获得成功时所需要的试验次数,则X 的分布律为

⑷ 某射手对某一目标进行射击,每次射击的命中率都是,p 射中了就停止射击且至多只 射击10次. 以X 表示射击的次数,则X 的分布律为

⑸ 将一枚质量均匀的硬币独立地抛掷n 次,以X 表示此n 次抛掷中落地后正面向上的

次数,则X 的分布律为 . 2.设在15只同类型的零件中有2只是次品,从中取3次,每次任取1只,以X 表示取出的3只中次品的只数. 分别求出在 ⑴ 每次取出后记录是否为次品,再放回去;⑵ 取后不放回,两种情形下X 的分布律.

3.一只袋子中装有大小、质量相同的6只球,其中3只球上各标有1个点,2只球上各标有2个点,1只球上标有3个点.从袋子中任取3只球,以X 表示取出的3只球上点数的和. ⑴ 求X 的分布律;⑵ 求概率(46),(46),(46),(46)P X P X P X P X <≤≤<<<≤≤.

4.某厂有7个顾问,假定每个顾问贡献正确意见的可能性都是6.0. 现在为某件事的可行与否个别地征求每个顾问的意见,并按多数顾问的意见作决策.求作出正确决策的概率.

5.袋子中装有5只白球,3只黑球,从中任取1只,如果是黑球就不放回去,并从其它地方取来一只白球放入袋中,再从袋中取1只球. 如此继续下去,直到取到白球为止. 求直到取到白球为止时所需的取球次数X 的分布律.

§2.2 连续型随机变量及其概率分布

1.多项选择题:以下函数中能成为某随机变量的概率密度的是 ( )

A .?????<<=它其20,0,cos )(πx x x f ;

B .?????<<=它其πx x x f 0,0,2

cos )( ; C .??

???<<-=它其22,0,cos )(ππx x x f ; D .???<<=它其10,0,)(x xe x f x . 2.设随机变量X 的概率分布律如右,求X 的分

布函数及)32(),30(),2(≤≤<<≤X P X P X P .

3.设一只袋中装有依次标有数字-1、2、2、2、3、3的六只球,从此袋中任取一只球,并以X 表示取得的球上所标有的数字.求X 的分布律与分布函数.

4.设连续型随机变量X ⑴ 系数A ;⑵ X 的分布函数;⑶ (0.1P X <<

5.设连续型随机变量X 的分布函数如右,试求: ⑴ 系数k ;⑵ X 的概率密度;⑶ (||0.5)P X <.

6.设连续型随机变量X 的分布函数为()arctan ()F x A B x x R =+∈,试求:⑴ 系数A 与B ;⑵ X 的概率密度;⑶ X 在区间(,)a b 内取值的概率.

§2.3

1.设离散型随机变量X 的分布律如右,求

12,22,12+=-=+=X W X V X U 的分布律

2.设随机变量X 的概率密度为,0

,0,)(<≥???=-x x e x f x 求随机变量X e Y =的概率密度.

3.设随机变量X 在区间(0,)π上服从均匀分布,求:⑴ 随机变量2ln Y X =-的概率密度;⑵ 随机变量sin Z X =的分布函数与概率密度.

4.设连续型随机变量X 的概率密度为2/2

()()x f x e x R -=∈,求||Y X =的密度.

*5.设1()F x 与2()F x 分别为两个随机变量的分布函数,证明:当0,0a b ≥≥且

1a b +=时,)()()(21x bF x aF x +=φ可以作为某个随机变量的分布函数.

§2.4 一维随机变量的数字特征

1.一批零件中有9件合格品与3件次品,往机器上安装时任取一件,若取到次品就弃置一边. 求在取到合格品之前已取到的次品数的期望、方差与均方差.

2.设随机变量X 的概率密度为||

()0.5,,x f x e x -=-∞<<+∞求,EX DX .

3.设随机变量X 的概率密度为2(1),01

(),0,

x x f x -≤≤?=?

?其它求EX 与DX .

4.某路公汽起点站每5分钟发出一辆车,每个乘客到达起点站的时刻在发车间隔的5分

钟内均匀分布. 求每个乘客候车时间的期望(假定汽车到站时,所有候车的乘客都能上车).

5.某工厂生产的设备的寿命X (以年计)的概率密度为/400.25,

()0

0,

x x e f x x ->?=?

厂规定,出售的设备若在一年之内损坏可以调换. 若出售一台设备可赢利100元,调换一台设备厂方需花费300元,试求厂方出售一台设备净赢利的数学期望.

*6.某工厂计划开发一种新产品,预计这种产品出售一件将获利500元,而积压一件

将损失2000元. 而且预测到这种产品的销售量Y(件)服从指数分布(0.0001)E . 问要获得利润的数学期望最大,应生产多少件产品?

第三章 多维随机变量及其分布

§3.1 二维随机变量

1.设随机变量),(Y X 只取下列数组中的值:)0,0(、)1,1(-、)3

1,1(-、)0,2(且相应的概率依次为61、31、121、12

5.求随机变量),(Y X 的分布律与关于X 、Y 的边缘分布律.

2.一只口袋中装有四只球,球上分别标有数字1、2、2、3. 从此袋中任取一只球,取后不放回,再从袋中任取一只球.分别以X 与Y 表示第一次、第二次取到的球上标有的数字,求X 与Y 的联合分布律与关于X 、Y 的边缘分布律.

3.设随机变量),(Y X 的概率密度,

其它+∞

≤≤+∞≤≤???=+-y x ce y x f y x 0,0,

0,),()(2 试求:⑴ 常数c ;⑵ ),(Y X 的分布函数),(y x F ;⑶ }1{≤+Y X P .

4.设随机变量),(Y X 的概率密度为 4.8(2),01,0(,)0,y x x y x

f x y -≤≤≤≤?=?

?

其它求关于X 、Y 的边缘概率密度.

5.设随机变量),(Y X 在G 上服从均匀分布,其中G 由x 轴、y 轴及直线12+=x y 所围成,试求:⑴ ),(Y X 的概率密度),(y x f ;⑵ 求关于X 、Y 的边缘概率密度.

*6.设某班车起点站上车的人数X 服从参数为(0)λλ>的泊松分布,每位乘客在中途

下车的概率为(01),p p <<乘客中途下车与否相互独立,并以Y 表示在中途下车的人数.

求:⑴ 在发车时有n 个乘客的条件下,中途有m 人下车的概率;⑵ (,)X Y 的分布律.

§

1.设随机变量X 与Y 相互独立右表给出二维随机变量),(Y X 律及边缘分布律中的部分数值.试将 其余数值填入表中的空白处.

2.设随机变量),(Y X 分布律如右:⑴ a 、b 、c 时X 与Y 相互独立?⑵写出),(Y X 的分布律与边缘分布律.

3.设随机变量X 在1、2、3、4四个整数中等可能地取值,而随机变量Y 在X ~1中等可能地取一个整数.求:⑴=X 2时Y ,的条件分布律;⑵=Y 1时X ,的条件分布律.

4.设随机变量),(Y X 的概率密度为其它0

,0,0,),()(>>???=+-y x e y x f y x .

⑴ 求)

|(|x y f X Y ;

⑵ 求)|(|y x f Y X ;⑶ 说明X 与Y 的独立性.

*5.

箱子中装有12只开关(其中2只是次品),从中取两次,每次取一只,并定义随

机变量如下:0,1,X ?=?

?若第一次取出的是正品若第一次取出的是次品

; 0,1,Y ?=??若第二次取出的是正品若第二次取出的是次品 ,试在放回抽样与不放回抽样的两种试验中,求关于X 与Y 的条件分布律,并说明X 与Y 的独立性.

* 6.设随机变量),(Y X 的概率密度为,||,10

(,)0,

c

y x x f x y <--<

?,

求参数c 与条件概率密度)|(,)|(||y x f x y f Y X X Y .

§3.3 1. 设),(Y X 的分布律如右,求 ⑴}0|3{,}2|2{====X Y P Y X P

⑵ ),max(Y X V =的分布律;

⑶ ),min(Y X U =的分布律;⑷ Y X W +=的分布律.

2.设X 与Y 是相互独立的随机变量,它们分别服从参数为1λ、2λ的泊松分布. 证明

Y X Z +=服从参数为21λλ+的泊松分布.

3.设随机变量X 与Y 相互独立,且都服从参数为0.25p =的两点分布,记随机变量Z 为

1,0,X Y Z X Y +?=?+?为奇数,

非为奇数

求X 与Z 的联合分布律与EZ .

4.设随机变量X 与Y 相互独立,其概率密度分别为

3

21100,

,

(),(),32

00

0,0,

y

x

X Y x y e e f x f y x y --??≥≥??==??<

?

?求随机变量U X Y =+的概率密度.

5.某种商品一周的需求量X 是一个随机变量,其概率密度为???≤>=-0

,0,)(x x xe x f x .

设各周的需求量是相互独立的,试求:⑴ 两周;⑵ 三周的需求量的概率密度.

6.设某种型号的电子管的寿命(以小时记)近似地服从(1160)E 分布. 随机地选取4只,将其串联在一条线路中,求此段线路的寿命超过180小时的概率。

7.设随机变量(,)~(),X Y U G 且{(,)|13,13}G x y x y =≤≤≤≤,求随机变量

||Y X Z -=的概率密度.

8.设随机变量X 与Y 相互独立,且都在]1,1[-上服从均匀分布,求二次方程

02=++Y Xt t 有实根的概率.

§3.4 多元随机变量的数字特征

1.单项选择题:

⑴ 设X 与Y 的相关系数为0,则 ( )

A .X 与Y 相互独立;

B .X 与Y 不一定相关;

C .X 与Y 必不相关;

D .X 与Y 必相关.

⑵ 设X 与Y 的期望与方差都存在,且()D X Y DX DY -=+,则以下不正确的是( )

A .()D X Y DX DY +=+;

B .EXY EX EY =?;

C .X 与Y 不相关;

D .X 与Y 相互独立.

2.填空题:

⑴ 设随机变量(,)X Y 的概率密度为/96,04,15

(,)0,

xy x y f X Y <<<

?其它 ,

则EX = ,EY = ,EXY = ,(23)E X Y += . ⑵ 设随机变量X 与Y 互相独立,且~(2),~(0.25),X P Y E

则(232)E X X --= ,(232)D X X --= .

3.n 把看似完全相同的钥匙,只有一把能开保险柜的门锁,用它们去试开保险柜. 假

设取到每把钥匙的可能性是等同的,且每把钥匙只试开一次,求试开次数X 的数学期望与方差. 求在以下两种方法下求试开次数X 的数学期望与方差:

⑴ 先写出X 的分布律; *⑵ 不写出X 的分布律。

4.设),(Y X 在区域G 上服从均匀分布,其中G 由x 轴、y 轴及直线1x y +=围成. ⑴ 求,(32),()EX E X Y E XY +;⑵ 判断随机变量X 与Y 的独立性.

5.设随机变量),(Y X 的概率密度为201

12,

(,)0,

y x y f x y ≤≤≤?=?

?,

其它

求XY Y X EY EX ρ,),cov(,,.

6.设连续型随机变量X 的概率密度)(x f 为偶函数,且,2

+∞

说明X 与||X 的相关性.

* 7.设随机变量),(Y X 的概率密度为10||,),(<<∧<=x x y k y x f 时;,

0),(=y x f 其它时。⑴ 求||,(),(),(|),(|),,,,,cov(,),X Y X Y Y X XY k f x f y f x y f y x EX DX EY DY X Y ρ; ⑵ 说明X 与Y 的相关性与独立性; ⑶ 若,Y X Z +=求(),()Z Z F z f z 。

参 考 答 案

1-1、2

1. ⑴ ,,,A B C D ;⑵ ,B D .

2. ⑴ A 发生;⑵B 与C 都不发生;⑶A 发生且B 与C 都不发生;⑷,,A B C 都不发生;

⑸ ,,A B C 中至少有一个发生;⑹,,A B C 中至少有一个不发生 .

3.⑴123A A A ;⑵123A A A ??;⑶123123123A A A A A A A A A ??;⑷122313A A A A A A ??. 1-3、4

1. ⑴ A D 、;⑵ B ;⑶ C .

2. 3/11 .

3. 0.777 .

4. 8/15 .

5. ⑴ 3/8;(2)9/64;(3)1/16 .

6. 9/19. 1-5

1. ⑴ ,,A B C ;⑵ ,,A B C .

2. 0.75.

3. 0.875.

4. ⑴ 0.3 ;⑵ 0.3125 .

5. 0.067 .

6. 都为/()b a b +.

1-6

1. ⑴ ,C D ;⑵ ,,A B C . 3. 2/3. 5. 0.458. 6. 丙. 7. (1)0.4;(2)0.4856 . 2-1

1. (1)1,0 ; (2) λ

-e

; (3)1()0.40.6(1,2,)k P X k k -==?=L ;

(4)19()(1)(1,2,,9),(10)(1)k P X k p p k P X p -==-===-L ;

(5)()(0.5)(0,1,,)k

n n P X k C k n ===L .

2. (1) 33()(2/15)(13/15)(0,1,2,3)k k k P X k C k -===

(2) 35/1)2(,35/12)1(,35/22)0(======X P X P X P .

(46)0.6,(46)0.6,P X P X <≤=≤<=

(46)0.3,(46)0.9P X P

X <<=≤≤=.

(3)21/256,(4)3/256P X P X ====. 2-2

1. ,A D .

2. 0,0

1/16,01(),

1/4,123/4,231,

3x x F x x x x

=≤

≥?? (2)0.75(03)0.6875(23)0.75P X P X P X ≤=<<=≤≤=. 33

2211

,

1,3/2,6/1,0)(≤<≤<≤--

4. (1) 3 ; (2) 30,0

(),011,1x F x x x x

?≥?

; (3) 0.342 .

5. (1) 1 ; (2) 1,01()0,x f x <

?其它

; (3) 0.5 . 6. (1) 0.5,1/A B π==; (2) 21()(1)

f x x π=

+; (3)1/(arctan arctan )b a π-.

2.211/,()10,

y y f y y >?=?

∈-+∞?=??其它

⑵ 0,001()(2arcsin )/,01,()010,1,1Z Z

z z F z z z f z z z z π?≥??

. 4. 0y >时,2

/2

()2y

Y f y e -=0y <时, ()0Y f y =.

5. 提示:从证明)(x φ满足分布函数的性质入手证明

.

2-4

1. 0.3 , 0.319 , 0.5649 .

2. 0 , 2 .

3. 1/3 , 1/18.

4. 2.

5. 5. 33.64.

6. 2231.

3. 04,(,),0.5940,c F x y ==??

其它.

4. 2012.4(2),()0,X x x x f x ≤≤?-=??,其它201

2.4(34),()0,Y y y y y f y ≤≤?-+=?

?

其它. 5. ???=,0,4),(y x f ,),(其它G y x ∈???+=,0,48)(x x f X ,05.0其它<≤-x ???-=,

0,22)(y y f Y

其它10<≤y . 6. (1) (|)(1),0,1,;,m m

n m n P Y m X n C p p n m n -===-=≤L 否则(|)0P Y m X n ===;

(2)(,)(1)/!,0,1,;,m m n m n n P Y m X n C p p e n n m n λλ--===-=≤L 否则(|)0P Y m X n ===.

3-2

1.

4. ⑴0y ≥时|0

,(|)0

0,x X Y x e f x y x -≥?=?

5. ⑴ 放回抽样

⑵ 不放回抽样

X 的条件分布律与上相同,再结合联合分布律可以看出: 放回抽样时独立,不放回抽样时不独立。

6. 1c = ; 当10x -<<时,|1/2,||(|)0,Y X x y x

f y x -<-?=??

其它 ;

当|

|1y <时,|1/(1||),1||

(|)0,X Y y x y f x y --<<-?=?

?

其它 . 3-3

1. ⑴ (2|2)5/16,(3|0)1/5P X Y P Y X ====== ;

3. 5. (2)00,T

t ≤?

00,T t ≤?7. (2)/2,02

()0,U u u f u -<

?

其它. 8.0.5417 . 3-4

1. ⑴ C ; ⑵D .

2. ⑴8/3,31/9 ,248/27 ,47/3 ;⑵ -10 ,44 .

3.

12/)1(,2/)1(2-+n n . 4. ⑴1/3 , 5/3 , 1/12 ; ⑵ 不独立. 5. 0.8 , 0.6 , 0.02 , 0.6124 . 6. 0 , 不相关 .

7. ⑴ 1,()2,(0,1)X f x x x =∈,()1||,(1,1)Y f y y y =-∈-;2/3,0,1/18,1/6,0,0; ⑵ 不

关也不独立; ⑶ 2()0,0;()1(1/2),(0,2);()1,2Z Z Z F z z

F z z z F z z =<=--∈=>(()Z f z 略)

.

概率论与数理统计学1至7章课后答案

一、习题详解: 3.1设二维随机向量(,)X Y 的分布函数为:1222,0,0, (,)0, x y x y x y F x y ----?--+≥≥=??其他 求}{ 12,35 P X Y <≤<≤. 解:因为 25 7(2,5)1222F ---=--+,6512221)5,1(---+--=F 5322221)3,2(---+--=F ,4312221)3,1(---+--=F 所以 )3,1()3,2()5,1()5,2()53,21(F F F F Y X P +--=≤<≤< == +--=----745672 3 22220.0234 3.2 盒中装有3个黑球, 2个白球. 现从中任取4个球, 用X 表示取到的黑球的个数, 用Y 表示取到的白球的个数, 求(X , Y ) 的概率分布. 解:因为X + Y = 4,所以(X ,Y )的可能取值为(2,2),(3,1) 且 0)1,2(===Y X P ,6.053 )2,2(4 52 223=====C C C Y X P 4.052 )1,3(4 5 1 233=====C C C Y X P ,0)2,3(===Y X P 故(X ,Y )的概率分布为 3.3 将一枚均匀的硬币抛掷3次, 用X 表示在3次中出现正面的次数, 用Y 表示3次中出 现正面次数与出现反面次数之差的绝对值,求(X , Y ) 的概率分布. 解:因为|32||)3(|-=--=X X X Y ,又X 的可能取值为0,1,2,3 所以(X ,Y )的可能取值为(0,3),(1,1), (2,1),(3,3) 且 81)2 1()3,0(3 = ===Y X P ,8 3)21()21()1,1(2 113====C Y X P 83)21()21()1,2(1 223====C Y X P ,8 1)21()3,3(3====Y X P

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论课后习题答案

习题1解答 1、 写出下列随机试验的样本空间Ω: (1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数; (3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标、 解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为 {|0,1,2,,100}i i n n Ω==、 (2)设在生产第10件正品前共生产了k 件不合格品,样本空间为 {10|0,1,2,}k k Ω=+=, 或写成{10,11,12,}.Ω= (3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的就是正品,样本空间可表示为 {00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=、 (3)取直角坐标系,则有22 {(,)|1}x y x y Ω=+<,若取极坐标系,则有 {(,)|01,02π}ρθρθΩ=≤<≤<、 2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件、 (1) A 发生而B 与C 不发生; (2) A 、B 、C 中恰好发生一个; (3) A 、B 、C 中至少有一个发生; (4) A 、B 、C 中恰好有两个发生; (5) A 、B 、C 中至少有两个发生; (6) A 、B 、C 中有不多于一个事件发生、

概率论与数理统计第三章课后习题答案

习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 222??222 ??= 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 324 C 35= 32 4 C 35= 322 4 C 35= 11322 4 C C 12C 35=132 4 C 2C 35 = 21322 4 C C 6C 35 = 2324 C 3 C 35 = 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=?????≤ ≤≤≤., 020,20,sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ??≤<≤<36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππ sin sin sin sin sin0sin sin0sin 434636 2 (31). 4 =--+ =- 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度 f(x,y)= ? ? ?> > + - . ,0 ,0 ,0 ,)4 3( 其他 y x A y x e 求:(1)常数A; (2)随机变量(X,Y)的分布函数; (3)P{0≤X<1,0≤Y<2}. 【解】(1)由-(34) 00 (,)d d e d d1 12 x y A f x y x y A x y +∞+∞+∞+∞ + -∞-∞ === ???? 得A=12 (2)由定义,有 (,)(,)d d y x F x y f u v u v -∞-∞ =?? (34)34 00 12e d d(1e)(1e)0,0, 0, 0, y y u v x y u v y x -+-- ??-->> ? == ?? ? ?? ?? 其他 (3) {01,02} P X Y ≤<≤< 12 (34)38 00 {01,02} 12e d d(1e)(1e)0.9499. x y P X Y x y -+-- =<≤<≤ ==--≈ ?? 5.设随机变量(X,Y)的概率密度为 f(x,y)= ? ? ?< < < < - - . ,0 ,4 2,2 ), 6( 其他 y x y x k (1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}. 【解】(1)由性质有

概率论与数理统计浙大四版习题答案第七章

第七章 参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σ μ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)???>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,)1()(<<=-==-Λ为未知参数。 解:(1)X θc θθc θc θc θdx x c θdx x xf X E θθc θ θ =--=-== =+-∞+-∞+∞ -? ? 1 ,11)()(1令, 得c X X θ-= (2),1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211 )()()(+-=== ∏θn θn n n i i x x x c θ x f θL Λ 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑ ==n i i n i i x c n n θθ d θL d x θc θn θn θL

概率论与数理统计学1至7章课后答案

第五章作业题解 5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪 夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率. 解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ 由切比雪夫不等式,得 )2100|7300(|)94005200(<-=<

概率论与数理统计课后习题答案

第一章 事件与概率 1.写出下列随机试验的样本空间。 (1)记录一个班级一次概率统计考试的平均分数 (设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)生产产品直到有10件正品为止,记录生产产 品的总件数。 (4)对某工厂出厂的产品进行检查,合格的记上 “正品”,不合格的记上“次品”,如连续查出2个次品 就停止检查,或检查4个产品就停止检查,记录检查的 结果。 (5)在单位正方形内任意取一点,记录它的坐标。 (6)实测某种型号灯泡的寿命。 解(1)},100,,1,0{n i n i ==Ω其中n 为班级人数。 (2)}18,,4,3{ =Ω。 (3)},11,10{ =Ω。 (4)=Ω{00,100,0100,0101,0110,1100, 1010,1011,0111,1101,0111,1111},其中 0表示次品,1表示正品。 (5)=Ω{(x,y)| 0

(2)A 与B 都发生,而C 不发生。 (3)A ,B ,C 中至少有一个发生。 (4)A ,B ,C 都发生。 (5)A ,B ,C 都不发生。 (6)A ,B ,C 中不多于一个发生。 (7)A ,B ,C 至少有一个不发生。 (8)A ,B ,C 中至少有两个发生。 解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC , (5)C B A , (6)C B C A B A ++或 C B A C B A C B A C B A +++, (7)C B A ++, (8)BC AC AB ++或 ABC BC A C B A C AB ??? 3.指出下列命题中哪些成立,哪些不成立,并作 图说明。 (1)B B A B A =(2)AB B A = (3)AB B A B =?则若,(4)若 A B B A ??则, (5)C B A C B A = (6)若Φ=AB 且A C ?,

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论与数理统计课后习题答案

习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -. 解:如图:

概率论重点课后题答案

第2章条件概率与独立性 一、大纲要求 <1)理解条件概率的定义. <2)掌握概率的加法公式、乘法公式,会应用全概率公式和贝叶斯公式. <3)理解事件独立性的概念,掌握应用事件独立性进行概率计算. <4)了解独立重复实验概型,掌握计算有关事件概率的方法,熟悉二项概率公式的应用. 二、重点知识结构图 为2这个公式称为乘法定理. 乘法定理可以推广到有限多个随机事件的情形. 定理设12,, ,n A A A 为任意n 个事件<2n ≥),且121()0n P A A A ->,则有 12112131212 1()()(|)(|)(|)n n n n P A A A A P A P A A P A A A P A A A A --= 3.全概率公式 定理设12,,B B 为一列<有限或无限个)两两互不相容的事件,有

1 i i B ∞==Ω∑()0(1,2,)i P B i >= 则对任一事件A ,有1 ()()(|)i i i P A P B P A B ∞==∑. 4.贝叶斯公式 定理设12,,B B 为一系列<有限或无限个)两两互不相容的事件,有 1i i B ∞==Ω∑()0(1,2,)i P B i >= 则对任一具有正概率的事件A ,有 1()(|) (|)()(|)k k k j j j P B P A B P B A P B P A B ∞==∑ 5.事件的相互独立性 定义若两事件A B 、满足,则称A B 、<或B A 、)相互独立,简称独立. 定理若四对事件;;A B A B A B A B 、、 、; 、 中有一对是相互独立的,则另外三对事件也是相互独立的.即这四对事件或者都相互独立,或者都相互不独立.定义设12n A A A ,,,是n 个事件,若对所有可能的组合1i j k n ≤<<<≤成 立: ()()()i j i j P A A P A P A =<共2n C 个) ()()()()i j k i j k P A A A P A P A P A =<共3n C 个) 1212()()()()n n P A A A P A P A P A =<共n n C 个) 则称12,,n A A A 相互独立. 定理设n 个事件12,, n A A A 相互独立,那么,把其中任意m <1m n ≤≤)个事件相应换成它们的对立事件,则所得的n 个事件仍然相互独立. 6. 重复独立实验,而且这些重复实验具备:<1)每次实验条件都相同,因此各次实验中同一个事件的出现概率相同;<2)各次实验结果相互独立;满足这两

概率论与数理统计课后习题及答案

习题八 1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N,.现在测了5炉铁水,其含碳量(%)分别为 问若标准差不改变,总体平均值有无显着性变化(α=) 【解】 0010 /20.025 0.025 : 4.55;: 4.55. 5,0.05, 1.96,0.108 4.364, (4.364 4.55) 3.851, 0.108 . H H n Z Z x x Z Z Z α μμμμ ασ ==≠= ===== = - ===- > 所以拒绝H0,认为总体平均值有显着性变化. 2. 某种矿砂的5个样品中的含镍量(%)经测定为: 设含镍量服从正态分布,问在α=下能否接收假设:这批矿砂的含镍量为. 【解】设 0010 /20.005 0.005 : 3.25;: 3.25. 5,0.01,(1)(4) 4.6041 3.252,0.013, (3.252 3.25) 0.344, 0.013 (4). H H n t n t x s x t t t α μμμμ α ==≠= ==-== == - === < 所以接受H0,认为这批矿砂的含镍量为. 3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为(克),样本方差s2=(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=). 【解】设 0010 /20.025 2 0.025 : 1.1;: 1.1. 36,0.05,(1)(35) 2.0301,36, 1.008,0.1, 6 1.7456, 1.7456(35) 2.0301. H H n t n t n x s x t t t α μμμμ α ==≠= ==-=== == === =<= 所以接受H0,认为这堆香烟(支)的重要(克)正常. 4.某公司宣称由他们生产的某种型号的电池其平均寿命为小时,标准差为小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短设电池寿命近似地

概率论与数理统计学1至7章课后答案

一、第六章习题详解 6.1 证明(6.2.1)和(6.2.2)式. 证明: (1) ∑∑∑===+=+==n i i n i i n i i nb X a n b aX n Y n Y 1 11)(1 )(11 b X a b X n a n i i +=+=∑=1 )1( (2) ∑∑==+-+=--=n i i n i i Y b X a b aX n Y Y n S 1 212 2 )]()[(1)(11 221 2212)(1)]([1X n i i n i i S a X X n a X X a n =-=-=∑∑== 6.2设n X X X ,,,21 是抽自均值为μ、方差为2 σ的总体的样本, X 与2S 分别为该样本均值。证明与2 (),()/E X Var X n μσ==. 证:()E X =12121 1 1 [()]()()n n E X X X E X X X n n n n μμ++ = ++== ()Var X =22 1212221 1 1[()]()()n n Var X X X E X X X n n n n n σσ++ =++ == 6.3 设n X X X ,,,21 是抽自均值为μ、方差为2 σ的总体的样本,2 21 1()1n i i S X X n ==--∑, 证明: (1) 2 S =)(11 21 2X n X n n i i --= ∑= (2) 2()E S =2σ= 证:(1) ∑∑==+--=--=n i i i n i i X X X X n X X n S 1 2212 2 )2(11)(11 ]2)([112112X n X X X n n i i n i i +--=∑∑== ])(2)([11212X n X n X X n n i i +--=∑= )(1121 2X n X n n i i --=∑=

概率论习题及答案习题详解

222 习题七 ( A ) 1、设总体X 服从参数为N 和p 的二项分布,n X X X ,,,21 为取自 X 的一个样本,试求参数p 的矩估计量与极大似然估计量. 解:由题意,X 的分布律为: ()(1),0k N k N P X k p p k N k -??==-≤≤ ??? . 总体X 的数学期望为 (1)(1) 011(1)(1) 1N N k N k k N k k k N N EX k p p Np p p k k ----==-????=-=- ? ?-???? ∑∑ 1((1))N Np p p Np -=+-= 则EX p N = .用X 替换EX 即得未知参数p 的矩估计量为?X p N =. 设12,,n x x x 是相应于样本12,,n X X X 的样本值,则似然函数为 11 1211(,,;)()(1) n n i i i i n n x nN x n i i i i N L x x x p P X x p p x ==- ==∑ ∑??===?- ??? ∏∏ 取对数 11 1ln ln ln ()ln(1)n n n i i i i i i N L x p nN x p x ===??=+?+-?- ???∑∑∑, 11 ln (1) n n i i i i x nN x d L dp p p ==-=--∑∑.

223 令 ln 0d L dp =,解得p 的极大似然估计值为 11?n i i x n p N ==∑. 从而得p 的极大似然估计量为 11?n i i X X n p N N ===∑. 2,、设n X X X ,,,21 为取自总体X 的一个样本,X 的概率密度为 2 2,0(;)0, x x f x θ θθ?<,求θ的矩估计. 解:取n X X X ,,,21 为母体X 的一个样本容量为n 的样本,则 20 22 ()3 x EX xf x dx x dx θ θθ+∞ -∞ ==? =? ? 3 2 EX θ?= 用X 替换EX 即得未知参数θ的矩估计量为3 ?2 X θ =. 3、设12,,,n X X X 总体X 的一个样本, X 的概率密度为 ?? ?? ?≤>=--0 ,0, 0, );(1x x e x x f x α λαλαλ 其中0>λ是未知参数,0>α是已知常数,求λ的最大似然估计. 解:设12,,,n x x x 为样本12,,,n X X X 的一组观测值,则似然函数为

概率论习题答案

第一章 随机事件与概率 1.对立事件与互不相容事件有何联系与区别? 它们的联系与区别是: (1)两事件对立(互逆),必定互不相容(互斥),但互不相容未必对立。 (2)互不相容的概念适用于多个事件,但对立的概念仅适用于两个事件。 (3)两个事件互不相容只表示两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生。而两个事件对立则表明它们有且仅有一个发生,即肯定了至少有一个发生。特别地,A A =、?=A A U 、φ=A A I 。 2.两事件相互独立与两事件互不相容有何联系与区别? 两事件相互独立与两事件互不相容没有必然的联系。我们所说的两个事件相互独立,其实质是事件是否发生不影响A B 、A 事件B 发生的概率。而说两个事件互不相容,则是指事件发生必然导致事件A B 、A B 不发生,或事件B 发生必然导致事件不发生,即A φ=AB ,这就是说事件是否发生对事件A B 发生的概率有影响。 3.随机事件与样本空间、样本点有何联系? 所谓样本空间是指:随机试验的所有基本事件组成的集合,常用来记。其中基本事件也称为样本点。而随机事件可看作是有样本空间中具有某种特性的样本点组成的集合。通常称这类事件为复合事件;只有一个样本点组成的集合称为基本事件。在每次试验中,一定发生的事件叫做必然事件,记作。而一定不发生的事件叫做不可能事件,记作??φ。为了以后讨论问题方便,通常将必然事件和不可能事件看成是特殊的随机事件。这是由于事件的性质

随着试验条件的变化而变化,即:无论是必然事件、随机事件还是不可能事件,都是相对“一定条件”而言的。条件发生变化,事件的性质也发生变化。例如:抛掷两颗骰子,“出现的点数之和为3点”及“出现的点数之和大于3点”,都是随机事件。若同时抛掷4颗骰子,“出现的点数之和为3点”,则是不可能事件了;而“出现的点数之和大于3点”则是必然事件了。而样本空间中的样本点是由试验目的所确定的。例如: (1)将一颗骰子连续抛掷三次,观察出现的点数之和,其样本空间为 ?={34}。 518,,,,L (2)将一颗骰子连续抛掷三次,观察六点出现的次数,其样本空间为 ?={012}。 3,,, 在(1)、(2)中同是将一颗骰子连续抛掷三次,由于试验目的不同,其样本空间也就不一样。 4.频率与概率有何联系与区别? 事件的概率是指事件在一次试验中发生的可能性大小,其严格的定义为: A A 概率的公理化定义:设E 为随机试验,?为它的样本空间,对E 中的每一个事件都赋予一个实数,记为,且满足 A P A () (1)非负性:01≤≤P A (); (2)规范性:P ()?=1; (3)可加性:若两两互不相容,有。 A A A n 12,,,,L L )P A P A i i i i ()(=∞=∞ =∑11U 则称为事件的概率。 P A ()A 而事件的频率是指事件在次重复试验中出现的次数与总的试验次数n 之比,即A A n n A ()n A n )(为次试验中出现的频率。因此当试验次数n 为有限数时,频率只能在一定程度上反映了事件n A A 发生的可能性大小,并且在一定条件下做重复试验,其结果可能是不一样的,所以不能用频率代替概率。

概率论1至7章课后答案

一、习题详解: 1.1 写出下列随机试验的样本空间: (1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω; (3) 观察某医院一天内前来就诊的人数; 解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω; (4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{ ;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格; 解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω; (6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{ 2 16,T y x T y x ≤≤=Ω ; (7) 在单位圆内任取两点, 观察这两点的距离; 解:}{ 207 x x =Ω; (8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{ l y x y x y x =+=Ω,0,0,8 ; 1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件: (1) A 与B 都发生, 但C 不发生; C AB ; (2) A 发生, 且B 与C 至少有一个发生;)(C B A ?; (3) A,B,C 中至少有一个发生; C B A ??; (4) A,B,C 中恰有一个发生;C B A C B A C B A ??; (5) A,B,C 中至少有两个发生; BC AC AB ??; (6) A,B,C 中至多有一个发生;C B C A B A ??; (7) A;B;C 中至多有两个发生;ABC ; (8) A,B,C 中恰有两个发生.C AB C B A BC A ?? ; 注意:此类题目答案一般不唯一,有不同的表示方式。

概率论与数理统计第四版课后习题答案

概率论与数理统计课后习题答案 第七章参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2 的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σμ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)? ??>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,)1()(<<=-==- 为未知参数。 解:(1)X c θc θc c θdx x c θdx x xf X E θθc θ θ =--=-== =+-∞+-∞+∞ -? ? 1 ,11)()(1令, 得c X X θ-= (2),1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211 )()()(+-=== ∏θn θ n n n i i x x x c θ x f θL 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑ ==n i i n i i x c n n θθ d θL d x θc θn θn θL

概率论课后作业及答案

1. 写出下列随机试验的样本空间及事件中的样本点: 1) 将一枚均匀硬币连续掷两次,记事件 =A {第一次出现正面}, =B {两次出现同一面}, =C {至少有一次正面出现}. 2) 一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5,从中同时取3只球. 记事件 =A {球的最小号码为1}. 3) 10件产品中有一件废品,从中任取两件,记事件=A {得一件废品}. 4) 两个口袋各装一个白球与一个黑球,从第一袋中任取一球记下其颜色后放入第二袋,搅均后再 从第二袋中任取一球.记事件=A {两次取出的球有相同颜色}. 5) 掷两颗骰子,记事件 =A {出现点数之和为奇数,且其中恰好有一个1点}, =B {出现点数之和为偶数,但没有一颗骰子出现1点}. 答案:1) }),(),,(),,(),,({T T H T T H H H =Ω, 其中 :H 正面出现; :T 反面出现. }),(),,({T H H H A =; }),(),,({T T H H B =; }),(),,(),,({H T T H H H C =. 2) 由题意,可只考虑组合,则 ? ?? ?? ?=)5,4,3(),5,4,2(),5,3,2(),4,3,2(),5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1(Ω; {})5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1(=A . 3) 用9,,2,1 号表示正品,10号表示废品.则 ??? ? ????? ?????????=)10,9()10,8()10,2(,),4,2(),3,2()10,1(,),4,1(),3,1(),2,1( Ω; {})10,9(,),10,2(),10,1( =A . 4) 记第一袋中的球为),(11b w ,第二袋中的球为),(22b w ,则 {}),(),,(),,(),,(),,(),,(112121112121b b b b w b w w b w w w =Ω; {}),(),,(),,(),,(11211121b b b b w w w w A =.

概率论与数理统计练习题第七章答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第七章 参数估计(一) 一、选择题: 1矩估计必然是 [ C ] (A )无偏估计 (B )总体矩的函数 (C )样本矩的函数 (D )极大似然估计 2.设12,X X 是正态总体(,1)N μ的容量为2的样本,μ为未知参数,μ的无偏估计是 [ D ] (A ) 122433X X + (B )121244X X + (C )123144X X - (D )122355 X X + 3.设某钢珠直径X 服从正态总体(,1)N μ(单位:mm ),其中μ为未知参数,从刚生产的一大堆钢珠抽出9个,求的样本均值31.06X =,样本方差2 2 90.98S =,则μ的极大似然估计值为 [ A ] (A )31.06 (B )(- , 31.06 + 0.98) (C )0.98 (D )9×31.06 二、填空题: 1.如果1?θ与2?θ都是总体未知参数θ的估计量,称1?θ比2?θ有效,则1?θ与2 ?θ的期望与方差一定满 足 1212????,E E D D θθθθ=< 2.设样本1230.5,0.5,0.2x x x ===来自总体1 ~(,)X f x x θθθ-=,用最大似然法估计参 数θ时,似然函数为()L θ= 31(0.05)θθ- 3.假设总体X 服从正态分布2 12 (,),,,(1)n N X X X n μσ>为X 的样本, 1 2 211 ()n i i i C X X σ-+==-∑是2σ的一个无偏估计,则C = 12(1) n - 三、计算题: 1.设总体X 具有分布律,其中(01)θθ<<为未知参数, 已知取得了样本值1231,2,1x x x ===,试求θ 2.设12,,,n X X X 是来自于总体10~()0x X f x θθ ?≤≤? =???其它 (0)θ>的样本, 试求:(1)θ的一个无偏估计1θ;(2)θ的极大似然估计2.θ 456()2(1)22.5')1(0.6 L L θθθθθθθθ=?-=-==解:该样本的似然函数.为 令得三 、 ??()2,()2()22 2 2(1)E X X X E E X θθθ θθ==?===?= 、

概率论与数理统计统计课后习题答案

概率论与数理统计统计课后习题答案

第二章习题解答 1. 设)(1x F 与)(2 x F 分别是随机变量X 与Y 的分布函数,为使)()(2 1x bF x aF -是某个随机变量的分布函数, 则b a ,的值可取为( A ). A . 5 2,53-==b a B . 32,32==b a C . 23,21=-=b a D . 23,21-==b a 2. 解:因为随机变量X ={这4个产品中的次品数} X 的所有可能的取值为:0,1,2,3,4. 且4015542091{0}0.2817323C C P X C ===≈; 31155420455{1}0.4696969C C P X C ===≈; 2215542070{2}0.2167323 C C P X C ===≈; 1315542010{3}0.0310323C C P X C ===≈; 041554201{4}0.0010969 C C P X C ===≈. 因此所求X 的分布律为: 3.

5. 解:设X ={其中黑桃张数}. 则X 的所有可能的取值为0,1,2,3,4,5. 051339552 2109 {0}0.22159520C C P x C ===≈; 14 133955227417 {1}0.411466640 C C P x C ===≈; 231339552 27417 {2}0.274399960C C P x C ===≈; 32133955216302 {3}0.0815199920 C C P x C ===≈; 4 11339 552429{4}0.010739984 C C P x C ===≈; 50 133955233 {5}0.000566640 C C P x C ===≈. 所以X 的概率分布为: 6.

相关主题
文本预览
相关文档 最新文档