当前位置:文档之家› 现实问题数学化、数学角度看世界.

现实问题数学化、数学角度看世界.

现实问题数学化、数学角度看世界.
现实问题数学化、数学角度看世界.

生活问题数学化、数学角度看世界

——以“蓝球运动中的数学问题”为例

贵州省道真自治县玉溪镇中心学校胡军

贵州省正安县第三中学万林

本节课以“篮球比赛”为载体,通过生活问题数学化,引导学生探索解决“篮球比赛”情境中与二次函数有关的数学问题,唤起学生用数学的眼光观察问题的意识,养成用数学的方法分析解决问题的思维习惯;感悟数学思想解决问题的教育价值,发展应用意识和数学素养。“应用意识”是《义务教育数学课程标准》(2011年版)(以下简称《课程标准》)十个核心概念之一,核心概念是数学教学的统领和主线。数学应用意识是一种用数学的眼光、从数学的角度观察、分析、解决现实世界中问题的心理倾向和思维反应。数学素养则是现代社会每一个公民应该具备的基本素养。包含三层递进含义:一是能用数学的眼光审视生活;二是在生活中养成积累数学活动经验的学习习惯;三是在不断的联系数学与生活的过程中自觉形成公共的思维力、应用力和行世观。

一、问题引动、唤起应用意识

师:同学们喜欢篮球运动吗?众生:喜欢。

师:本节课老师将与同学们一起来研究“蓝球运动中的数学问题”(板书课题),同学们加油啊!

问题1:如图1,一场篮球赛中,运动员小姚在距篮下4米处跳起投篮,篮球运行的路线是抛物线,当球运行的水平距离为

2.5米时,达最大高度

3.5米,然后准

确落入篮圈。已知篮圈中心到地面的距

离为3.05米。该运动员身高1.8米,

在这次跳投中,球在头顶上方0.25米

处出手,问球出手时他跳离地面的高度

是多少?

师:请同学们审题,寻求解决问题的方法。

评析:问题1中“距篮下4米处跳起投篮”,“篮圈中心到地面的距离为3.05米”,“球运行的水平距离为2.5米时,达最大高度3.5米”,“篮圈中心到地面的距离为3.05米”,“问球出手时他跳离地面的高度是多少”等数据贴近生活现实,源于自然生活的现实

问题,这对喜欢蓝球运动的学生来说感觉相当的亲近,自然,倾注人文关怀。这种源于自然生活的现实问题能唤起学生用数学的眼光审视生活,积极参与数学活动,尝试用数学知识、方法、思想解决问题的应用意识和心理冲动,培育了学生的数学敏感性和应用意识,感受到数学的价值和趣味性。

二、问题解决、体验应用过程

师:如图1,请同学们结合问题1中的现实情境想一想,要解决问题1需用什么数学知识?

生1(思考后)回答:蓝球在空中运行的路线是抛物线,可能会用到二次函数的知识。

师:用二次函数的知识解决实际问题的思路是什么?

生2:“问题情境——建立模型——求解验证”。

评析:“用什么数学知识解决问题1”,使学生都处于一种急于求成的兴奋之中,由“蓝球运行的路线是抛物线”,学生自然而然地想到利用二次函数的知识可能会解决问题1,从而确定解决问题的思路和方法。

师:用二次函数的知识解决问题1需要借助什么数学工具?

众生:利用平面直角坐标系。

师:同学们的想法很好!下面就请同学们通过小组合作学习结合图1中的关键点建立平面直角坐标系。

师生活动:学生小组合作学习尝试,教师巡视了解、指导学生学习情况(足够学习时间后),收集、反馈、展示小组合作学习成果。

师:请各小组学生代表汇报展示本组合作学习成果。

生3:如图2,我们小组交流得到以投蓝者站立点为坐标原点,这点与蓝球架和地面接触点中心的直线为横轴建立平面直角坐标系。

生4:如图3,我们小组是以蓝球在空中经过的最高点为坐标原点,平行于地面的直线为横建立平面直角坐标系。

生5:如图4,我们小组选择的是以蓝圈中心为坐标原点,与水平地面平行的直线为横轴建立平面直角坐标系。

师:以上各组在建立平面直角坐标系时,从不同的角度选择了不同的坐标原点,这些想法都很好,接下来请说说确定篮球运行的路线(抛物线)的解析式的思路?

生6:如图2:设二次函数的解析式为c bx ax y ++=2,由题意可知点B (5.2,5.3)和C (4,05.3),点B 又是抛物线的顶点,可通过建立方程组,确定二次函数的解析式?

生7:如图3,抛物线的坐标原点又是抛物线的顶点,点D 的坐标为(5.1,5.3-),通过建立方程组,可确定二次函数的解析式?

生8(其它组的学生):点D 的坐标不正确,应该是(5.1,45.0-)

师(对生8):你能讲一讲理由吗?

生8:点D 的纵坐标的应该是蓝球的最高点到球圈中心的距离05.35.3-。

师:很好!这位同学很细心,发现了问题,希望大家向他学习。虽然前面的同学在计算点D 的坐标时没算对,但他们的这种解题思路是独到的。

生9:如图4,经过原点的抛物线,顶点坐标是A (5.1-,45.0),可确定二次函数的解析式?

评析:学生在面临一个具有挑战性的现实问题时,仅靠摸仿、记忆等方式是很难解决的。在函数学习之前,学生对数与形的学习基本上是分开进行的,只需要对数或形进行单一的思维,即所谓“数缺形时少直观,形少数时难入微”。此时老师利用“形”的引入给学生研究问题带来了直观的空间感受,让学生说出在小组合作学习中从不同的角度选择坐标原点建立平面直角坐标系思路,体验解决问题方法的多样性,使不同的坐标系的建立让每个学生都处于一种惊奇和不断发现的学习过程中,并形成自已的解决问题的基本策略。教师随堂巡视、指导学生学习并收集、整理学生学习情况,展示小组合作学习成果,即使学生的计算出现错误,教师也及时对学生“独到的解题思路”给予鼓励,激发了学生的学习自信心。较好地落实了《课程标准》“敢于发表自己的想法、勇于质疑、敢于创新,养成认真勤奋、独立思考、合作交流等学习习惯,形成严谨求实的科学态度”的课程目标。

师:接下来请同学们说说怎样求出“球出手时他跳离地面的高度”?

生10:根据前面建立的直角坐标系,先确定抛物线的解析式,求点A 的坐标,然后用

点A 的纵坐标减去运动员小姚的身高。

师:说得好!请同学们按照各组构建的思路选择合适的方法独立求解。

全班学生独立解题,教师任选三个学生分别根据图2,图3,图4板书解题过程。 生11:如图2,设抛物线的解析式为c bx ax y ++=2 于是有????

?????=++=-=-05.34165.3445.222c b a a b ac a b 解得:???????==-=25.2151c b a ,25.2512++-=x x y ,当0=x 时,25.2=y ,C (0,97.2),2.025.08.125.2=--。答:他跳离地面的高度是2.0米。

生12:如图3,设抛物线的解析式为2ax y =,于是45.025.2=a 解得5

1-=a ,25

1x y -=,当5.2-=x 时,25.1=y ,2.025.08.125.15.3=---。答:略。 生13:如图4,设解析式为:bx ax y +=2,得???????=--=-45.045.122a b a b ,解得???

????-=-=53

51b a ,x x y 5

3512--=,当4-=x 时,8.0-=y ,2.08.125.08.005,3=---。答:略。 师:对比以上解法,说说你的想法。

生14:我认为生11的解法比较烦,我的解法是:设抛物线的解析式为:

()5.35.22+-=x a y 解得:5

1-=a ,()5,35.1512+--=x y ,当0=x 时,25.2=y ,2.025.08.125,2=--,他跳离地面的高度是2.0米。

师:这位同学说得很好,说明他能认真分析问题,是大家应该学习的。

生15:选择恰当的方法可使计算简单。已知抛物线的顶点,设为顶点形式,容易求抛物线的解析式。

生16:在建立直角坐标系,求二次函数解析式时,选择坐标原点要注意,怎样才能使运算简便。我认为,在这个问题中,将坐标系的原点选在抛物线顶点处,最好算。

评析:数学计算的教学中最大瓶颈就是怕耽误教学时间,完不成教学任务,(特别是一些公开课、示范课、研讨课)往往是将题目演算步骤由教师全包全揽,以上过程中教师顺着

学生的思路,恰当地处理讲授与学生自主学习的关系,引导学生独立思考、自主计算、合作交流,同时在交流中进一步理解和掌握基本的数学知识与技能,提高了学生的运算能力。

三、问题拓展、发展应用意识

问题2:这场篮球赛中,另一位运动员小蔡跳起投篮,如图5,已知球出手时离地面高9

20 米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,问此球能否投中?

师:请同学们类比问题1的解题思路,构建自忆的解法。

生17(简要计算后):先建立如图6所示的平面直角坐标系,已知抛物线经过坐标原点O 和点A ??

? ??

--916,4,判断点(4,95.0)是否在篮球运行的抛物线上,如果在就能投中,如果不在就不能投中。

师:请你来写出你的解题过程。

学生17(板书):设解析式为2ax y =,于是 91616-=a ,9

1-=a ,291x y -=,当4=x 时,9

16-=y ,95.0916<-,所以点(4,95.0)不在抛物线上,因此不能投中。 师:这位同学的解法很好,还有补充的吗?

生18:根据抛物线的对称性,点(4-,916)的对称点是(4,9

16)可知(4,95.0)不在抛物线上,所以不能进球(全班掌声)。

师:假设出手的角度和力度都不变,则如何才能使此球投中?

生19(举手):可以跳高一点。

师:对,可以跳高一点,实际上就是把抛物线沿着y 轴向上平移,并用幻灯片演示(图略),你能计算出可以跳高多少吗?

生19:跳起的高度为225

49米。 生20:我觉得可以朝着蓝球架的方向走一点,我不知道怎么算。

生21:可先计算纵坐标为405.3-时的横坐标,再求4和这个数的差就行了。

师:同学们,你们认为这位同学的计算方法正确吗?生众:正确.

师强调:朝前走一点,实际是就是把抛物线向右平移(并用幻灯片演示(图略)),这一过程再一次验证了二次函数()()n m x a y m x a y ax y ++=+==2

22,,的联系。 评析:问题2承接问题1,又有变化,不是作简单的摸仿,特别是利用点的坐标是否在抛物线上来检验进球与否,体现了用数学的理念,使应用意识和数学模型思想得到了进一步的拓展。对投蓝不进作进一步的探究,看似简单自然,却意味深长,老师巧妙的设问,让学生在不知不觉中复习了抛物线是轴对称图形的性质,以及图形的平移,使知识结构体系浑然一体,则从数学现实出发,加强了数学的应用,结累了数学活动经验,发展了学生的应用意识,提升数学核心素养。

四、总结回顾,升华应用意识

师:通过本节课的学习,你在应用数学知识分析解决实际问题方面有什么收获与感想? 生22:通过本节课的学习,知道了在解决现实世界中的实际问题时,将实际问题转化为数学问题求解。

师:请同学们结合自已解决问题1的经历说说将实际问题转化为数学问题的思维过程。 学生议论后你一言我一语回答(过程略)。

师(概括):从思维层面上讲,寻找解决实际问题的基本过程(思路)有以下几个层次: 第一层次:通过生活现实关注来源于自然、社会中更为广泛的现象和具体的“问题情境”感受生活问题数学化,明确解决问题的基本策略。

第二层次:在“问题解决的过程中”主动尝试用不同的方法“建立模型”,“求解验证”形成解决问题的基本数学活动经验。

第三层次:通过“问题的拓展”和总结回顾,回归生活的本来面目,实现了由数学看现实,由现实想数学的思维方式的提升。

评析:从学生的总结看,这节课,学生获得基本的数学活动经验和应用意识。通过数学知识生活化,体会数学方法对现实世界中现象的解释,意识到用数学的角度看世界,唤起学生欲发现、想探究、思创造的愿望。

课后感悟:二次函数是初中数学的核心内容,在初中数学课程体系中占据重要的位置,也是数学的难点内容,知识点多、综合性强。让学生应用二次函数知识解决现实生活中的实际问题,变抽象为现实,是培养学生应用意识和数学素养的出发点。本节课用生活中人们司

空见惯的蓝球运动为题材,贴近学生的生活经验,使生活走向数学,数学依托于生活,显得自然而然、水到渠成,没有突兀之感,使学生感受数学的亲和力。它还具有降低学生心理预期难度的作用,源于数学来自身边,自然生成一种谐和的安全心理,使数学不再可怕。日本数学家米三国臧说过:“在学校学的数学知识,毕业后若没什么机会去用,一两年后,很快就忘掉了。然而,不管他们从事什么工作,唯有深深铭刻在心中的数学的精神、数学的思维方法、研究方法、推理方法和看问题的着眼点等,却随时随地发生作用,使他们终生受益”。这种数学的精神就是我们所说的数学素养,这种回归数学素养的数学教学,就是我们数学教育的理想。

【参考文献】

1.中华人民共和国教育部制定.《义务教育数学课程标准》(2011年版)[M].北京:北京师范大学出版社,2012.

2.胡军张帮洪冉文宇.“凸显问题探究、培养应用意识”[J]《中学数学》(初中版)。2015(4).

3.郑毓信.“数学思想”面面观(上).[J]《中学数学教学参考》(中旬)。2012年(8)。

4.孙朝仁马敏.“基于数学核心素养发展的应用型数学实验”[J]《中国数学教育》(初中版)2015(11)。

世界十大数学难题

难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 难题”之二:霍奇(Hodge)猜想 难题”之三:庞加莱(Poincare)猜想 难题”之四:黎曼(Riemann)假设 难题”之五:杨-米尔斯(Yang-Mills)存在性和质量缺口 难题”之六:纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 难题”之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想 难题”之八:几何尺规作图问题 难题”之九:哥德巴赫猜想 难题”之十:四色猜想 美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。以下是这七个难题的简单介绍。 “千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。 “千僖难题”之二:霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。“千僖难题”之三:庞加莱(Poincare)猜想 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。 “千僖难题”之四:黎曼(Riemann)假设

现代数学七大难题

20世纪是数学大发展的世纪。数学的许多重大难题得到完满解决,如费尔玛大定理的证明,有限单群分类工作的完成等,从而使数学的基本理论得到空前发展。 计算机的出现是20世纪数学发展的重大成就,同时极大推动了数学理论的深化和数学在社会和生产力第一线的直接应用。回首20世纪数学的发展,数学家们深切感谢20世纪最伟大的数学大师大卫. 希尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向,其对数学发展的影响和推动是巨大的,无法估量的。 效法希尔伯特,许多当代世界著名的数学家在过去几年中整理和提出新的数学难题,希冀为新世纪数学的发展指明方向。这些数学家知名度是高的,但他们的这项行动并没有引起世界数学界的共同关注。 2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”, 克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。克雷数学所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。 2000年5月24日,千年数学会议在著名的法兰西学院举行。会上,98年费尔兹奖获得者伽沃斯(Gowers)以“数学的重要性”为题作了演讲,其后,塔特(T ate)和阿啼亚(Atiyah) 公布和介绍了这七个“千年大奖问题”。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的阐述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖。 现在先只列出一个清单: 这七个“千年大奖问题”是:NP 完全问题,郝治(Hodge)猜想,庞加莱(P oincare)猜想,黎曼(Rieman )假设,杨-米尔斯(Yang-Mills) 理论, 纳卫尔-斯托可(Navier-Stokes)方程,BSD(Birch and Swinnerton-Dyer)猜想。 “千年大奖问题”公布以来,在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。可以预期,“千年大奖问题” 将会改变新世纪数学发展的历史进程。 (北京大学数学学院院长张继平) 7大难题的介绍 “千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。

用数学的眼光看世界

用数学的眼光看世界 ——小学生数感培养的几点思考 溧阳市后周小学葛丽艳义务教育阶段数学课程安排了“数与代数”、“空间与图形”、“统计与概率”、“实践与综合应用”四大学习领域的内容,课程的学习要发展学生六个核心的素质,它们是:数感、符号感、空间观念、统计观念、应用意识、推理能力,数感是摆在首要的位置,可见新课程培养这一人的基本素养是多么重要。 那么,什么是数感?《新解读》中指出:“数感是一种主动地、自觉地理解数和运用数的态度与意识。数感是人的一种基本素养。它是建立明确的数概念和有效地进行计算等数学活动的基础,是将数学与现实问题建立联系的桥梁。”我想通俗一点说,就是指对数的感觉、感受、感情,对日常生活中的数以及数的运算有敏锐的感受力。会用数学的眼光去观察刻画客观事物,善于捕捉事物中蕴含的数学特征。它可以帮助学生为解决现实问题提供有效的策略。 数感在数学学习中的有什么作用呢? 1、是学生可持续发展的需要。 数感让现实世界有了量化的意味。当人们遇到与数学有关的具体问题时,就会将它与数学联系起来,并用数学的观点和方法来解决问题,即会“数学地”思考。这既是一个公民应该具有的数学素养,同时也有助于学生在数学学习上的可持续发展。 2.能促进学生对知识的理解与内化。 有了良好的数感,使学生对新学的知识能够更加敏感,并迅速与已有的知识体系建立联系。这样既加深了对知识的理解,也有助于知识的内化,主动地进行有意义的建构。进而有利于学生能把所学知识灵活地应用于要解决的问题中去。 3.可提高学生解决问题的能力。 学生在遇到与数学有联系的问题时,用数学的眼光去观察事物,并用数学的思维方式去分析问题、解决问题,具有一定的数感是完成这类任务的重要条件。 不难想象,如果一个学生具有良好的数感,那是多么可喜的一件事情,是多么重要的一种数学素养啊!那么在数学教学中又如何培养学生的数感呢? 一、体验数感——教学需要引入生活 在数学中数的意义和数的顺序大小以及数的运算等等都是抽象的,这与小学生思维发展特征存在了某种矛盾。在现实生活中,我们的身边充满各种各样的数。学生生活在充斥着数的环境中,就经常要和数打交道。其实,学生中就经常出现这样的话语。如:“今天作业真少,我10分钟就做好了。”,“姚明可真高啊,有2米多吧!”,“一套房子要100多万哪,我家没有这么多的钱。”……象这样有意识地把数与现实生活联系起来,就体现了数感。走到一个房间,就会对房间的面积产生敏感等等,正是数感的体现。只有当学生把所学知识与生活经验联系起来,才能更好地掌握知识,内化知识。因此发展学生的数感离不开学生的生活经验。如在教学认识数时,开展了“天天和数交朋友”辨论会,有的学生慷慨陈辞:“早晨要看手表几点起床;打电话要看电话号码;进教室要看几楼几班……我们每天不和数打交道就不行”。 再如教学多位数的读法和写法时,让学生说说自己身边的数、生活中用到的数。同学们争先恐后地说出了自己的学号、生日、身高、体重、鞋号;自己家所在的街道号码、住宅的门牌号、汽车和摩托车牌的号码、自己家的电话号码、居

3趣味数学小故事

动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成,组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料,蜂房的巢壁厚0.073毫米,误差极少。 丹顶鹤总是成群结队迁飞,而且排成“人”字开。“人”字形的角度是110度,更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契?” 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺和圆规也很难画出像蜘蛛那样匀称的图案。 冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。 真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学业家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。 阿拉伯数字的由来 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。 阿拉伯数字最初出自印度人之手,也是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,

世界最迷人的数学难题

世界最迷人的数学难题 “几何尺规作图问题” 获奖理由:这里所说的“几何尺规作图问题”是指做图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺。“几何尺规作图问题”包括以下四个问题 1.化圆为方-求作一正方形使其面积等於一已知圆; 2.三等分任意角; 3.倍立方-求作一立方体使其体积是一已知立方体的二倍。 4.做正十七边形。 以上四个问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的。第四个问题是高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但後来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。 “蜂窝猜想” 获奖理由:四世纪古希腊数学家佩波斯提出,蜂窝的优美形状,是自然界最有效劳动的代表。他猜想,人们所见到的、截面呈六边形的蜂窝,是蜜蜂采用最少量的蜂蜡建造成的。他的这一猜想称为"蜂窝猜想",但这一猜想一直没有人能证明。1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。但如果多边形的边是曲线时,会发生什么情况呢?陶斯认为,正六边形与其他任何形状的图形相比,它的周长最小,但他不能证明这一点。而黑尔在考虑了周边是曲线时,无论是曲线向外突,还是向内凹,都证明了由许多正六边形组成的图形周长最校他已将19页的证明过程放在因特网上,许多专家都已看到了这一证明,认为黑尔的证明是正确的。 “孪生素数猜想” 获奖理由:1849年,波林那克提出孪生素生猜想(the conjecture of twin primes),即猜测存在无穷多对孪生素数。孪生素数即相差2的一对素数。例如3和5 ,5和7,11和13,…,和等等都是孪生素数。1966年,中国数学家陈景润在这方面得到最好的结果:存在无穷多

第一届Mathorcup全球数学建模挑战赛题目

第一届Mathorcup全球数学建模挑战赛题目 团购网站的盈利模式 团购网站是2009年兴起的一种新型的电子商务,如今团购已风靡全球。团购即团体购物,指的是认识的或者不认识的消费者联合起来,来加大与商家的谈判能力,以求得最优价格的一种购物方式。团购对于消费者和商家都是有利的,而团购网站更是靠广大消费者和商家而生存盈利的,所盈利模式对于团购网站至关重要。团购网站的盈利模式多种多样,一般分为“广告收益”、“销售提成”和“邀请好友返利”等方式来增加网站的收益。 问题: 请你评论以上几种盈利模式。 你还有其他什么盈利模式,有什么好处? 如果你是网站运行者你会选取哪类或者哪些盈利模式以便得到长远的发展。 图像识别 图像识别,是利用计算机对图像进行分析和处理,以帮助人们理解和识别各种不同模式的目标和对像的技术。图像识别技术一直是一个热门的研究课题,虽然现有的方法有很多,但是还都不是万能的。请你针对以下几张图片提出你的模型,来正确判别上面的数字。

日本核泄漏的影响 核电站是利用原子核裂变过程中释放的核能来发电的。核电站发电是一种清洁能源,给环境和人类带来很多好处。然而,核电站一旦发生事故,其对人类造成的灾难又是不可估量的。2011年3月12日,发生在日本东北地区的9.0级的特大地震,导致了福岛县第一核电站爆炸,再次引起了人们对核问题的深思。由于福岛核电站备用系统的不充分和急救措施的不及时导致核泄露,好在正值西南风盛行的季风气候,使得大量核污染物向太平洋这一地带扩散,从而大大减小了对陆地的污染程度。然而这次事故对人类和大自然都是一种灾难。 1.试分析此次日本核泄露对日本经济和环境的短期和长期影响。 2.考虑季风和洋流,建立数学模型研究放射性粉尘扩散过程,并计算出放射性粉尘扩散到对人体无害浓度所需时间。 3.显然日本在此次核泄露处理中有很多不足,这也加重此次核泄露对日本和世界的危害,如果你是日本当局,请提出你认为最好的处理方案,并重新计算在你的处理方案下1,2问!

什么叫数学以及趣味数学

什么叫数学 数学是研究现实世界中数量关系和空间形式的,简单地说,是研究数形的科学。 由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。在中国,至迟在商代,即已出现用十进制数字表示大数的方法;又至迟至秦汉之际,即已出现完满的十进位值制。 由于数学研究对象的数量关系与空间形式都来自现实世界,因而数学尽管在形式上具有高度的抽象性,而实质上总是扎根于现实世界。生活实践与技术需要始终是数学的真正源泉,反过来,数学对改造世界的实践又起着重要的、关键的作用。 20世纪出现各种崭新的技术,产生了新的技术革命。特别是计算机的出现,使数学又面临一个新时代。总之,数学正随着新的技术革命而不断发展。 算术是数学中最古老、最基础和最初等的部分。它研究数的性质及其运算。 “算术”这个词,在我国古代是全部数学的统称。至于几何、代数等许多数学分支学科的名称,都是后来很晚的时候才有的。 国外系统地整理前人数学知识的书,要算是希腊的欧几里得的《几何原本》最早。《几何原本》全书共十五卷,后两卷时候人增补的。全书大部分是属于几何知识,在第七、八、九卷中专门讨论了数的性质和运算,属于算术的内容。

“算”字在中国的古意也是“数”的意思,表示计算用的竹筹。中国古代的复杂数字计算都要用算筹。所以“算术”包含当时的全部数学知识与计算技能,流传下来的最古老的《九章算术》以及失传的许商《算术》和杜忠《算术》,就是讨论各种实际的数学问题的求解方法。 关于算数的产生,还是要从数谈起。数是用来表达、讨论数量问题的,有不同类型的量,也就随着产生了各种不同类型的数。远在古代发展的最初阶段,由于人类日常生活与生产实践中的需要,在文化发展的最初阶段就产生了最简单的自然数的概念。 自然数的一个特点就是由不可分割的个体组成。比如说树和羊这两种事物,如果说两棵树,就是一棵再一颗;如果有三只羊,就是一只、一只又一只。但不能说有半棵树或者半只羊,半棵树或者半只羊充其量只能算是木材或者是羊肉,而不能算作树和羊。 不过,自然数不足以解决生活和生产中常见的分份问题,因此数的概念产生了第一次扩张。分数是对另一种类型的量的分割而产生的。比如,长度就是一种可以无限地分割的量,要表示这些量,就只有用分数。 自然数和分数具有不同的性质,数和数之间也有不同的关系,为了计算这些数,就产生了加、减、乘、除的方法,这四种方法就是四则运算。 把数和数的性质、数和数之间的四则运算在应用过程中的经验累积起来,并加以整理,就形成了最古老的一门数学——算术。 在算术的发展过程中,由于实践和理论上的要求,提出了许多新问题,在解决这些新问题的过程中,古算术从两个方面得到了进一步的发展。 一方面在研究自然数四则运算中,发现只有除法比较复杂,有的能除

高考数学:世界著名数学难题

455 63 世界著名数学难题 20世纪是数学大发展的一个世纪。数学的许多重大难题得到完满解决,如费马大定理的证明,有限单群分类工作的完成 等, 从而使数学的基本理论得到空前发展。回首20世纪数学 的发展, 数学家们深切感谢20世纪最伟大的数学大师大卫·希 尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世 界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方 向。 知识荐语: 数学是研究数量、结构、变化以及空间模型等概念的一门 基础学科,简单地说,是研究数和形的科学。在数学发展的历 史上,数学们不但证明了诸多经典的定理,还把众多谜题留给 后人。这期知识,就让我们一同走进那些著名的数学难题。 1. 四色猜想 世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 ? 四色猜想到底怎么回事? ? 什么是四色猜想 ? 证明四色猜想的计算机是什么名字 ? 哪里有关于四色猜想的资料 ? 请问世界上那个四色猜想的内容是什么? ? 2. 哥德巴赫猜想 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。 ? 哥德巴赫猜想为什么被转化为证明1+1? ? 哥德巴赫猜想的内容 ? 哥德巴赫猜想难在哪里? ? 哥德巴赫猜想有什么新进展 ? 哥德巴赫猜想与1+1是什么关系?

数学与现实世界

一、教学目标 1.使学生对数学产生一定的兴趣,提高学好数学的自信心。 2.使学生初步认识到数学与现实世界的密切联系,初步形成应用数学的意识。 三、教学手段 现代课堂教学手段 教学准备 教师准备 1.仿课本制作华罗庚的画面,并配音:“聪明在于学习,天才在于积累”。 2.制作多媒体课件:教科书第7页的例题:一座漂亮的楼房的楼梯,高1米,水平距离是2.8米。 学生准备 四、教学方法 启发式教学 五、教学过程设计 (一)、创设情境,导入主题 (二)、提供交流、讨论机会,激活“主角”意识

(三)、探索数学初步应用,进一步激发兴趣 (四)、赋予总结评价权利,丰富“主角”意识 六、练习设计 课堂基础练习 1、从A 地到B 地有两条路,第一条从A 地直接到B 地,第二条从A 地经过C ,D 到B 地,两条路相比( ) A.第一条比第二条短 B.第一条比第二条长 C.同样长 答案:A 2、A 、B 两数的平均数是16,B 、C 两数的平均数是21,那么C –答案:10 3、小明从1写到100,他一共写了 个数字“1”. 答案:21 课后延伸练习 1、数一数,图中一共有多少个正方形? 答案:19 2、定义运算a ※b =a (a +b ),计算2※3的值. 答案:10

3、设定期储蓄1年期,2年期,3年期,5年期的年利率分别为2.25%,2.43%和2.88%.试计算1000元本金分别参加这四种储蓄,到期所得的利息各为多少(国家规定:个人储蓄从1999年11月1日起开始征收利息税,征收的税率为利息的20%).分析结果,你能发现什么?(提示:利息=本金×年利率×储存年数) 答案:1年期利息18元,2年期利息38.88元,3年期利息64.8元,5年期利息115.2元.发现:参加定期储蓄,存期越长,得到利息越大. 4、在第十届“哈药六杯”全国青年歌手电视大奖赛,8位评委给某选手所评分数如下表,计分方法是:去掉一个最高分,去掉一个最低分,其余分数的平均分作为该选手的最后得分,请你算一算该选手的最后得分. 答案:9.72 能力提高训练 1 、(1)在太阳光照射下,如图所示的图形中,哪些可以作为正方体的影子? (2)请你尝试一下,如果用手电筒照射正方体,可以得到哪些形状的影子?请把各种影子的形状画出来,并比较两种情形的异同?简要说明理由. 答案:(1)①②③; (2)可以得到长方形、正方形、正六边形、梯形形状的影子; 在太阳光照射与手电筒照射下,都能得到长方形、正方形、正六边形,但在太阳光照射下,得不到梯形,而在手电筒照射下,可得到梯形. 理由:太阳光是平行光线;手电筒的光是点光源. 七、板书设计 1.3截一个几何体 (一)知识回顾(四)例题解析(六)课堂 小结 (二)观察发现例1、例2 (三)解方程(五)课堂练习练习设计 八、教学后记 ①②③④

浅谈数学模型在实际生活中的应用

万方数据

浅谈数学模型在实际生活中的应用 作者:蔡桂荣 作者单位:湖北黄冈职业技术学院 刊名: 黑河教育 英文刊名:HEIHE EDUCATION 年,卷(期):2010,""(8) 被引用次数:0次 参考文献(2条) 1.问题解决的数学模型方法 1999 2.数学建模基础 2004 相似文献(10条) 1.期刊论文陈登连整体建构学生活数学自主探究过数学生活——浅谈小学数学课堂教学的有效性-科技信息2009,""(34) 课堂教学的有效性直接影响学生知识的建构和数学素养的养成.新课程下提高数学教学的有效性,关键在于教师要树立以学生发展为中心的教学理念,尊重学生的主体地位,科学地解读教材与学生,充分考虑学生的已有知识经验,不断沟通生活数学与教材数学的联系,努力为学生营造一个适合探索的氛围,满足学生的求知心理需求;沟通数学与生活的联系,让书本的数学成为生活的数学,让凝固的数学成为活动的数学,让理论的数学成为实践的数学.通过有效的课堂,让学生快乐地学"生活数学",愉快地过"数学生活". 2.期刊论文梁慧也谈数学与生活-教师2010,""(19) 数学来源于生活,生活中又充满着数学.学生的数学知识与才能,不仅来自于课堂,还来自于现实生活实际.所以教师在课堂教学中要善于发现和挖掘生活中的数学素材,把数学和学生的现实生活结合起来,从学生的实际生活中引出数学知识,让学生深刻感受到自己的生活中处处都有教学问题,自己的生活实际本身就是和数学知识融为一体的,这样学生学起来也会感到自然亲切和真实.因此,在数学教学中教师应重视学生的生活体验,把学生的生活体验和我们的数学知识相联系,把生活情境和数学问题相结合,让我们的教学生活化,让我们的生活数学化. 3.期刊论文程继德.许洪洪回归数学本质,把"生活数学"提升到"学校数学"-教育实践与研究2007,""(3) 数学教学"生活化"是新课程改革极为重视和倡导的内容,但由于一些教师对数学教学"生活化"的片面理解,错误地将"生活数学"等同于"学校数学",出现了片面追求数学教学生活化的倾向.对此我们认为要正确看待"生活数学",认识"生活数学"的必要性和局限性,以及"生活数学"与"学校数学"的不同点.要克服"生活数学"的局限性,数学教学必须回归数学本质,把"生活数学"提升到"学校数学",从具体的生活情景中抽象概括出一般的数学知识;从现实的生活问题中归纳建立适用的数学模型;从普通的生活现象中发展学生的数学思考. 4.期刊论文沙宪柱在生活中学习数学,在数学中感受生活-青年与社会·中外教育研究2009,""(12) 为使学生感受数学与现实生活的联系,教学时必须从学生熟悉的生活情景和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围熟悉的事物中学习和理解数学,体会到数学就在我们身边,感受到数学的趣味和作用,体验到数学的魅力. 5.期刊论文郑吉洁生活中的数学,数学中的生活——记课例:数学归纳法及其应用(第一课时)-科教导刊2010,""(21) 新课程强调数学课堂教学应为学生提供丰富的学习材料,拓展学生的数学活动空间,让学生感受数学来源于生活,发展学生"做数学""用数学"的意识,认识到课本不是课程的唯一资源;课本不是学生的世界,而世界才是学生的课本.只有教师跳出数学看数学,学生才能透过数学看世界. 6.期刊论文陈雪燕引生活之源活数学之水——谈小学"生活数学"的构建-现代中小学教育2009,""(8) 数学来源于生活,而又应用于生活,因此在教学中应奉行"生活数学"的教学理念.构建生活数学需采用一定的策略:运用"生活语言",感受数学的趣味性;捕捉"生活现象",认识数学的普遍性;模拟"生活情景",感悟数学的生动性;开展"生活实践",体验数学的实践性;拓展"生活时空",体会数学的应用性. 7.期刊论文张维数学来源于生活、生活中处处有数学-中国科教创新导刊2007,""(2) 数学来源于生活,又应用于生活.教学与生活是一个相辅相成、和谐兼容的有机整体.生活的世界就是教学的世界.那么,如何让小学生在数学生活中体验生括、在感受生活中学会数学呢?下面就此谈谈自己的几点粗浅的认识. 8.期刊论文胡支祥数学源于生活用于生活-剑南文学2010,""(5) 数学源于实际生活,植根于生活,教育只有通过生活才能产生作用并真正成为教育.学生用数学可以解决生活中的实际问题,增强其学习数学的主动性. 9.期刊论文任浙斌生活与数学走得更近一些-湖南中学物理·教育前沿2009,""(4) 数学是对客观世界数量关系和空间关系的一种抽象.可以说生活中处处有数学.<课程标准>中指出:"数学教学是数学活动,教师要紧密联系学生的生活环境,从学生的经验和已有的知识出发,创设生动的数学情境……."数学的兴趣和学习数学的信心对学生来说是十分重要的问题,教师就应该将学生的生活与数学学习结合起来,让学生熟知.亲近.现实的生活数学走进学生视野,进入数学课堂,使数学教材变的具体.生动.直观,使学生感悟,发现数学的作用与意义,学会用数学的眼光观察周围的客观世界,增强数学作用意识. 10.期刊论文杨潮突出"生活数学",营造教学之美-考试周刊2010,""(22) 数学来源于生活,而又应用于生活.教师应让数学走出书本、走出教室,融进生活、融进活动,把生活问题带进数学课堂,紧密联系学生的生活实际讲数学,把生活经验数学化,把数学问题生活化,让学生在感知、认知的气氛中想学、乐学、会学,使学生感受到生活的世界是一个充满数学的世界,把看似枯燥的数学教得生动、有趣、易于理解,营造数学课堂教学之美,真正调动学生学习数学的积极性,培养他们的自主探索能力. 本文链接:https://www.doczj.com/doc/d011357140.html,/Periodical_hhjy201008056.aspx

世界七大数学难题

世界七大数学难题 难题的提出 20世纪是数学大发展的一个世纪。数学的许多重大难题得到完满解决,如费马大定理的证明,有限单群分类工作的完成等,从而使数学的基本理论得到空前发展。 计算机的出现是20世纪数学发展的重大成就,同时极大推动了数学理论的深化和数学在社会和生产力第一线的直接应用。回首20世纪数学的发展,数学家们深切感谢20世纪最伟大的数学大师大卫·希尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向,其对数学发展的影响和推动是巨大的,无法估量的。 效法希尔伯特,许多当代世界著名的数学家在过去几年中整理和提出新的数学难题,希冀为新世纪数学的发展指明方向。这些数学家知名度是高的,但他们的这项行动并没有引起世界数学界的共同关注。 2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”,克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。克雷数学研究所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。 2000年5月24日,千年数学会议在著名的法兰西学院举行。会上,98年费尔兹奖获得者伽沃斯以“数学的重要性”为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个“千年大奖问题”。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的阐述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖. 世界七大数学难题 这七个“千年大奖问题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想。 美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣 布了一件被媒体炒得火热的大事:对七个“千年数学难题”的每一个悬赏一百万美元。 其中有一个已被解决(庞加莱猜想),还剩六个.(庞加莱猜想,已被我国中山大学朱熹平教授和旅美数学家、清华大学兼职教授曹怀东破解了。) 整个计算机科学的大厦就建立在图灵机可计算理论和计算复杂性理论的基础上, 一旦证明P=NP,将是计算机科学的一场决定性的突破,在软件工程实践中,将革命性的提高效率.从工业,农业,军事,医疗到生活,软件在它的各个应用域,都将是一个飞跃. P=NP吗?这个问题是著名计算机科学家(1982年图灵奖得主)斯蒂文·考克(StephenCook)于1971年

走进数学建模世界分析

走进数学建模世界 华南师范大学数学科学学院06级本科生 (510631) 黄泽君 编者按:由中国教育部国际交流司与师范司,以及东芝公司共同举办的第二届“东芝杯·中国师范大学师范专业理科大学生教学技能创新实践大赛”2009年11月15日在上海落下帷幕。经过紧张的数学模拟授课、教案评比、即席演讲三项总决赛,最终华南师范大学的黄泽君夺得冠军,南京师范大学的向坤获亚军,陕西师范大学的金涛获季军。三名获奖选手每人除了获奖励高级笔记本电脑一台之外,并获得免费赴日进行短期访学。本刊刊登获得第一名的教案,以飨读者。 【教材】人教版数学必修①3.2函数模型及其应用【课时安排】第4课时 【教学对象】高一学生【授课教师】华南师范大学数学科学学院黄泽君 【教材分析】数学建模是高中数学新课程的新增内容,但《标准》中没有对数学建模的课时和内容作具体安排,只是建议将数学建模穿插在相关模块的教学中。而“3.2函数模型及其应用”一节只是通过六个例子介绍一次函数、二次函数、指数函数、对数函数与幂函数在解决实际问题中的作用,为以后的数学建摸实践打基础,还未能使学生真正理解数学建模的真实全过程。本节课通过一个较为真实的数学建模案例,以弥补教材的这一不足。 【学情分析】高一学生在进入本节课的学习之前,需要熟悉前面已学过的二次函数与三角函数的相关性质。【教学目标】 ?知识与技能 (1)初步理解数学模型、数学建模两个概念; (2)掌握框图2——数学建模的过程。 ?过程与方法

(1)经历解决实际问题的全过程,初步掌握函数模型的思想与方法; (2)提高学生通过建立函数模型解决实际问题的能力。 情感态度价值观 (1)体验将实际问题转化为数学问题的数学化过程; (2)感受数学的实用价值,增强应用意识;(3)体会数学以不变应万变的魅力。【教学重点】框图2——数学建模的过程。 【教学难点、关键】方案二中答案的探究;关键是运用合情推理。 【教学方法】引导探究、讨论交流。【教学手段】计算机、PPT、几何画板。【教学过程设计】 一、教学流程设计

数学是研究现实世界的数量关系和空间形式的一门科学

数学是研究现实世界的数量关系和空间形式的一门科学。具有三个明显的特点:(1)抽象性。任何一个数学概念,法则都是从大量的具体事物中抽象概括出来的;(2)严密的逻辑性。数学的概念、法则等叙述要精确严密,结论要经过严密的论证;(3)应用的广泛性。数学在生活、生产和科学技术有着广泛的应用。 小学生的年龄心理特点与数学学科特点形成了矛盾的对立。主要表现在A数学知识的抽象性与小学生思维的具体形象性B数学知识的严密性与小学生对事物理解的简单化C数学知识应用广泛性与小学生接触生活实际狭窄。解决这些矛盾一般从小学生的年龄心理特点出发:(1)要按照儿童的认识规律组织教学。小学生的认识规律通常是:从直接感知––––表象–––––概念–––––概念系统。所以要理解数学的抽象性,必须有丰富的感性材料。直观教学是为学生提供必要感性材料的一种主要途径。(2)要适应学生的思维特点,又要通过数学知识的教学,发展学生的思维能力。小学数学教学中,受儿童思维发展水平的限制,有些概念,可以用描述代定义,或者用通俗易懂的语言,提示概念的本质特征,而不下严格的定义;但必须注意与严格定义不能矛盾。对于一些法则、运算性质等,可以通过具体事例或利用已有知识加以说明,不进行论证,但要使学生正确地理解和掌握所学的知识。同时又要通过掌握知识的过程,发展学生的思维能力,逐步培养学生形成正确的思维方法。也就是要结合数学教学内容,引导学生初步学会运用分析、综合、比较、抽象、概括等思维方法。(3)要逐步培养学生联系实际能力。数学的应用是非常广泛的,但是,小学生学到的数学知识还很少,社会生活经验还不多,不可能应用数学知识解决许多问题。所以在教学中,一方面要注意从学生的生活经验引入新的概念;另一方面则要培养学生运用数学知识解决实际问题的能力。 莲山课件原文地址:http://w直观。在小学数学教学中,运用实物、模型、挂图以及参观、操作等手段进行教学,称为直观教学。直观教学有助于学生获得感性认识,就是通过实物或实践,外界事物作用于学生的感觉器官而在学生大脑中产生的感觉、知觉和表象。直观具有生动性、具体性和直接性的特点。 直观教学在小学数学教学中具有重要的地位。鉴于小学生的思维一般地还处在具体形象思维阶段;而在小学数学教学中,他们要接触并必须掌握的数学知识却是抽象的,这就需要在具体与抽象之间架设一道桥。直观正是解决从具体到抽象这个矛盾的有效手段。(1)运用直观,可以使学生获得大量与数学知识密切相关的感觉、知觉和表象,在此基础上再进行抽象概括,就可以形成数学概念。(2)小学生形成的概念水平,与掌握感性材料的多寡有密切的联系。在教学中,让学生多看、多操作,目的就是要让学生多积累感知材料。(3)心理学实验表明,在教学过程中运用直观和操作,能调动小学生耳、眼、口、手多种感官参与学习活动,使学生的大脑保持兴奋状态;感知比较敏捷,想象比较丰富,思维比较活跃,有利于学生形成完整正确的概念,并且记忆比较牢固。所以从直观和操作开始的数学教学,是帮助儿童掌握数学知识,培养学习兴趣,发展智力和能力的必要途径。 直观在小学数学教学中,也有局限性,主要是只能把握个别而不能把握一般,只能把握现象而不能把握本质。在教学中,要引导学生从感性认识提高到理性认识,不要停留在直观的水平上。必须明白,直观的本身不是目的,而是手段。教学的真正目的在于使学生掌握知识,发展思维,并使之达到理性认识的水平。 在运用中,并不是在任何情况下,教学都要从直观入手,在学生已有有关经验的情况下,可以不必通过直观,直接利用已有经验建立新的概念。只有对所学的概念、法则等缺乏感性知识的依据时,直观才是不可缺少的。直观是为教学目的服务的,要克服为了直观而直观的倾向 莲山课件原文地址:https://www.doczj.com/doc/d011357140.html,/shu/https://www.doczj.com/doc/d011357140.html,/shu/16690.htm

世界7大数学难题

世界七大数学难题 这七个“千年大奖问题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想 千年大奖问题 美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千年数学难题”的每一个悬赏一百万美元。 其中有一个已被解决(庞加莱猜想),还剩六个.(庞加莱猜想,已由俄罗斯数学家格里戈里·佩雷尔曼破解。) “千年大奖问题”公布以来,在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。可以预期,“千年大奖问题” 将会改变新世纪数学发展的历史进程。 P问题对NP问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因式分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克于1971年陈述的。 霍奇(Hodge)猜想

世界近代三大数学难题:哥德巴赫猜想

世界近代三大数学难题:哥德巴赫猜想 哥德巴赫1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的偶数都可写成两个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b"。1966年陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。 今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。 从关于偶数的哥德巴赫猜想,可推出:任一大于7的奇数都可写成三个质数之和的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。弱哥德巴赫猜想尚未完全解决,但1937年时前苏联数学家维诺格拉多夫已经证明充分大的奇质数都能写成三个质数的和,也称为“哥德巴赫-维诺格拉朵夫定理”或“三素数定理”。 猜想提出 1742年6月7日,哥德巴赫写信给欧拉,提出了著名的哥德巴赫猜想:随便取某一个奇数,比如77,可以把它写成三个素数之和,即77=53+17+7;再任取一个奇数,比如461,可以表示成461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。例子多了,即发现“任何大于5的奇数都是三个素数之和。” 1742年6月30日欧拉给哥德巴赫回信。这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。 研究途径 研究偶数的哥德巴赫猜想的四个途径。这四个途径分别是:殆素数,例外集合,小变量的三素数定理以及几乎哥德巴赫问题。 殆素数

数学在现实生活中的应用

数学在现实生活中的应用 数学是对现实世界的一种思考,其目的是发现现实世界中所蕴藏的一些数与形的规律,为社会的进步与人类的发展服务。数学是一个非常美妙的领域,这是因为数学的主要部分是由人类的心灵构成的。对于初中生来讲,如何将数学应用于现实生活中来,需要老师在课堂上巧妙的讲解。 一、对数学的再次认识 一提到数学这个词,大家都觉得只是“题”是“形”是“数”,学生学数学只要做题就行了。而在使用新教材的过程中,我们逐步体会到了,数学它本身不只是“数字符号”,它有更丰富的内涵,它与人的生活息息相关。数学是对现实世界的一种思考、描述、刻画、解释、理解,其目的是发现现实世界中所蕴藏的一些数与形的规律,为社会的进步与人类的发展服务。数学是一个非常美的领域,这是因为数学的主要部分是由人类的心灵构成的。你可以自由探索自己心目中的数学世界,正是这种自由探索才是数学美的力量所在。 1.数学来源于生活 数学是生活中的一分子,它是在生活这个集体中生存的,离开了生活这个集体,数学将是一片死海,没有生活的

数学是没有魅力的数学。为了使学生切实体会到数学源于生活,我提倡学生写数学日记,记录生活中发现的数学问题,学生在日记中体现着他们对数学的应用与理解。 2.数学是一种文化 数学是思维与线条的文化。数学是研究现实世界中的数量关系与空间形式的一门科学。作为二十一世纪的数学教师,不能只让学生会做各种各样的“习题”,而是要让学生去体会到数学的一种社会价值,并且从生活中去体会一种数学思想。数学里包含着丰富的哲学道理和人文精神,教师在教学的过程中应当积极发掘数学中蕴涵的宝贵的东西,培养学生良好的思想品德及优良的学习习惯,教书的同时一定要育人,把育人放在首位。 二、对数学教学中的思考 一般来说,中小学数学教学的功能包括两个方面:一是实践功能,即它与人们的生产活动和日常生活有着密切的联系。数学教学的内容来自于人类日益丰富、不断提高的生产活动和社会生活,并通过对一代代新人的培养,而越来越明显和能动地促进各个时代,尤其是现代社会的生产活动和社会生活的发展和进步。二是精神功能,即它联系于人们的思维与方法。通过对儿童的数学教学,在早期就尽可能充分地开启儿童的智慧,发展儿童的思维品质和思维能力,丰富儿童的精神世界,能为他们日后乃至终身的良好发展,创造

相关主题
文本预览
相关文档 最新文档