当前位置:文档之家› 结构设计基本步骤、方法及相关概念(DOC)

结构设计基本步骤、方法及相关概念(DOC)

结构设计基本步骤、方法及相关概念(DOC)
结构设计基本步骤、方法及相关概念(DOC)

结构设计基本步骤、方法及相关概念

PKPMCAD 邹军

一、常用规范

建筑结构荷载规范

混凝土设计规范

建筑抗震设计规范

建筑地基设计规范

高层建筑混凝土结构技术规程

岩土工程勘察规范

二、基本资料及信息

1.建筑需求:建筑外观、平面布局及使用功能要求,建筑重要性。需要相应阶段的建筑图纸、审批文件。

2.使用荷载:一般民用建筑可查看可在规范,普通住宅、办公室为2.0kN/m2,阳台2.5kN/m2;电梯机房等效8kN/m2;消防车等效20kN/m2。

工业厂房需要业主提供文件,指定使用荷载。

3.风信息:(荷载规范、高规)

a.基本风压:一般用50年一遇,深圳为0.75kN/㎡,对应风速约120公里

/小时;高度大于60米的结构,承载力计算用100年一遇的

风压,深圳为0.90 kN/㎡)

b.地面粗糙度:一般城市市区可选C

c.体型系数:一般建筑取1.3

d.基本周期:简单估算(0.1x楼层数),用于计算风振

e.其他相关概念:

Wk=βzμsμzW0 用于主要承重结构

Wk=βgzμsμzW0 用于围护结构

风压高度变化系数,

风振系数(基本自振周期大于0.25s,高度大于30m且高宽

比大于1.5的房屋,考虑顺风向风振系数;横向

风软件没有考虑)

阵风系数:计算围护结构风荷载

群体效应:群集的高层建筑,相互间距较近时,风力相互

干扰,体型系数应增大。

4.地震信息:(抗震规范、高规)

a.设防烈度:按设计基本地震加速度值划分,分为6度(0.05g)、7

度(0.10g)、7度(0.15g)、8度(0.20g)、8度(0.30g)、

9度(0.40g),具体取值由政府规定(可查抗规附表),。

深圳为7度(0.1g)

b.设计地震分组:按震中的近、远划分,分为第1组、第2组、第3组。

深圳为第1组

c.场地土类别:按土层等效剪切波速和土层厚度划分,分Ⅰ、Ⅱ、Ⅲ、

Ⅳ四类,大部分为Ⅱ类。由地质勘探部门提供。可以理

解为Ⅰ类场地土最结实,Ⅳ最差。

d.其他抗震相关概念:

抗震设防三水准:小震不坏、中震可修、大震不倒。

抗震设计二阶段:

第一阶段设计为承载力设计:用小震动参数、结构按弹

性计算,用分项系数组合进行构件截面承载力验算,

通过概念设计及抗震构造满足大震不倒。

第二阶段为弹塑性变形验算。大部分建筑可只进行第一

阶段设计。

抗震设防分类:按建筑重要性划分,分为甲、乙、丙、丁四类,具体规定见《建筑抗震设防分类标准》。甲类最重要,丁

类为次要建筑,大部分为丙类。

设计基本地震加速度:50年设计基准期超越概率10%的地震加速度设计取值。

地震作用计算方法:底部剪力法、振型分解反应谱、弹性动力时程分析、弹塑性动力时程分析。

结构阻尼比:混凝土结构0.05,钢结构0.02

重力荷载代表值:永久荷载标准值+可变荷载标准值×组合系数,组合系数软件默认取0.5,对于库房应取0.8、可变荷载

按实际情况计算时组合系数应取1.0。

抗震等级:根据烈度、结构类型、房屋高度(室外地面到主要屋面板)确认,确认烈度时还要考虑抗震设防分类及场地土

类别。

构件设计原则:强柱弱梁、强剪弱弯。

5.地质勘察报告:

由结构设计人员根据工程具体情况提出勘察要求,甲方委托勘察单位进行勘察,勘察单位提交勘察报告。

一般包括一下内容:

勘察目的、任务要求和依据的技术标准;拟建工程概况;勘察方法和勘察工作布置;场地地形、地貌、地层、地质构造、岩土性质及其均

匀性;各项岩土性质指标,岩土的强度参数、变形参数、地基承载力的

建议值;地下水的埋藏情况、类型、水位及其变化;土和水对建筑材料

的腐蚀性;场地稳定性、不良地质评价;基础形式推荐;图表:勘察点

平面布置图、土层剖面图、探孔柱状图、岩层等高线等。

深圳地区岩土分布情况:填土、花岗岩残积土、强风化岩、中风化岩、微风化岩。

一般花岗岩残积土可作为天然地基的持力层,承载力200kPa多。

三、结构选型

根据建筑高度、建筑需求、经济等确定。

1. 单层厂房以前均采用钢筋混凝土排架结构,现在大都采用轻型门式钢架

2. 多层采用钢筋混凝土框架架构、砖混结构,广东地区基本不用砖混结构,

住宅多采用异型柱框架结构

3.大跨度结构考虑预应力、网壳

4. 普通高层采用钢筋混凝土框剪结构、短肢剪力墙结构、剪力墙结构。

5. 超高层(100米以上)采用型钢混凝土、钢-混凝土的框剪结构,或框

筒、剪力墙结构、筒中筒结构。

四、结构布置

1.平面布置:确定柱、剪力墙的位置

a.平面布置宜规则、对称,并应具有良好的整体性

不规则类型定义

扭转不规则:楼层的最大弹性水平位移(或层间位移),大于该楼层两端

弹性水平位移(或层间位移)平均值的1.2倍

凹凸不规则:结构平面凹进的一侧尺寸,大于相应投影方向总尺寸的30%

楼板局部不连续:楼板的尺寸和平面刚度急剧变化,例如,有效楼板宽度

小于该层楼板典型宽度的50%,或开洞面积大于该层楼面面

积的30%,或较大的楼层错层

b.平面长度太长或楼层高度相差太大,要进行分缝或设置后浇带。

2. 竖向布置:建筑的立面和竖向剖面宜规则,结构的侧向刚度宜均匀变

化,竖向抗侧力构件的截面尺寸和材料强度宜自下而上逐渐减小,避

免抗侧力结构的侧向刚度和承载力突变

不规则类型定义

侧向刚度不规则:该层的侧向刚度小于相邻上一层的70%,或小于其上相邻三

个楼层侧向刚度平均值的80%;除顶层外,局部收进的水平

向尺寸大于相邻下一层的25%

竖向抗侧力构件不连续:竖向抗侧力构件(柱、抗震墙、抗震支撑)的内力由

水平转换构件(梁、桁架、厚板等)向下传递

楼层承载力突变:抗侧力结构的层间受剪承载力小于相邻上一楼层的)80%

五、构件截面估算

1.柱截面估算

a.柱竖向轴力估算

N=nAq

n---柱承受楼层数

A---柱子从属面积

q---竖向面荷载,可按下面估算

框架结构: 12-16(轻质砖)、14-18(粘土砖)

框剪结构: 15-18(轻质砖)、17-20(粘土砖)

筒体、剪力墙结构:18-22

一般集体宿舍、普通住宅取大值,办公取小值。厂房另行考虑b.柱轴力调整(考虑水平荷载)

Nc = αβN

α---中柱α=1、边柱α=1.1、角柱α=1.2

β---地震水平力作用对柱轴力的放大系数

七度抗震:β=1.05、八度抗震:β=1.10

c.柱截面面积估算

Ac≥Nc/(a*fc)

a----轴压比

一级0.7、二级0.8、三级0.9,短柱减0.05

fc---砼轴心抗压强度设计值

Nc---估算柱轴力设计值

d.柱截面宽高bxh

根据受弯确定,中柱可按各向轴跨比估算,通常h/b<4

2.梁截面估算

a. 主梁(bxh):梁高h 取1/8至1/12的梁跨;

b. 悬挑梁(bxh): 1/6的梁跨;

c. 次梁(bxh): 1/12至1/18的梁跨;

h/b=2~3.

3.板截面估算

a. 单向板:板厚取1/30的板跨;

a. 双向板:板厚取1/30至1/40的板跨;

c. 悬挑板: 1/10板跨;

六、竖向恒载计算

1.楼面荷载(kN/m2)

a.混凝土板厚(米)X 25KN/M3(100mm,1x0.1x25=2.5KN/M2)

b.板面(砂浆、瓷砖/木板/等)、板下吊顶。通常楼面可按1kN/m2考虑,

屋面可按2~3kN/m2考虑。

c.板上隔墙:按实际荷载折算,一般轻质隔板可按1kN/m2考虑,轻质砌

体2~3kN/m2考虑

2.梁(剪力墙)上隔墙荷载(kN/m)

a.墙厚(米)X 容重 X 高度:

粘土砖18kN/m3,水泥空心砖10kN/m3,粉煤灰轻渣空心砌块7~8kN/m3,

加气混凝土砌块5.5kN/m3。

b.墙面装饰厚度(双面)X 容重 X 高度

墙面装饰层厚单面通常为0.02m,混合砂浆容重17kN/m3。

c.门窗洞口

扣去洞口部分墙体荷载,加上门窗自重。

梁墙上荷载可取等效均布荷载。

3.墙柱梁表面装饰荷载

通常将混凝土容重取大一点(28 kN/m3)来考虑,不再另外计算。

七、结构计算(上部结构)

根据使用的软件不同,具体方法步骤不同,先掌握我们PKPM的PMCAD、SATWE 及JCCAD.

(一)建模

详见《PKPM建模常见问题及处理建议》、PMCAD使用手册(二)计算参数

详见SATWE使用手册

(三)软件运算

(四)计算书

1.结构平面布置简图(SATWE“接PM生成数据”图形检查)

2.荷载平面布置简图(PMCAD平面荷载显示校核)

3.基本参数等wmass.out

4.位移wdisp.out

5.地震wzq.out

6.各层配筋简图

7.各层梁裂缝、挠度平面简图(梁平法施工图)

8.各层板配筋面积简图(PMCAD画结构平面图)

七、结果分析(SATWE计算结果)

(一)原始输入数据检查(wmass.out)

1.检查各参数是否正确。

2.检查质量(荷载)

a.检查各楼层单位面积质量(1×恒+折减系数X活),与“PMCAD荷

载校核”对比,避免荷载丢失。

b.检查“PMCAD荷载校核”各楼层单位面积荷载(1.2×恒+1.4×活),

与经验值对比,判断荷载是否合理。

(二)结构整体分析

1.水平位移控制(wdisp.out)

a.层间位移角(不考虑偶然偏心)限制:

框架结构 1/550

框架-剪力墙、框架-核心筒、板柱-剪力墙 1/800

筒中筒、剪力墙 1/1000

框支层 1/1000

多、高层钢结构 1/300

b.位移比(考虑偶然偏心)限制:

最大位移(层间位移)与平均位移(平均层间位移)之比:

A级高度建筑(普通多高层属于此类):不宜大于1.5 (抗震规范)

不宜大于1.2,不应大于1.5(高规) B级高度建筑、复杂高层结构、混合结构:不宜大于1.2,不应大于1.4(高规)

2.抗震控制(wzq.out)

a.质量参与系数:不少于90%(高规5.1.13.2)。如果少于90%,增

加计算振型数。

b.周期:规范没有周期大小的控制,根据经验估算,判断是否合理,

如果周期太大,则说明结构刚度太柔。

c.周期比:扭转为主第一周期与平动为主第一周期之比

A级高度建筑不应大于0.9,

B级高度建筑、复杂高层结构、混合结构:不应大于0.85 平动扭转判定:根据平动、扭转系数大小判定,如果平动系数越大,则平动所占的能量越多,一般来说,当该系数大于0.5时可

认为以该振动为主。

第一周期的判定:不要想当然认为排在第一的就是第一周期,应注意剔除局部振动产生的周期。具体可看该振型对底部剪力

的贡献,第一振型的贡献应是最大的。

d.剪重比:该层地震作用总剪力/该层及其上部重力荷载代表值之和

规范规定了最小值(详见抗规表5.2.5,高规表3.3.13)

7度基本周期小于3.5s的结构为0.016。

软件对小于最小值的会自动调整放大。

3.结构竖向规则(wmass.out)

(1). 楼层侧向刚度比

a.普通楼层(刚度用“地震剪力/层间位移”计算)

抗规3.4.2-3.4.3、高规5.1.14规定:该层的侧向刚度小于相邻上

一层的70%,或小于其上相邻三个楼层侧向刚度平均值的80%,该

层地震剪力应乘以1.15的放大系数。

软件会根据计算结果,自动乘以放大系数。

b.首层转换结构(刚度用“剪切刚度”计算)

高规附录E.0.1规定:上下层刚度比宜接近1,抗震设计不应大于2,非抗震设计不大于3。

c.转换层数大于1层结构(刚度用“剪弯刚度”计算)

高规附录E.0.2规定:上下部等效刚度比宜接近1,抗震设计不应

大于1.3,非抗震设计不大于2。

(2)楼层层间受剪承载力

抗规3.4.3.2-2规定:不应小于相邻上一层的65%。

4.结构抗倾覆验算(wmass.out)

抗倾覆弯矩/倾覆弯矩 > 1

5.结构重力二阶效应(wmass.out)

高规5.4.1.1、5.4.1.2规定:刚重比

剪力墙、框剪、筒体EJd/(H2∑Gi) ≥ 2.7 (i=1,n)

框架结构Di*hi/∑Gj≥20,(j=i,n)

不满足要求时,要考虑重力二阶效应。

6.结构整体稳定(wmass.out)

高规5.4.4规定:刚重比应满足一下规定

剪力墙、框剪、筒体EJd/(H2∑Gi) ≥ 1.4 (i=1,n) 框架结构Di*hi/∑Gj≥10,(j=i,n)

混凝土结构设计原理复习重点(非常好)

混凝土结构设计基本原理复习重点(总结很好) 第 1 章绪论 1.钢筋与混凝土为什么能共同工作: (1)钢筋与混凝土间有着良好的粘结力,使两者能可靠地结合成一个整体,在荷载作用下能够很好地共同变形,完成其结构功能。 (2)钢筋与混凝土的温度线膨胀系数也较为接近,因此,当温度变化时,不致产生较大的温度应力而破坏两者之间的粘结。 (3)包围在钢筋外面的混凝土,起着保护钢筋免遭锈蚀的作用,保证了钢筋与混凝土的共同作用。 1、混凝土的主要优点:1)材料利用合理2 )可模性好3)耐久性和耐火性较好4)现浇混凝土结构的整体性好5)刚度大、阻尼大6)易于就地取材 2、混凝土的主要缺点:1)自重大2)抗裂性差3 )承载力有限4)施工复杂、施工周期较长5 )修复、加固、补强较困难 建筑结构的功能包括安全性、适用性和耐久性三个方面 作用的分类:按时间的变异,分为永久作用、可变作用、偶然作用 结构的极限状态:承载力极限状态和正常使用极限状态 结构的目标可靠度指标与结构的安全等级和破坏形式有关。 荷载的标准值小于荷载设计值;材料强度的标准值大于材料强度的设计值 第2章钢筋与混凝土材料物理力学性能 一、混凝土 立方体抗压强度(f cu,k):用150mm×150mm×150mm的立方体试件作为标准试件,在温度为(20±3)℃,相对湿度在90%以上的潮湿空气中养护28d,按照标准试验方法加压到破坏,所测得的具有95%保证率的抗压强度。(f cu,k为确定混凝土强度等级的依据) 1.强度轴心抗压强度(f c):由150mm×150mm×300mm的棱柱体标准试件经标准养护后用标准试验方法测得的。(f ck=0.67 f cu,k) 轴心抗拉强度(f t):相当于f cu,k的1/8~1/17, f cu,k越大,这个比值越低。 复合应力下的强度:三向受压时,可以使轴心抗压强度与轴心受压变形能力都得到提高。 双向受力时,(双向受压:一向抗压强度随另一向压应力的增加而增加;双向受拉:混凝土的抗拉强度与单向受拉的基本一样; 一向受拉一向受压:混凝土的抗拉强度随另一向压应力的增加而降低,混凝土的抗压强度随另一向拉应力的增加而降低) 受力变形:(弹性模量:通过曲线上的原点O引切线,此切线的斜率即为弹性模量。反映材料抵2.变形抗弹性变形的能力) 体积变形(温度和干湿变化引起的):收缩和徐变等。 混凝土单轴向受压应力-应变曲线数学模型 1、美国E.Hognestad建议的模型 2、德国Rusch建议的模型 混凝土的弹性模量、变形模量和剪变模量 弹性模量 变形模量 切线模量 3、(1)徐变:混凝土的应力不变,应变随时间而增长的现象。 混凝土产生徐变的原因: 1、填充在结晶体间尚未水化的凝胶体具有粘性流动性质 2、混凝土内部的微裂缝在载荷长期作用下不断发展和增加的结果 线性徐变:当应力较小时,徐变变形与应力成正比;非线性徐变:当混凝土应力较大时,徐变变形与应力不成正比,徐变比应力增长更快。影响因素:应力越大,徐变越大;初始加载时混凝土的龄期愈小,徐变愈大;混凝土组成成分水灰比大、水泥用量大,徐变大;骨料愈坚硬、弹性模量高,徐变小;温度愈高、湿度愈低,徐变愈大;尺寸大小,尺寸大的构件,徐变减小。养护和使用条件 对结构的影响:受弯构件的长期挠度为短期挠度的两倍或更多;长细比较大的偏心受压构件,侧向挠度增大,承载力下降;由于徐变产生预应力损失。(不利)截面应力重分布或结构内力重分布,使构件截面应力分布或结构内力分布趋于均匀。(有利) (2)收缩:混凝土在空气中结硬时体积减小的现象,在水中体积膨胀。 影响因素:1、水泥的品种:水泥强度等级越高,则混凝土的收缩量越大; 2、水泥的用量:水泥越多,收缩越大;水灰比越大,收缩也越大; 3、骨料的性质:骨料的弹性模量大,则收缩小; 4、养护条件:在结硬过程中,周围的温、湿度越大,收缩越小; 5、混凝土制作方法:混凝土越密实,收缩越小; 6、使用环境:使用环境的温度、湿度大时,收缩小; 7、构件的体积与表面积比值:比值大时,收缩小。 对结构的影响:会使构件产生表面的或内部的收缩裂缝,会导致预应力混凝土的预应力损失等。 措施:加强养护,减少水灰比,减少水泥用量,采用弹性模量大的骨料,加强振捣等。 混凝土的疲劳是荷载重复作用下产生的。(200万次及其以上) 二、钢筋 光圆钢筋:HPB235 表面形状 带肋钢筋:HRB335、HRB400、RRB400 有明显屈服点的钢筋:四个阶段(弹性阶段、屈服阶段、强化阶段、破坏阶段),屈服强度力学性能是主要的强度指标。 (软钢)

概念结构设计和逻辑结构设计

概念结构设计和逻辑结构设计 一.系统概述 本系统通过调查从事医药产品的零售,批发等工作的企业,根据其具体情况设计医药销售管理系统。医药管理系统的设计和制作需要建立在调查的数据基础上,系统完成后预期希望实现药品基本信息的处理,辅助个部门工作人员工作并记录一些信息,一便于药品的销售和管理。通过此系统的功能,从事药品零售和批发等部门可以实现一些功能,如:基础信息管理,进货管理,库房管理,销售管理,财务统计,系统维护等。 二.概念结构设计 1.员工属性 2.药品属性 3.客户属性 4.供应商属性 5.医药销售管理系统E--R 图 三.逻辑结构设计 该设计概念以概念结构设计中的E--R 图为主要依据,设计出相关的整体逻辑结构,具体关系模型如下:(加下划线的表示为主码) 药品信息(药品编号,药品名称,药品类别,规格,售价,进价,有效期,生产日期,产地,备注) 供应商信息(供应商编号,供应商名称,负责人,) 员工 姓名 家庭地址 E-maill 电话 员工 编号 年龄 帐号

四.系统各功能模块如何现(数据流实图);1.基本信息管理子系统 基本信息管理子系统 药品信息员工信息客户信息供应商信息2.库存管理子系统 库存管理子系 统 库存查询库存信息出入库登记库存报表3.销售管理子系统 销售管理 销售登记销售退货销售查询 4.信息预警子系统 信息预警 报废预警库存预警 5.财务统计子系统 财务统计 统计销售额打印报表 6.系统管理子系统

系统管理 权限管理修改密码系统帮助 五.数据库设计(E-R图,数据库表结构) 1.药品基本信息表 列名字段数据类型可否为空说明药品编号 药品名称 药品类别 规格 进价 有效期 生产日期 售价 产地 备注 2.员工基本信息表 列名字段数据类型可否为空说明员工编号 性别 身份证号 员工年龄

工程结构设计原理试卷及答案

()成人高等教育本科课程考试试卷 (A)卷 一、单项选择题 1.配螺旋箍筋的钢筋混凝土柱,其其核心混凝土抗压强度高于单轴混凝土抗压强度是因为【】 A. 螺旋箍筋参与混凝土受压 B. 螺旋箍筋使混凝土密实 C. 螺旋箍筋横向约束了混凝土 D. 螺旋箍筋使纵向钢筋参与受压更强 2.钢筋混凝土轴心受拉构件极限承载力Nu有哪项提供【】 A. 混凝土 B. 纵筋 C. 混凝土和纵筋 D. 混凝土、纵筋和箍筋 3.混凝土在空气中结硬时其体积【】 A. 膨胀 B. 收缩 C. 不变 D. 先膨胀后收缩 4.两根适筋梁,其受拉钢筋的配筋率不同,其余条件相同,正截面抗弯承载力Mu【】 A. 配筋率大的,Mu大 B. 配筋率小的,Mu大 C. 两者Mu相等

D. 两者Mu接近 5.钢筋混凝土结构中要求钢筋有足够的保护层厚度是因为【】 A. 粘结力方面得考虑 B. 耐久性方面得考虑 C. 抗火方面得考虑 D. 以上3者 6.其他条件相同时,钢筋的保护层厚度与平均裂缝间距、裂缝宽度(指构件表面处)的关系是【】 A. 保护层愈厚,平均裂缝间距愈大,裂缝宽度也愈大 B. 保护层愈厚,平均裂缝间距愈小,裂缝宽度也愈小 C. 保护层愈厚,平均裂缝间距愈小,但裂缝宽度愈大 D. 保护层厚度对平均裂缝间距没有影响,但保护层愈厚,裂缝宽度愈大 7.钢筋混凝土梁截面抗弯刚度随荷载的增加以及持续时间增加而【】 A. 逐渐增加 B. 逐渐减少 C. 保持不变 D. 先增加后减少 8.减小预应力钢筋与孔壁之间的摩擦引起的损失σs2的措施是【】 A. 加强端部锚固 B. 超张拉 C. 采用高强钢丝 D. 升温养护混凝土 9.预应力混凝土在结构使用中【】 A. 不允许开裂 B. 根据粘结情况而定 B.C. 有时允许开裂,有时不允许开裂 D. 允许开裂 10.混凝土结构设计中钢筋强度按下列哪项取值【】 A. 比例极限 B. 强度极限 C. 弹性极限 D. 屈服强度或条件屈服强度

(新)机械产品概念设计及其方法综述_

(新)机械产品概念设计及其方法综述_

机械产品概念设计及其方法综述 1机械产品设计的重要性和关键步骤 面对二十一世纪产品竞争日益加剧的挑战,世界各国普遍重视提高产品的设计水平,以增强产品竞争力。产品设计的根本目的就是要创新产品,满足市场需求和占领更大市场。产品设计本身是创造性的劳动,设计的本质是创新。因此,重视创新设计是增加机械产品竞争力的根本途径。 1.1机械产品设计过程的主要步骤 对于机械产品设计过程的不同理解,从本质上说是由于对设计的内涵有不同的认识和对设计的理论有不同的理解。设计过程的模型国内外已有很多的论述,归纳起来主要有三种:一是Pahl和Beitz认为:机械设计分为明确任务、概念设计、技术设计和施工设计等四个阶段。二是Koller认为:机械设计分为产品规划、功能设计、定性设计和定量设计等四个阶段。三是邹慧君教授提出:机械设计分为产品规划、方案设计、详细设计和改进设计等四个阶段。总

之,产品设计过程中十分重视的步骤是功能设计、定性设计。 1.2概念设计在设计过程中的地位 在上述产品设计过程中,概括起来说,设计的主要步骤是两步:一是概念设计(Conceptual Design),另一是构型设计(Configuration Design)。前者的目的是制定出方案,后者的目的是设计出具体构型。从已有的各种设计步骤论述中可以看出概念设计应包括产品规划、功能设计和定性设计等内容。 自从Palh&Beitz于1984年在其《EngineeringDesign》一书中提出概念设计这一名词以来,人们已经对概念设计进行了十几年的研究。他们将概念设计定义为:“在确定任务之后,通过抽象化,拟定功能结构,寻求适当的作用原理及其组合等,确定出基本求解途径,得出求解方案,这一部分设计工作叫做概念设计。” frence在其书中也为概念设计下了一个定义:“概念设计首先是要弄清设计要求和条件,然后生成框架式的广泛意义上的解。在此阶段中对设计师的要求较高,但却可以广泛地提高产品性能。它需要工程科学、专业知识、产品加工方法和商业运作知识等各方面知识相互融合在一起,以作

结构设计原理复习重点.

第一章 1.钢筋混凝土梁比素混凝土梁,有哪些改善? (1)钢筋混凝土梁充分利用了钢筋和混凝土各自的材料特点,使二者结合,共同工作。(2)提高构件的承载能力 (3)改善构件的受力性能 2.钢筋和混凝土共同工作机理? (1)钢筋和混凝土之间有着良好的粘结力,在荷载作用下能很好的共同变形。 (2)钢筋和混凝土的线膨胀系数接近,当温度改变时,两者变形接近,不会产生较大的相对变形而破坏二者之间的粘结。 (3)混凝土作为保护层,保护钢筋不发生锈蚀。 3.钢筋混凝土结构的优点? (1)钢筋被混凝土包裹不致锈蚀,有较好的耐久性。 (2)充分发挥了混凝土和钢筋两种材料的特点,形成的构件有较大的承载力和刚度。(3)可模性好,可以根据需要浇筑成各种结构形状和尺寸的结构。 (4)所用原材料大部分为砂石,便于就地取材。 (5)现浇钢筋混凝土结构整体性较好,设计合理时有良好的抗震、抗爆和抗振动性能。(6)耐火性较好,钢筋混凝土结构与钢结构相比具有较好的耐火性。 4.钢筋混凝土结构的缺点? (1)自重大,使得结构很大一部分承载力消耗在承受自重上。 (2)抗裂性能较差,往往是带缝工作。 (3)施工受气候条件影响较大。 (4)检测、加固、拆除比较困难。 5.混凝土强度的3个指标(基本代表值)?

(1)混凝土立方体抗压强度fcu:边长为150mm的立方体标准试件,在20℃±2℃的温度和相对湿度在95%以上的潮湿空气中养护28d,依照标准制作方法和试验方式测得的抗压强度值。(立方体抗压强度标准值fcuk,具有95%的强度保证率,是混凝 土强度等级分级的根据。) (2)混凝土轴心抗压强度fc(棱柱体抗压强度):以150mm×150mm×300mm的 标准试件,按照与立方体试件相同条件和试验方法,所得棱柱体抗压强度值称为混凝土轴心抗压强度。 (3)混凝土轴心抗拉强度ft:通过劈裂试验测定混凝土劈裂抗拉强度fts,再乘换算系数 0.9,得到混凝土轴心抗拉强度。 6.徐变:在荷载的长期作用下,混凝土的变形将随时间而增加,亦即在应力不变的情况下,混凝土的应变随时间继续增长,这种现象被称为徐变。 7.减小徐变的手段? 降低水灰比,减少水泥用量;增大集料的体积比;适当提高混凝土养生的温度和湿度,使得水泥水化更充分。 8.徐变的好处与坏处? 好处:(1)有利于结构构件产生应力重分布,减少应力集中现象(2)减小大体积混凝土的温度应力 坏处:(1)引起预应力损伤(2)在长期高应力作用下会导致破坏 9.混凝土的收缩:在混凝土凝结和硬化的物理化学过程中体积随时间推移而减小的现象。10:热轧钢筋的强度限值为什么取屈服强度? 热轧钢筋受拉达到屈服点后,有比较大的流幅,构件会出现很大的变形和过宽的裂缝而不能正常使用,因此以屈服强度作为钢筋强度的限值。 对于硬钢,没有明显的流幅,一般取残余应变为0.2%时对应的应力作为其强度限值,称为条件屈服强度。 11.光圆钢筋与混凝土粘结机理? (1)钢筋与混凝土中水泥胶体的胶结力 (2)钢筋与混凝土接触面上的摩擦力

工程结构荷载与可靠度设计原理_复习资料

荷载与结构设计原理总复习题 一、判断题 1.严格地讲,狭义的荷载与直接作用等价,广义的荷载与间接作用等价。(N) 2.狭义的荷载与直接作用等价,广义的荷载与作用等价。(Y) 3.广义的荷载包括直接作用和间接作用。(Y) 4.按照间接作用的定义,温度变化、基础不均匀沉降、风压力、地震等均是间接作用。(N) 5.由于地震、温度变化、基础不均匀沉降、焊接等引起的结构内力变形等效应的因素称为间接作用。(Y) 6.土压力、风压力、水压力是荷载,由爆炸、离心作用等产生的作用在物体上的惯性力不是荷载。(N) 7.由于雪荷载是房屋屋面的主要荷载之一,所以基本雪压是针对屋面上积雪荷载定义的。(N)8.雪重度是一个常量,不随时间和空间的变化而变化。(N) 9.雪重度并非一个常量,它随时间和空间的变化而变化。(N) 10.虽然最大雪重度和最大雪深两者有很密切的 关系,但是两者不一定同时出现。(Y) 11.汽车重力标准是车列荷载和车道荷载,车列荷 载是一集中力加一均布荷载的汽车重力形式。 (N) 12.烈度是指某一地区遭受一次地震影响的强弱程度,与震级和震源深度有关,一次地震有多个烈度。(Y) 13.考虑到荷载不可能同时达到最大,所以在实际工程设计时,当出现两个或两个以上荷载时,应采用荷载组合值。(N) 14.当楼面活荷载的影响面积超过一定数值需要 对均布活荷载的取值进行折减。(Y) 15.土的侧压力是指挡土墙后的填土因自重或外 荷载作用对墙背产生的土压力。(Y) 16.波浪荷载一般根据结构型式不同,分别采用不同的计算方法。(Y) 17.先张法是有粘结的预加力方法,后张法是无粘结的预加力方法。(Y) 18.在同一大气环境中,各类地貌梯度风速不同,地貌越粗糙,梯度风速越小。(N)19.结构构件抗力R是多个随机变量的函数,且近似服从正态分布。(N) 20.温度作用和变形作用在静定结构中不产生内力,而在超静定结构中产生内力。(Y) 21.结构可靠指标越大,结构失效概率越小,结构越可靠。(Y) 22.朗肯土压力理论中假设挡土墙的墙背竖直、光滑、填土面水平无超载。(Y) 23.在朗肯土压力理论的假设中,墙背与填土之间既无摩擦力也无剪力存在。(Y) 24.在朗肯土压力理论的假设中,墙背与填土之间虽然无摩擦力,但仍有剪力存在。(N) 25.土的自重应力为土自身有效重力在土体中引起的应力。(Y) 26.不但风的作用会引起结构物的共振,水的作用也会引起结构物的共振。(Y) 27.平均风速越大,脉动风的幅值越大,频率越高。(N) 28.风压是指风以一定的速度向前运动受到阻塞时对阻塞物产生的压力。(Y) 29.地震作用中的体波可以分为横波和纵波,两者均可在液体和固体中传播。(N) 30.如果波浪发生破碎的位置距离直墙在半个波 长以内,这种破碎波就称为近区破碎波。(Y)31.远区破碎波与近区破碎波的分界线为波浪破 碎时发生在一个波长的范围内。(N) 32.在实际工程设计时,当出现可变荷载,应采用 其荷载组合值。(N) 33.对于静定结构,结构体系的可靠度总大于或等 于构件的可靠度。(N) 34.对于超静定结构,当结构的失效形态不唯一 时,结构体系的可靠度总小于或等于结构每一失效形态对应的可靠度。(Y) 35.结构设计的目标是确保结构的承载能力足以 抵抗内力,而变形控制在结构能正常使用的范围内。(Y) 36.对实际工程问题来说,由于抗力常用多个影响 大小相近的随机变量相乘而得,则其概率分布一般来说是正态的。(N) 37.结构可靠度是指结构可靠性的概率度量,是结 构在规定的时间内,在规定的条件下,完成预定功能的概率。

结构设计原理知识点

第一章 钢筋混凝土结构基本概念及材料的物理力学性能 1.混凝土立方体抗压强度cu f :(基本强度指标)以边长150mm 立方体试件,按标准方法制作养护28d ,标准试验方法(不涂润滑剂,全截面受压,加载速度0.15~0.25MPa/s )测得的抗压强度作为混凝土立方体抗压强度 cu f 。 影响立方体强度主要因素为试件尺寸和试验方法。尺寸效应关系: cu f (150)=0.95cu f (100) cu f (150)=1.05cu f (200) 2.混凝土弹性模量和变形模量。 ①原点弹性模量:在混凝土受压应力—应变曲线图的原点作切线,该切线曲率即为原点弹性模量。表示为:E '=σ/ε=tan α0 ②变形模量:连接混凝土应力应变—曲线的原点及曲线上某一点K 作割线,K 点混凝土应力为σc (=0.5c f ),该割线(OK )的斜率即为变形模量,也称割线模量或弹塑性模量。 E c '''=tan α1=σc /εc 混凝土受拉弹性模量与受压弹性模量相等。 ③切线模量:混凝土应力应变—上某应力σc 处作一切线,该切线斜率即为相应于应力σc 时的切线模量''c E =d σ/d ε 3 . 徐变变形:在应力长期不变的作用下,混凝土的应变随时间增长的现象称为徐变。 影响徐变的因素:a. 内在因素,包括混凝土组成、龄期,龄期越早,徐变越大;b. 环境条件,指养护和使用时的温度、湿度,温度越高,湿度越低,徐变越大;c. 应力条件,压应力σ﹤0.5 c f ,徐变与应力呈线性关系;当压应力σ介于(0.5~0.8)c f 之间,徐变增长比应力快;当压应力σ﹥0.8 c f 时,混凝土的非线性徐变不收敛。 徐变对结构的影响:a.使结构变形增加;b.静定结构会使截面中产生应力重分布;c.超静定结构引起赘余力;d.在预应力混凝土结构中产生预 应力损失。 4.收缩变形:在混凝土中凝结和硬化的物理化学过程中体积随时间推移而减少的现象称为收缩。 混凝土收缩原因:a.硬化初期,化学性收缩,本身的体积收缩;b.后期,物理收缩,失水干燥。 影响混凝土收缩的主要因素:a.混凝土组成和配比;b.构件的养护条件、使用环境的温度和湿度,以及凡是影响混凝土中水分保持的因素;c.构件的体表比,比值越小收缩越大。 混凝土收缩对结构的影响:a.构件未受荷前可能产生裂缝;b.预应力构件中引起预应力损失;c.超静定结构产生次内力。 5.钢筋的基本概念 1.钢筋按化学成分分类,可分为碳素钢和普通低合金钢。 2钢筋按加工方法分类,可分为a.热轧钢筋;b.热处理钢筋;c.冷加工钢筋(冷拉钢筋、冷轧钢筋、冷轧带肋钢筋和冷轧扭钢筋。) 6.钢筋的力学性能 物理力学指标:(1)两个强度指标:屈服强度,结构设计计算中强度取值主要依据;极限抗拉强度,材料实际破坏强度,衡量钢筋屈服后的抗拉能力,不能作为计算依据。(2)两个塑性指标:伸长率和冷弯性能:钢材在冷加工过程和使用时不开裂、弯断或脆断的性能。 7.钢筋和混凝土共同工作的的原因:(1)混凝土和钢筋之间有着良好的黏结力;(2)二者具有相近的温度线膨胀系数;(3)在保护层足够的前提下,呈碱性的混凝土可以保护钢筋不易锈蚀,保证了钢筋与混凝土的共同作用。 第二章 结构按极限状态法设计计算的原则 1.结构概率设计的方法按发展进程划分为三个水准:a.水准Ⅰ,半概率设计法,只对影响结构可靠度的某些参数,用数理统计分析,并与经验结合,对结构的可靠度不能做出定量的估计;b.水准Ⅱ,近似概率设计法,用概率论和数理统计理论,对结构、构件、或截面设计的可靠概率做出近似估计,忽略了变量随时间的关系,非线性极限状态方程线性化;c.水准Ⅲ,全概略设计法,我国《公桥规》采用水准Ⅱ。 2.结构的可靠性:指结构在规定时间(设计基准期)、规定的条件下,完成预定功能的能力。 可靠性组成:安全性、适用性、耐久性。 可靠度:对结构的可靠性进行概率描述称为结构可靠度。 3.结构的极限状态:当整个结构或构件的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态称为该功能的极限状态。 极限状态分为承载能力极限状态、正常使用极限状态和破坏—安全状态。 承载能力极限状态对应于结构或构件达到最大承载力或不适于继续承载的变形,具体表现:a.整个构件或结构的一部分作为刚体失去平衡;b.结构构件或连接处因超过材料强度而破坏;c.结构转变成机动体系;d.结构或构件丧失稳定;e.变形过大,不能继续承载和使用。 正常使用极限状态对应于结构或构件达到正常使用或耐久性能的某项规定限值,具体表现:a.由于外观变形影响正常使用;b.由于耐久性能的局部损坏影响正常使用;c.由于震动影响正常使用;d.由于其他特定状态影响正常使用。 破坏—安全状态是指偶然事件造成局部损坏后,其余部分不至于发生连续倒塌的状态。(破坏—安全极限状态归到承载能力极限状态中) 4.作用:使结构产生内力、变形、应力、应变的所有原因。 作用分为:永久作用、可变作用和偶然作用。 永久作用:在结构使用期内,其量值不随时间变化,或其变化与平均值相比可忽略不计的作用 可变作用:在结构试用期内,其量值随时间变化,且其变化值与平均值相比较不可忽略的作用。

结构设计原理计算方法

结构设计原理案例计算步骤 一、单筋矩形截面受弯构件正截面承载力计算 计算公式: ——水平力平衡 ()——所有力对受拉钢筋合力作用点取矩() ()——所有力对受压区砼合力作用点取矩()使用条件: 注:/,&& 计算方法: ㈠截面设计yy 1、已知弯矩组合设计值,钢筋、混凝土强度等级及截面尺寸b、h,计算。 ①由已知查表得:、、、; ②假设; ③根据假设计算; ④计算(力矩平衡公式:); ⑤判断适用条件:(若,则为超筋梁,应修改截面尺寸或提 高砼等级或改为双筋截面); ⑥计算钢筋面积(力平衡公式:); ⑦选择钢筋,并布置钢筋(若 ,则按一排布置); 侧外 ⑧根据以上计算确定(若与假定值接近,则计算,否则以的确定值作 为假定值从③开始重新计算); ⑨以的确定值计算; ⑩验证配筋率是否满足要求(,)。 2、已知弯矩组合设计值,材料规格,设计截面尺寸、和钢筋截面面积。 ①有已知条件查表得:、、、; ②假设,先确定; ③假设配筋率(矩形梁,板); ④计算(,若,则取); ⑤计算(令,代入); ⑥计算(,&&取其整、模数化); ⑦确定(依构造要求,调整); ⑧之后按“1”的计算步骤计算。 ㈡承载力复核 已知截面尺寸b、,钢筋截面面积,材料规格,弯矩组合设计值,

所要求的是截面所能承受的最大弯矩,并判断是否安全。 ①由已知查表得:、、、; ②确定; ③计算; ④计算(应用力平衡公式:,若,则需调整。令, 计算出,再代回校核); ⑤适用条件判断(,,); ⑥计算最大弯矩(若,则按式计算最大弯矩) ⑦判断结构安全性(若,则结构安全,但若破坏则破坏受压区,所以应以受压区控制设计;若,则说明结构不安全,需进行调整——修改尺寸或提高砼等级或改为双筋截面)。 二、双筋矩形截面梁承载力计算 计算公式: , ,()+() 适用条件: (1) (2) 注:对适用条件的讨论 ①当&&时,则应增大截面尺寸或提高砼等级或增加的用量(即 将当作未知数重新计算一个较大的);当时,算得的即为安全要 求的最小值,且可以有效地发挥砼的抗压强度,比较经济; ②当&&时,表明受压区钢筋之布置靠近中性轴,梁破坏时应变较 小,抗压钢筋达不到其设计值,处理方法: a.《公桥规》规定:假定受压区混凝土压应力的合力作用点与受压区钢筋合力作用 点重合,并对其取矩,即 令2,并 () 计算出; b.再按不考虑受压区钢筋的存在(即令),按单筋截面梁计算出。 将a、b中计算出的进行比较,若是截面设计计算则取其较小值,若是承载能力复核则取其较大值。 计算方法: ㈠截面设计 1.已知截面尺寸b、h,钢筋、混凝土的强度等级,桥梁结构重要性系数,弯矩组合 设计值,计算和。 步骤: ①根据已知查表得:、、、、; ②假设、(一般按双排布置取假设值); ③计算;

结构设计原理

结构设计原理 交卷时间:2016-11-05 15:53:42一、单选题 1. (2分)钢筋屈服状态指 得分: 2 知识点:结构设计原理作业题 答案B 解析 考查要点: 试题解答: 2. (2分)地震荷载属于()

得分: 2 知识点:结构设计原理作业题 答案D 解析 考查要点: 试题解答: 3. (2分)下列对结构的分类不属于按受力特征分类的是:() 得分: 2 知识点:结构设计原理作业题 答案A 解析 考查要点: 试题解答: 4. (2分) 直径300mm的轴心受压柱,由C25混凝土(f cd=11.5Mpa),HPB300(f sd=270Mpa)钢筋制作,要它能够承担1400kN的压力,最好选直径25mm的钢筋()根。

得分: 2 知识点:结构设计原理考试题 答案C 解析 考查要点: 试题解答: 5. (2分)梁内抵抗弯矩的钢筋主要是() 得分: 2 知识点:结构设计原理作业题 答案A 解析 考查要点: 试题解答: 6. (2分)事先人为引入内部应力的混凝土叫()。

得分: 2 知识点:结构设计原理作业题 答案C 解析 考查要点: 试题解答: 7. (2分)下列描述是适筋梁的是() 得分: 2 知识点:结构设计原理考试题 答案C 解析 考查要点: 试题解答: 8. (2分)拉伸长度保持不变,钢筋中的应力随时间而减小的现象叫()。

得分: 2 知识点:结构设计原理作业题 答案D 解析 考查要点: 试题解答: 9. (2分)针对地震荷载的计算属于() 得分: 2 知识点:结构设计原理考试题 答案D 解析 考查要点: 试题解答: 10.

《工程结构荷载与可靠度设计原理》复习题

《工程结构荷载与可靠度设计原理》复习题 第一章荷载类型 1.荷载:由各种环境因素产生的直接作用在结构上的各种力称为荷载。 2.作用:能使结构产生效应(结构或构件的内力、应力、位移、应变、裂缝等)的各种因素总称为作用。 3.荷载与作用的区别与联系. 区别:荷载不一定能产生效应,但作用一定能产生效应。 联系:荷载属于作用的范畴。 第二章重力 1.土是由土颗粒、水和气体组成的三项非连续介质。 2.雪压:单位面积地面上积雪的自重。 3.基本雪压:当地空旷平坦地面上根据气象记录资料经统计得到的在结构使用期间可能出现的最大雪压值。 第三章侧压力 1.根据挡土墙的位移情况和墙后土体所处的应力状态,土压力可分为静止土压力、主动土压力和被动土压力。 三种土压力的受力特点: (1)静止土压力:挡土墙在土压力作用下,不产生任何方向的位移或转动而保持原有的位置,墙后土体处于弹性平衡状态。 (2)主动土压力:挡土墙在土压力的作用下,背离墙背方向移动或转动时,墙后土压力逐渐减小,当达到某一位移量值时,墙后土体开始下滑,作用在挡土墙上的土压力达到最小值,滑动楔体内应力处于主动极限平衡状态。 (3)被动土压力:挡土墙在外力作用下向墙背方向移动或转动时,墙体挤压土体,墙后土压力逐渐增大,当达到某一位移时,墙后土体开始上隆,作用在档土墙上的土压力达到最大值,滑动楔体内应力处于被动极限平衡状态。 2.水对结构物的力学作用表现在对结构物表面产生静水压力和动水压力。静水压力可能导致结构物的滑动或倾覆;动水压力,会对结构物产生切应力和正应力,同时还可能引起结构物的振动,甚至使结构物产生自激振动或共振。 3.(1)冻胀力:在封闭体系中,由于土体初始含水量冻结,体积膨胀产生向四面扩张的内应力,这个力称为冻胀力。(2)冻土:具有负温度或零温度,其中含有冰,且胶结着松散固体颗粒的土,称为冻土。 (3)冻胀原理:水分由下部土体向冻结锋面迁移,使在冻结面上形成了冰夹层和冰透镜体,导致冻层膨胀,底层隆起。(4)影响冻土的因素:含水量、地下水位、比表面积和温差。 第四章风荷载 1.基本风压:按规定的地貌、高度、时距等量测的风速所确定的风压称为基本风压。通常应符合以下五个规定:标准高度的规定(10m)、地貌的规定(空旷平坦)、公称风速的时距(10分钟)、最大风速的样本时间(1年)和基本风速重现期(30-50年)。 2.风效应可以分为顺风向结构风效应和横风向结构风效应两种。 3.速度为的风流经任意截面物体,都将产生三个力:物体单位长度上的顺风向力p D、横风向力P L以及扭力矩P M。 第五章地震作用 1.地震按其产生的原因,可分为火山地震、陷落地震和构造地震。 2.(1)震源:即发震点,是指岩层断裂处。 (2)震中:震源正上方的地面地点。 (3)震源深度:震中至震源的距离。 (4)震中距:地面某处到震中的距离。 (5)震级:衡量一次地震规模大小的数量等级。 (6)地震能:一次地震所释放的能量。 (7)烈度:某一特定地区遭受一次地震影响的强弱程度。 (8)地震波:传播地震能量的波 3.地震波分为在地球内部传播的体波和在地面附近传播的面波。 第七章荷载的统计分析 1.平稳二项随机过程荷载模型的假定为:

从概念设计到方案表现的工作流程

从概念设计到方案表现的工作流程 关键词:概念设计 方案表现 工作流程 基本操作 随着中国加入WTO,国内经济飞速发展,与国际交流日益频繁,作为传达信息和宣传自身形象的重要手段,景观设计的重要地位日益凸现。景观设计是一门集景观分析、规划、设计、管理、保护的科学艺术。因而,景观设计师必须是能够运用现代设计理念,能够独立从事景观设计的专业技术人才,他或她应该是可持续人居环境的规划设计者、创造者。对于没有专业背景并对景观设计有着浓厚兴趣的初学者来说,最需要的是在短时间内能够学会从设计到要素表现的一整套流程,对景观设计有一个全局的了解,并能够进行简单的概念设计,这样有利于在今后的工作中更好地选择适合自己发展的切入点,再进一步求精求好。 下面我就从概念设计到方案表现的工作流程做一个简单的概括。 一、概念设计阶段 本阶段的目标是在满足功能的前提下,协调人与环境的关系,通过设计营造更舒适的人居环境。因此,我们在设计过程中要学会变换角色,站在不同立场上考虑,尽量满足政府,居住者,游人,甲方等不同人群的需求。另外还要注意人与景的关系,即人是否可以参与其中,做到情景交融。本阶段具体内容包括: (一)搜集资料(包括甲方设计委托书,地界红线图电子文档,地质勘察报告,气象资料,水文地质资料,实地拍摄的照片,当地文化历史资料)。 (二)分析消费者心态,确定方案立意,大体构图形态。 (三)交通功能分析,做功能区划分,进行绿化分析,景观分析,深化方案。 二、方案表现阶段 方案确立后,下一步的任务是通过手绘或计算机对设计方案进行表现。一套完整的方案应包括设计说明,区位现状图,总平面图,功能结构图,交通分析图,绿化结构图,景观分析图,总体鸟瞰图,局部鸟瞰图,局部剖立面图,绿化景观示意图,公共设施铺装示意图。其中平面图可采用在CAD中绘制,导入Photoshop中填色的方法,也可直接手工绘制。各种分析图是在总平面图的基础上添加路线或区域绘制而成的。鸟瞰图手绘表现需要看区域的大小而定,若面积较大,适合用轴侧图来表现,面积较小,适合用透视图来表现;也可采用3ds max7建模photoshop后期处理的方法来实现。接下来重点介绍一套完整方案的制作流程。 (一)总平面图绘制 (1)启动CAD软件,绘制总平面图,局部立面图,局部剖面图。 (2)将总平面CAD图形以tif格式输出。具体过程如下:在打印设备选项卡中点击打印按

结构设计入门——概念设计

结构设计入门——概念设计 在不断的结构设计研究与实践中,人们积累了大量有益的经验,并体现在设计规范、设计手册、标准图集等等。随着计算机技术和计算方法的发展,计算机及其结构程序在结构工程中得到大量地应用,每个设计单位都在为彻底甩掉图板而做努力。结果给部分结构工程师造成一种错觉,觉得结构设计很简单,只需遵循规范、手册、图集,等待建筑师给一个空间形成的方案,使用计算机,然后设法去完成它,自己只不过是一个东拼西凑的计算机画图匠而已。这不仅不能有效地运用他们的知识、精力和时间,而且还会与建筑师的交流中产生分歧与矛盾。 我国结构计算理论经历了经验估算,容许应力法,破损阶段计算,极限状态计算,到目前普遍采用的概率极限状态理论等阶段。现行的《建筑结构设计统一标准》(GBJ68-84)则采用以概率理论为基础的结构极限状态设计准则,以使建筑结构的设计得以符合技术先进、经济合理、安全适用。概率极限状态设计法更科学、更合理。但该法在运算过程中还带有一定程度的近似,只能视作近似概率法。并且光凭极限状态设计也很难估计建筑物的真正承载力的。事实上,建筑物是一个空间结构,各种构件以相当复杂的方式共同工作,且都并非是脱离总的结构体系的单独构件。目前,人们在具

体的空间结构体系整体研究上还有一定的局限性,在设计过程中采用了许多假定与简化。作为结构工程师不应盲目的照搬照抄规范,应该把它作为一种指南、参考,并在实际设计项目中作出正确的选择。这就要求结构工程师对整体结构体系与各基本分体系之间的力学关系有透彻的认识,把概念设计应用到实际工作中去。 所谓的概念设计一般指不经数值计算,尤其在一些难以作出精确理性分析或在规范中难以规定的问题中,依据整体结构体系与分体系之间的力学关系、结构破坏机理、震害、试验现象和工程经验所获得的基本设计原则和设计思想,从整体的角度来确定建筑结构的总体布置和抗震细部措施的宏观控制。运用概念性近似估算方法,可以在建筑设计的方案阶段迅速、有效地对结构体系进行构思、比较与选择,易于手算。所得方案往往概念清晰、定性正确,避免后期设计阶段一些不必要的繁琐运算,具有较好的的经济可靠性能。同时,也是判断计算机内力分析输出数据可靠与否的主要依据。 比如,有的设计人员用多、高层结构三维空间分析程序来计算底层框架,还人为的布置一些抗震墙,即不能满足楼层间的合理刚度比,也不能正确地反映底层框架在地震时受力状态。问题在于结构概念不明确,没考虑这两种结构体系的差异。软件的选择和使用不当,造成危害是不容忽视的。

结构设计原理复习重点

立方体抗压强度fcu>轴心抗压强度fc>轴心抗拉强度ft ;fcu 和试验方法、实验尺寸有关。试验尺寸越小,强度值越大。(1)双向受压时,一向混凝土强度随另一向压应力增加而增加;(2)双向受拉时,双向抗拉强度接近单向抗拉强度(3)一侧受拉一侧受压,强度均低于单向受力强度。 影响砌体抗压强度主要因素:块材的强度、尺寸和形状,砂浆的物理力学性能,砌筑质量 分为荷载作用下的变形和体积变形(收缩)。徐变:在荷载长期作用下,混凝土变形随时间增加而增加,应力不变的情况下,应变随时间增加。 (1)混凝土强度越高,应力应变曲线下降越剧烈,延性越差。(2)应变速率小,峰值应力fc 降低,峰值应变增大,下降段曲线显著减缓(3)测试技术和实验条件 后者与前者相比,后者没有明显的流服或屈服点。同时其强度很高,但延伸率大为减少, 塑性性能降低。 软钢:有物理屈服点。以屈服点处的强度值作为计算承载力时的强度极限。 硬钢:无物理屈服点。设计上取相应残余应变为0.2%的应力作为假定屈服强度 结构功能:(1)结构应能承受在正常施工和正常使用期间出现的各种荷载、外加变形、约束变形的作用(2)结构在正常使用条件下具有良好的工作性能(3)结构在正常使用和正常维护条件下,具有足够的耐久性(4)在偶然荷载作用下或偶然事件发生时、发生后,结构仍能保持整体稳定性,不发生倒塌。 功能函数:Z=R-S ≥0结构处于可靠、极限状态。 (1)适筋梁破坏;钢筋先屈服后混凝土被压碎,属延性破坏。 (2)超筋梁破坏;混凝土先被压碎,钢筋不屈服,属脆性破坏。 (3)少筋梁破坏;混凝土一开裂,钢筋马上屈服而破坏,属脆性破坏 (1)平截面假设:混凝土平均应变沿截面高度按直线分布。(2)不考虑混凝土的抗拉强度。拉力全部由钢筋承担。(3)纵向钢筋应力应变方程:s s =s y E f σε≤(纵向钢筋的极限拉应变取0.01) (4)混凝土受压应力应变曲线方程按规定取用 优点:提高了截面承受弯矩的能力;提高截面的延性。 缺点:钢筋用量增多,不经济 若超过400,则混凝土破坏时钢筋未达到屈服强度,适用高强度钢筋不经济。 梁:纵向受拉钢筋(主钢筋)、弯起钢筋或斜拉钢筋、箍筋、架立钢筋和水平纵向钢筋。梁内

(建筑工程管理)建筑结构设计应具备的概念

(建筑工程管理)建筑结构设计应具备的概念

1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,在剪力墙的轴压比计算中,轴力取重力荷载代表设计值,和柱子的不壹样。 2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5。 3、侧向刚度比:主要为控制结构竖向规则性。 4、位移比:主要为控制结构平面规则性,以免形成扭转,对结构产生不利影响。控制比例为1.5。见抗规3.4.2、3.4.3。 5、周期比:主要为控制结构扭转效应,减小扭转对结构产生的不利影响,要求见高规4.3.5。 6、刚重比:主要为控制结构的稳定性,以免结构产生滑移和倾覆,要求见高规。 7、剪跨比:梁的剪跨比,剪力的位置a和h0的比值。剪跨比影响了剪应力和正应力之间的相对关系,因此也决定了主应力的大小和方向,也影响着梁的斜截面受剪承载力和破坏的方式;同时也反映在受剪承载力的公式上。柱的剪跨比,若反弯点在柱子层高范围内,可取柱子的剪跨比小于2时,需要全长加密,见混凝土规范11.4.12、11.4.17。 8、剪压比(梁柱截面上的名义剪应力V/bh0和混凝土轴心抗压强度设计值的比值):梁塑性铰区的截面剪压比对梁的延性、耗能能力及保持梁的强度、刚度有明显的影响,当剪压比大于0.15的时候,梁的强度和刚度有明显的退化现象,此时再增加箍筋用量,也不能发挥作用,因此对梁柱的截面尺寸有所要求。 9、轴压比:轴压比是指有地震作用组合的柱组合轴压力设计值和柱的全截面面积和砼轴心受压抗压强度设计值乘积的比值,是影响柱子破坏形态和延性的主要因素之壹。轴压比限值的依据是理论分析和试验研究且参照国外的类似条件确定的,其基准值是对称配筋柱大小偏心受压状态的轴压比分界值。 10、跨高比:梁的跨高比(梁的净跨和梁截面高度的比值)对梁的抗震性能有明显的影响。梁(非剪力墙的连梁)的跨高比小于5和深梁都按照深受弯构件进行计算的。 11、延性比:延性比即为弹塑性位移增大系数。延性是指材料、构件、结构在初始强度没有明显退化的情况下的非弹性变形能力。延性比主要分为三个层面,即截面的延性比、构件的延性比和结构的延性比。结构的延性比多指框架或者剪力墙等结构的水平荷载-顶层水平位移(P-delta)、水平荷载-层间位移等曲线。结构的屈服位移有等能量方法、几何做图法等 12、薄弱层:该楼层的层间受剪承载力小于相邻上壹楼层的80%;薄弱层主要是针对大震而言的;屈强系数小于0.5的结构层、在大震下楼层塑性变形大于规范要求的大震下的允许值的结构层。 所谓的薄弱层,是指在强烈地地震作用下,结构首先发生屈服且产生较大弹塑性变形的部位。是指该楼层的层间受剪承载力小于向邻上壹楼层的80%,能够认为,是从结构强度的角度来判断。高规中说明竖向不规则结构形成薄弱部位,而薄弱部位有三种情况,壹是刚度不连续形成的柔软层,壹是强度不连续形成的薄弱层,仍有壹种就是有水平转换体系的竖向构件不连续的结构.因此2楼和5楼说的都是柔软层.但实际我见很多地方所说的薄弱层就是指薄弱部位的意思,且没区分的很仔细 位置在下列情况确定: 1)楼层屈服强度系数沿房屋高度分布均匀的结构,可取底层; 2)楼层屈服强度系数沿房屋高度分布不均匀的结构,可取该系数最小的楼层(部位)和相对较小的楼层,壹般不超过2-3处; 3)单层厂房,可取上层; 薄弱层指强度,软弱层指刚度。壹个是刚度比,另壹个是承载力比,二者不满足规范要求均是薄弱层。请见见高规条文说明 4.4.2“正常设计的高层建筑下部楼层刚度宜大于上部楼层的侧向刚度,否则变形会集中于刚度小的下部楼层而形成结构薄弱层”由此可推断出只要是刚度小于上层的楼层都应当算作薄弱层。按照高规5.1.14“对于竖向不规则的高层建筑结构,小于

7.3 概念结构设计(S)

7.3 概念结构设计 将需求分析得到的用户需求抽象为信息结构即概念模型的过程就是概念结构设计。它是整个数据库设计的关键。(概念结构是对用户需求的客观反映,不涉及到软硬件环境,也不能直接在数据库管理系统DBMS上实现,是现实世界与机器世界的中介。这一阶段所产生的工作结果一般表现为E-R图的形式,它不仅能够充分反映客观世界,而且易于非计算机人员理解,易于向关系、网状、层次等各种数据模型转换。) 7.3.1 概念结构 在需求分析阶段所得到的应用需求应该首先抽象为信息世界的结构,才能更好地、更准确地用某一DBMS实现这些需求。 概念结构的主要特点是: (1) 能真实、充分地反映现实世界,包括事物和事物之间的联系,能满足用户对数据的处理要求。是对现实世界的一个真实模型。 (2) 易于理解,从而可以用它和不熟悉计算机的用户交换意见,用户的积极参与是数据库的设计成功的关键。 (3) 易于更改,当应用环境和应用要求改变时,容易对概念模型修改和扩充。 (4) 易于向关系、网状、层次等各种数据模型转换。 概念结构是各种数据模型的共同基础,它比数据模型更独立于机器、更抽象,从而更加稳定。 描述概念模型的有力工具是E-R模型。有关E-R模型的基本概念已在第一章介绍。下面将用E-R模型来描述概念结构。 7.3.2 概念结构设计的方法与步骤 设计概念结构通常有四类方法: ·自顶向下。即首先定义全局概念结构的框架,然后逐步细化,如图7.7(a)所示。 ·自底向上。即首先定义各局部应用的概念结构,然后将它们集成起来,得到全局概念结构,如图7.7(b)所示。 ·逐步扩张。首先定义最重要的核心概念结构,然后向外扩充,以滚雪球的方式逐步生成其他概念结构,直至总体概念结构,如图7.7(c)所示。 ·混合策略。即将自顶向下和自底向上相结合,用自顶向下策略设计一个全局概念结构的框架,以它为骨架集成由自底向上策略中设计的各局部概念结构。 其中最经常采用的策略是自底向上方法。即自顶向下地进行需求分析,然后再自底向上地设计概念结构。如图7.8所示。这里只介绍自底向上设计概念结构的方法。它通常分为两步:第1步是抽象数据并设计局部视图,第2步是集成局部视图,得到全局的概念结构,如图7.9所示。

相关主题
文本预览
相关文档 最新文档