当前位置:文档之家› 专题29 动态几何之线动形成的面积问题

专题29 动态几何之线动形成的面积问题

专题29 动态几何之线动形成的面积问题

1.(2014年江西南昌12分)如图1,边长为4的正方形ABCD 中,点E 在AB 边上(不与点A 、B 重合),点F 在BC 边上(不与点B 、C 重合).

第一次操作:将线段EF 绕点F 顺时针旋转,当点E 落在正方形上时,记为点G ; 第二次操作:将线段FG 绕点G 顺时针旋转,当点F 落在正方形上时,记为点H ; 依此操作下去…

(1)图2中的△EFD 是经过两次操作后得到的,其形状为 ,求此时线段EF 的长;

(2)若经过三次操作可得到四边形EFGH.

①请判断四边形EFGH 的形状为 ,此时AE 与BF 的数量关系是 ; ②以①中的结论为前提,设AE 的长为x ,四边形EFGH 的面积为y ,求y 与x 的函数关系式及面积y 的取值范围.

(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.

2.(2014年山东济南9分)如图1,抛物线23y x 16

=-平移后过点A (8,,0)和原点,顶点为B ,对称轴与x 轴相交于点C ,与原抛物线相交于点D .

(1)求平移后抛物线的解析式并直接写出阴影部分的面积S 影阴;

(2)如图2,直线AB 与y 轴相交于点P ,点M 为线段OA 上一动点,PMN ∠为直角,

边MN 与AP 相交于点N ,设OM t =,试探求:

①t 为何值时,△MAN 为等腰三角形?

②t 为何值时,线段PN 的长度最小,最小长度是多少?

3.(2014年四川凉山12分)如图①,在平面直角坐标中,点A 的坐标为(1,﹣2),

点B 的坐标为(3,﹣1),二次函数y=﹣x 2的图象为l 1.

(1)平移抛物线l 1,使平移后的抛物线经过点A ,但不过点B .

①满足此条件的函数解析式有 个.

②写出向下平移且经点A 的解析式 .

(2)平移抛物线l 1,使平移后的抛物线经过A ,B 两点,所得的抛物线l 2,如图②,求抛物线l 2的函数解析式及顶点C 的坐标,并求△ABC 的面积.

(3)在y 轴上是否存在点P ,使S △ABC =S △ABP ?若存在,求出点P 的坐标;若不存在,请说明理由.

4.(2014年四川攀枝花12分)如图,抛物线2y ax 8ax 12a =-+(a >0)与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,点D 的坐标为(﹣6,0),且∠ACD=90°.

(1)请直接写出A 、B 两点的坐标;

(2)求抛物线的解析式;

(3)抛物线的对称轴上是否存在点P ,使得△PAC 的周长最小?若存在,求出点P 的坐标及周长的最小值;若不存在,说明理由;

(4)平行于y 轴的直线m 从点D 出发沿x 轴向右平行移动,到点A 停止.设直线m 与折线DCA 的交点为G ,与x 轴的交点为H (t ,0).记△ACD 在直线m 左侧部分的面积为s ,求s 关于t 的函数关系式及自变量t 的取值范围.

5.(2014年山西省13分)综合与探究:如图,在平面直角坐标系xOy 中,四边形OABC 是平行四边形,A 、C 两点的坐标分别为(4,0),(﹣2,3),抛物线W 经过O 、A 、C 三点,D 是抛物线W 的顶点.

(1)求抛物线W的解析式及顶点D的坐标;

(2)将抛物线W和 OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和 O′A′B′C′,在向下平移的过程中,设 O′A′B′C′与 OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x 轴上的动点,点N时抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

6.(2014年陕西省10分)已知抛物线C:y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.

(1)求抛物线C的表达式;

(2)求点M的坐标;

(3)将抛物线C平移到C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?

六、新添加的题型

参考答案

1.(1)等边三角形4=-+=-.

(2)①①四边形EFGH 为正方形;AE=BF.

②222y 2x 8x 162(x 4x 4)82(x 2)8=-+=-++=-+,y 的取值范围是8<y <16.

(3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,

边长为4-.

【解析】(1)根据正方形的性质,证明旋转后得到的两个直角三角形全等,得出AE 和FC 相等,再用勾股定理列出方程即可.

(2)①根据旋转的性质可判定四边形EFGH 是正方形,得出AE=BF ;

②根据正方形的面积公式,找出AE 长与正方形面积之间的等量关系式.

(3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,

边长为4-.

如答图2所示,粗线部分是由线段EF 经过7次操作所形成的正八边形.

设边长EF=FG=x ,则,

x 4+=,解得:x=4.

解:(1)等边三角形.

∵四边形ABCD 是正方形,

∴AD=CD=BC=AB ,∠A=∠B=∠C=90°.

∵ED=FD ,∴△ADE ≌△CDF(HL). ∴AE=CF ,BE=BF.

∴△BEF 是等腰直角三角形.

设BE 的长为x ,则,AE=4x -,

∵在Rt △AED 中,222AE AD DE +=,DE=EF ,

∴())2

224 x 4-+=,解得12x 4x 4=-+=-- (不合题意,舍去).

∴4=-+=-.

(2)①四边形EFGH 为正方形;AE=BF.

②∵AE=x ,∴BE=4x -.

∵在Rt △BED 中,222EF BF BE =+,AE=BF ,

∴()222222y EF 4x x 168x x x 2x 8x 16==-+=-++=-+.

∵点E 不与点A 、B 重合,点F 不与点B 、C 重合,

∴0<x <4.

∵222y 2x 8x 162(x 4x 4)82(x 2)8=-+=-++=-+,

∴当x=2时有最小值8,当x=0或4时,有最大值16.

∴y 的取值范围是8<y <16.

(3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,

边长为4-.

考点:1.线动旋转问题;2.正方形的判定和性质;3.等边三角形的判定和性质;4.全等三角形的判定和性质;5.勾股定理;6.二次函数的应用.

2.(1)233y x x 162=-

+ 12 (2)①9t 2

=时,△MAN 为等腰三角形. ②故当t =3时,PN 取最小值为152

. 【解析】(1)根据平移的性质,应用待定系数法即可求出平移后抛物线的解析式;如答图1,过点D 作DE ⊥y 轴于点E ,由()22333y x x x 4316216

=-+=--+得顶点B (4,3),则阴影部分的面积等于矩形OCDE 的面积S 影阴=OC ×CB =12.

(2)①分MN =AN ,AM =AN ,MN =MA 三种情况情况即可.

②应用反证法求解即可.

解:(1)∵抛物线23y x 16=-

平移后过原点,∴设平移后抛物线的解析式23y x bx 16

=-+. 将点A (8,,0)代入,得30648b 16=-?+,解得3b 2

=. ∴平移后抛物线的解析式233y x x 162=-+. S 影阴=12.

(2)由A (8,,0),B (4,3)可求得直线AB 的解析式为3y x 64

=-

+, 如答图2,过点N 作NQ ⊥x 轴于点Q ,

①当MN =AN 时,

N 点的横坐标为

8t 2-,纵坐标为243t 8

-, 由△NQM ∽△MOP 得NQ MQ OM OP

=, ∴243t 8t

82t 6--=,解得9t ,82

=(舍去). 当AM =AN 时,AN =8t -,

由△ANQ ∽△APO 得()()348t NQ 8t ,AQ 8t ,MQ 555

-=-=-= , 由△NQM ∽△MOP 得NQ MQ OM OP

=,∴()38t 8t 55t 6--=,解得:t =12(舍去). 当MN =MA 时,MNA MAN 45∠=∠

综上所述,9t 2

=时,△MAN 为等腰三角形. ②如答图2,作PN 的中点T ,连接TM ,则TM =PT =21P N,当TM 垂直于x 轴且M 为OQ 中点时PN 最小,此时t =3,证明如下:

假设t =3时M 记为M 0,T 记为T 0,

若M 不在M 0处,即M 在M 0左侧或右侧,

若T 在T 0左侧或者T 在T 0处,则TM 一定大于00T M

而PT 却小于0PT ,这与TM =PT 矛盾,

故T 在T 0右侧,则PT 大于0PT ,相应PN 也会增大,

故若M 不在M 0处时 PN 大于M 0处的PN 的值,

故当t =3时,MQ =3, 3NQ=

2,根据勾股定理可求出PM =与MN ,15PN=2

. 故当t =3时,PN 取最小值为152. 考点:1.二次函数综合题;2.单动点和线动平移问题;3.待定系数法的应用;4.曲线上点的坐标与方程的关系;5.等腰三角形的性质;6.相似三角形的判定和性质;7.直角三角形斜边上中线的性质;8.勾股定理;9.转换思想、分类思想和反证法的应用.

3.(1)①无数;②y=﹣x 2﹣1.

(2)S △ABC =S 梯形ABED ﹣S 梯形BCFE ﹣S 梯形ACFD =1516

. (3)所求点P 的坐标为(0,5516-)或(0,2516

-). 【解析】(1)①根据实际情况可以直接写出结果.

②设平移以后的二次函数解析式是:y=﹣x 2+c ,把(1,﹣2)代入即可求得c=﹣1,从而得

到函数的解析式:y=﹣x 2﹣1.

(2)利用待定系数法即可求得函数的解析式;化为顶点式得到点C 的坐标,过点A 、B 、C 三点分别作x 轴的垂线,垂足分别为D 、EE 、F ,求得△ABC 的面积.

(3)分当点P 位于点G 的下方和上方,两种情况进行讨论求解.

解:(1)①无数;

②y=﹣x 2﹣1.

(2)设l 2的解析式是y=x 2+bx+c ,

∵l 2经过点A (1,﹣2)和B (3,﹣1),

∴1b c 293b c 1-++=-??-++=-?,解得:9b 211

c 2?=????=-??

. ∴l 2的解析式是:2911y x x 22

=-+-. ∵2

291197y x x x 22416??=-+-=--- ???, ∴顶点C 的坐标是9

7,416??- ???

. 如答图1,过点A 、B 、C 三点分别作x 轴的垂线,垂足分别为D 、E 、F ,

则AD=2,CF=716,BE=1,DE=2,DF=54,FE=34

. ∴S △ABC =S 梯形ABED ﹣S 梯形BCFE ﹣S 梯形ACFD =

1516. (3)存在. 如答图2,3,延长BA 交y 轴于点G ,

设直线AB 的解析式为y mx n =+,

则m n 23m n 1+=-??+=-?,解得1m 25

n 2?=????=-??

. ∴直线AB 的解析式为15y x 22

=-. ∴点G 的坐标为(0,52

-). 设点P 的坐标为(0,h ),

①当点P 位于点G 的下方时,如答图2,PG=5h 2

--,连接AP 、BP , 则S △ABP =S △BPG ﹣S △APG =()15

5h 31h 222

??---=-- ???.

又∵S △ABC =S △ABP =

1516,得h=5516

-. ∴点P 的坐标为(0,5516-). ②当点P 位于点G 的上方时,如答图3,PG=

5h 2+, 同上可得h=2516-,点P 的坐标为(0,2516

-). 综上所述,所求点P 的坐标为(0,5516-)或(0,2516

-).

考点:1.二次函数综合题;2.线动平移问题;3.待定系数法的应用;4.曲线上点的坐标与方程的关系;5.二次函数的性质;6.三角形和梯形面积;7.分类思想、转换思想和方程思想的应用.

4.(1)A (2,0),B (6,0).

(2

)2y =-+ (3)存在满足条件的点P ,点P 坐标为(4

,△PAC

周长的最小值为4+ (4)s 关于t 的函数关系式为

S

))226t 00t 2++-≤≤=?++≤??<.

【解析】(1)抛物线的解析式为:2y ax 8ax 12a =-+(a >0),

令y=0,即2ax 8ax 12a 0-+=,解得x 1=2,x 2=6,∴A (2,0),B (6,0).

(2)由∠ACD=90°可知△ACD 为直角三角形,利用勾股定理,列出方程求出a 的值,进而求出抛物线的解析式.

(3)△PAC 的周长=AC+PA+PC ,AC 为定值,则当PA+PC 取得最小值时,△PAC 的周长最小.设点C 关于对称轴的对称点为C′,连接AC′与对称轴交于点P ,由轴对称的性质可知点P 即为所求.

(4)直线m 运动过程中,有两种情形,需要分类讨论并计算,避免漏解.

解:(1)A (2,0),B (6,0).

(2)抛物线的解析式为:2y ax 8ax 12a =-+(a >0),

令x=0,得y=12a ,∴C (0,12a ),OC=12a .

在Rt △COD 中,由勾股定理得:()222222CD OC OD 12a 6144a 36=+=+=+;

在Rt △COD 中,由勾股定理得:()222222AC OC OA 12a 2144a 4=+=+=+;

在Rt △COD 中,由勾股定理得:DC 2+AC 2=AD 2,

即:()()222144a 36144a 48+++=,解得:

a=(舍去).

∴抛物线的解析式为:2y =

-+. (3)存在.

对称轴为直线:x 4==. 由(2)知C (0

,),则点C 关于对称轴x=4的对称点为C′(8

,),

如答图1,连接AC′,与对称轴交于点P ,则点P 为所求.此时△PAC 周长最小,最小值为AC+AC′.设直线AC′的解析式为y=kx+b ,则有:

2k b 08k b +=???+=??

k b ?=????=??

. ∴直线

AC′的解析式为y =

. 当x=4

时,y =P (4

. 过点C′作C′E⊥x 轴于点E ,则

C′E=,AE=6,

在Rt △AC′E 中,由勾股定理得:

AC '=

= 在Rt △AOC

中,由勾股定理得:AC 4==

∴AC+AC′=4+

∴存在满足条件的点P ,点P 坐标为(4,△PAC 周长的最小值为4+. (4)①当﹣6≤t≤0时,如答图2.

∵直线m 平行于y 轴,∴△DGH ∽△DCO. ∴GH DH

OC OD =6t 6+=.

∴)GH 6t =

+

∴())DGH 11S S DH GH 6t 6t 22?==?=++

2=++. ②当0<t≤2时,如答图3.

∵直线m 平行于y 轴,∴△AGH ∽△ACO. ∴GH AH

OC OA =2t 2-=,

∴GH =+

∴S=S △COD +S 梯形OCGH

()11OD OC GH OC OH 22

=?++?

(

2116t 22=??+++?=++

∴s 关于t 的函数关系式为

S

))226t 00t 2++-≤≤=?++≤??<.

考点:1.二次函数综合题;2.轴对称的应用(最短线路问题);3.线动平移问题;4.勾股定理;5.待定系数法的应用;6.曲线上点的坐标与方程的关系;7.相似三角形的判定和性质;

8.由实际问题列函数关系式;9.分类思想的应用.

5.解:(1)设抛物线W 的解析式为y=ax 2+bx+c ,

∵抛物线W 经过O (0,0)、A (4,0)、C (﹣2,3)三点,

∴c 016a 4b c 04a 2b c 3=??++=??-+=?,解得:1a 4b 1c 0?=??=-??=??

∴抛物线W 的解析式为21y x x 4

=-. ∵()2211y x x x 2144

=-=--,∴顶点D 的坐标为(2,﹣1). (2)由 OABC 得,CB ∥OA ,CB=OA=4.

又∵C 点坐标为(﹣2,3),∴B 点的坐标为(2,3).

如答图1,过点B 作BE ⊥x 轴于点E ,由平移可知,点C′在BE 上,且BC′=m.

∴BE=3,OE=2.∴EA=OA ﹣OE=2.

∵C′B′∥x 轴,∴△BC′G∽△BEA. ∴BC C G BE EA ''=,即m C G 32'=.∴C′G=2m 3

. 由平移知, O′A′B′C′与 OABC 的重叠部分四边形C′HAG 是平行四边形. ∴()22233S C G C E m 3m m 3322

??='?'=?-=--+ ???. ∴当m=32时,S 有最大值为32

(3)存在.点M 的坐标分别为(0,0),(4,0),(6,0),(14,0).

【解析】(1)利用待定系数法求出抛物线的解析式,化为顶点式求出顶点D 的坐标.

(2)由平移性质,可知重叠部分为一平行四边形.如答图1,作辅助线,利用相似比例式求出平行四边形的边长和高,从而求得其面积的表达式;然后利用二次函数的性质求出最值.

(3)在(2)的条件下,抛物线W 向右平移4个单位,再向下平移

32个单位,得到抛物线W′, ∵D (2,﹣1),∴F (6,52-).

∴抛物线W′的解析式为:()215y x 642

=--. 设M (t ,0),

以D 、F 、M 、N 为顶点的四边形是平行四边形,分点N 在x 轴上方、下方两种情况讨论: ①若点N 在x 轴下方,如答题2所示:

过点D 作DP ∥y 轴,过点F 作FP ⊥DP 于点P ,

∵D (2,﹣1),F (6,5

2-),∴DP=32

,FP=4. 过点N 作DQ ⊥x 轴于点Q ,

由四边形FDMN 为平行四边形,易证△DFP ≌△NMQ ,

∴MQ=FP=4,NQ=DP=

32.∴N (4+t ,﹣32

). 将点N 坐标代入抛物线W′的解析式()215y x 642=--,得:()2153t 2422--=-, 解得:t=0或t=4,∴点M 的坐标为(0,0)或(4,0).

②若点N 在x 轴上方,(请自行作图)

与①同理,得N (4﹣t ,32

) 将点N 坐标代入抛物线W′的解析式()215y x 642=

--,得:()2153t 10422--=, 解得:t=6或t=14,∴点M 的坐标为(6,0)或(14,0).

综上所述,存在这样的点M 和点N ,点M 的坐标分别为(0,0),(4,0),(6,0),(14,0).

考点:1.二次函数综合题;2.线动平移、面动平移和双动点问题;3.待定系数法的应用;4.曲线上点的坐标与方程的关系;5.二次函数的性质;6.相似三角形的判定和性质;7.平行四边形的判定和性质;8.分类思想的应用.

6.(1)2y x 2x 3=--+

(2)M (﹣1,4).

(3)上述的四种平移,均可得到符合条件的抛物线C′.

【解析】(1)直接把A (﹣3,0)和B (0,3)两点代入抛物线y=﹣x 2+bx+c ,求出b ,c 的

值即可.

(2)把(1)中抛物线的解析式化为顶点式可得出其顶点坐标.

(3)根据平行四边形的定义,可知有四种情形符合条件,如解答图所示.需要分类讨论.

解:(1)∵抛物线y=﹣x 2+bx+c 经过A (﹣3,0)和B (0,3)两点,

∴93b c 0c 3--+=??=?,解得b 2c 3

=-??=?.

∴此抛物线的解析式为:2y x 2x 3=--+.

(2)∵()2

2y x 2x 3x 14=--+=-++,

∴M (﹣1,4).

(3)由题意,以点M 、N 、M′、N′为顶点的平行四边形的边MN 的对边只能是M′N′, ∴MN ∥M′N′且MN=M′N′.∴MN?NN′=16.∴NN′=4.

i )当M 、N 、M′、N′为顶点的平行四边形是?MN N′M′时,将抛物线C 向左或向右平移4个单位可得符合条件的抛物线C′;

ii )当M 、N 、M′、N′为顶点的平行四边形是?MNM′N′时,将抛物线C 先向左或向右平移4个单位,再向下平移8个单位,可得符合条件的抛物线C′.

∴上述的四种平移,均可得到符合条件的抛物线C′.

考点:1.二次函数图象与平移变换;2.曲线上点的坐标与方程的关系;3.二次函数的性质;

4.平行四边形的性质;

5.分类思想的应用.

简单几何体的表面积与体积

第2节简单几何体的表面积与体积 最新考纲了解球、棱柱、棱锥、台的表面积和体积的计算公式. 知识梳理 1.多面体的表(侧)面积 多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和. 2.圆柱、圆锥、圆台的侧面展开图及侧面积公式 3.简单几何体的表面积与体积公式 [常用结论与微点提醒] 1.正方体与球的切、接常用结论 正方体的棱长为a,球的半径为R, ①若球为正方体的外接球,则2R=3a; ②若球为正方体的内切球,则2R=a; ③若球与正方体的各棱相切,则2R=2a.

2.长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2. 3.正四面体的外接球与内切球的半径之比为3∶1. 诊断自测 1.思考辨析(在括号内打“√”或“×”) (1)锥体的体积等于底面面积与高之积.() (2)球的体积之比等于半径比的平方.() (3)台体的体积可转化为两个锥体的体积之差.() (4)已知球O的半径为R,其内接正方体的边长为a,则R= 3 2a.() 解析(1)锥体的体积等于底面面积与高之积的三分之一,故不正确. (2)球的体积之比等于半径比的立方,故不正确. 答案(1)×(2)×(3)√(4)√ 2.(教材练习改编)已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为() A.1 cm B.2 cm C.3 cm D.3 2cm 解析由题意,得S 表 =πr2+πrl=πr2+πr·2r=3πr2=12π,解得r2=4,所以r=2(cm). 答案 B 3.(2016·全国Ⅱ卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为() A.12π B.32 3π C.8π D.4π 解析设正方体的棱长为a,则a3=8,解得a=2.设球的半径为R,则2R=3 a,即R= 3.所以球的表面积S=4πR2=12π. 答案 A 4.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为() A.π B.3π 4 C. π 2 D. π 4

解析几何范围最值问题(教师)详解

第十一讲 解析几何范围最值问题 解决圆锥曲线中最值、范围问题的基本思想是建立目标函数和建立不等关系,根据目标函数和不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理. 一、几何法求最值 【例1】 抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足+=(-4,-12). (1)求直线l 和抛物线的方程; (2)当抛物线上一动点P 从点A 运动到点B 时,求△ABP 面积的最大值. [满分解答] (1)根据题意可设直线l 的方程为y =kx -2,抛物线方程为x 2=-2py (p >0). 由????? y =kx -2,x 2=-2py , 得x 2+2pkx -4p =0 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4. 所以+=(-4,-12),所以??? ? ? -2pk =-4,-2pk 2 -4=-12, 解得? ???? p =1,k =2.故直线l 的方程为y =2x -2,抛物线方程为x 2=-2y . (2)设P (x 0,y 0),依题意,知当抛物线过点P 的切线与l 平行时,△ABP 的面积最大. 对y =-12x 2求导,得y ′=-x ,所以-x 0=2,即x 0=-2,y 0=-12x 20=-2,即P (-2,-2). 此时点P 到直线l 的距离d = |2·(-2)-(-2)-2|22+(-1)2 =45=4 5 5. 由? ???? y =2x -2, x 2=-2y ,得x 2+4x -4=0,则x 1+x 2=-4,x 1x 2=-4, |AB |= 1+k 2· (x 1+x 2)2-4x 1x 2= 1+22·(-4)2-4·(-4)=4 10. 于是,△ABP 面积的最大值为12×4 10×4 55=8 2. 二、函数法求最值 【示例】在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的离心率e = 2 3 ,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程; (2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由. (1)由e =c a = a 2- b 2 a 2= 23,得a =3 b ,椭圆C :x 23b 2+y 2 b 2=1,即x 2+3y 2=3b 2,

初中平面几何辅助线专题复习

初中平面几何辅助线专题复习 目录 第01讲辅助线的初步认识 第02讲截长补短法 第03讲中点模型——倍长中线 第04讲三垂直模型 第05讲角平分线模型(一) 第06讲角平分线模型(二) 第07讲手拉手模型——全等 第08讲最短路径问题 第09讲平面直角坐标系中的几何问题

第01讲辅助线的初步认识 【知识提要】 初中辅助线的添加时几何部分学习的重要内容,同时也是学生学习的难点之所在。当 问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立 已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。 辅助线的添加通常有两种情况: 1.按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线 段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2.按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往 往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫 做“补图”!这样可防止乱添线,添辅助线也有规律可循。 本节课我们就以启东作业中的问题为例,来介绍常见的辅助线的画法. 【典型例题】 例1:小春在做数学作业时,遇到一个这样的问题:如图,AB=CD,BC=AD,请说明 ∠A =∠C 的道理. BC=AD,所以只需连接BD,构造全等三角形即可. D

例2. 如图,O 是△ABC 内一点,连接OB 和OC. 你能说明OB +OC < AB + AC 的理由吗? 【思路点拨】要证明线段之间的不等关系,要将线段放在三角形中,利用三边关系来证明。△ABC 和△OBC 中无法解决,所以只需要将OB (OC )延长交AC (AB )于点D ,在△ABD (△ACD )和△OCD (△OBD )利用三边关系解决即可. 归纳:构造线段时辅助线的写法: 1. 连接**。例如:连接AB 2. 延长**。①例如:延长AB 交CD 于E 点;②延长AB 到E ,使BE = AB . 例题3:已知:如图AB ∥DE . 求证:∠B +∠C +∠D = 360° 【思路点拨】要证明这三个角的和是360°,可以 构造周角,2个180度或四边形的内角和来证明。 通过作平行线就可实现角的位置的转移,将角移动到 适当的位置。 归纳:构造平行线时辅助线的写法: 1. 过*作* ∥ *。例如:过点A 作AB ∥CD. 练习:叙述并证明三角形内角和定理。 例题4:已知:如图,△ABC 的∠B 的外角的平分线BD 和∠C 的外角平分线CE 相交于点P 求证:点P 也在∠BAC 的平分线上。 【思路点拨】已知CP 和BP 为外角平分心线,要证明P 角平分线上,只需要过P 向AM 、AN 、BC 归纳:构造垂线,中线,角平分心线时辅助线的写法: 1. 垂线:过*作*⊥*于点*。例如:过点A 作AB ⊥CD 于点B . C E A N B

简单几何体的表面积和体积(含答案)

简单几何体的表面积和体积 [基础知识] 1.旋转体的侧面积 2S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高) S 正棱台侧=1 2 (c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高) 3.体积公式 (1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____ (3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =1 3 (S ′+S ′S +S)h . [基础练习] 1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( ) A .8 B .8π C .4π D .2 π 2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( ) A .1+2π2π B .1+4π4π C .1+2ππ D .1+4π2π 3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( ) A .11∶8 B .3∶8 C .8∶3 D .13∶8 4.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( ) A .a ∶b B .b ∶a C .a 2∶b 2 D .b 2∶a 2 5.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( ) A .24π cm 2, 12π cm 3 B .15π cm 2, 12π cm 3 C .24π cm 2, 36π cm 3 D .以上都不正确 6.三视图如图所示的几何体的全面积是( ) A .7+ 2 B .112+ 2 C .7+ 3 D .3 2 [典型例题] 例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线 将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.

2019-2020年高考数学二轮复习难点2.9解析几何中的面积,共线,向量结合的问题教学案文

2019-2020年高考数学二轮复习难点2.9解析几何中的面积,共线,向量结合的 问题教学案文 圆锥曲线是解析几何部分的核心内容,以计算量大、方法灵活、技巧性强著称,既是中学数学的重点、难点,也是历年高考的热点,常以压轴题的形式出现.而直线与圆锥曲线的位置关系,集中交汇了解析几何中直线与圆锥曲线的内容, 特别是解析几何中的面积,共线,向量结合的问题是圆锥曲线综合题,解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的.综合题中常常离不开直线与圆锥曲线的位置,因此,要树立将直线与圆锥曲线方程联立,应用判别式、韦达定理的意识.解析几何应用问题的解题关键是建立适当的坐标系,合理建立曲线模型,然后转化为相应的代数问题作出定量或定性的分析与判断.常用的方法:数形结合法,以形助数,用数定形. 在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份――对称性、利用到角公式)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等. 1解析几何中的面积问题 解析几何中某些问题,可以通过三角形面积的等量关系去解.研究方法:先选定一个易于计算面积的几何图形,再用不同方法计算同一图形面积,得到一个面积等式;或是用一图形面积等于其它图形面积的和或差.在教学时,适当讲解此法,是开拓学生思路,提高数学教学质量的有效手段之一. 例1【西南名校联盟高三2018年元月考试】已知抛物线2 :8C y x =上的两个动点()11,A x y , ()22,B x y 的横坐标12x x ≠,线段AB 的中点坐标为()2,M m ,直线:6l y x =-与线段AB 的垂直平分线相交于点Q . (1)求点Q 的坐标; (2)求AQB ?的面积的最大值. 思路分析:(1)根据题设条件可求出线段AB 的斜率,进而求出线段AB 的垂直平分线方程,联立直线 :6l y x =-与线段AB 的垂直平分线方程,即可求出点Q 的坐标; (2)联立直线AB 与抛物线C 的方程,结合韦达定理及弦长公式求出线段AB 的长,再求出点Q 到直线AB 的距离,即可求出AQB S 的表达式,再构造新函数,即可求出最大值.

用旋转法………作辅助线证明平面几何题.

用旋转法………作辅助线证明平面几何题 旋转法就是在图形具有等邻边特征时,可以把图形的某部分绕等邻边的公共端点,旋转另一位置的引辅助线的方法。 1、旋转方法主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条 件。 2、旋转时要注意旋转中心、旋转方向、旋转角度的大小(三要素:中心、方向、大小); 3、旋转方法常用于竺腰三角形、等边三角形及正方形等图形中。 例1: 例2 已知,在Rt ABC 中;∠BAC=90?; D为BC边上任意一点,求证:2AD2=BD2+CD2. 证明:把ABD绕点A逆时钍方向旋转90?,得?ACE,则ABD??ACE,∴BD=CE,∠B=∠ACE; ∠BAD=∠CAE, AD=AE。 又∠BAC=90?;∴∠DAE=90? 所以: D E2=AD2+AE2=2AD2。 因为:∠B+∠ACB=90? 所以:∠DCE=90? CD2+CE2=DE2=2AD2 即: 2AD2=BD2+CD2。 注:也可以把ADC顺时针方向旋转90?来证明。 注 C D

已知,P 为等边ABC 内一点,PA=5,PB=4,PC=3,求∠BPC 的度数。证明:把ABP 绕点B 顺时钍方向旋转90?,得?CBD ,则ABP ??CBD ,∴, ∠ABP=∠CBD ,所以 ∠BAP+∠PBC=∠CBD+∠PBC=60?,所以 BPD 为等边三角形。 ∠PBD=60?所以: C D 2=PD 2+PC 2。因为: ∠DPC=90? 所以: ∠BPC=∠BPD+∠DPC=60?+90?=150? 注:也可以把CAP 绕点C 逆时针方向旋转60?来证明。 D C 例3: 如图:在正方形ABCD 中,E 为AD 边上一点,BF 平分∠CBE 交CD 于F 点。求证:BE=CF+AE 证明:把ABE 绕点B 顺时针方向旋转90?得BCN 。 则:ABE ?BCN ,所以: ∠ABE=∠CBN ,BE=BN ,AE=CN 。因为:四边形ABCD 是正方形,所以:CD AB ,∠NFB=NBF 因为:∠ABF=∠ABE+∠EBF ,∠NBF=∠NBC+∠CBF ,而:∠EBF=∠FBC ;∠NBF=∠NFB 所以:BN=NF=CN+CF 所以:BE=AE+CF 。注:也可以把BCF 绕点B 逆时针方向旋转90?来证明。

简单几何体表面积

运用二 表面积 【例2】(1)(2019·山西高二月考(文))已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为() A.27π B.36π C.54π D.81π (2)(2019·福建高三月考(文))《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图所示,则它的表面积为( ) A .2 B .422+ C .442+ D .642+ (3)(2019·安徽高二期末(文))如图,长度为1的正方形网格纸中的实线图形是一个多面体的三视图,则该多面体表面积为( ) A .1662+ B .1682+ C .1262+ D .1282+ 【答案】(1)B(2)D(3)D 【解析】(1)设圆柱的底面半径为r .因为圆柱的轴截面为正方形,所以该圆柱的高为2r .因为该圆柱的体积为54π,23π2π54πr h r ==,解得3r =,所以该圆柱的侧面积为2π236r r ?=π. (2)根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角形,两条直角2,斜边是2,且侧棱与底面垂直,侧棱长是2, ∴几何体的表面积12222222264 2.2 S =?+??=+故选:D .

(3)由三视图还原原几何体如图, 该几何体为四棱锥,底面是矩形,AD =4,AB =2,四棱锥的高为2. 则其表面积为S 111424222224221282222=?+ ??+???+??=+.故选:D . 【举一反三】 1.(2019·湖南高一期末)已知一个圆柱的高是底面圆半径的2倍,则该圆柱的侧面积与表面积的比值为( ) A.14 B.12 C.23 D.45 【答案】C 【解析】设圆柱底面圆的半径为r ,则高2h r =,该圆柱的侧面积为224r h r ππ?=,表面 积为222 426r r r πππ+=,故该圆柱的侧面积与表面积的比值为224263r r ππ=. 2.(2019·湖南高三期末(文))一个几何体的三视图如图所示,则该几何体的表面积为( ) A .2+2 B .2 C .1+22 D .5 【答案】A

解析几何的范围问题

A .() 1,2 B . ( ) 2,2 C .()1,2 D . ( ) 2,+∞ 2.(2020·湖北高考模拟(理))设椭圆222 14 x y m +=与双曲线22 214x y a -=在第一象限的交点为12,,T F F 为其共同的左右的焦点,且14TF <,若椭圆和双曲线的离心率分别为12,e e ,则22 12e e +的取值范围为 A .262, 9? ? ??? B .527, 9?? ??? C .261, 9?? ??? D .50,9?? +∞ ??? 3.(2020六安市第一中学模拟)点在椭圆上, 的右焦点为,点在圆 上,则 的最小值为( ) A . B . C . D . 类型二 通过建立目标问题的表达式,结合参数或几何性质求范围 【例2】(2020·玉林高级中学高考模拟(理))已知椭圆22 :143 x y C +=的左、右顶点分别为,A B ,F 为椭圆 C 的右焦点,圆22 4x y +=上有一动点P ,P 不同于,A B 两点,直线PA 与椭圆C 交于点Q ,则PB QF k k 的取 值范围是( ) A .33,0,44????-∞- ? ? ????? B .()3,00,4??-∞? ??? C .()(),10,1-∞-? D .()(),00,1-∞ 【举一反三】 1.抛物线上一点 到抛物线准线的距离为 ,点关于轴的对称点为,为坐标原点, 的内切圆与 切于点,点为内切圆上任意一点,则 的取值范围为__________. 2.(2020哈尔滨师大附中模拟)已知直线 与椭圆: 相交于,两点,为坐标原点. 当的面积取得最大值时,( )A . B . C . D . 类型三 利用根的判别式或韦达定理建立不等关系求范围

初中几何证明题思路及做辅助线总结

中考几何题证明思路总结 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 二、证明两角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、错角或平行四边形的对角相等。 5.同角(或等角)的余角(或补角)相等。 6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。 三、证明两直线平行 1.垂直于同一直线的各直线平行。 2.同位角相等,错角相等或同旁角互补的两直线平行。 3.平行四边形的对边平行。 4.三角形的中位线平行于第三边。 5.梯形的中位线平行于两底。 6.平行于同一直线的两直线平行。 7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。 四、证明两直线互相垂直 1.等腰三角形的顶角平分线或底边的中线垂直于底边。 2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。 3.在一个三角形中,若有两个角互余,则第三个角是直角。 4.邻补角的平分线互相垂直。 5.一条直线垂直于平行线中的一条,则必垂直于另一条。 6.两条直线相交成直角则两直线垂直。 7.利用到一线段两端的距离相等的点在线段的垂直平分线上。 8.利用勾股定理的逆定理。 9.利用菱形的对角线互相垂直。 10.在圆中平分弦(或弧)的直径垂直于弦。 11.利用半圆上的圆周角是直角。

人教A版必修第二册《8.3 简单几何体的表面积与体积》练习卷(1)

人教A版必修第二册《8.3 简单几何体的表面积与体积》练习卷(1) 一、选择题(本大题共3小题,共15.0分) 1.如图,正方体ABCD?A′B′C′D′的棱长为4,动点E,F在棱AB上,且EF=2, 动点Q在棱D′C′上,则三棱锥A′?EFQ的体积() A. 与点E,F位置有关 B. 与点Q位置有关 C. 与点E,F,Q位置都有关 D. 与点E,F,Q位置均无关,是定值 2.某圆锥的母线长是4,侧面积是4π,则该圆锥的高为() A. √15 B. 4 C. 3 D. 2 3.半径为2cm的球的体积是() A. 8π 3cm3 B. 16π 3 cm3 C. 32 3 πcm3 D. 64 3 πcm3 二、填空题(本大题共11小题,共55.0分) 4.(1)已知正六棱柱的各棱长都为a,那么其体积是________. (2)若正四棱锥的高为6,侧棱长为8,则棱锥的体积为________. (3)如果一个圆柱、一个圆锥的底面直径和高都等于一个球的直径,那么圆柱、球、圆锥的体积 之比为________. 5.已知一个正三棱台的两个底面的边长分别为8和18,侧棱长为13,则这个棱台的侧面积为 ______ . 6.已知正四棱锥P?ABCD的体积为4 3 ,底面边长为2,则侧棱PA的长为_______. 7.一个六棱锥的体积为2√3,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面 积为?. 8.表面积为6π的圆柱,当其体积最大时,该圆柱的高与底面半径的比为______ .

9.若一个圆锥的轴截面是等边三角形,其面积为2√3,则这个圆锥的全面积为______ . 10.将边长为1的正方形以其一边所在直线为轴旋转一周,所得几何体的侧面积是________. 11.圆台两底面的半径分别为2和5,母线长是3√10,则它的轴截面的面积为____. 12.已知正三棱柱的各条棱长均为a,圆柱的底面直径和高均为b,若它们的体积相等,则a3:b3的 值为______. 13.已知三棱锥S?ABC中,SA=SB=SC=AB=AC=2,则三棱锥S?ABC体积的最大值为 ______ . 14.如图,在平面四边形ABCD中,AB丄AD,AB=AD=1,BC=CD=5,以 直线AB为轴,将四边形ABCD旋转一周,则所得旋转体的体积为______. 三、解答题(本大题共2小题,共24.0分) 15.正六棱锥的底面周长为24,斜高SH与高SO所成的角为30°. 求: (1)棱锥的高; (2)侧棱长.

空间几何体表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、全(表)面积(含侧面积) 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥: ②圆锥: 3、台体 ①棱台: ②圆台: 4、球体 ①球: ②球冠:略 ③球缺:略 二、体积 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥 ②圆锥

3、台体 ①棱台 ②圆台 4、球体 ①球: ②球冠:略 ③球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高计算;而圆锥、圆台的侧面积计算时使用母线计算。 三、拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的。

分析:圆柱体积: 圆柱侧面积: 因此:球体体积: 球体表面积: 通过上述分析,我们可以得到一个很重要的关系(如图) += 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式 公式: 证明:如图过台体的上下两底面中心连线的纵切面为梯形。 延长两侧棱相交于一点。 设台体上底面积为,下底面积为 高为。 易知:∽,设, 则 由相似三角形的性质得:

即:(相似比等于面积比的算术平方根) 整理得: 又因为台体的体积=大锥体体积—小锥体体积 ∴ 代入:得: 即: ∴ 4、球体体积公式推导 分析:将半球平行分成相同高度的若干层(),越大,每一层越近似于圆柱,时,每一层都可以看作是一个圆柱。这些圆柱的高为,则:每个圆柱的体积= 半球的体积等于这些圆柱的体积之和。 ……

解析几何三角形面积问题答案

解析几何三角形面积问题答案 1、解: (Ⅰ)由题意知,曲线C 是以12,F F 为焦点的椭圆. ∴2,1,a c ==2 3b ∴= 故曲线C 的方程为: 2 2 14 3 x y + =. 3分 (Ⅱ)设直线l 与椭圆 2 2 14 3 x y + =交点1122(,),(,)A x y B x y , 联立方程22 3412 y x b x y =-+??+=?得22 784120x bx b -+-= 4分 因为2 48(7)0b ?=->,解得2 7b <,且2 12128412 ,7 7 b b x x x x -+= = 5分 点O 到直线l 的距离d = 6分 AB = = 9分 ∴12 AO B S ?=? = 10分 ≤ 当且仅当227b b =-即2 772 b = <时取到最大值. ∴A O B ? . 12分 2、解:(1)依题意可得???? ?-= -+= +, 12,12c a c a 解得.1,2==c a 从而.1,22 2 2 2 =-==c a b a 所求椭圆方程为 .12 2 2 =+x y …………………4分 (2)直线l 的方程为.1+=kx y 由?????=++=,12 , 12 2x y kx y 可得() .01222 2=-++kx x k 该方程的判别式△=()2 2 2 88244k k k +=++>0恒成立. 设()(),,,,2211y x Q y x P 则.2 1,222 212 21+- =+-=+k x x k k x x ………………5分 可得().2 4 22 2121+= ++=+k x x k y y 设线段PQ 中点为N ,则点N 的坐标为.22 , 22 2?? ? ??++-k k k ………………6分

几何专题——辅助线

几何专题——辅助线 平面几何是初中教学的重要组成部分,它的基础知识在生产实践和科学研究中有着广泛的应用,又是继续学习数学和其他学科的基础,但许多初中生对几何证实题感到困难,尤其是对需要添加辅助线的证实题,往往束手无策。 一、辅助线的定义: 为了证实的需要,在原来图形上添画的线叫做辅助线。 二、几种常用的辅助线:连结、作平行线、作垂线、延长等 注意:1)添加辅助线是手段,而不是目的,它是沟通已知和未知的桥梁,不能见到题目,就无目的地添加辅助线。一则没用、二则辅助线越多,图形越乱,反而妨碍思考问题。 2)添加辅助线时,一条辅助线只能提供一个条件 三、正确添加辅助线歌 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。 直接证实有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证实是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆 假如碰到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证实题目少困难。 辅助线,是虚线,画图注重勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时把握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。几何证题难不难,关键常在辅助线; 知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线; 线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘; 全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办; 四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线; 两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便; 非凡角、非凡边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙; 圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,碰到直径周角连; 切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦; 切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解; 以上规律属一般,灵活应用才方便。

解析几何中的与三角形面积相关的问题

解析几何中的与三角形面积相关的问题 类型 对应典例 椭圆中有关三角形的面积最值 典例1 抛物线中有关三角形的面积最值 典例2 椭圆中有关三角形的面积的取值范围 典例3 抛物线中有关三角形的面积的取值范围 典例4 椭圆中由三角形面积问题求参数值或范围 典例5 抛物线中由三角形面积问题求参数值或范围 典例6 椭圆中由三角形面积问题求直线方程 典例7 抛物线中由三角形面积问题求直线方程 典例8 【典例1】已知椭圆C :()222210x y a b a b +=>>的离心率为2 2 ,且与抛物线x y =2交于M ,N 两点,OMN ?(O 为坐标原点)的面积为22 (1)求椭圆C 的方程; (2)如图,点A 为椭圆上一动点(非长轴端点)1F ,2F 为左、右焦点,2AF 的延长线与椭圆交于B 点,AO 的延长线与椭圆交于C 点,求ABC ?面积的最大值. 【解析】(1)椭圆22 22:1(0)x y C a b a b +=>>与抛物线x y =2交于M ,N 两点, 可设(M x x ,(,)N x x -, ∵OMN ?的面积为22 ∴22x x =2x =,∴2)M ,(2,2)N , 由已知得222222 242 1c a a b a b c ?=? ??+=??=+??? ,解得22a =2b =,2c =,

∴椭圆C 的方程为22 184 x y +=. (2)①当直线AB 的斜率不存在时,不妨取A ,(2,B ,(2,C -,故 1 42 ABC ?=?=; ②当直线AB 的斜率存在时,设直线AB 的方程为(2)y k x =-,()11,A x y ,()22,B x y , 联立方程22(2)18 4y k x x y =-???+=??,化简得()2222 218880k x k x k +-+-=, 则()()()2222 64421883210k k k k ?=-+-=+>, 2122821k x x k +=+,212288 21 k x x k -?=+, ||AB = = 22121k k +=+, 点O 到直线02=-- k y kx 的距离d = = , 因为O 是线段AC 的中点,所以点C 到直线AB 的距离为2d = , ∴1 ||22ABC S AB d ?= ?2211221k k ??+=? ?+?? = ∵ () () ()()22222 2 2 2211211k k k k k k k ++= ?? +++??() () 222211 4 41k k k k += +,又221 k k ≠+ ,所以等号不成立. ∴ ABC S ?=< 综上,ABC ?面积的最大值为 【典例2】已知抛物线()02:2>=p py x C ,其焦点到准线的距离为2,直线l 与抛物线C 交于A ,

三视图求几何体的表面积与体积

三视图求几何体的表面积与体积 一、选择题 1.若一个几何体的三视图如图所示,则此几何体的体积为( ) (A)112 (B)5 (C)9 2 (D)4 2.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ) (A)6 (B)9 (C)12 (D)18 3.已知三棱锥S-ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC=2,则此棱锥的体积为( ) (B) (C) (D) 4.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( ) (A )6π (B )43π (C )46π (D )63π 5.将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为( ) 6 A 32

6.(2012·浙江高考文科·T3)已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( ) (A)1 cm 3 (B)2 cm 3 (C)3 cm 3 (D)6 cm 3 7.某三棱锥的三视图如图所示,该三棱锥的表面积是( ) (A )28+ (B )30+ (C )56+ (D )60+ 8.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是 ( ) 侧(左)视图 俯视图

10.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() (A)球 (B)三棱锥 (C)正方体 (D)圆柱 . 11.某几何体的三视图如图所示, 它的体积为() (A)12π (B)45π (C)57π (D)81π 12.某几何的三视图如图所示,它的体积为 (A)72π (B)48π (C)30π (D)24π 13.已知某几何体的三视图如图所示,

平面几何辅助线添加技法总结与例题详解

平面几何辅助线添加技法总结与例题详解 一.添辅助线有二种情况: 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形:

第六讲简单几何体的表面积与体积的计算

第六讲简单几何体的表面积与体积的计算第六讲简单几何体的表面积与体积的计算 一、四种常见几何体的平面展开图 1.正方体 沿正方体的某些棱将正方体剪开铺平,就可以得到它的平面展开图,这一展开图是由六个全等的正方形组成的,见图6—1。 图6─l只是正方体平面展开图的一种画法,还有别的画法(从略)。 2.长方体 沿长方体的某些棱将长方体剪开铺平,就可以得到它的平面展开图。这一展开图是六个两两彼此全等的长方形组成的,见图6—2。图6—2只是长方体平面展开图的一种画法,还有别的画法(从略)。 3.(直)圆柱体沿圆柱的一条母线和侧面与上、下底面

的交线将圆柱剪开铺平,就得到圆柱体的平面展开图。它由 一个长方形和两个全等的圆组成,这个长方形的长是圆柱底 面圆的周长,宽是圆柱体的高。这个长方形又叫圆柱的侧面 展开图。图6—3就是圆柱的平面展开图。 4.(直)圆锥体 沿圆锥体的一条母线和侧面与下底面圆的交线将圆锥 体剪开铺平,就得到圆锥的平面展开图。它是由一个半径为 圆锥体的母线长,弧长等于圆锥体底面圆的周长的扇形和一 个圆组成的,这个扇形又叫圆锥的侧面展开图。具体图形见 图6—4。二、四种常见几何体表面积与体积公式 1.长方体 长方体的表面积=2×(a×b+b×c+c×a) 长方体的体积=a×b×c(这里a、b、c分别表示长方体的长、宽、高)。 2.正方体 正方体的表面积=6×a2 正方体的体积=a3(这里a为正方体的棱长)。

3.圆柱体 圆柱体的侧面积=2πRh 圆柱体的全面积=2πRh+2πR2=2πR(h+R) 圆柱体的体积=πR2h(这里R表示圆柱体底面圆的半径,h表示圆柱的高)。 4.圆锥体 圆锥体的侧面积=πRl 圆锥体的全面积=πRl+πR2 母线长与高)。 三、例题选讲 例1 图6—5中的几何体是一个正方体,图6—6是这个正方体的一个平面展开图,图6—7(a)、(b)、(c)也是这个正方体的平面展开图,但每一展开图上都有四个面上的图案 没画出来,请你给补上。 分析与解:从图6—5和图6—6中可知:与;与;与互相

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体 积公式汇总表 Prepared on 22 November 2020

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积=底S ,侧面积 =侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:V=312a ; (3)对棱中点连线段的长:d= 2 a ; (4)对棱互相垂直。 (5)外接球半径:R= 4a ; (6)内切球半径; r= 12a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知

底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。 5.圆柱的侧面展开图是长、宽分别为6π和π4的矩形,求圆柱的体积。 6.若圆台的上下底面半径分别为1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是( ) A. 2 B. C. 5 D. 10 7.圆柱的侧面展开图是长为12cm ,宽8cm 的矩形,则这个圆柱的体积为( ) A. π288 3cm B. π192 3cm C. π288 3cm 或 π192 3cm D. π1923cm 8.一个圆柱的底面面积是S ,侧面展开图是正方形,那么该圆柱的侧面积为( ) A. 4s π B. S π2 C. S π D. S π3 32

数学几何问题添加辅助线方法大全

数学几何问题添加辅助线方法大全 规律1.如果平面上有n(n ≥2)个点,其中任何三点都不在同一直线上,那么每两点画 一条直线,一共可以画出 1 2 n(n -1)条. 规律2.平面上的n 条直线最多可把平面分成〔1 2 n(n+1)+1〕个部分. 规律3.如果一条直线上有n 个点,那么在这个图形中共有线段的条数为 1 2 n(n -1)条. 规律4.线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段 长的一半. 例:如图,B 在线段AC 上,M 是AB 的中点,N 是BC 的中点. 求证:MN = 12 AC 证明:∵M 是AB 的中点,N 是BC 的中点 ∴AM = BM = 12AB ,BN = CN = 12BC ∴MN = MB+BN = 12AB + 12BC = 1 2 (AB + BC) ∴MN = 1 2 AC 练习:1.如图,点C 是线段AB 上的一点,M 是线段BC 的中点. 求证:AM = 1 2 (AB + BC) 2.如图,点B 在线段AC 上,M 是AB 的中点,N 是AC 的中点. 求证:MN = 12 BC 3.如图,点B 在线段AC 上,N 是AC 的中点,M 是BC 的中点. N M C B A M C B A N M C B A

求证:MN = 12 AB 规律5.有公共端点的n 条射线所构成的交点的个数一共有 1 2 n(n -1)个. 规律6.如果平面内有n 条直线都经过同一点,则可构成小于平角的角共有2n (n -1) 个. 规律7. 如果平面内有n 条直线都经过同一点,则可构成n (n -1)对对顶角. 规律8.平面上若有n (n ≥3)个点,任意三个点不在同一直线上,过任意三点作三角 形一共可作出 1 6 n (n -1)(n -2)个. 规律9.互为邻补角的两个角平分线所成的角的度数为90o . 规律10.平面上有n 条直线相交,最多交点的个数为 1 2 n(n -1)个. 规律11.互为补角中较小角的余角等于这两个互为补角的角的差的一半. 规律12.当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行, 同旁内角的角平分线互相垂直. 例:如图,以下三种情况请同学们自己证明. 规律13.已知AB ∥DE,如图⑴~⑹,规律如下: 规律14.成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半. 例:已知,BE 、DE 分别平分∠ABC 和∠ ADC ,若∠A = 45o ,∠C = 55o ,求∠E 的度数. 解:∠A +∠ABE =∠E +∠ADE ① 1()∠ABC+∠BCD+∠CDE=360?E D C B A +=∠CDE ∠ABC ∠BCD 2()E D C B A -=∠CDE ∠ABC ∠BCD 3()E D C B A -=∠CDE ∠AB C ∠BC D 4() E D C B A +=∠CDE ∠AB C ∠BC D 5() E D C B A +=∠CDE ∠ABC ∠BCD 6() E D C B A M B A H G F E D B C A H G F E D B C A H G F E D B C A N M C B A

相关主题
文本预览
相关文档 最新文档