当前位置:文档之家› pic单片机控制双向可控硅调节交流电压的电路设计

pic单片机控制双向可控硅调节交流电压的电路设计

pic单片机控制双向可控硅调节交流电压的电路设计
pic单片机控制双向可控硅调节交流电压的电路设计

由于项目需要根据光照传感器采集到的光照强度或上位机的指令调节交流灯泡的亮度。最好的方式便是调节供电的交流电压。参考了许多资料,最后决定采用采集交流信号的同步信号,并根据此交流信号输出延时脉冲控制可控硅导通角的方式进行交流调压。

1.交流电压过零点信号提取

图1 交流同步信号提取

如上图1所示,左侧为两个30K/2W的电阻,这样限制输入电流为:220V/60K=3.67mA,由于该路仅仅是为了提取交流信号,因此小电流输入即可。整流桥芯片采用小功率(2W)的KBP210,之后接入一个光耦(P521),这样如图1整流后信号电压值超过光耦前段二极管的导通电压时,即产生一次脉冲,光耦右侧为一上拉电路,VCC为单片机供电电压:+3.3V。光耦三极管导通时,输出低电平,关闭时输出高电平。输出同步信号如上图1同步信号。

2.PIC单片机的输入信号及输出脉冲

图2 单片机的输入同步信号及输出脉冲

如上图2所示,采集到的同步信号进入PIC单片机的一个数值I/O 口,作为外部中断的触发信号,每触发一次,单片机进一次中断,然后人为定义一个延时,一定导通角后输出可控硅触发信号,延时时间越长(注意应小于半个周期的时间:10ms),一个周期内的导电时间越短,即输出电压平均值越小,灯泡越暗。

3.双向可控硅驱动电路

图3双向可控硅驱动电路

如上图3所示,PIC单片机的数字输出口DO,输出触发信号。此处考虑到单片机引脚的输出电流有限,电路用单片机引脚输出触发三极

管,控制电路的通断。(此处电路可考虑进一步精简,如单片机引脚串联一小电阻:200Ω,直接驱动光耦可控硅)触发信号为高电平时,光耦可控硅MOC3021基极触发已承受压降的集电极和发射极导通,使用一30K/2W的电阻限制双向可控硅TLC336A的基极电流最大为:220V/30K=7.34mA。当交流电压反向时,光耦可控硅和可控硅均关断,直到接收到一个新的触发高电平才导通。

4.备注

可控硅TLC336A两端可以考虑并联一个开关,作为灯泡的手动开启开关。

关于所用的三极管:C9013

NPN型三极管:NPN 型,当B与E之间电压Vbe>0.5V时,如果三个管脚电压关系是Vc>Vb>Ve,则会处於放大状态;如果是Vb>Vc>Ve 则会处於饱和状态(相当於开关);如果此时Ve>Vc则仍会处於截止状态.

由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为20到200。三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。

Uce大于1V时,,三极管工作于放大区,即Ic与Ib成正比,比例系数为β。

数字电路中BJT一般工作在饱和区和截止区。表示开关状态

模拟电路中BJT一般工作在放大区。

关于所用光耦双向可控硅:

之前调试时使用的MOC3041,电路调试无法通过。

MOC3041比MOC3021多了一个功能:zero voltage crossing,不适用该电路。

过零光耦只能在过零点附近施加信号导通,当超过零点一定角度后就无法触发了。不过零的想在哪触发都行。

使用上的区别为过零触发与随机触发两种情况。过零触发应用于不需要移相调整的电路或当中。比如功能单一的开关功能,过零触发可以最大程度的消除干扰。随机触发主要用于移相控制电路,如调光调速等改变导通角的驱动应用当中。两者在一定的程度上不能替代使用。

可控硅调光原理

3. 双向可控硅调光电路分析 左图是一个典型的双向可控硅 调光器电路,电位器POT1和电阻R1、 R2 与电容C2构成移相触发网络,当 C2的端电压上升到双向触发二极管 D1的阻断电压时,D1击穿,双向可 控硅TRIAC被触发导通,灯泡点亮。 调节POT1可改变C2的充电时间常数,TRAIC的电压导通角随之改变,也就改变了流过灯泡的电流,结果使得白炽灯的亮度随着POT1的调节而变化。POT1上的联动开关SW1在亮度调到最暗时可以关断输入电源,实现调光器的开关控制。 可控硅可控硅一旦被触发导通后,将持续导通到交流电压过零时才会截止。可控硅承担着流过白炽灯的工作电流,由于白炽灯在冷态时的电阻值非常低,再考虑到交流电压的峰值,为避免开机时的大电流冲击,选用可控硅时要留有较大的电流余量。 触发电路触发脉冲应该有足够的幅度和宽度才能使可控硅完全导通,为了保证可控硅在各种条件下均能可靠触发,触发电路所送出的触发电压和电流必须大于可控硅的触发电压UGT与触发电流I GT的最小值,并且触发脉冲的最小宽度要持续到阳极电流上升到维持电流(即擎住电流I L)以上,否则可控硅会因为没有完全导通而重新关断。 保护电阻 R2是保护电阻,用来防止POT1调整到零电阻时,过大的电流造成半导体器件的损坏。R2太大又会造成可调光范围变小,所以应适当选择。 功率调整电阻 R1决定白炽灯可调节到的最小功率,若不接入R1,则在POT1调整到最大值时,白炽灯将完全熄灭,这在家庭应用中会造成一定不便。接入R1后,当POT1调整到最大值时,由于R1的并联分流作用,仍有一定电流给C2充电,实现白炽灯的最小功率可以调节,若将R1换为可变电阻器,则可实现更精确的调节,以确保量产的一致性。同时R1还有改善电位器线性的作用,使灯光变化更适合人眼的感光特性。 电位器小功率调光器一般都选择带开关的电位器,在调光至最小时可以联动切断电源,这种电位器通常分为推动式(PUSH)和旋转式(ROTARY )两种。对于功率较大的调光器,由于开关触点通过的电流太大,一般将电位器和开关分开安装,以节省材料成本。考虑到调光特性曲线的要求,一般都选择线性电位器,这种电位器的电阻带是均匀分布的,单位长度的阻值相等,其阻值变化与滑动距离或转角成直线关系。 滤波网络由于被可控硅斩波后的电压不再呈现正弦波形,由此产生大量谐波干扰,严重污染电网系统,所以要采取有效的滤波措施来降低谐波污染。图中L1和C1构成的滤波网络用来消除可控硅工作时产生的这种干扰,以便使产品符合相关的电磁兼容要求,避免对电视机、收音机等设备的影响。 温度保险丝对于大功率的调光器或用于组群安装的调光器,内部温升比平时要高,在电路中安装一只温度保险,可以在异常温升时切断电路,防止灾害事故的发生。 3.1可控硅的缓冲保护 可控硅在电路中工作时,它的开关状态并不是瞬间完成的。可控硅刚导通时的等效阻抗还很大,这时如果电流上升很快,就会造成很大的开通损耗;同样,在可控硅接近完全关断

瞬态电压抑制二极管

瞬态电压抑制二极管Transient Voltage Suppressors(TVS) 概述 电压及电流的瞬态干扰是造成电子电路及设备损坏的主要原因,常给人们带来无法估量的损失。这些干扰通常来自于电力设备的起停操作、交流电网的不稳定、雷击干扰及静电放电等,瞬态干扰几乎无处不在、无时不有,使人感到防不胜防。幸好,一种高效能的电路保护器件TVS的出现使瞬态干扰得到了有效抑制TVS(TRANSIENT VOLTAGE SUPPRESSOR)或称瞬变电压抑制二极管是在稳压管工艺基础上发展起来的一种新产品,其电路符号和普通稳压二极管相同,外形也与普通二极管无异,当TVS管两端经受瞬间的高能量冲击时,它能以极高的速度(最高达1*10-12秒)使其阻抗骤然降低,同时吸收一个大电流,将其两端间的电压箝位在一个预定的数值上,从而确保后面的电路元件免受瞬态高能量的冲击而损坏。 TVS的特性及其参数(参数表见附表) https://www.doczj.com/doc/d011638357.html,S的特性 如果用图示仪观察TVS的特性,就可得到图1中左图所示的波形。如果单就这个曲线来看,TVS管和普通稳压管的击穿特性没有什么区别,为典型的PN结雪崩器件。但这条曲线只反映了TVS特性的一个部分,还必须补充右图所示的特性曲线,才能反映TVS 的全部特性。这是在双踪示波器上观察到的TVS管承受大电流冲击时的电流及电压波形。图中曲线1是TVS管中的电流波形,它表示流过TVS管的电流由1mA突然上升到峰值,然后按指数规律下降,造成这种电流冲击的原因可能是雷击、过压等。曲线2是TVS管两端电压的波形,它表示TVS中的电流突然上升时,TVS两端电压也随之上升,但最大只上升到VC值,这个值比击穿电压VBR略大,从而对后面的电路元件起到保护作用。

电气控制电路设计规范

电气控制电路设计规范(1) 【引入】电器图以各种图形、符号和突显等形式来表示电气系统中各电器设备、装置、元器件的相互连接关系。电器图是联系电气设计、生产、维修人员的工程语言,能正确、熟练的识读电气图是从业人员必备的基本技能。 一、电气图的作用与分类 为了表达电气控制系统的设计意图,便于分析系统工作原理、安装、调试和检修控制系统,必须采用统一图形符号和文字符号。 1.电气系统图和框图 2.电气原理图 3.电器布置图 4.电器安装接线图 5.功能图 6.电气元件配置明细表 二、电气图阅读的基本方法 1.电气图阅读的基本方法 1)主电路分析 2)控制电路分析 3)辅助电路分析 4)联锁和保护环节分析 5)总体检查 2.电气图阅读 1)主电路阅读 2)阅读控制电路

三、电气控制电路设计规范 1.电气工程制图内容 电气控制系统是由若干电器元件按照一定要求连接而成,从而实现设备或装置的某种控制目的。为了便于对控制系统进行设计、分析研究、安装调试、使用维护以及技术交流,就需要将控制系统中的各电器元件及其相互连接关系用一个统一的标准来表达,这个统一的标准就是国家标准和国际标准,我国相关的国家标准已经与国际标准统一。用标准符号按照标准规定的方法表示的电气控制系统的控制关系的就称为电气控制系统图。 电气控制系统图包括电气系统图和框图、电气原理图、电气接线图和接线表三种形式。各种图都有其不同的用途和规定的表达方式,电气系统图主要用于表达系统的层次关系,系统内各子系统或功 能部件的相互关系,以及系统与外界的联系;电气原理图主要用于表达系统控制原理、参数、功能及逻辑关系,是最详细表达控制规律和参数的工程图;电气接线图主要用于表达各电器元件在设备中的具体位置分布情况,以及连接导线的走向。对于一般的机电装备而言,电气原理图是必须的,而其余两种图则根据需要绘制。绘制电气接线图则需要首先绘制电器位置图,在实际应用中电气接线图一般 与电气原理图和电器位置图一起使用。 国家标准局参照国际电工委员会(IEC)颁布的标准,制定了我国电气设备有关国家标准。有关的国家标准有GB472—1984《电气图用图形符号》、GB698—1986《电气制图》、GB509—1985《电气技术中的项目代号》和GB715—1987《电气技术中的文字符号制定通则》。 2.电气工程制图图形符号和文字符号 按照GB472—1984《电气图用图形符号》规定,电气图用图形符号是按照功能组合图的原则,由一般符号、符号要素或一般符号加限定符号组合成为特定的图形符号及方框符号等。一般符号是用 以表示一类产品和此类产品的特征的简单图形符号。 文字符号分为基本文字符号和辅助文字符号。基本文字符号又分单字母文字符号和双字母文字符号两种。单字母符号是按拉丁字母顺序将各种电气设备、装置和元器件划分为23类,每一大类电器 用一个专用单字母符号表示,如“ K”表示继电器、接触器类,“ R'表示电阻器类。当单字母符号不能满足要求而需要将大类进一步划分,以便更为详尽地表述某一种电气设备、装置和元器件时采用双字母

可程控移相电路设计

可程控移相电路设计 根据下图所示的电路原理框图,自行设计一可程控移相电路,要求最小移相角度不大于1o。(输入信号:正弦波,1kHz,V P-P=2V) (一)查阅A/D转换芯片TLC5510、随机存贮器6264、D/A转换芯片DAC0832的应用资料。 (二)查阅有关模拟信号移相电路的相关资料。 (三)自行设计实现本实验项目要求的实验电路图。 (四)自拟实验步骤和实验表格,测试所设计电路是否达到实验要求。 控制信号时序图(大概)

8位高速A/D转换器TLC5510的应用 摘要:TLC5510是美国德州仪器(TI)公司生产的8位半闪速结构模数转换器,它采用CMOS 工艺制造,可提供最小20Msps的采样率。可广泛用于数字TV、医学图像、视频会议、高速数据转换以及QAM解调器等方面。文中介绍了TLC5510的性能指标、引脚功能、内部结构和操作时序,给出了TLC5510的应用线路设计和参考电压的配置方法。 关键词:高速AD转换;数据采集;TLC5510 1概述 TLC5510是美国TI公司生产的新型模数转换器件(ADC),它是一种采用CMOS工艺制造的8位高阻抗并行A/D芯片,能提供的最小采样率为20MSPS。由于TLC5510采用了半闪速结构及CMOS工艺,因而大大减少了器件中比较器的数量,而且在高速转换的同时能够保持较低的功耗。在推荐工作条件下,TLC5510的功耗仅为130mW。由于TLC5510不仅具有高速的A/D转换功能,而且还带有内部采样保持电路,从而大大简化了外围电路的设计;同时,由于其内部带有了标准分压电阻,因而可以

从+5V的电源获得2V满刻度的基准电压。TLC5510可应用于数字TV、医学图像、视频会议、高速数据转换以及QAM解调器等方面。 2内部结构、引脚说明及工作原理 2.1TLC5510的引脚说明 TLC5510为24引脚、PSOP表贴封装形式(NS)。其引脚排列如图1所示。各引脚功能如下: AGND:模拟信号地; ANALOGIN:模拟信号输入端; CLK:时钟输入端; DGND:数字信号地; D1~D8:数据输出端口。D1为数据最低位,D8为最高位; OE:输出使能端。当OE为低时,D1~D8数据有效,当OE为高时,D1~D8为高阻抗; VDDA:模拟电路工作电源; VDDD:数字电路工作电源; REFTS:内部参考电压引出端之一,当使用内部电压分压器产生额定的2V基准电压时,此端短路至REFT端; REFT:参考电压引出端之二; REFB:参考电压引出端之三; REFBS:内部参考电压引出端之四,当使用内部电压基准器产生额定的2V基准电压时,此端短路至REFB端。

单片机课程设计报告--可控硅导通角的控制

单片机课程设计报告可控硅导通角的控制

可控硅导通角的控制 设计要求 ■导通时间可调,按键输入设置,LED 数码直读显示 ■精度误差小于50us 摘要:随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍由单片机怎样去控制可控硅的导通角,可控硅在日常生活中的应用是非常广泛的,种类繁多,有温控可控硅和光控可控硅等多种,本设计使用的是MOC3021光敏双向可控硅,去控制交流电正负半周导通的时间。 关键词:单片机,数字控制,同步信号,数码管,可控硅,三端稳压器7805,MOC3021,P521,AT89C2051 1 引言 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中可控硅导通角的控制就是一个典型的例子。 本设计用光耦(P521)提取市电过零点的同步信号,由单片机控制可控硅的导通角,以实现被控对象(如灯泡)功率的数字化调节。(本设计用功率电阻代表被控对象) 2 总体设计方案 总体设计框图 图(1) 总体设计方框图 主控制器单片机通过外部中断口提取交流电过零点的信号,再依外部按键设置的数,通过一定的 算法转化为内部定时器的定时常数,去控制可控硅交流电导通的时间。 LED 显 示 同步信号提 取 单片机复位 时钟振荡 按键设置 可控硅 主 控 制 器

3 模块电路方案论证与比较 3.1主控制器 方案一: 选用8051,其有四组I/O口,资源丰富 图(2)8051 方案二: 选用AT89C2051,其有两组I/O口,资源较紧张 图(3)AT89C2051 最终方案: 因单片机AT89C2051具有低电压供电和体积小等特点,;两组端口就能满足本电路系统的设计需要,价格又比较便宜,所以采用它。

可控硅调光原理

可控硅是可控硅整流元件的简称,是一种具有三个PN 结的四层结构的大功率半导体器件,一般由两晶闸管反向连接而成。它的功能不仅是整流,还可以用作无触点开关的快速接通或切断;实现将直流电变成交流电的逆变;将一种频率的交流电变成另一种频率的交流电等等。可控硅和其它半导体器件一样,有体积小、效率高、稳定性好、工作可靠等优点。它的出现,使半导体技术从弱电领域进入了强电领域,成为工业、农业、交通运输、军事科研以至商业、民用电器等方面争相采用的元件。目前可控硅在自动控制、机电应用、工业电气及家电等方面都有广泛的应用。 可控硅从外形上区分主要有螺旋式、平板式和平底式三种。螺旋式应用较多。 可控硅有三个极----阳极(A)、阴极(C)和控制极(G),管芯是P型导体和N型导体交迭组成的四层结构,共有三个PN 结,与只有一个PN结的硅整流二极管在结构上迥然不同。可控硅的四层结构和控制极的引入,为其发挥“以小控大”的优异控制特性奠定了基础。可控硅应用时,只要在控制极加上很小的电流或电压,就能控制很大的阳极电流或电压。目前已能制造出电流容量达几百安培以至上千安培的可控硅元件。一般把5安培以下的可控硅叫小功率可控硅,50安培以上的可控硅叫大功率可控硅。 我们可以把从阴极向上数的第一、二、三层看面是一只NPN型号晶体管,而二、三、四层组成另一只PNP型晶体管。其中第二、第三层为两管交迭共用。可画出图1的等效电路图。当在阳极和阴极之间加上一个正向电压E,又在控制极G和阴极C之间(相当BG2的基一射间)输入一个正的触发信号,BG2将产生基极电流Ib2,经放大,BG2将有一个放大了β2 倍的集电极电流IC2 。因为BG2集电极与BG1基极相连,IC2又是BG1 的基极电流Ib1 。BG1又把Ib1(Ib2)放大了β1的集电极电流IC1送回BG2的基极放大。如此循环放大,直到BG1、BG2完全导通。事实上这一过程是“一触即发”的,对可控硅来说,触发信号加到控制极,可控硅立即导通。导通的时间主要决定于可控硅的性能。 可控硅一经触发导通后,由于循环反馈的原因,流入BG2基极的电流已不只是初始的Ib2 ,而是经过BG1、BG2放大后的电流(β1*β2*Ib2),这一电流远大于Ib2,足以保持BG2的持续导通。此时触发信号即使消失,可控硅仍保持导通状态,只有断开电源E或降低E的输出电压,使BG1、BG2 的集电极电流小于维持导通的最小值时,可控硅方可关断。当然,如果E极性反接,BG1、BG2受到反向电压作用将处于截止状态。这时,即使输入触发信号,可控硅也不能工作。反过来,E接成正向,而触动发信号是负的,可控硅也不能导通。另外,如果不加触发信号,而正向阳极电压大到超过一定值时,可控硅也会导通,但已属于非正常工作情况了。 可控硅这种通过触发信号(小触发电流)来控制导通(可控硅中通过大电流)的可控特性,正是它区别于普通硅整流二极管的重要特征。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1 表1 可控硅导通和关断条件

瞬态抑制二极管工作原理及选型应用

瞬态抑制二极管工作原理及选型应用 Socay (Sylvia) 1、产品简述 瞬态电压抑制器(TransientVoltageSuppressor)简称TVS管,TVS管的电气特性是由P-N结面积、掺杂浓度及晶片阻质决定的。其耐突波电流的能力与其P-N结面积成正比。TVS广泛应用于半导体及敏感器件的保护,通常用于二级电源和信号电路的保护,以及防静电等。其特点为反应速度快(为ps级),体积小,脉冲功率较大,箝位电压低等。其10/1000μs波脉冲功率从400W~30KW,脉冲峰值电流从0.52A~544A;击穿电压有从6.8V~550V的系列值,便于各种不同电压的电路使用。 2、工作原理 器件并联于电路中,当电路正常工作时,它处于截止状态(高阻态),不影响线路正常工作,当电路出现异常过压并达到其击穿电压时,它迅速由高阻态变为低阻态,给瞬间电流提供低阻抗导通路径,同时把异常高压箝制在一个安全水平之内,从而保护被保护IC或线路;当异常过压消失,其恢复至高阻态,电路正常工作。 3、特性曲线

4、主要特性参数 ①反向断态电压(截止电压)VRWM与反向漏电流IR:反向断态电压(截止电压)VRWM 表示TVS管不导通的最高电压,在这个电压下只有很小的反向漏电流IR。 ②击穿电压VBR:TVS管通过规定的测试电流IT时的电压,这是表示TVS管导通的标志电压(P4SMA、P6SMB、1.5SMC、P4KE、P6KE、1.5KE系列型号中的数字就是击穿电压的标称值,其它系列的数字是反向断态电压值)。TVS管的击穿电压有±5%的误差范围(不带“A”的为±10%)。 ③脉冲峰值电流IPP:TVS管允许通过的10/1000μs波的最大峰值电流(8/20μs 波的峰值电流约为其5倍左右),超过这个电流值就可能造成永久性损坏。在同一个系列中,击穿电压越高的管子允许通过的峰值电流越小。 ④最大箝位电压VC:TVS管流过脉冲峰值电流IPP时两端所呈现的电压。 ⑤脉冲峰值功率Pm:脉冲峰值功率Pm是指10/1000μs波的脉冲峰值电流IPP 与最大箝位电压VC的乘积,即Pm=IPP*VC。 5、命名规则

项目十七 电气控制电路设计与测绘

电气控制技术项目教程——项目17 河北承德技师学院 李凤梅

项目十七电气控制电路设计与测绘 学习目标 知识目标: 熟悉电气控制电路设计的基本原则、方法。 掌握电气控制电路的测绘方法。 技能目标: 能设计简单生产机械的电气控制电路。 能对生产设备的电气控制电路进行测绘。

任务一电气控制电路的设计原则 一、电气控制电路的设计原则 1.最大限度满足生产设备对电气控制电路的控制要求和保护要求。 2 .在满足生产工艺要求的前提下,力求电路简单、经济、 合理。 3 .保证控制的安全性和可靠性。 4 .操作和维修方便。 你知道电路设计 是根据什么原则 进行的吗?

二、电气控制电路的设计内容1.确定电力拖动方案和控制方案。 2.选择拖动电动机的结构形式、 型号和容量。 3.设计电气控制系统原理图。 4.绘制电气安装位置图、电气系统互连图。 5.设计和选择电气设备元器件,并列出电器元件明细表。 6.编写电气控制系统工作原理和使用说明书。 你知道电 路设计的 内容有哪 些吗?任务一电气控制电路的设计原则

三、电气控制电路的设计方法 常用的电气控制电路的设计方法有: 经验设计法 逻辑分析设计法(逻辑设计法) 经验设计法是根据生产工艺的要求去选择适当的基本控制环节或经过考验成熟的电路,按各部分的联锁条件组合起来并加以补充和修改,综合成满足控制要求的完整电路。 经验设计法——一般设计简单电路经常使用 逻辑分析设计法,是根据生产工艺的要求,利用逻辑代数来分析、化简、设计电路的方法。 逻辑分析设计法———一般设计较复杂电路使用一般技术人员常用经验设计法 任务一电气控制电路的设计原则

模拟移相电路的设计 通信类

模拟移相电路的设计 摘要 目前,随着航空、航天技术的发展以及军事上的需要,对相位的测量提出了一些新的要求,如更高的测量精度及更高的分辨能力。测量相位中最重要的部件之一就是移相器。另外,移相器是相控阵雷达中的关键部件,其性能的优劣直接影响相控雷达系统的性能。本次课题源于航空、航天技术的发展以及军事上的需要及地面雷达接收系统的需要,设计了一个模拟移相网络。 本文设计的模拟移相网络的基本要求是:一路输入信号经过模拟移相电路输出两路信号:一路是原信号经过电压跟随器输出的信号,另外一路是经过移相网络输出的信号(要求是在不同频率下输出相位连续可调的信号)。 按任务要求,在输入信号频率为5kHz、50kHz、、100kHz上,设计相移范围从–60度到+60度连续变化,并且输出电压幅度为5V。我们总体讨论了设计方案,使用RC阻容移相网络以及集成运放、电压跟随器等元器件设计模拟移相网络。并且提出了改进移相器性能的措施,对移相器部件进行仿真测试。 关键词:模拟移相器RC阻容移相网络集成运放电压跟随器

目录第一章引言 1.1课题研究背景 1.2模拟移相器的发展状况 1.3本课题的主要内容 第二章移相网络的基本原理 2.1基本移相原理 2.2移相网络的方案选取 2.3移相网络的性能指标 2.4移相网络的参数设计 第三章模拟移相网络的仿真优化 3.1Multisim仿真软件的介绍 3.2在Multisim环境下的仿真结果 第四章结论 第五章附图

第一章引言 1.1课题研究背景 电磁波在传输时,不仅幅度会发生变化,同时相位也要发生变化。衰减和 相移是代表同一复参数的幅度和相角的变化。但是由于历史发展的原因,衰减 测量的重要性较早的被人们认识并解决,所以常把衰减作为一个单项指标和测 量任务来看待。从上个世纪六十年代开始,随着对人造卫星、洲际导弹、航天 飞机等各种飞行器及对其他的目标进行监控的需求日益增强,并且为了在复杂 的环境中提取更多的信息,出现了控阵天线及加速器等较新技术,相移的测量(即相位测量)则迟至了这些新技术出现时才被重视。 移相器一般用于雷达系统、通讯系统、微波仪器和测量系统等方面,其中,最主要的是用于相控阵雷达和智能天线系统中。目前,随着航空、航天技术的 发展以及军事上的需要,对相位的测量提出了一些新要求如更高的测量精度及 更高的分辨能力。本次课题源于航空、航天技术的发展以及军事上的需要及地 面雷达接收系统需要存在相位差的两个同频信号,我们设计了一个移相网络。 一般地说,依据不同的定义方法移相器可分为不同的种类。根据控制方式的不同,移相器可分为模拟式移相器和数字式移相器。数字移相器相移量只能在一定范围内取某些特定值,数字移相器虽然可以用数字控制电路,与外电路的接口比较容易,但是模拟移相器可以实现360度范围内的无极扫描,有更高的移相精度,它多用在系统相位自动调整的场合和移相精度要求特别高的场合。而模拟式移相器是一种电压控制连续线性移相的微波器件移相器,它可以实现相位线性连续的变化。所以我们这里只设计模拟式移相器。它的技术指标主要有:工作频带、相移量、相移精度、插入损耗、插入损耗波动、电压驻波比、功率容量、移相器开关时间等。 当前微波移相器广泛应用,微波电控器件利用参数可电调的材料和器件组成的控制微波信号幅度或相位的器件。可电调的材料和器件主要有半导体二极管(如PIN管﹑变容管和肖特基管等)和铁氧体材料。控制信号幅度的器件有衰减器﹑调幅器﹑开关器和限幅器等﹔控制信号相位的有移相器和调相器等。PIN管具有不同的正反向特性﹐当它被反向偏置时可等效为小电容而近似开路﹐而在正向偏置时则可等效为可变电阻﹐若偏压增大﹐其阻值则减小。PIN管衰减器就是

单片机控制可控硅

单片机控制可控硅 This manuscript was revised on November 28, 2020

1 调光控制器设计 在日常生活中,我们常常需要对灯光的亮度进行调节。本调光控制器通过控制双向可控硅的导通来实现白炽灯(纯阻负载)亮度的调整。双向可控硅的特点是导通后即使触发信号去掉,它仍将保持导通;当负载电流为零(交流电压过零点)时,它会自动关断。所以需要在交流电的每个半波期间都要送出触发信号,触发信号的送出时间就决定了灯泡的亮度。 调光的实现方式就是在过零点后一段时间才触发双向可控硅开关导通,这段时间越长,可控硅导通的时间越短,灯的亮度就越低;反之,灯就越亮。 这就要求要提取出交流电压的过零点,并以此为基础,确定触发信号的送出时间,达到调光的目的。 1.1 硬件部分 本调光控制器的框图如下: 控制部分:为了便于灵活设计,选择可多次写入的可器件,这里选用的是ATMEL的AT89C51单片机。 驱动部分:由于要驱动的是交流,所以可以用继电器或光耦+可控硅(晶闸管SCR)来驱动。继电器由于是机械动作,响应速度慢,不能满足其需

要。可控硅在电路中能够实现交流电的无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性高。所以这里选用的是可控硅。 负载部分:本电路只能控制白炽灯(纯阻负载)的亮度。 1.2 部分 要控制的对象是50Hz的正弦交流电,通过光耦取出其过零点的信号(同步信号),将这个信号送至单片机的外中断,单片机每接收到这个同步信号后启动一个延时程序,延时的具体时间由按键来改变。当延时结束时,单片机产生触发信号,通过它让可控硅导通,电流经过可控硅流过白炽灯,使灯发光。延时越长,亮的时间就越短,灯的亮度越暗(并不会有闪烁的感觉,因为重复的频率为100Hz,且人的视觉有暂留效应)。由于延时的长短是由按键决定的,所以实际上就是按键控制了光的强弱。 理论上讲,延时时间应该可以是0~10ms内的任意值。在程序中,将一个周期均分成N等份,每次按键只需要去改变其等份数,在这里,N越大越好,但由于受到单片机本身的限制和基于实际必要性的考虑,只需要分成大约100份左右即可,实际采用的值是95。 可控硅的触发脉冲宽度要根据具体的光耦结合示波器观察而定,在本设计中取20 μs。程序中使用T1来控制这个时间。 对两个调光按键的处理有两种方式:一种是每次按键,无论时间的长短,都只调整一个台阶(亮或暗);另一种是随按键时间的不同,调整方法

LED可控硅调光原理及问题

LED可控硅调光原理及问题 时间:2010-11-19 20:26:44 来源:作者: 1.前言 如今,LED照明已成为一项主流技术。LED手电筒、交通信号灯和车灯比比皆是,各个国家正在推动用LED灯替换以主电源供电的住宅、商业和工业应用中的白炽灯和荧光灯。换用高能效LED 照明后,实现的能源节省量将会非常惊人。仅在中国,据政府*估计,如果三分之一的照明市场转向LED 产品,他们每年将会节省1亿度的用电量,并可减少2900万吨的二氧化碳排放量。然而,仍有一个障碍有待克服,那就是调光问题。 白炽灯使用简单、低成本的前沿可控硅调光器就可以很容易地实现调光。因此,这种调光器随处可见。固态照明替换灯要想真正获得成功的话,就必须能够使用现有的控制器和线路实现调光。 白炽灯泡就非常适合进行调光。具有讽刺意味的是,正是它们的低效率和随之产生的高输入电流,才是调光器工作良好的主要因素。白炽灯泡中灯丝的热惯性还有助于掩盖调光器所产生的任何不稳定或振荡。在尝试对LED灯进行调光的过程中遇到了大量问题,常常会导致闪烁和其他意想不到的情况。要想弄清原因,首先有必要了解可控硅调光器的工作原理、LED灯技术以及它们之间的相互关系。 2.可控硅调光的原理 图1所示为典型的前沿可控硅调光器,以及它所产生的电压和电流波形。 图1 前沿可控硅调光器 电位计R2调整可控硅(TRIAC) 的相位角,当VC2超过DIAC的击穿电压时,可控硅会在每个AC电压前沿导通。当可控硅电流降到其维持电流(IH)以下时,可控硅关断,且必须等到C2 在下个半周期重新充电后才能再次导通。灯泡灯丝中的电压和电流与调光信号的相位角密切相关,相位角的变化范围介于0度(接近0度)到180度之间。 3.LED调光存在的问题 用于替换标准白炽灯的LED灯通常包含一个LED阵列,确保提供均匀的光照。这些LED以串联方式连接在一起。每个LED的亮度由其电流决定,LED的正向电压降约为3.4 V,通常介于2.8 V 到4.2 V之间。LED灯串应当由恒流电源提供驱动,必须对电流进行严格控制,以确保相邻LED灯之间具有高匹配度。 LED灯要想实现可调光,其电源必须能够分析可控硅控制器的可变相位角输出,以便对流向LED的恒流进行单向调整。在维持调光器正常工作的同时做到这一点非常困难,往往会导致性能不佳。

TVS瞬态电压抑制二极管(钳位二极管)原理参数

TVS瞬态电压抑制二极管(钳位二极管)原理参数 瞬态电压抑制二极管(TVS)又叫钳位二极管,是目前国际上普遍使用的一种高效能电路保护器件,它的外型与普通二极管相同,但却能吸收高达数千瓦的浪涌功率,它的主要特点是在反向应用条件下,当承受一个高能量的大脉冲时,其工作阻抗立即降至极低的导通值,从而允许大电流通过,同时把电压钳制在预定水平,其响应时间仅为10-12毫秒,因此可有效地保护电子线路中的精密元器件。 瞬态电压抑制二极管允许的正向浪涌电流在TA=250C,T=10ms条件下,可达50~200A。双向TVS可在正反两个方向吸收瞬时大脉冲功率,并把电压钳制到预定水平,双向TVS适用于交流电路,单向TVS一般用于直流电路。可用于防雷击、防过电压、抗干扰、吸收浪涌功率等,是一种理想的保护器件。耐受能力用瓦特(W)表示。 瞬态电压抑制二极管的主要电参数 (1)击穿电压V(BR) 器件在发生击穿的区域内,在规定的试验电流I(BR)下,测得器件两端的电压称为击穿电压,在此区域内,二极管成为低阻抗的通路。 (2)最大反向脉冲峰值电流IPP 在反向工作时,在规定的脉冲条件下,器件允许通过的最大脉冲峰值电流。IPP与最大钳位电压VC(MAX)的乘积,就是瞬态脉冲功率的最大值。 使用时应正确选取TVS,使额定瞬态脉冲功率PPR大于被保护器件或线路可能出现的最大瞬态浪涌功率。 瞬态电压抑制二极管的分类 瞬态电压抑制二极管可以按极性分为单极性和双极性两种,按用途可分为各种电路都适用的通用型器件和特殊电路适用的专用型器件。如:各种交流电压保护器、4~200mA电流环保器、数据线保护器、同轴电缆保护器、电话机保护器等。若按封装及内部结构可分为:轴向引线二极管、双列直插TVS阵列(适用多线保护)、贴片式、组件式和大功率模块式等。 瞬态电压抑制二极管的应用 目前已广泛应用于计算机系统、通讯设备、交/ 直流电源、汽车、电子镇流器、家用电器、仪器仪表(电度表)、RS232/422/423/485、 I/O、LAN、ISDN 、ADSL、USB、M P3、PDAS、GPS、CDMA、GSM、数字照相机的保护、共模/差模保护、RF耦合/IC驱

双向可控硅的调光电路

双向可控硅的调光电路 核心提示:双向可控硅的调光电路工作原理说明一接通电源,220V经过灯泡VR4 R19对C 23充电,由于电容二端电压是不能突变的,充电需要一定时间 双向可控硅的调光电路 工作原理说明 一接通电源,220V经过灯泡VR4 R19对C23充电,由于电容二端电压是不能突变的,充电需要一定时间的,充电时间由VR4和R19大小决定,越小充电越快,越大充电越慢。当C23上电压充到约为33V左右的时候DB1导通,可控硅也导通,可控硅导通后灯泡中有电流流过,灯泡就亮了。随着DB1导通C23上电压被完全放掉,DB1又截止可控硅也随之截止灯泡熄灭。C23上又进行刚开始一样的循环,因为时间短人眼有暂留的现象,所以灯泡看起来是一直亮的,充放电时间越短灯泡就越亮,反之,R20 C24能保护可控硅,如果用在阻性负载上可以省掉,如果是用在感性负载,比如说电动机上就要加上去,这个电路也可以用于电动机调速上,当然是要求不高的情况下。 这个电路的优点是元件少、成本低、性价比高。缺点是对电源干扰比较大、噪声大、驱动电动机时候在较小的时候可能会发热比较大。 可控硅相当于可以控制的二极管,当控制极加一定的电压时,阴极和阳极就导通了。可控硅分单向可控硅和双向可控硅两种,都是三个电极。单向可控硅有阴极(K)、阳极(A)、控制极(G)。双向可控硅等效于两只单项可控硅反向并联而成。即其中一只单向硅阳极与

另一只阴极相边连,其引出端称T2极,其中一只单向硅阴极与另一只阳极相连,其引出端称T2极,剩下则为控制极(G)。1、单、双向可控硅的判别:先任测两个极,若正、反测指针均不动(R×1挡),可能是A、K或G、A极(对单向可控硅)也可能是T2、T1或T2、G极(对双向可控硅)。若其中有一次测量指示为几十至几百欧,则必为单向可控硅。且红笔所接为K极,黑笔接的为G极,剩下即为A极。若正、反向测批示均为几十至几百欧,则必为双向可控硅。再将旋钮拨至R×1或R×10挡复测,其中必有一次阻值稍大,则稍大的一次红笔接的为G极,黑笔所接为T1极,余下是T2极。 2、性能的差别:将旋钮拨至R×1挡,对于1~6A单向可控硅,红笔接K极,黑笔同时接通G、A极,在保持黑笔不脱离A极状态下断开G极,指针应指示几十欧至一百欧,此时可控硅已被触发,且触发电压低(或触发电流小)。然后瞬时断开A极再接通,指针应退回∞位置,则表明可控硅良好。 对于1~6A双向可控硅,红笔接T1极,黑笔同时接G、T2极,在保证黑笔不脱离T2极的前提下断开G极,指针应指示为几十至一百多欧(视可控硅电流大小、厂家不同而异)。然后将两笔对调,重复上述步骤测一次,指针指示还要比上一次稍大十几至几十欧,则表明可控硅良好,且触发电压(或电流)小。若保持接通A极或T2极时断开G极,指针立即退回∞位置,则说明可控硅触发电流太大或损坏。可按图2方法进一步测量,对于单向可控硅,闭合开关K,灯应发亮,断开K灯仍不息灭,否则说明可控硅损坏。 对于双向可控硅,闭合开关K,灯应发亮,断开K,灯应不息灭。然后将电池反接,重复上述步骤,均应是同一结果,才说明是好的。否则说明该器件已损坏。

移相电路

【摘要】:正移相电路的应用很广,如闸流管控制点火时间;相敏整流或相敏放大电路中要求栅极和板极电压在初始时具有一定的相位关系;以及在自动控制或测量放大等电路中都需要移相电路.一般对移相电路的要求有四:第一,具有大的移相幅度;第二,输出电压相移变化时幅度不变或变化很小;第三,能给出一定的功率;第四,效率高.这四要求的主次视具体情况而定,如要求大功率输出时,以后两项要求为主;但在小功率输出时 以前两项要求为主.下面来介绍一种常见的移相电路(图1)的设计法,这电路的特点是在移相幅度很大时,输 出电压变化很小,且能输出一定的功率. 摘要:介绍了一种具有单脉冲和双脉冲模式,并具有缺相保护功能和三相全数字移相触发电路的设计方案,该移相触发电路的相移由输入直流电平连续调节,而输出脉冲则使用100~125kHz方波调制。文中阐述了电路的工作原理,并给出了部分模拟结果。 关键词:移相触发电路;A/D转换;缺相保护 1移相触发电路工作原理 整个电路按功能可分为A/D转换模块(9bit-A/D)、移相模块(phase_shift)、脉冲产生模块(pulse_gen)、缺相保护模块(portect)、时钟模块(clock)、输出模块(out)等六个模块。其电路原理框图如图1所示。 该电路在工作时,首先使正弦交流电压经过过零比较器以产生工频方波A并进入移相模块,同时将外部控制电压经过A/D转换的数字量也送入移相模块,然后由移相电路根据A /D转换的结果和相对于工频方波的正负半周移动相应的角度后产生一窄脉冲PA(PA1、PA2);再在PA的上升沿来触发脉 冲产生电路以在相同的位置产生要求的脉宽的脉冲GA(GA1、GA2);此脉冲经过时钟电路调制后产生要求的输出OUT(OA1,OA2)。其工作波形如图2所示(移相150°,双窄脉冲模式)。

基于51单片机的调光控制器设计

基于51单片机的调光控制器设计 1 调光控制器设计 在日常生活中,我们常常需要对灯光的亮度进行调节。本调光控制器通过单片机控制双向可控硅的导通来实现白炽灯(纯阻负载)亮度的调整。双向可控硅的特点是导通后即使触发信号去掉,它仍将保持导通;当负载电流为零(交流电压过零点)时,它会自动关断。所以需要在交流电的每个半波期间都要送出触发信号,触发信号的送出时间就决定了灯泡的亮度。 调光的实现方式就是在过零点后一段时间才触发双向可控硅开关导通,这段时间越长,可控硅导通的时间越短,灯的亮度就越低;反之,灯就越亮。 这就要求要提取出交流电压的过零点,并以此为基础,确定触发信号的送出时间,达到调光的目的。 1.1 硬件部分 本调光控制器的框图如下: 控制部分:为了便于灵活设计,选择可多次写入的可编程器件,这里选用的是ATMEL的AT89C51单片机。 驱动部分:由于要驱动的是交流,所以可以用继电器或光耦+可控硅(晶闸管SCR)来驱动。继电器由于是机械动作,响应速度慢,不能满足其需要。可控硅在电路中能够实现交流电的无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性高。所以这里选用的是可控硅。 负载部分:本电路只能控制白炽灯(纯阻负载)的亮度。 1.2 软件部分 要控制的对象是50Hz的正弦交流电,通过光耦取出其过零点的信号(同步信号),将这个信号送至单片机的外中断,单片机每接收到这个同步信号后启动一个延时程序,延时的具体时间由按键来改变。当延时结束时,单片机产生触发信号,通过它让可控硅导通,电流经过可控硅流过白炽灯,使灯发光。延时越长,亮的时间就越短,灯的亮度越暗(并不会有闪烁的感觉,因为重复的频率为100Hz,且人的视觉有暂留效应)。由于延时的长短是由按键决定的,所以实际上就是按键控制了光的强弱。 理论上讲,延时时间应该可以是0~10ms内的任意值。在程序中,将一个周期均分成N 等份,每次按键只需要去改变其等份数,在这里,N越大越好,但由于受到单片机本身的限制和基于实际必要性的考虑,只需要分成大约100份左右即可,实际采用的值是95。 可控硅的触发脉冲宽度要根据具体的光耦结合示波器观察而定,在本设计中取20 μs。程序中使用T1来控制这个时间。 对两个调光按键的处理有两种方式:一种是每次按键,无论时间的长短,都只调整一个台阶(亮或暗);另一种是随按键时间的不同,调整方法不同:短按只调整一个台阶,长按可以连续调整。如前面所述,由于本设计中的台阶数为95(N=95),如果使用前一种方式,操作太麻烦,所以用后者较为合理。 2 各单元电路及说明 2.1 交流电压过零点信号提取 交流电压过零点信号提取电路,图中的同步信号就是我们需要的交流电压过零点信号。各部分波形。

瞬态电压抑制二极管

瞬态电压抑制二极管应用指南 第一章 TVS器件的特点、电特性和主要电参数 一、 TVS器件的特点 瞬态(瞬变)电压抑制二级管简称TVS器件,在规定的反向应用条件下,当承受一个高能量的瞬时过压脉冲时,其工作阻抗能立即降至很低的导通值,允许大电流通过,并将电压箝制到预定水平,从而有效地保护电子线路中的精密元器件免受损坏。TVS能承受的瞬时脉冲功率可达上千瓦,其箝位响应时间仅为1ps(10-12S)。TVS允许的正向浪涌电流在T A=250C,T=10ms条件下,可达50~200A 。 双向TVS可在正反两个方向吸收瞬时大脉冲功率,并把电压箝制到预定水平,双向TVS适用于交流电路,单向TVS一般用于直流电路。 二、 TVS器件的电特性 1、单向TVS的V-I特性 如图1-1所示,单向TVS的正向特性与普通稳压二极管相同,反向击穿拐点近似“直角”为硬击穿,为典型的PN结雪崩器件。从击穿点到 V C值所对应的曲线段表明,当有瞬时过压脉冲时,器件的电流急骤增加而反向电压则上升到箝位电压值,并保持在这一水平上。 2、双向TVS的V-I特性 如图1-2所示,双向TVS的V-I特性曲线如同两只单向TVS“背靠背”组合,其正反两个方向都具有相同的雪崩击穿特性和箝位特性,正反两面击穿电压的对称关系为:0.9≤V(BR)(正)/V(BR)(反)≤1.1,一旦加在它两端的干扰电压超过箝位电压V C就会立刻被抑制掉,双向TVS在交流回路应用十分方便。 三、TVS器件的主要电参数 1、 击穿电压V(BR) 器件在发生击穿的区域内,在规定的试验电流I(BR)下,测得器件两端的电压称为击穿电压,在此区域内,二极管成为低阻抗的通路。 2、 最大反向脉冲峰值电流I PP 在反向工作时,在规定的脉冲条件下,器件允许通过的最大脉冲峰值电流。I PP与最大箝位电压VC(MAX)的乘积,就是瞬态脉冲功率的最大值。 使用时应正确选取TVS,使额定瞬态脉冲功率P PR大于被保护器件或线路可能出现的最大瞬态浪涌功率。

移相全桥为主电路的软开关电源设计详解

移相全桥为主电路的软开关电源设计详解 2014-09-11 11:10 来源:电源网作者:铃铛 移相全桥变换器可以大大减少功率管的开关电压、电流应力和尖刺干扰,降低损耗,提高开关频率。如何以UC3875为核心,设计一款基于PWM软开关模式的开关电源?请见下文详解。 主电路分析 这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A。采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS。电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T 为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。 图1 1.2kw软开关直流电源电路结构简图 其基本工作原理如下: 当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。 由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。 当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb 充电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、

正弦波放大电路与移相电路设计

正弦波放大电路与移相电路设计 一、性能指标: 输入为双极性信号,幅值不大于200mV的正弦波; 频率分别为10KHz-50KHz、100KHz-3MHz; 增益20db-40db可调,输出电压为幅值0-5V; 输入输出电阻:50欧姆 对10k、30k和50k信号可进行相位调整。 二、器件选型 集成运放:THS3091、OPA300、VCA810 场效应管:2N3686 三、电路模块 1.正弦波放大电路 2.实现增益步进可调 3.0~360°可调移相电路设计 四、电路设计 1.正弦波放大电路: 由于题目要求电路既能在低频(10KHz-50KHz)进行信号放大、又要在高频(100KHz-3MHz)可以进行信号放大,可选用增益带宽积较大的两类常用高速运放——THS3091、OPA300。通过multisim 模拟放大波形输出,发现OPA300在低频段的波形失真严重、高频段表现很好;而THS3091无论在低频还是高频,放大性能都较好,所以本文选用运放THS3091。

(1)下图为OPA300在输入频率为50kHz和50MHz下的放大性能 (50kHz) (50MHz) (21)下图为THS3091在输入频率为50kHz和50MHz下的放大性能 (50kHz) (50MHz) 2.实现增益步进可调电路 1中的电路用滑动变阻器实现增益可调,效果比较粗糙,方法比较老旧,不能做到精确调控。 为实现增益步进可调,最笨的方法是采用多个上述的电流反馈放大器级联,用电阻网络选通的方式来实现增益可调,但此法麻烦不说,还不稳定。

这里,我们选用压控增益放大器:TI 的VCA810在±40dB 的增益可调范围内拥有35MHz 的带宽,满足题目的指标要求。 电压控制增益可变放大器: 该放大器的3dB 带宽 为25MHz ,满足本题要求。C V 从-2V 调整到0V 可实现对输入信号的(-40dB )到(40dB )可调,其增益表达式为: )1(40)(+-=C dB V G 3.移相电路设计 (1)0~360°可调移相电路设计 利用两级移相放大器可以组成0~360°可调移相电路。0~360°可调移相电路如图所示。图中Q1和Q2是0~180°相移放大器,两级移相放大器可以完成0~360°。Q3是缓冲放大器。调节电位器RP1和RP2,可以使输入信号产生移相。

相关主题
文本预览
相关文档 最新文档