当前位置:文档之家› 超高分子量聚乙烯耐腐蚀性表

超高分子量聚乙烯耐腐蚀性表

超高分子量聚乙烯耐腐蚀性表
超高分子量聚乙烯耐腐蚀性表

超高分子量聚乙烯(UHMWPE)耐腐蚀性能表

粘度法测定水溶性高聚物相对分子量

实验:黏度法测定水溶性高聚物相对分子量 一、目的要求 1. 测定聚乙二醇的平均相对分子量 2. 掌握乌氏黏度计的原理及使用方法 3. 了解溶剂、温度、浓度对黏度的影响 二、基本原理 黏度是指液体对流动所表现的助力,这种助力反抗液体相邻部分的相对移动,可看作由液体内部分子间的内摩擦而产生。 相距为ds 的两液层以不同速度(v 和v dv +)移动时,产生的流速梯度为dv ds 。建立平稳流动时,维持一定流速所需要的力/ f 与液层的接触面积A 以及流速梯度dv ds 成正比: / dv f A ds η=?? 若以f 表示单位面积的阻力,则 上式称为牛顿黏度定律表示式,比例系数η称为黏度系数,简称黏度,单位:a p s ?。 溶液黏度的各种定义及表达式: 相对黏度:0 r η ηη= (0η为溶剂黏度) 特性黏度:[]0 0ln lim lim sp r C C C C ηηη→→==

[]η的数值与高聚物平均相对分子质量M 之间的半经验麦克非线性方程: 聚乙二醇水溶液在35℃时,316.610K L Kg -=??,0.82α= 在毛细管黏度计中,液体在重力的作用下流动符合泊肃叶定律: 488hgr t V m lV lt ηπρπ=- 对同一支黏度计而言,令 4 8hgr lV πα= ,8mV l βπ= , 则上式可改写为: t t ηβ αρ=- 式中1β,当100t s 时,等式右边第二项可省略,则 t η αρ =, 对于溶剂:000t ηαρ= 设溶液的密度ρ与溶剂的密度0ρ近似相等,由两式可得 这样,通过分别测定溶液和溶剂的流出时间t 和0t ,就可求出r η。进而分别求出 sp η、sp η、 ln r C η的值。配制不同浓度溶液分别进行测定,分别作 sp C C η和 ln r C C η两条直线, 用外推法得到[]η,然后代入[]K M α η=?,即可求出M 。

黏度法测定水溶性高聚物分子量

华南师范大学实验报告 学生姓名甘汉麟学号 028 专业化学(教育)年级、班级 2011 级 5 班 课程名称物理化学实验实验项目粘度法测定水溶性高聚物分子量实验类型□验证□设计□综合试验时间 2014 年 3 月 19 日实验指导老师肖信实验评分 一.实验目的 1. 测定多糖聚合物-右旋糖苷的平均分子量; 2.掌握用乌式黏度计测定黏度的原理和方法。 二.实验原理 高聚物相对分子质量是表征聚合物特征的基本参数之一,相对分子质量不同,高聚物的性能差异很大。所以不同材料,不同的用途对分子质量的要求是不同的。测定高聚物的相对分子质量对生产和使用高分子材料具有重要的实际意义。本实验采用的右旋糖苷分子是目前公认的优良血浆代用品之一,它是一种水溶性的多糖类聚合物,在中等分子量时,它能提高血浆渗透压,扩充血容量;在低分子量时,它能降低血液粘稠度,改善微循环以及有抗血栓形成的作用;但在高分子量时,则会引起红细胞聚集,导致微循环障碍。可见,测定高聚物分子量对生产和使用高分子材料有重要意义。由于高聚物分子量大小不一,故通常测定高聚物分子量都是利用统计的平均分子量。常用的测定方法有很多,如粘度法、端基分析、沸点升高、冰点降低、等温蒸馏、超离心沉降及扩散法等,其中,用粘度法测定的分子量称“黏均分子量”,记作。 线型高分子可被溶剂分子分散,在具有足够的动能下相互移动,成为黏度态,η是可溶性的高聚物在稀溶液中的黏度,是它在流动过程中所存在内摩擦的反映,这种摩擦主要有:溶剂分子与溶剂分子之间的内摩擦,也就是纯溶剂的黏度,记作η0;高分子与高分子之间的内摩擦以及高分子与溶剂分子之间的内摩擦,三者总和表现为高聚物溶液的黏度,记作η。 在同一温度下,高聚物的黏度一般都比纯溶剂的黏度大,即η>η0,这些黏度增加的分数,叫做增比黏度,记作ηsp,即

水溶性高分子简介

水溶性高分子简介 摘要:本文介绍了水溶性高分子的分类,物理性能,制造以及未来的发展前景。关键词:水溶性高分子聚乙烯醇聚乙二醇 引言 水溶性高分子化合物又称为水溶性树脂或水溶性聚合物。是一种亲水性的高分子材料,在水中能够溶解或溶胀而形成溶液或分散液。在水溶性聚合物的分子结构中含有大量的亲水基团。亲水基团通常可分为三类:①阳离子基团,如叔胺基、季胺基等;②阴离子基团,如羧酸基、磺酸基、磷酸基、硫酸基等;③极性非离子基团,如羟基、醚基、胺基、酰胺基等。这些集团不但使得高分子有亲水性,而且还带来很多宝贵的性能,如粘合性,成膜性,润滑性,分散性,减磨性等等。 1水溶性高分子的分类 1.1天然水溶性高分子。 以天然动植物为原料,通过物理过程或者物理化学的方法提取而成。最常见的如淀粉类、纤维素、植物胶、动物胶等。天然高分子虽然受到合成高分子的不断冲击,产量逐渐下降,但是仍然有很大一部分市场被其牢牢统治着。 1.2改性天然高分子。 主要有改性纤维素和改性淀粉两大类。如羧甲基淀粉、醋酸淀粉、羟甲基纤维素、羧甲基纤维素等。这类高分子兼有天然高分子和合成高分子的优点,拥有广泛的市场,因此产量很大。 1.3合成高分子。 合成高分子材料分为聚合类和缩合类两类,如聚丙烯酰胺(PAM)、水解聚丙烯酰胺(HPAM))、聚乙烯吡咯烷酮(PVP)等。按大分子链连接的水化基团分为:非离子型和离子型。按荷电性质分为:非离子、阳离子、阴离子和两性离子高分子,其中后三类为聚电解质。按基团间是否存在较强的非共价键联结又分为缔合聚合物和非缔合聚合物。 2水溶性高分子的物理性能 2.1溶解性 溶解性是达到平衡的溶液便不能容纳更多的溶质,在特殊条件下,溶液中溶解的溶质会比正常情多,这时它便成为过饱和溶液。每份溶剂所能溶解的溶质的最大值就是“溶质在这种溶剂的溶解度”。 为了提高水溶性,一是在分子中引入足够的亲水基团到大分子上面变为水溶性高分子。二是降低聚合物的结晶度。三是利用聚电解质的反离子力作用促进溶解。

水溶性高分子聚乙烯醇的制备及其应用

水溶性高分子聚乙烯醇的制备及其应用 * 中山大学化学与化学工程学院应用化学广州 510275 摘要:本实验采用溶液聚合法,以AIBN作为引发剂合成聚乙酸乙烯酯,然后用NaOH的甲醇溶液进行醇解,得到聚乙烯醇5.527 g,产率54.0%,之后利用红外对聚乙酸乙烯酯与聚乙烯醇进行表征。之后利用聚乙 烯醇的缩醛化反应制备胶水,利用聚乙烯醇的性质制备面膜。 关键词:水溶性高分子聚乙烯醇聚乙酸乙烯酯红外光谱法 1.引言 水溶性高分子化合物又称水溶性树脂或水溶性聚合物,是一种亲水性的高分子材料,在水中能溶胀而形成溶液或分散液。1924年,德国化学家WO. Hermann和WW. Haehel首次将碱液加入到聚乙酸乙烯酯的甲醇溶液中,得到聚乙烯醇(PV A)。聚乙烯醇为白色絮状固体或片状固体,无毒无味,是使用最广泛的合成水溶性高分子,具有优良的力学性能和可调节的表面活性。PV A具有多羟基强氢键,以及单一的-C-C-单键结构,这样的结构不但使PV A具有亲水性,还有黏合性、成膜性、分散性、润滑性、增稠性等良好性能。 PV A的制备首先由乙酸乙烯酯聚合成聚乙酸乙烯酯,然后将其醇解生成PV A,其反应式如下: PVA的结构可以看成是交替相隔的碳原子上带有羟基的多元醇,因此,其发生的反应为多元醇反应,如醚化、酯化、缩醛化。聚乙烯醇和羰基化合物反应可得到缩醛化合物。本实验利用聚乙烯醇和甲醛反应,生产聚乙烯醇缩甲醛,作为胶水使用。 2.实验过程 2.1 实验仪器 三颈瓶,回流冷凝管,水浴锅,蒸汽蒸馏装置,滴液漏斗,pH试纸,培养皿,抽滤装置,滤纸,真空烘箱。2.2 实验试剂 偶氮二异丁腈(AIBN),甲醇,乙酸乙烯酯,NaOH,聚乙烯醇,甲酸,40%甲醛水溶液,盐酸,羧甲基纤维素,丙二醇,乙醇。 2.3 实验步骤

水溶性高分子及其应用

水溶性高分子及其应用 马建 常州轻工职业技术学院 10线缆331 1013433138 摘要:水溶性高分子材料是一种亲水性的高分子材料,在水中能溶解或溶胀而形成溶液或分散液。它具有性能优异、使用方便、有利环境保护等优点,广泛应用于国民经济的各个领域。本文主要论述了水溶性高分子材料的概念、分类、功能和应用、以及研究发展现状及前景。 关键词:水溶性 高分子 发展应用 1、 水溶性高分子的概念 水溶性高分子化合物又称为水溶性树脂或水溶性聚合物。通常所说的水溶性高分子是一种强亲水性的高分子材料,能溶解或溶胀于水中形成水溶液或分散体系”。在水溶性聚合物的分子结构中含有大量的亲水基团。亲水基团通常可分为三类:①阳离子基团,如叔胺基、季胺基等;② 阴离子基团,如羧酸基、磺酸基、磷酸基、硫酸基等;③极性非离子基团,如羟基、醚基、胺基、酰胺基等。 2、分类 a 、按来源分类 1 )天然水溶性高分子。 天然水溶性高分子以植物或动物为原料,通过物理的或物理化学的方法提取而得。许多天然水溶性高分子一直是造纸助剂的重要组分,例如常见的有表面施胶剂天然淀粉、植物胶、动物胶 (干酪素)、甲壳质以及海藻酸的水溶性衍生物等。 2)半合成水溶性高分子 。 这类高分子材料是由上述天然物质经化学改性而得。用于造纸工业中主要有两类:改性纤维素 (如羧甲基纤维素) 和改性淀粉 (如阳离子淀粉)。 3)合成水溶性高分子。 此类高分子的应用最为广泛,特别是其分子结构设计十分灵活的优势可以较好地满足造纸生产环境多变及造纸工业发展的要求。 b 、按分子量分类 可分为低分子量、高分子量、超高分子量 C 、按用途分类 可分为驱油剂(聚丙烯酰胺、改性淀粉、瓜胶),絮凝剂(聚丙烯酸、改性纤维素、壳聚糖) 3、功能 O OH O OH O CH 2OH OH O OH O CH 2OH OH O OH COOH

最新几种水溶性高分子在水中的聚合

几种水溶性高分子在水中的聚合

几种水溶性高分子在水中的聚合 一、丙烯酰胺水溶液聚合 一、实验目的 1.掌握溶液聚合的方法和原理。 2.学习如何选择溶液。 3.掌握聚合物的处理方法。 二、实验原理 将单体溶于溶剂中而进行聚合的方法叫做溶液聚合。生成聚合物有的溶解有的不溶,前一种情况称为均相聚合,后者则称为沉淀聚合。自由基聚合,离子型聚合和缩聚均可用溶液聚合的方法。 在沉淀聚合中,由于聚合物处在非良溶剂中,聚合物链处于卷曲状态,端基被包裹,聚合一开始就出现自动加速现象,不存在稳态阶段。随着转化率的提高,包裹程度加深,自动加速效应也相应增强,沉淀聚合的动力学行为与均相聚合有明显不同。均相聚合时,依双基终止机理,聚合速率与引发剂浓度的平方根成正比。而沉淀聚合一开始就是非稳态,随包裹程度的加深,其只能单基终止,故聚合速率将与引发剂的浓度的一次方成正比。 在均相溶液聚合中,由于聚合物是处在良溶剂环境中,聚合物处于比较伸展状态,包裹程度浅链扩散容易,活性端基容易相互靠近而发生双基终止。只有在高转化率时,才开始出现自动加速现象,若单体浓度不高,则有可能消除

自动加速效应,使反应遵循正常的自由基聚合动力学规律。因而溶液聚合是实验室中研究聚合机理及聚合动力学等常用的方法之一。 进行溶液聚合时,由于溶剂并非完全是惰性的,其对反应会产生各种影响,选择溶剂时应考虑以下几个问题: (1)对引发剂分解的影响:偶氮类引发剂(偶氮二异丁腈)的分解速率受溶剂的影响很小,但溶剂对有机过氧化物引发剂有较大的诱导分解作用。这种作用按下列顺序依次增大:芳烃、烷烃、醇类、醚类、胺类,诱导分解的结果使引发剂的引发效率降低。 (2)溶剂的链转移作用:自由基是一个非常活泼的反应中心,它不仅能引发单体分子,而且还能与溶剂反应,夺取溶剂分子的一个原子,如氢或氯,以满足它的不饱和原子价。溶剂分子提供这种原子的能力越强,链转移作用就越强。链转移的结果使聚合物分子量降低。若反应生成自由基活性降低,则聚合速度也将减小。 (3)对聚合物的溶解性能,溶剂溶解聚合物的性能控制着活性链的形态(卷曲或舒展)及其粘度,它们决定了链终止速度与分子量的分布。 与本体聚合相比,溶液聚合体系具有粘度降低、混合及传热较容易、不易产生局部过热、温度容易控制等优点。但由于有机溶剂费用高,回收困难等原因,使得溶液聚合在工业上很少应用,只有直接使用聚合物溶液的情况下,如涂料、胶粘剂。浸渍剂和合成纤维放丝液等采用溶液聚合的方法。 丙稀酰胺为水溶性单体,其聚合物也溶于水。本实验采用水为溶剂进行溶液聚合,其优点是:价廉、无毒、链转移常数小、对单体及聚合物溶解性能好,为均相聚合。

电极材料的耐腐蚀性能

1电极材料的耐腐蚀性能 (1)含钼不锈钢:(316L,00Cr17Ni14Mo2)对于硝酸,室温下<5%硫酸,沸腾的磷酸,蚁酸,碱溶液,在一定压力下的亚硫酸,海水,醋酸等介质,有较强的耐腐蚀性,可广泛用于石油化工,尿素,维尼纶等工业.海水,盐水,弱酸,弱碱; (2)哈氏合金B:对沸点以下一切浓度的盐酸有良好的耐(HB)腐蚀性,也耐硫酸,磷酸,氢氟酸,有机酸等非氧化性酸,碱,非氧化盐液的腐蚀; (3)哈氏合金C:能耐环境的氧化性酸,如硝酸,混酸或铬(HC)酸与硫酸的混合物的腐蚀,也耐氧化性的盐类,如Fe+++,Cu++ak 或含其他氧化剂的腐蚀.如高于常温的次氩酸盐溶液,海水的腐蚀; (4)钛(Ti):能耐海水,各种氯化物和次氯化盐,氧化性酸(包括发烟,硝酸),有机酸,碱等的腐蚀.不耐较纯的还原性酸(如硫酸,盐酸)的腐蚀,但如果酸中含有氟化剂时,则腐蚀大为降低; (5)钽(Ta):具有优良的耐腐蚀性,和玻璃很相似.除了氢氟酸,发烟硫酸,碱外,几乎能耐一切化学介质腐蚀.根据被测介质的种类与温度,来选定衬里的材质。 2衬里材料主要性能适用范围 (1)氯丁橡胶耐磨性好,有极好的弹性,<80℃、一般水、污水,Neoprene高扯断力,耐一般低浓度酸、泥浆、矿浆。

3碱盐介质的腐蚀 聚氨酯橡胶有极好的耐磨性能,耐酸碱<60℃、中性强磨损的Polyurethane性能略差。矿浆、煤浆、泥浆。 4聚四氟乙烯 (1)它是化学性能最稳定的一种,<180℃、浓酸、碱 (2)PTFE材料,能耐沸腾的盐酸、硫等强腐蚀性介质,酸、硝 酸和王水,浓碱和各卫生类介质、高温种有机溶剂,不耐三氟化氯 二氟化氧。 5聚全氟乙丙烯F46 化学稳定性、电绝缘性、润滑性、<180℃盐酸、硫,不粘性和不燃性与PTFE相仿,酸、王水和强氧化。F46材料强度、耐老化性、耐温性剂等,卫生类介质。能和低温柔韧性优于PTFE。与金属粘接性能好,耐磨性好于PTFE,具有交好的抗撕裂性能。 6电极材质的选择 电极材质的选择应根据被测介质的腐蚀性、磨耗性,由用户选定,对一般介质,可查有关腐蚀手册,选定电极材质;对混酸等成分介质,应做挂片试验。

各种不锈钢的耐腐蚀性能

型号 301—延展性好,用于成型产品。也可通过机械加工使其迅速硬化。焊接性好。抗磨性和疲劳强度优于304不锈钢。 型号 302—耐腐蚀性同304,由于含碳相对要高因而强度更好。 型号 303—通过添加少量的硫、磷使其较304更易切削加工。 型号 304—通用型号;即18/8不锈钢。GB牌号为0Cr18Ni9。 型号 309—较之304有更好的耐温性。 型号 316—继304之后,第二个得到最广泛应用的钢种,主要用于食品工业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。由于较之304其具有更好的抗氯化物腐蚀能力因而也作“船用钢”来使用。SS316则通常用于核燃料回收装置。18/10级不锈钢通常也符合这个应用级别。[1] 型号 321—除了因为添加了钛元素降低了材料焊缝锈蚀的风险之外其他性能类似304。 400 系列—铁素体和马氏体不锈钢 型号 408—耐热性好,弱抗腐蚀性,11%的Cr,8%的Ni。 型号 409—最廉价的型号(英美),通常用作汽车排气管,属铁素体不锈钢(铬钢)。 型号 410—马氏体(高强度铬钢),耐磨性好,抗腐蚀性较差。 型号 416—添加了硫改善了材料的加工性能。 型号 420—“刃具级”马氏体钢,类似布氏高铬钢这种最早的不锈钢。也用于外科手术刀具,可以做的非常光亮。 型号 430—铁素体不锈钢,装饰用,例如用于汽车饰品。良好的成型性,但耐温性和抗腐蚀性要差。 型号 440—高强度刃具钢,含碳稍高,经过适当的热处理后可以获得较高屈服强度,硬度可以达到58HRC,属于最硬的不锈钢之列。最常见的应用例子就是“剃须刀片”。常用型号有三种:440A、440B、440C,另外还有440F(易加工型)。500 系列—耐热铬合金钢。 600 系列—马氏体沉淀硬化不锈钢。 型号 630—最常用的沉淀硬化不锈钢型号,通常也叫17-4;17%Cr,4%Ni。 各种不锈钢的耐腐蚀性能 304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。 301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。

粘度法测定水溶性高聚物的相对分子量(精)

粘度法测定水溶性高聚物的相对分子量 目的要求 一、测定多糖聚合物—右旋糖苷的平均相对分子质量 二、掌握用乌贝路德(Ubbelohde )粘度剂测定粘度的原理和方法 基本原理 粘度是指液体对流动所表现的阻力,这种力反抗液体中邻接部分的相对移动,因此可看作是一种内摩擦。图-1是液体流动的示意图。当相距为ds 的两个液层以不同速度(v 和v+dv )移动时,产生的流速梯度为dv/ds 。当建立平衡流动时,维持一定流速所需的力(即液体对流动的阻力)f`/与液层的接触面积A 以及流速梯度dv/ds 成正比,即 s f /d d A υη=(1) 液体的流动示意图 若以f 表示单位面积液体的粘滞阻力,f=f //A ,则 s f d d υη=(2) (2)式称为牛顿粘度定律表示式,其比例常数η称为粘度系数,简称粘度,单位为Pa.s 。 高聚物在稀溶液中的粘度,主要反映了液体在流动时存在着内摩擦。其中因溶剂分子之间的内摩擦表现出来的粘度叫纯溶剂粘度,记作η0;此外还有高聚物分子相互之间的内摩擦,以及高分子与溶剂分子之间的内摩擦。三者之总和表现为溶液的粘度η。在同一温度下,一般来说,η>η0相对于溶剂,其溶液粘度增加的分数,称为增比粘度,记作ηsp ,即 ηsp =(η-η0)/η0 而溶液粘度与纯溶剂粘度的比值称为相对粘度,记作ηr ,即 ηr =η/η0 ηr 也是整个溶液的粘度行为,ηsp 则意味着已扣除了溶剂分子之间的内摩擦效应,两者关系为 ηsp = (η-η0)/η0=ηr -1 对于高分子溶液,增比粘度ηsp 往往随溶液的浓度c 的增加而增加。为了便于比较,将单位浓度下所显示出的增比浓度,即ηsp /c 称为比浓粘度;而lnηr /c 称为比浓对数粘度。ηr 和ηsp 都是无因次的量。 为了进一步消除高聚物分子之间的内摩擦效应,必须将溶液浓度无限稀释,使得每个高聚物分子彼此相隔极远,其相互干扰可以忽略不记。这时溶液所呈现

水溶性高分子材料及其应用

水溶性高分子材料及其应用 !Q:】 ScienceandTechnOIOgyInnovationHerald 水溶性高分子材料及其应用 房存金 (商丘职业技术学院河南商丘476000) 研究报告 摘要:水溶性高分子化合物是当今最受重视的聚合物之一,不管在生产上还是应用上,都处在迅速发展的阶段.在世界范围内受到 越来越高的重视,因为它对能源生产,环境保护,循环经济等都有重要作用.本文简要论述了水溶性高分子聚合物的分类,功能和应用,以及 研究发展现状. 关键词:水溶性高分子发展应用 中图分类号:To.1文献标识码:A文章编号:1674-098X(20o9)07(c)一0oo8—02 1水溶性高分子的概念和分类 水溶性高分子化合物又称为水溶性树 脂或水溶性聚合物.通常所说的水溶性高 分子是一种强亲水性的高分子材料,能溶 解或溶胀于水中形成水溶液或分散体系". 在水溶性聚合物的分子结构中含有大量的 亲水基团.亲水基团通常可分为三类:① 阳离子基团,如叔胺基,季胺基等;②阴离 子基团,如羧酸基,磺酸基,磷酸基,硫酸基 等;③极性非离子基团,如羟基,醚基,胺 基,酰胺基等. 水溶性高分子按来源通常分为三大类:

(一)天然水溶性高分子.以天然动植物为原料提取而得.如淀粉类,纤维素,植物胶, 动物胶等.(二)化学改性天然聚合物.主要有改性淀粉和改性纤维素.如羧甲基淀粉, 醋酸淀粉,羟甲基纤维素,羧甲基纤维素等.(三)合成聚合物.有聚合类树脂和缩合类树脂两类,如聚丙烯酰胺(PAM),水解聚丙烯酰胺(HPAM)),聚乙烯吡咯烷酮(PVP) 等.按大分子链连接的水化基团分为[2]:非离子型和离子型.按荷电性质分为:非离子,阳离子,阴离子和两性离子高分子,其 中后三类为聚电解质.按基团间是否存在较强的非共价键联结又分为缔合聚合物和非缔合聚合物. 2水溶性高分子的功能和应用 2.1功能 水溶性聚合物中的亲水基团不仅使其 具有水溶性,而且还具有化学反应功能,以及分散,絮凝,增粘,减阻,粘合,成膜,成 胶,螯合等多种物理功能.水溶性高分子材料的几种主要功能是:①水溶性,水是最廉价的溶剂,来源广,无污染.水溶性高分子 之所以溶于水,是因为在水分子与聚合物的极性侧基之间形成了氢键.水溶性高分子的溶解具有一个重要的条件,即溶质和溶剂的溶度参数必须相近,但这仅为溶解的必要条件而非充分条件,还需考虑高分子的结晶结构的影响.②分散作用,由于绝大多数水溶性高分子都含有亲水基团和一

水溶性聚合物

第十三章水溶性聚合物 本章主要内容: 13.1 概述 13.2 重要的水溶性聚合物 重点:离子型、非离子型、两亲性水溶性聚合物 难点:无 13.1概述 ?概念:可溶于水的聚合物 ?应用:絮凝剂、增稠剂、织物整理剂、纸张处理剂、油水分离剂、消泡剂、土壤改良剂、缓冲剂、石油钻探用剂 ?聚合物具有水溶性的条件: ①主链含有亲水性优良的短链醚键或仲胺键,而形成的聚合物为无定形者,如聚氧乙烯、聚乙烯胺、还有PPO、PEG ②主链为C-C键,但沿C-C主链分别众多的亲水基团,如: -SO3H、-COOH、-CONH2、-OH、-OCH3、-NH2 ?聚合物的分类 ①按聚合物来源 ——天然水溶性聚合物,包括来自天然物质淀粉、蛋白质、海藻等提取的水溶性聚合物; ——半合成水溶性聚合物,由天然高分子经化学改性得到的水溶性聚合物,如羧甲基纤维素、甲基纤维素等; ——合成水溶性聚合物,聚丙烯酸、聚丙烯酰胺、聚乙烯醇等; ②按是否带离子及离子电荷种类分: ——非离子型(水溶性)聚合物; ——离子型(水溶性)聚合物,又称聚电解质(polyelectrolytes) 离子型又分为:

a. 阳离子聚合物或聚阳离子(polycation); b. 阴离子聚合物或聚阴离子(polyanion); c. 两性聚合物(amphoteric polymers) ?憎水缔合聚合物 水溶性聚合物分子中如含有少量憎水长碳链(C6-8)构成的单体链段,则此聚合物具有憎水缔台现象。与一般水溶性聚合物的溶液性质有所不同,可称之为憎水缔合聚合物。 ?吸水树脂 交联结构的水溶性聚合物不溶于水而在水中溶胀,即可吸收适量水分,称为吸水性树脂。 水凝胶——吸水量为干树脂百分之数十份者称为水凝胶。 高吸水性树脂——吸水量达数10倍,数百倍以至3000倍者称之为高吸水性树脂。 13.1.1水溶性聚合物分子结构与溶液性能 分子结构 ——水溶性聚合物与一般聚合物相似可以是均聚物或共聚物,共聚物可为无规共聚物、交替共聚物、嵌段共聚物以及接枝共聚物,其大分子可为线型、具有长支链线型以及树枝状的多支链。 ——含有可电离基团的聚合物在水溶液中能够电离生成阴离子与阳离子者统称为离子聚合物或聚电解质。 ——由于阳、阴离子总是伴生共存的,所以根据与聚合物直接相连结的离子性质区分为阳离子聚合物或阴离子聚合物。例如:

粘度法测定水溶性高聚物相对分子质量

粘度法测定水溶性高聚物相对分子质量 1、简述黏度法测定水溶性高聚物相对分子量的实验原理。 答:相对分子质量是聚合物的基础数据,但高聚物相对分子质量大 小不一,参差不齐,一般在103-107之间,所以平常所测高聚物的相对分子质量是平均相对分子质量。粘度法测定高聚物相对分子质量,设备简单,操作方便,有相当好的实验精度,其适用的相对分子质 量范围为104-107。高聚物溶液的粘度,主要反映了液体在流动时存在的内摩擦。 溶液粘度的命名 的流出时间);落球法(测定圆球在液体里的下落速度)及转筒法 (测定液体在同心轴圆柱体间相对转动的影响)。在 测定高分子溶液的特性粘度[η]时,以毛细管法最为 方便。

当液体在毛细管粘度计内因重力作用而流出时,遵守泊肃叶定律: lt V m lV t hgr ππρη884-= l mV lV hgr πβπα8,84== t t βαρη-= 式中β<1,当t >100s 时,等式右边第二项可以忽略00t t r ==ηηη 进而可分别计算得到ηsp 、ηsp /c 和ln ηr /c 值。配置一系列不同浓度的溶液分别进行测定,以ηsp /c 和ln ηr /c 为同一纵坐标,c 为横坐标作图,得两条直线,分别外推到c =0处,其截距即为[η],K ,α已知,即可得到M 。 粘度法测定高聚物相对分子质量,最基础的是测定t 0、t 、c ,实验的关键和准确度在于测量液体流经毛细管的时间、溶液浓度的准确度和恒温程度等因素 2、高聚物相对分子质量具有什么特点? 答:高聚物相对分子质量大小不一,参差不齐,一般在103-107之间,所以平常所测高聚物的相对分子质量是平均相对分子质量。 3、什么是液体的黏度? 答:液体的黏度是指液体对流动所表现的阻力,这种力反抗液体中邻接部分的相对移动,因此可看作是一种内摩擦。 4、溶液的黏度包括哪些内摩擦? 答:溶液的黏度包括以下三种内摩擦:1)溶剂分子与溶剂分子之间的内摩擦,2)高聚物分子间的内摩擦,3)高聚物分子与溶剂分子之间的内摩擦。

水溶性高分子的功能

水溶性高分子的功能 10塑模332 陈鹏 摘要;通过对水溶性高分子功能的论述表明;水溶性聚合物中的亲水基团不仅使其具有水溶性,而且还具有化学反应功能,以及分散、絮凝、增粘、减阻、粘合、成膜、成胶、螯合等多种物理功能。水溶性聚合物由于具有多种多样的品种和宝贵性能,它与表面活性剂一起,被称为精细化工的两大支柱,在石油勘探开发、水处理、造纸、纺织、涂料、食品、日用化工等领域得到了广泛的应用。 关键词;水溶性高分子、功能(水溶性、分散、絮凝、增粘、减阻、粘合、成膜、成胶、螯合) Water-soluble polymer 10 plastic mould 332 chenpeng Abstract:Through the discussion of water-soluble polymer function that; The water-soluble polymer hydrophilic groups not only make it is water-soluble, but also has the chemical reaction function, and scattered, flocculation, viscosify, friction reduction, bonding, film, gelling, chelating etc. Various physical function. Water-soluble polymer due to its various varieties and precious performance, it and surfactant together, called the fine chemical two big props, in oil exploration and exploitation, water treatment, paper making, textile, coating, foodstuff, daily chemical and other fields been widely used. Keywords:Water-soluble polymer, function (water-soluble, decentralization, flocculation, viscosify, friction reduction, bonding, film, gelling, chelating) 水溶性高分子的功能 1.概念 水溶性高分子化合物又称为水溶性树脂或水溶性聚合物。通常所说的水溶性高分子是一种强亲水性的高分子材料,能溶解或溶胀于水中形成水溶液或分散体系”。 文献(1)2.水溶性高分子按来源通常分为三大类 2.1 天然水溶性高分子 天然水溶性高分子以植物或动物为原料,通过物理的或物理化学的方法提取而得。许多天然水溶性高分子一直是造纸助剂的重要组分,例如常见的有表面施胶剂天然淀粉、植物胶、动物胶(干酪素)、甲壳质以及海藻酸的水溶性衍生物等。 2.2半合成水溶性高分子 这类高分子材料是由上述天然物质经化学改性而得。用于造纸工业中主要有两类:改性纤维素(如羧甲基纤维素)和改性淀粉(如阳离子淀粉)。 2.3 合成水溶性高分子 此类高分子的应用最为广泛,特别是其分子结构设计十分灵活的优势可以较好地满足造

各种材料的耐腐蚀性

说明:材料耐腐蚀性能 含钼不锈钢: (316L)对于硝酸,室温下<5% 硫酸,沸(00Cr17Ni14Mo2)腾的磷酸,蚁酸,碱溶液,在一定压力下的亚硫酸,海水,醋酸等介质,有较强的耐腐蚀 性,可广泛用于石油化工,尿素,维尼纶等工业.海水,盐水,弱酸,弱碱; 哈氏合金B: 对沸点以下一切浓度的盐酸有良好的耐(HB)腐蚀性,也耐硫酸,磷酸,氢氟酸,有机酸等非氧化性酸,碱,非氧化盐液的腐蚀; 哈氏合金C:能耐环境的氧化性酸,如硝酸,混酸或铬(HC)酸与硫酸的混合物的腐蚀,也耐氧化性的盐类,如Fe+++,Cu++ak或含其他氧化剂的腐蚀.如高于 常温的次氩酸盐溶液,海水的腐蚀; 钛(Ti):能耐海水,各种氯化物和次氯化盐,氧化性酸(包括发烟,硝酸),有机酸,碱等的腐蚀.不耐较纯的还原性酸(如硫酸,盐酸)的腐蚀,但如果酸中 含有氟化剂时,则腐蚀大为降低; 钽(Ta):具有优良的耐腐蚀性,和玻璃很相似.除了氢氟酸,发烟硫酸,碱外,几乎能耐一切化学介质腐蚀. 根据被测介质的种类与温度,来选定衬里的材质。 衬里材料主要性能适用范围 氯丁橡胶耐磨性好,有极好的弹性,<80℃、一般水、污水,Neoprene高扯断力,耐一般低浓度酸、泥浆、矿浆。碱盐介质的腐蚀。 聚氨酯橡胶有极好的耐磨性能,耐酸碱 <60℃、中性强磨损的 Polyurethane 性能略差。矿浆、煤浆、泥浆。 聚四氟乙烯它是化学性能最稳定的一种 <180℃、浓酸、碱,PTFE 材料,能耐沸腾的盐酸、硫等强腐蚀性介质,酸、硝酸和王水,浓碱和各卫生类介质、高温 种有机溶剂,不耐三氟化氯二氟化氧。 F46 化学稳定性、电绝缘性、润滑性、〈180℃盐酸、硫,不粘性和不燃性与P TFE相仿,酸、王水和强氧化,F46材料强度、耐老化性、耐温性剂等,卫生类介 质。能和低温柔韧性优于PTFE。与金属粘接性能好,耐磨性好于PTFE,具有交好的 抗撕裂性能。

不锈钢材料抗腐蚀性能及耐各种酸碱大全

301 17Cr-7Ni-低碳 与304钢相比,Cr、Ni含量少,冷加工时抗拉强度和硬度增高,无磁性,但冷加工后有磁性。列车、航空器、传送带、车辆、螺栓、螺母、弹簧、筛网 301L 17Cr-7Ni-0.1N-低碳是在301钢基础上,降低C含量,改善焊口的抗晶界腐蚀性;通过添加N元素来弥补含C量降低引起的强度不足,保证钢的强度。铁道车辆构架及外部装饰材料 304 18Cr-8Ni 作为一种用途广泛的钢,具有良好的耐蚀性、耐热性,低温强度和机械特性;冲压、弯曲等热加工性好,无热处理硬化现象(无磁性,使用温度-196℃~800℃)。家庭用品(1、2类餐具、橱柜、室内管线、热水器、锅炉、浴缸),汽车配件(风挡雨刷、消声器、模制品),医疗器具,建材,化学,食品工业,农业,船舶部件 304L 18Cr-8Ni-低碳作为低C的304钢,在一般状态下,其耐蚀性与304刚相似,但在焊接后或者消除应力后,其抗晶界腐蚀能力优秀;在未进行热处理的情况下,亦能保持良好的耐蚀性,使用温度-196℃~800℃。应用于抗晶界腐蚀性要求高的化学、煤炭、石油产业的野外露天机器,建材耐热零件及热处理有困难的零件 304Cu 13Cr-7.7Ni-2Cu 因添加Cu其成型性,特别是拔丝性和抗时效裂纹性好,故可进行复杂形状的产品成形;其耐腐蚀性与304相同。保温瓶、厨房洗涤槽、锅、壶、保温饭盒、门把手、纺织加工机器。 304N1 18Cr-8Ni-N 在304钢的基础上,减少了S、Mn含量,添加N元素,防止塑性降低,提高强度,减少钢材厚度。构件、路灯、贮水罐、水管 304N2 18Cr-8Ni-N 与304相比,添加了N、Nb,为结构件用的高强度钢。构件、路灯、贮水罐 316 18Cr-12Ni-2.5Mo 因添加Mo,故其耐蚀性、耐大气腐蚀性和高温强度特别好,可在苛酷的条件下使用;加工硬化性优(无磁性)。海水里用设备、化学、染料、造纸、草酸、肥料等生产设备;照像、食品工业、沿海地区设施、绳索、CD杆、螺栓、螺母 316L 18Cr-12Ni-2.5Mo 低碳作为316钢种的低C系列,除与316钢有相同的特性外,其抗晶界腐蚀性优。 316钢的用途中,对抗晶界腐蚀性有特别要求的产品。 316L不锈钢不耐盐酸,因为盐酸中的氯离子会和316中的镍发生化学反应,反应变化慢,但是时间长了还是有问题的。如果是用在化工方便,不防考虑内衬塑料一类的材料 另外,腐蚀是多样的,硝酸是强氧化腐蚀,316L对硝酸和硫酸是没有问题的

各种不锈钢的耐腐蚀性能

.各种不锈钢的耐腐蚀性能 304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。 301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。 304L 是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 04N 是一种含氮的不锈钢,加氮是为了提高钢的强度。 305和384 不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。

308 不锈钢用于制作焊条。 309、310、314及330 不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至最少。330不锈钢有着特别高的抗渗碳能力和抗热震性. 316和317 型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N以及合硫量较高的易切削不锈钢316F。 321、347及348 是分别以钛,铌加钽、铌稳定化的不锈钢,适宜作高温下使用的焊接构件。348是一种适用于核动力工业的不锈钢,对钽和钻的合量有着一定的限制。 (1)材质: ①DDQ(deep drawing quality)材:是指用于深拉(冲)用途的材料,也就是大家所说的的软料,这种材料的主要特点是延伸率较高(≧53%),硬度较低(≦170%),内部晶粒等级在~之间,深冲性能极佳。目前许多生产保温瓶、锅类的企业,其产品的加工比(BLANKING SIZE/制品直径)一般都比较高,它们的加工比分别达、、、。SUS304 DDQ用材主要就是用于这些要求较高加工比的产

各种材料的耐腐蚀性

1、材料耐腐蚀性能 含钼不锈钢: (316L)对于硝酸,室温下<5% 硫酸,沸(00Cr17Ni14Mo2)腾的磷酸,蚁酸,碱溶液,在一定压力下的亚硫酸,海水,醋酸等介质,有较强的耐腐蚀性,可广泛用于石油化工,尿素,维尼纶等工业.海水,盐水,弱酸,弱碱; 哈氏合金B: 对沸点以下一切浓度的盐酸有良好的耐(HB)腐蚀性,也耐硫酸,磷酸,氢氟酸,有机酸等非氧化性酸,碱,非氧化盐液的腐蚀; 哈氏合金C:能耐环境的氧化性酸,如硝酸,混酸或铬(HC)酸与硫酸的混合物的腐蚀,也耐氧化性的盐类,如Fe+++,Cu++ak或含其他氧化剂的腐蚀.如高于常温的次氩酸盐溶液,海水的腐蚀; 钛(Ti):能耐海水,各种氯化物和次氯化盐,氧化性酸(包括发烟,硝酸),有机酸,碱等的腐蚀.不耐较纯的还原性酸(如硫酸,盐酸)的腐蚀,但如果酸中含有氟化剂时,则腐蚀大为降低; 钽(Ta):具有优良的耐腐蚀性,和玻璃很相似.除了氢氟酸,发烟硫酸,碱外,几乎能耐一切化学介质腐蚀. 2、根据被测介质的种类与温度,来选定衬里的材质 衬里材料主要性能适用范围 氯丁橡胶耐磨性好,有极好的弹性, <80℃、一般水、污水,高扯断力,耐一般低浓度酸、泥浆、矿浆。碱盐介质的腐蚀。 聚氨酯橡胶有极好的耐磨性能,耐酸碱 <60℃矿浆、煤浆、泥浆。 聚四氟乙烯化学性能最稳定 <180℃、浓酸、碱,PTFE 材料,能耐沸腾的盐酸、硫等强腐蚀性介质,不耐三氟化氯二氟化氧。 F46 化学稳定性、电绝缘性、润滑性〈180℃盐酸、硫,不粘性和不燃性与PTFE相仿,低温柔韧性优于PTFE。与金属粘接性能好,耐磨性好于PTFE,具有较好的抗撕裂性能。 3、金属材料的耐腐蚀性能

相关主题
文本预览
相关文档 最新文档