当前位置:文档之家› 500ta多晶硅、16kta三氯氢硅新建项目可行性研究报告

500ta多晶硅、16kta三氯氢硅新建项目可行性研究报告

500ta多晶硅、16kta三氯氢硅新建项目可行性研究报告
500ta多晶硅、16kta三氯氢硅新建项目可行性研究报告

**通能硅材料有限公司

500t/a多晶硅、16kt/a三氯氢硅项目可行性研究报告

承担单位:*****材料有限公司

编制单位:******工程咨询有限公司

目录

目录.................................................................. I 1 总论. (1)

1.1 概述 (1)

1.2 项目提出的背景、投资必要性和经济意义 (3)

1.3 项目概况 (5)

1.4 研究范围 (5)

1.5 研究结论 (5)

1.6 主要技术经济指标 (6)

2 市场预测 (9)

2.1 产品主要性能用途 (9)

2.2 国内外内生产情况及市场预测 (9)

2.3价格分析 (10)

3 建设规模及产品方案 (11)

3.1 建设规模 (11)

3.2 产品质量标准 (11)

3.3 包装、运输及储存 (12)

3.4 建设工程组成 (12)

4 工艺技术方案 (14)

4.1 工艺技术方案 (14)

4.2 原材料消耗定额及年消耗量 (19)

4.3 自控方案 (20)

4.4 主要设备一览表 (21)

5 原材料、燃料及动力的供应 (25)

5.1 主要原材料、燃料及动力的需求 (25)

5.2 原料供应来源 (25)

5.3 公用工程规格及供应 (25)

6 建厂条件和厂址方案 (27)

6.1 建厂条件 (27)

6.2 厂址方案 (29)

7 总图运输与公用辅助工程 (31)

7.1 总图运输 (31)

7.2 供电 (35)

7.3 给排水 (39)

7.4 储运 (41)

7.5 供热 (41)

7.6 通风 (41)

7.7 维修 (42)

7.8 分析 (42)

7.9 土建 (42)

7.10 冷冻、制氮、空压 (45)

8 节能 (49)

8.1 建设项目节能综述 (49)

8.2 节能措施 (49)

8.3 节水措施 (49)

8.4 能耗指标分析 (50)

9 环境影响评价 (51)

9.1 厂址环境条件 (51)

9.2 项目建设和生产对环境的影响及三废处理 (52)

10 劳动安全卫生与消防 (56)

10.1 设计依据及标准规范 (56)

10.2 主要危险、有害因素分析 (57)

10.3 重大危险源辨识 (57)

10.4 主要危险化学品的危险、有害特性 (58)

10.5 工艺过程中的危险、有害因素分析 (65)

10.6 安全措施 (67)

10.7 消防设施 (70)

11 项目实施管理、劳动定员及人员培训 (73)

11.1 项目实施管理 (73)

11.2 工程招投标 (73)

11.3 劳动定员及人员培训 (73)

12 建设工期和进度安排 (75)

12.1 建设工期 (75)

12.2 实施进度计划 (75)

13 建设投资估算及资金筹措 (76)

13.1 投资估算依据 (76)

13.2 投资估算 (76)

13.3 资金筹措 (78)

14 经济效益分析 (79)

14.1 编制依据 (79)

14.2 基础数据 (79)

14.3 测算结果 (79)

15 研究结论与建议 (81)

15.1 研究结论 (81)

15.2 建议 (81)

附图:1、厂址区域位置图

2、总平面布置图

1 总论

1.1 概述

1.1.1 项目名称、建设单位、企业性质及法人

项目名称:500t/a多晶硅、16kt/a三氯氢硅项目。

建设单位:**通能硅材料有限公司

企业性质:中外合资

法人代表:**

1.1.2 企业概况

**通能硅材料有限公司是由美国通用硅材料有限公司与南昌赣宇有机硅有限公司合资组建的中外合资企业。**通能硅材料有限公司在**盐化化工基地拟征地280亩作为建设用地,并利用*****化工有限公司氯气和氢气的原料优势,生产三氯氢硅、多晶硅。

公司总投资27600.05万元,拟建500t/a多晶硅、16kt/a三氯氢硅项目。项目建成后预计实现年销售收入7.592亿元,年税后利润34073.36万元,可解决217人就业。

1.1.3 可行性研究报告编制的依据和原则

1.1.3.1 编制依据

(1)**通能硅材料有限公司与*******工程有限公司签订的委托咨询合同。

(2)国家、省、市有关设计规范、规定。

(3)**通能硅材料有限公司提供的基础资料和要求。

1.1.3.2 编制原则

(1)本可研报告编制严格按照以下有关安全技术、规范、标准进行编制:

《工业企业总平面设计规范》 GB50187-1993

《建筑设计防火规范》 GB50016-2006

《低压配电设计规范》 GB50054-1995

《10KV及以下变电所设计规范》GB50053-1994

《供配电系统设计规范》 GB50052-1995

《建筑物防雷设计规范》 GB50057-2000

《石油化工静电接地设计规范》 SH3097-2000

《电力工程电缆设计规范》 GB50217-1994

《爆炸和火实危险环境电力装置设计规范》GB50058-1992 《电力工程电缆设计规范》 GB50217-1994

《建设项目(工程)劳动安全卫生监察规定》劳动部第3号令《漏电保护器安全监察规定》劳动部1990年

《化工企业安全卫生设计规定》 HG20571-1995

《生产过程安全卫生要求总则》 GB12801-1991

《工业企业采光设计规范》 GB50033-1991

《工业企业照明设计规范》 GB50034-1992

《工业企业噪声卫生标准》 GB3096-1982

《工业企业劳动卫生标准》 GB11719~11726-1989 《卫生饮用水卫生标准》 GB5749-1985

《建筑物防雷设计规范》 GB50057-2000

《职业性接触毒物危害程度分级》 GB5044-1985

《生产设备安全卫生设计总则》 GB5083-1999

《建筑灭火器配置设计规范》 GB50140-2005

《建筑给水排水设计规范》 GB50015-2003

《室外给水设计规范》 GB50013-2006

《室外排水设计规范》 GB50014-2006

《污水综合排放标准》 GB8928-1996

《工业循环水设计规范》 GB50050-1995

《混凝土结构设计规范》 GB50010-2002

《砌体结构设计规范》 GB5003-2001

《建筑结构荷载规范》 GB50009-2001

《建筑抗震设计规范》 GB50011-2001

《建筑地基基础设计规范》 GB5007-2002

《化工建设项目噪声控制设计规定》 HG20503-1992

《工业企业噪声控制设计规范》 GBJ87-1985

《重大危险源辨识》 GB18218-2000

《石油化工企业可燃气体和有害气体检测报警设计规范》SH3063-1999 (2)按国家产业政策、技术政策的要求,对本项目的建设条件、技术路线、经济效益、工程建设、生产管理以及对环境的影响等各个方面进行分析,力求全面、客观地反映实际情况。

(3)生产装置及配套的公用工程、辅助设施都要充分注意技术的先进性。技术的先进性不仅体现在工艺流程、技术装备和控制水平上,而且同样体现在环境保护和工业收到生等各个方面。

在注重技术先进性的同时,还要充分注意技术的适用性,根据企业目前的综合能力选取适用的先进技术。

(4)利用高效节能、易于管理、技术先进、稳妥可靠的工艺在节省能源、资源和降低成本方面采取具体措施以提高企业的经济效益。

(5)遵循可持续发展的战略观念,注重采取环境保护努力避免产生新的污染源,环保工程与工艺装置同步设计、同步施工和同步投产。控制对环境的污染、节约能源。

(6)根据装置的特点,搞好各装置的衔接、配套专业的设计、优化设计方案、科学论证、实事求是提出研究结论。

1.2 项目提出的背景、投资必要性和经济意义

1.2.1 项目提出的背景

多晶硅可用以生产硅基微钠电子材料,国家“十一五”将重点发展的17

类新材料中,排在首位的就是硅基微钠电子材料,多晶硅又是生产太阳能电池的主要原料,而我国光伏产业的快速发展导致多晶硅的需求大增,因此多晶硅的需求将会持续发展。

多晶硅是制造太阳能电池及高纯硅制品的主要原料,是信息产业和新能源产业的基础原材料。随着我国半导体行业和太阳能电池的快速增长,对多晶硅的需求随之快速增长。我国在“十一五”期间,半导体集成电路年均增长速度保持在20%左右。预计到2010年多晶硅需求量将达到6200吨,其中半导体用量为2000吨,光伏用量为4200吨。而我国多晶硅的产能在2005年仅为300吨,仅太阳能用多晶硅缺口就达97%。

1.2.2 项目实施的必要性及经济意义

世界多晶硅生产主要由美、日、德三国垄断。由于全球原油价格上涨,欧美地区对新能源的需求上升,这些国家都采取了鼓励太阳能发展的措施,这促使太阳能产业蓬勃发展,从而导致多晶硅需求猛增。据不完全统计,2005年全世界多晶硅产量28750吨,其中半导体用多晶硅20250吨,太阳能电池用多晶硅8500吨,而太阳能级的实际需求量为15000吨,出现严重供不应求的局面,半导体领域对多晶硅的需求今后也将保持强劲增长。WSTS(全球半导体市场统计)预计2006年和2007年全球半导体市场的规模增长分别为8%和10.6%。预计半导体领域对多晶硅的需求2007年超过25000吨,加上太阳能电池领域的需求,2007年对多晶硅材料的总需求将达到45000吨,供应缺口在9000~11000吨。据专家预测,到2009年,全世界多晶硅的年需求量将达到7万吨,同时,我国周边地区的俄罗斯、韩国、新加坡、马来西亚等国均无多晶硅生产条件和能力,对多晶硅有巨大的市场需求。全球主要多晶硅生产厂家有:德山雪达(日)、三菱材料(日)、住友(日)、三菱多晶硅(美)、黑姆洛克(美)、先进硅(美)、瓦克多晶硅(德)等企业。

日本是亚洲最大的多晶硅生产国,但其产量仍不能满足本国需求,不仅日本,亚太地区特别是台湾、新加坡、韩国等地,都是多晶硅的主要需求地。

由于近年来国际多晶硅市场需求旺盛,而总体产能增长不足,导致多晶

硅价格暴涨,其价格由2003年的23美元/公斤涨至2005年的90美元/公斤、2006年的130美元/公斤、2007年的1500元/公斤。国内多晶硅的价格亦受国际市场的影响,因全球多晶硅主要生产厂商只有七家,国内产能极小,主要依靠进口,因此预计2008年以后多晶硅的价格为1700~1800元/公斤。

因此项目的实施可以促进半导体、光伏产业的发展,满足不断增长的市场需求。同时拟建项目同时增加了就业机会,具有一定的社会效益。

1.3 项目概况

1.3.1 拟建地点:**市盐化基地。

1.3.2 建设规模与目标

现根据**通能硅材料有限公司规划,以及拟建场地的条件,确定项目产品方案和规模为:

500t/a多晶硅、16kt/a三氯氢硅(其中商品量为6000t/a),副产品四氯化硅1000t/a。

1.4 研究范围

本可行性研究范围包括下述内容:

(1)市场预测

(2)产品方案和生产规模

(3)工艺技术方案

(4)与工艺装置配套的公用工程及辅助设施

(5)环境保护及治理措施

(6)劳动保护与安全生产

(7)投资估算及资金筹措

(8)经济效益初步评介

1.5 研究结论

(1)**通能硅材料有限公司拟建500t/a多晶硅、16kt/a三氯氢硅项目,项目符合国家产业政策和“十一五”发展规划。

(2)本项目技术成熟、工艺路线先进。

(3)本项目产生的“三废”少,处理措施切实可行。

(4)项目产品结构合理,是目前市场上紧缺产品,有极强的市场竞争力,初步财务评价表明该项目具有良好的经济效益。

(5)项目的实施可解决217人就业,具有一定的社会效益。

(6)项目工程总投资为27600.05万元,其中固定资产投资24300.05万元,铺底流动资金3300.00万元。

项目年销售收入75920.00万元,年总成本费用26692.85万元,年销售税金及附加3796.00万元,年利润总额45431.15万元,年所得税11357.79万元,年税后利润34073.36万元,投资利润率123.45%,投资利税率178.36%,投资回收期(静态)0.81(不含建设期),每年向当地和国家缴纳税金15153.79万元,解决当地217人就业。

该项目具有良好的经济效益和社会效益,项目实施单位具有完成本项目的能力和良好条件。

因此,本项目是可行的。

1.6 主要技术经济指标

2 市场预测

2.1 产品主要性能用途

多晶硅材料是用三氯氢硅以氢气作还原剂在高温下还原并提纯后达到一定纯度的电子材料,是硅产品产业链中的一个极为重要的中间产品,是制造太阳能电池及高纯硅制品的主要原料,是信息产业和新能源产业最基础的原材料。

光伏发电是太阳能的主要应用领域,具有安全可靠、无噪声、无污染、制约少、故障率低、维护简便等优点。太阳能光伏发电的最基本元件是太阳能电池。目前多晶电池用量最大。全球太阳能电池组件的年均增长率高达30%以上,光伏产业成为发展最快的新兴行业之一。随着全球光伏产业的迅速发展,太阳能电池生产企业对原料多晶硅的需求与日俱增。

2.2 国内外内生产情况及市场预测

世界多晶硅主要由美、日、德三国垄断。由于全球原油价格上涨,欧美地区对新能源的需求上升,这些国家都采取了鼓励太阳能发展的措施,这促使太阳能产业蓬勃发展,从而导致多晶硅需求猛增。据不完全统计,2005年全世界多晶硅产量28750吨,其中半导体用多晶硅20250吨,太阳能电池用多晶硅8500吨,而太阳能级的实际需求量为15000吨,出现严重供不应求的局面,半导体领域对多晶硅的需求今后也将保持强劲增长。WSTS(全球半导体市场统计)预计2006年和2007年全球半导体市场的规模增长分别为8%和10.6%。预计半导体领域对多晶硅的需求2007年超过25000吨,加上太阳能电池领域的需求,2007年对多晶硅材料的总需求将达到45000吨,供应缺口在9000---11000吨。据专家预测,到2009年,全世界多晶硅的年需求量将达到7万吨,同时,我国周边地区的俄罗斯、韩国、新加坡、马来西亚等国均无多晶硅生产条件和能力,对多晶硅有巨大市场需求。全球主要多晶硅生产厂家有:德山雪达(日)、三菱材料(日)、住友(日)、三菱多晶硅

(美)、黑姆洛克(美)、先进硅(美)、瓦克多晶硅(德)等企业。

日本是亚洲最大的多晶硅生产国,但其产量仍不能满足本国需求,不仅日本,亚太地区特别是台湾、新加坡、韩国等地,都是多晶硅的主要需求地。

近年来,我国建起了多条太阳能电池模块封装线,使太阳能电池的年生产量迅速增加,硅太阳能电池的生产能力已从三年前的十几兆瓦发展到超过100兆瓦,制造太阳能电池的上游原料多晶硅的需求随之快速增长:“十一五”期间,我国半导体集成电路市场将进一步扩大,年均增长速度将保持在20%左右,太阳能和半导体这两大行业的迅猛发展导致基础原材料多晶硅的市场需求不断提高预计我国的多晶硅至2008年将有超过5000吨的缺口。“十一五”期间,将是多晶硅产业快速发展的黄金时期,多晶硅来头增长的潜力巨大。目前国内生产多晶硅的企业主要有河南洛阳单晶硅厂、四川峨嵋半导体材料厂、上海棱光实业公司、四川重庆天原化工总厂,洛阳中硅高科技有限公司等,年总产量不超过300吨。远远不能满足国内市场的需求,97%的多晶硅依赖进口,多晶硅短缺已成为制约我国太阳能电池等行业发展的瓶颈。

2.3价格分析

由于近年来国际多晶硅市场需求的旺盛,而总体产能增长不足,导致多晶硅价格暴涨,其价格由2003年的23美元/公斤涨至2005年的90美元/公斤,2006年的130美元/公斤,2007年为1500元/公斤。国内多晶硅的价格亦受国际市场的影响,因全球多晶硅主要生产厂商只有七家,国内产能极小主要依靠进口,因此预计2008年以后多晶硅的价格为1700~1800元/公斤。本报告各种产品价格选用现市场价格,其中市场价格为多晶硅保守为130万元/t、三氯氢硅为1.80万元/t、四氯化硅为0.12万元/t。

3 建设规模及产品方案

3.1 建设规模

生产规模的确定,要考虑市场需求、资金筹措、企业经济效益以及厂址的建设条件等诸多方面的因素。

根据市场预测和原材料的供应情况,以及**通能硅材料有限公司现有规划,拟定本工程的产品方案及规模为:

500t/a多晶硅、16kt/a三氯氢硅(其中商品量为6000t/a),副产品四氯化硅1000t/a。

3.2 产品质量标准

3.2.1 三氯氢硅质量标准

目前尚无三氯氢硅产品的国家标注和行业标准。本项目产品三氯氢硅执行标准参照美国联合碳化公司(1983)执行。

美国联合碳化公司(1983)三氯氢硅质量标准(表1)

3.2.2 多晶硅质量标准

多晶硅产品质量执行GB/T12963-1996多晶硅质量标准。

多晶硅质量标准GB/T 12963-1996(表6)

3.3 包装、运输及储存

产品的标志、标签、包装、运输应符合《化学危险安全管理条例》、《危险化学品安全管理条例实施细则》等国家有关法律法规及GB12690-92的规定。

3.3.1 三氯氢硅包装、运输及储存

三氯氢硅为贮罐贮存,专用汽车槽车运输。

3.3.2 多晶硅包装、储存及运输

运输过程中应轻装轻卸,避免受潮、受热和包装破换。

3.4 建设工程组成

4 工艺技术方案

4.1 工艺技术方案

4.1.1 工艺技术方案的选择

1、三氯氢硅

传统的三氯氢硅合成工艺是将干燥氯气及净化后的氢气经各自的缓冲

罐进入氯化氢合成炉中反应成氯化氢并进入沸腾炉中。硅粉干燥后经加热脱水用氮气送入沸腾炉中与氯化氢反应生产三氯氢硅气体。气体经过滤器除去硅粉尘,在空冷器除去高沸物杂质及金属氯化粉最后经冷凝为液体,再经分镏成成品三氯氢硅。这是当今最成熟的工艺技术,国内外三氯氢硅生产企业基本上都采用此种工艺。

此外还有用固定床氯化炉,铜粉作催化剂,氯化氢和硅粉直接合成三氯氢硅。粗三氯氢硅含量在60%以上,经分镏提纯除去高、低沸点物后,三氯氢硅含量达90%。

还有通过流化床反应器还原四氯硅烷来制备三氯硅烷的方法。该方法在反应器中建立一个硅颗粒的流化床,将微小组辐射直接导入反应器中,加热硅颗料吏春温度达到300~1100℃,含有四氯硅烷和氢的反应气通过流化床,反应气与硅颗粒反应,形成含有三氯硅烷的产物气。

本项目三氯氢硅装置生产工艺采用三氯氢硅沸腾床合成、加压精镏、冷凝分离提纯生产高纯度的三氯氢硅产品和四氯化硅副产品的传统工艺。

该工艺流程采用国内先进的沸腾床式三氯氢硅合成炉,生产能力大,副产品少;分离采用加压精镏技术使三氯氢硅产品质量达到99%、四氯化硅产品质量达到97%以上,处于国内领先水平。

2. 多晶硅

目前多晶硅的主要生产方法分别为硅烷法和三氯氢硅氢还原法(又称西门子法)这两种。

硅烷法是采用精制后的硅烷进行热分解反应,析出硅,从而获得多晶硅棒,再经进一步处理后而获得多晶硅产品。

三氯氢硅氢还原法是经过精制的三氯氢硅经挥发后与精制后的氢气在

还原炉中高温下发生还原反应而析出硅,获得多晶棒,再往进一步处理后而获得多晶硅产品。

改良西门子法(即改良三氯氢硅氢还原法)主要是对还原尾气进行回收利用,提高三氯氢硅的转化率,降低其消耗,同时极大地解决尾气排放造成的污染问题。

本项目选择改良西门子法生产多晶硅。

该工艺流程采用三氯氢硅和氢气分别经过精制,进入还原炉,在高温下进行还原,获得的多晶硅棒经过后处理而获得高纯度的多晶硅。同时对还原尾气进行处理,回收三氯氢硅,四氯化硅和氢气。回收的三氯氢硅、四氯化硅、氢气经精制后再进入还原炉中生产多晶硅。多晶硅的产品质量达到GB/T 12963-1996的要求。

4.1.2 工艺流程简述

1、三氯氢硅工艺流程简述

(1)氯化氢合成工序

开启HC1合成炉合成段冷却水,管道氢气经阻火器、氢气缓冲罐、冷水冷却器冷却后去干燥器干燥、除氧器除氧、干燥器干燥(与氯气按摩尔比1.05:1)进入HC1合成炉;管道氯气经氯气缓冲罐后进入HC1合成炉;通过冷却水量、氯气和氢气量控制合成炉出口温度在400~500℃。合成的HC1

气体经氯化氢缓冲罐纯化去三氯氢硅合成工序。

(2)三氯氢硅合成工序

硅粉通过真空管道输送至硅粉干燥器,干燥后的硅粉用氮气送入三氯氢硅合成炉;与来自氯化氢缓冲罐的氯化氢气体在合成炉沸腾床发生反应,控制合成炉温度在280~310℃,生成气相三氯氢硅和四氯化硅;三氯氢硅和四氯化硅气体混合物经网袋式过滤器分离、硅渣收集器收集回用;气相经空冷

器初冷后进入冷凝器经冷冻盐水冷凝后经接收槽进入粗品收集槽;不凝性气体经管道进入尾气吸收工序。

在沸腾炉中,硅粉和氯化氢反应生成三氯氢硅。

(3)精镏提纯工序

来自粗品收集槽的三氯氢硅和四氯化硅混合物料进入塔釜加热器,经蒸汽间接加热进入精镏塔,精镏塔顶气体经前冷器和后冷器冷凝,控制压力和回流比,一部分液体回流至精镏塔,一部分自流进入三氯氢硅接收罐进入三氯氢硅收集罐;塔釜加热器精镏后残液自流进四氯化硅接收罐后经氮气压入四氯化硅储罐。

(4)尾气吸收工序

来自冷凝器的不凝性气体进入尾气洗涤塔,经循环泵送出的洗涤水在尾气洗涤塔中五处喷淋洗涤,回收HCl溶液至20%浓度后外售;气体达标排放。

2、多晶硅生产流程简述

(1)氢气精制工序

由*****化工管道送来的氢气及回收氢气进入氢气气柜,经水环泵加压后的氢气经分离器、氢气冷却器、片碱干燥器、活性碳吸附器、除氧器、冷却器、冷冻除水器、硅胶干燥器,再进入二次氢气净化器进行净化得到精制氢气。

该项目同时建设有电解水制氢系统。采用纯化水经电解槽电解,制氢装置分离氢、氧等初步处理,再进入氢气净化装置净化(工序同上述氢气精制工序)得到高纯氢气供还原车间等生产使用。

(2)三氯氢硅精制工序

自制的三氯氢硅放入三氯氢硅储槽,再经泵送往高位槽,经控制流量后进入精馏塔釜,从塔顶出来的气相经全凝器(二级)进行冷凝得到的冷凝液再经过滤器,一路返回精馏塔顶作为回流液,一路作为产品流入计量槽。经分析,合格的精制三氯氢硅进入精三氯氢硅储槽,不合格的则返回三氯氢硅储槽。二级全凝器的尾气进入尾气缓冲罐,再经尾气洗涤塔洗涤达标排空。

洗涤水进入中和池进行处理。精馏的釜底残液及轻组分三氯氢硅则进入高低沸物槽,装车外卖。

(3)还原系统及尾气回收系统

精制的三氯氢硅经过鼓泡气化后与精制氢气在还原炉内,在以硅芯作为载体的表面,在高温下还原沉积为多晶硅。通过调节电流强度,控制载体温度,使炉内载体直径变粗,达到供直拉单晶硅所需直径要求的多晶硅。

还原尾气经两级螺旋板换热器降温后进入尾气回收器,未凝气体与还原尾气经换热后进入水喷淋洗涤塔洗涤,再经丝网阻火器进入氢气气柜。洗涤水则进入中和池进行处理。

尾气回收器冷凝下来的回收液体进入计量槽,经控制流量进入回收精馏塔,塔顶气相经二级全凝器冷凝得到的液体经分析,合格品流入回收精三氯氢硅储槽或四氯化硅储槽,不合格品则返回粗产品罐,再重新送入高位槽进行精馏。精馏残液(塔釜排液及轻组份液体)则送往高低沸物储槽,装车外卖。

回收的三氯氢硅和回收的四氯化硅经汽化后进入不同的还原炉,前者生产直拉料或区熔料,后者则送入专用还原炉,以生产拉制硅芯的硅芯料。

4.1.3 工艺流程方框图

1、三氯氢硅工艺流程方框图

三氯氢硅生产工艺流程

硅氢氯化法 该方法是用冶金级硅粉,作原料,与氯化氢气体反应。可使用铜或铁基催化剂。反应在200---800和0。05---3mpa下进行 2Si+HCL======HsiCL3+SiCL4+3H2 该反应所用反应器经历了从固定床、搅拌床到流化床的发展过程。工艺也从间歇发展到连续。反应器由碳钢制成,预先将归粒子加入到反应器,加热到所需地温度后,从底部连续通入氯化氢气体,产物及未反应物料被连续输出,经除尘精制后,用于生产高纯多晶硅和高纯硅烷。 上述反应是放热反应,反应热为-141。8千焦/摩尔升高温度有利于提高反应速率,但同时导致三氯氢硅选择性下降,通过优化反映温度,可明显提高三氯氢硅的选择率。例如在300---425度和2到5千帕条件下使硅和氯化氢反应,产物以600---1000千克/小时输出,三氯氢硅的选择率竟高达80—88%,副产物包括质量分数1%--2%二氯硅烷和1—4%的缩聚物,其余为四氯化硅。 氯化氢气体中的水分三氯氢硅的收率优很大影响。,因此必须严格干燥。硅与氯化氢生成三氯氢硅的反应应该是零级反应,使用纯度大于99。99%的硅原料时氢硅的收率较低。在一个微型反应器中作了研究,结果表明冶金级原料中所含杂质铝对反应有催化作用,可使反应温度降低,三氯氢硅收率提高。, 四氯化硅氢化法 3SiCL4+2H2+Si===============4HsiCL3 反应温度400-----800 压力2---4兆帕 该反应为平衡反应,为提高三氯氢硅的收率,优选在氯化氢存在下进行,原料采用冶金级产产品通过预活化除去表面的氧化物后,可进一步提高三氯氢硅的收率三氯氢硅与四氯化硅沸点差距25度,且不产生共沸物,所以比较容易分离。 三氯氢硅生产工艺流程 三氯氢硅合成。将硅粉卸至转动圆盘,通过管道用气体输送至硅粉仓,再加入硅粉干燥器,经过圆盘给料机并计量后加入三氯氢硅合成炉。在三氯氢硅合成炉内,温度控制在80—310℃,硅粉和氯化氢发生反应,生成三氯氢硅和四氯化硅。生成的三氯氢硅和四氯化硅气体经沉降器、旋风分离器和袋式过滤器除去粉尘及高氯硅烷,经水冷后经隔膜压缩机加压,再用-35℃冷媒冷凝为液体。不凝性气体通过液封罐进入尾气淋洗塔,经酸碱淋洗达标后排放。 三氯氢硅分离。三氯氢硅和四氯化硅混合料(三氯氢硅含量为80—85%)进入加压塔,采用两塔连续提纯分离,通过控制一定的回流比,最终得到三氯氢硅含量为99%以上的产品和四

三氯氢硅1

三氯氢硅

目录 (1)产品名称,物化性质,技术标准及作用;(2)原料名称及质量标准; (3)生产基本原理及反应式; (4)生产工艺流程叙述; (5)岗位操作法及控制:a.岗位操作范围;b.开车前准备;c.开停车操作;d.各岗位控制要点; (6)某些不正常现象及消除方法; (7)安全生产要点; (8 )生产过程中的三废排放和处理;

(一)产品名称,物化性质,技术标准及作用 (1)产品名称:三氯氢硅SiHCl 3 (2) 物理性质:常温下纯净的三氯氢硅是无色、透明、挥发性、可燃液体,有较 四氯化硅更强的刺鼻气味。分子式:SiHCl 3 ,分子量:135.4 ,液体密度:1.318kg/l (常温状态),气体密度:6.5g/l(标准状态),1atm下沸点:31.5℃,1atm下熔点:-128℃ (3)化学性质:易水解、潮解、在空气中强烈发烟,生成HC l 和H 2 ,HCl遇水立 即转化为盐酸,盐酸具有很强的腐蚀性;H 2 易燃易爆。 更易挥发、更易气化、更沸点低; 易着火、易爆炸、着火点28℃、着火温度220℃,燃烧时产生氯化氢和氢气; 其蒸汽具有弱毒性,与无水醋酸和二氯乙烯毒性程度相同。 (二)原料名称及质量标准 1.氯化氢(Hcl):氯化氢含量92%∽94%,氯气不过量; 2.硅粉:冶晶级多晶硅(95%∽99%),块密度约2.0×103kg/m3,硬度为7,其颗粒大小为80∽120目。 (三)生产基本原理及反应式 1. 基本原理: 80∽120目的硅粉与干燥的92%∽94%的氯化氢在催化剂(催化剂用量 si:cucl 2 =100(0.4∽1))作用下,在280∽320℃、小于0.05Mpa条件下生成三氯氢硅。合成SiHCl3必须先将硅粉预热到250℃以上。不过,该反应是放热反应,只要启动后就不再需要补充热能,而是带走热量。 2. 主要反应 Si+3HCl→SiHCl 3+H 2 +Q 当温度不再上述制控制范围内,怎发生下列副反应: A.温度大于350℃时:Si + 4HCl → SiCl 4 + 2H 2 + Q B.温度小于280℃时:Si + 4HCl → SiH 2Cl 2 + 2H 2 + Q C.硅粉与HCl反应过程中,硅粉中的少量杂质Ca、Fe、Al、Zn、Ti、P、B等主 要生成CaCl2、FeCl3、AlCl3、ZnCl2、TiCl4、PCl3、BCl3化合物,这些物质

三氯氢硅生产的火灾危险及对策实用版

YF-ED-J7614 可按资料类型定义编号 三氯氢硅生产的火灾危险 及对策实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

三氯氢硅生产的火灾危险及对策 实用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 三氯氢硅又称三氯硅烷、硅氯仿,英文名 称:trichlorosilane或silicochloroform, 分子式为SiHCl3,用于有机硅烷和烷基、芳基 以及有机官能团氯硅烷的合成,是有机硅烷偶 联剂中最基本的单体,也是生产半导体硅、单 晶硅的原料,随着有机硅烷偶联剂工业的发展 而出现供不应求,生产量越来越大。 一、三氯氢硅的理化特性及生产原理

三氯氢硅是采用硅粉与氯化氢气体在流化床反应器中生成。它是无色液体,易挥发,易潮解,在空气中发生反应产生白烟,遇水分解,溶于苯、醚等有机溶剂。属一级遇湿易燃物品,易燃易爆,遇水反应产生氯化氢气体;它与氧化剂发生强烈反应,遇明火、高热时发生燃烧或爆炸。 其物理特性如下:比重:1.35;相对气体密度:4.7;沸点:31.8℃;饱和蒸气压(14.5℃)53.33Kpa;闪点:-13.9℃(开杯);自燃温度:175℃;爆炸下限:6.9%;爆炸上限:70%;溶解性:溶于苯、醚等有机溶剂;具有急性毒性。

三氯氢硅的精馏

三氯氢硅的精馏 在三氯氢硅合成工序生成,经合成气干法分离工序分离出来的氯硅烷液体送入氯硅烷贮存工序的原料氯硅烷贮槽;在三氯氢硅还原工序生成,经还原尾气干法分离工序分离出来的氯硅烷液体送入氯硅烷贮存工序的还原氯硅烷贮槽;在四氯化硅氢化工序生成,经氢化气干法分离工序分离出来的氯硅烷液体送入氯硅烷贮存工序的氢化氯硅烷贮槽。原料氯硅烷液体、还原氯硅烷液体和氢化氯硅烷液体分别用泵抽出,送入氯硅烷分离提纯工序的不同精馏塔中。从原料氯硅烷贮槽送来的原料氯硅烷液体经预热器预热后,从中部送入1级精馏塔,进行除去低沸物的精馏操作。塔顶排出不凝气体和部分二氯二氢硅,送往废气处理工序进行处理;塔顶馏出液为含有低[wiki]沸点[/wiki]和高沸点杂质的三氯氢硅冷凝液,依靠压差送入2级精馏塔;塔釜得到含杂质的四氯化硅,用泵送四氯化硅回收塔进行处理。 2级精馏塔为反应精馏,是通过用湿润的氮对三氯氢硅处理,把其中易于水解的杂质化合物转化成难于挥发的形态,以便用精馏的方法除去。2级精馏为双系列生产线。2级精馏塔塔顶排出不凝气体同样送往废气处理工序进行处理;塔顶馏出三氯氢硅冷凝液,依靠压差送入沉淀槽;塔釜含悬浮物的釜液,用泵送至四氯化硅回收塔进行处理。 3级精馏目的是脱除三氯氢硅中的低沸点杂质。三氯氢硅清液经三级进料预热器后,进入3 级精馏塔中部。塔顶馏出含有二氯硅烷和三氯氢硅的冷凝液,靠位差流至二级三氯氢硅槽;塔底釜液为三氯氢硅,用泵送入4级精馏塔。 4级、5级精馏目的是分两段脱除三氯氢硅中的高沸点杂质。3级釜液送入4级精馏塔中部。4级塔顶馏出三氯氢硅冷凝液,靠位差流至5级精馏塔,进行脱除高沸点杂质的第二阶段。5级塔顶馏出的三氯氢硅冷凝液送入五级冷凝液槽,一个贮槽注满后分析三氯氢硅是否符合工业级三氯氢硅对杂质含量的要求,在分析有效的情况下,工业级精制的三氯氢硅从贮槽靠位差流至8级精馏塔。4级、5级塔釜排出的含有高沸点杂质的三氯氢硅,用泵送入二级三氯氢硅槽。 从5级塔顶馏出的三氯氢硅,在6级精馏塔进行最终脱除三氯氢硅中的高沸点杂质的过程。6级塔顶馏出物为去除了高、低沸点杂质的精制三氯氢硅,分析符合多晶硅生产的质量要求后,靠位差流至多晶硅制取工序。塔底釜液为含高沸点杂质的三氯氢硅,用泵送至二级三氯氢硅槽。 还原氯硅烷冷凝液经7级进料预热器进入7级精馏塔。塔顶馏出物为三氯氢硅,靠位差流至8级精馏塔;塔底釜液为四氯化硅,经分析符合质量要求后,用泵将其部分送去四氯化硅加氢,部分送往氯硅烷贮存工序的工业级四氯化硅贮槽。 8级精馏塔用于还原氯硅烷中高沸点杂质的脱除。塔顶馏出物是精制的循环三氯氢硅,送入8级冷凝液槽,经分析符合质量要求后,精制三氯氢硅靠位差循环回多晶硅制取工序。塔底釜液是含有高沸点馏份的三氯氢硅,用泵送至二级三氯氢硅槽。 四氯化硅氢化后的氯硅烷冷凝液,经9级进料预热器连续送入9级精馏塔。塔顶的馏出物是三氯氢硅,连续送往10级精馏塔,进行进一步精馏。塔底釜液是含有高沸点杂质的四氯化硅,用泵连续送往11级精馏塔。 9级精馏塔塔顶馏出的三氯氢硅在10级精馏塔中脱除高沸点杂质。10级精馏塔塔顶馏出物是精制的循环三氯氢硅,送入10级冷凝液槽,经分析符合质量要求后,精制三氯氢硅靠位差循环回多晶硅制取工序。塔底釜液是含有高沸点馏份的三氯氢硅,用泵送至二级三氯氢硅槽。11级精馏塔的进料为9级精馏塔釜液。塔顶馏出物是精制的循环四氯化硅,经分析符合质量要求后,用泵送去四氯化硅加氢工序。塔底釜液是含有高沸点杂质的四氯化硅,送往氯硅烷贮存工序的工业级四氯化硅贮槽。

三氯氢硅火灾危险及灭火对策

三氯氢硅火灾危险及灭火对策 三氯氢硅又称三氯硅烷、硅氯仿,英文名称:trichlorosilane或silicochloroform,分子式为SiHCl3,用于有机硅烷和烷基、芳基以及有机官能团氯硅烷的合成,是有机硅烷偶联剂中最基本的单体,也是生产半导体多晶硅的原料,随着半导体多晶硅和有机硅烷偶联剂工业的发展而出现供不应求,生产量越来越大。 一、三氯氢硅的理化特性及生产原理 三氯氢硅是采用硅粉与氯化氢气体在流化床反应器中生成。它是无色液体,易挥发,易潮解,在空气中发生反应产生白烟,遇水分解,溶于苯、醚等有机溶剂。属一级遇湿易燃物品,易燃易爆,遇水反应产生氯化氢气体;它与氧化剂发生强烈反应,遇明火、高热时发生燃烧或爆炸。 其物理特性如下:比重:1.35;相对气体密度:4.7;沸点:31.8℃;饱和蒸气压(14.5℃)53.33Kpa;闪点:-13.9℃(开杯);自燃温度:175℃;爆炸下限:6.9%;爆炸上限:70%;溶解性:溶于苯、醚等有机溶剂;具有急性毒性。 二、三氯氢硅生产的火灾危险性分析 三氯氢硅生产的原料都是不燃物质,但是其生产过程中的产物大都是易燃易爆物质,如氢气、三氯氢硅、氯气等。 1、电解食盐水的火灾危险性 (1)电解时有强大的电流通过,如果电气的绝缘不良极易产生电火花,电解车间经常有氢气泄漏,遇到电火花或其它明火会发生燃烧或爆炸。 (2)如氢气与氯气相混,达到爆炸极限范围,遇光也会发生爆炸。 2、三氯氢硅合成的火灾危险性 SiHCl3的合成是在280℃~300℃的温度下进行的,已经超过了SiHCl3的自燃温度175℃,在合成过程中如果SiHCl3发生泄漏,或者空气进入反应器,极易引起燃烧、爆炸或中毒事故。并且SiHCl3有毒、遇水燃烧,给火灾扑救带来一定的困难。 3、三氯氢硅贮罐的火灾危险性 SiHCl3的贮罐如果发生泄漏,其危险性远远大于工艺管道泄漏的危险性,因为其贮量大,一旦发生泄漏,如果不及时堵漏,影响会不断扩大。贮罐区因为冷却用水的需要,经常有水存在,泄漏的SiHCl3遇水发生反应,产生有毒的HCl,向四周扩散,给抢险救援工作带来困难。 三、防火防爆对策 在三氯氢硅生产的各个工序中,为防止火灾、中毒,要严格执行各项消防安全制度,严格控制工艺指标,严格操作规程。加强对设备管道的维护保养,严防跑、冒、滴、漏。具体预防措施如下: 1、火源管理。 在生产中进行检修时使用的工具应该是不产生火花的工具,严禁用铁器敲打设备或管道,工作人员应穿棉制品工作服。生产和贮罐区禁止明火,生产中动火要严格执行有关安全管理制度。 2、防止跑、冒、滴、漏。

三氯氢硅合成尾气处理工艺

三氯氢硅合成尾气处理工艺 谷文军3,孟祥考,吴军祥 (河北邢矿硅业科技有限公司,河北邢台054000) [关键词]三氯氢硅;尾气处理;变压吸附 [摘 要]介绍了几种处理三氯氢硅合成尾气的工艺,分析了各自的优缺点。 [中图分类号]T Q127.2 [文献标志码]B [文章编号]1008-133X(2009)10-0035-02 Process of trea ti n g t a il ga s from tr i chlorosil ane syn thesis G U W enjun,M EN G X iangkao,WU Junxiang (Hebei Xingkuang Silicon I ndustry Science and Technol ogy Co.,L td.,Xingtai054000,China) Key words:trichl or osilane;tail gas treat m ent;p ressure s wing ads or p ti on Abstract:So me kinds of p r ocess f or treating the tail gas fr om trichl or osilane synthesis are intr oduced, and their res pective advances and disadvantages are analyzed. 三氯氢硅合成尾气的主要成分有氯化氢、三氯氢硅(氯硅烷)、氢气,具体组成(体积分数)为:三氯氢硅5.942%,四氯化硅0.295%,氯化氢15.818%,氮气4.779%,氢气73.166%。此尾气须处理后才能排放。 1 水吸收工艺 水吸收工艺也称湿法回收技术,是把出三氯氢硅合成炉的尾气直接用水喷射泵吸收,尾气中的氯化氢被水吸收成盐酸,氯硅烷水解生成二氧化硅。二氧化硅以大量白色泡沫的形式出现,未被吸收的氢气和氮气排入大气。 2 CD I工艺 CD I工艺过程是将尾气进行低温洗涤、分离,将尾气加压冷凝,使尾气中大量的三氯氢硅冷凝下来作为回收的产品;大量的氯化氢用低温氯硅烷洗涤、分离,微量的HCl、氯硅烷采用变温吸附(TS A)干法脱除;剩下的尾气含有大量的N 2 ,再结合变压吸附 (PS A),可以生产出高纯度的H 2 。 2.1 冷凝工序 三氯氢硅合成尾气(压力为0.2MPa)含有大量的氯硅烷,如果直接排出,将会降低经济效益。冷凝工序就是将尾气冷至-5℃,有效地回收氯硅烷,降低原料消耗。 2.2 低温洗涤分离 在低温和一定压力的条件下,氯硅烷液体对氯化氢气体具有吸收能力,将尾气中大部分的氯化氢洗涤吸收分离出来,气体中少量的氯硅烷也被冷凝捕集下来。洗涤净化后的气体主要为氢气,只含有少量的氯化氢和氯硅烷,这两组分的总体积分数小于1%。富含氯化氢的氯硅烷洗液通过精馏,氯化氢等低沸物与氯硅烷分离,在塔顶得到较高纯度的氯化氢,在塔底得到纯氯硅烷液体。 2.3 TSA工序 由变温吸附的特性可知:当气体杂质组分分压高、温度低时,吸附剂的吸附容量大;当气体杂质组分分压低、温度高时,吸附剂的吸附容量低[1]。由HCl吸收工序来的1.1MPa的合成尾气进入变温吸附单元,在此单元将脱除合成尾气中除氢气、氮气以外的所有组分。 尾气干法分离工艺主要用于分离氯化氢、氢气、氯硅烷,如果合成气含有氮气等杂质气体,这些杂质气体将不会被完全分离去除,混入产品氢气中,影响 53 第45卷 第10期2009年10月 氯碱工业 Chl or2A lkali I ndustry Vol.45,No.10 Oct.,2009 3[作者简介]谷文军(1965—),男,高级工程师,毕业于河北大学,现从事化工生产管理工作。 [收稿日期]2009-07-30 [编者注]本文作者之一孟祥考为《氯碱工业》第4届编委会委员

三氯氢硅、四氯化硅相关反应

02.三氯氢硅氢还原反应基本原理 用氢气作为还原剂,在1100~1200℃下还原SiHC13,是目前多晶硅生产的主要方法。由于氢气易于净化,而且在硅中的溶解度极低,所以用氢气还原生产的 多晶硅较其他还原剂(如锌、碘)所制得的多晶硅纯度要高得多。 2.1 三氯氢硅氢还原反应原理 SiHCl 3和H 2混合,加热到900℃以上,就能发生如下反应: )(H C l 3)( Si )( H )(SiHCl 110090023气固气气℃~+???? →←+ 同时,也会产生SiHCl 3的热分解以及SiCl 4的还原反应: 2490032H 3SiCl Si 4SiHCl ++??→←℃ 4HCl Si 2H SiCl 24+?→←+ 此外,还有可能有 43SiCl 2HCl Si 2SiHCl ++?→← HCl SiCl SiHCl 23+?→← 以及杂质的还原反应: 6HC1 2B 3H 2BCl 23+?→←+ 6HC1 2P 3H PCl 23+?→←+ 这些反应,都是可逆反应,所以还原炉内的反应过程是相当复杂的。在多晶 硅的生产过程中,应采取适当的措施,抑制各种逆反应和副反应。以上反应式中, 第一个反应式和第二个反应式可以认为是制取多晶硅的基本反应,应尽可能地使 还原炉内的反应遵照这两个基本反应进行。

四氯化硅氢化 1. 四氯化硅来源与性质 1.1 四氯化硅的产生 在多晶硅生产过程中,在SiHCl 3 合成工序和氢还原制取多晶硅工序,会产生大量的副产物SiCl 4,并随着尾气排出。 在氢还原工序中,会发生以下几个反应: 主反应:Si 3HCl H SiHCl 23+?→?+ 副反应:2490032H 3SiCl Si 4SiHCl ++???→?℃以上 43SiCl 2HCl Si 2SiHCl ++?→? 在SiHCl 3合成工序中主要发生以下反应: 主反应: 23H SiHCl 3HCl Si +?→?+ 副反应: 242H SiCl 4HCl Si +?→?+ SiHCl 3合成中副反应产生的SiCl 4约占生成物总量的约 10% ,在氢还原工序中也有部分SiHCl 3 发生副反应生成了SiCl 4 。在实际生产中,副反应不可避免,但对工艺过程加以控制,可以尽量减少副反应发生,减少副产物的生成。另一方面对于副产物必须进行综合利用,使其转化为有用的原料或产品。这样可以就可以降低总体生产成本,创造出良好的经济效益。 1.2 四氯化硅的性质 四氯化硅在常温常压条件下是无色透明的液体,无极性,易挥发,有强烈的刺激性,遇水即水解生成二氧化硅和 HCl 。并能与苯、乙醚、氯仿等互溶,与乙醇反应可生成硅酸乙酯。由于四氯化硅易于水解,并生成 HCl 所以在有水的

四氯化硅制备三氯氢硅的冷氢化工艺资料

洛阳晶辉新能源科技有限公司 1、低温氢化技术方案 “低温氢化”反应原理为:四氯化硅(SiCl4)、硅粉(Si)和氢气(H2)在500℃温度和1.5MPa 压力条件下,通过催化反应转化为三氯氢硅(SiHCl3)。化学反应式为: 3SiCl4+Si+2H2=4SiHCl3 行业“低温氢化”虽然比“热氢化”具有能耗低、设备运行可靠的优点,但是尚存一些不足: (1)实际转化率偏低——四氯化硅(SiCl4)实际转化率一般在18%左右; (2)催化剂稳定性差——导致催化剂寿命短、消耗量大、成本高;特别是催化剂载体铝离子容易造成“铝污染”; (3)设备复杂、系统能耗大——工作温度高,所以氢化炉需要内或外加热,设备复杂,系统无有效的能量回收装置,系统能耗高。 3)“催化氢化”技术方案 针对上述四氯化硅(SiCl4)冷、热氢化存在的缺点和问题,洛阳晶辉新能源科技有限公司和中国工程院院士、中石化权威催

化剂和化工专家合作,在传统“低温氢化”基础上进行改良,自主创新开发出了新一代“改良低温氢化”技术——“催化氢化”。 (1)“催化氢化”技术路线 ?开发高活性多元纳米催化剂——在现有单活性金属基础上,引入第二活性金属,并采用特殊负载工艺,使活性金属呈纳米状态,提高催化剂活性;开发高稳定性催化剂载体——解决现有催化剂稳定性差问题,延长催化剂使用寿命,同时解决“铝污染”; (2)“催化氢化”技术特点 催化剂活性高,特别是反应?选择性好——四氯化硅(SiCl4)单程率达到22%,以上(最高可达25%); ?实现热量耦合、节约能源——需要的外加热量小,减少系统能源消耗;催化剂稳定性好——寿命长、用量小、避免了Al2O3分解带来的“铝污染”;反应温度进一步降低,反应炉不需要内(或外)加热,并设能量综合回收装置,降低了系统能耗; ? 系统用氢细致划分,由电解氢改良为多晶硅生产过程的回收氢气,既节约了制氢站电解氢的消耗量,同时也有利于提高多晶硅

三氯氢硅及合成工艺

三氯氢硅及合成 一、三氯氢硅的基本性质 三氯氢硅在常温常压下为具有刺激性恶臭、易流动、易挥发的无色透明液体。分子量:135.43,熔点(101.325kPa):-134℃;沸点(101.325kPa):31.8℃;液体密度(0℃):1350kg/m3;相对密度(气体,空气=1):4.7;蒸气压(-16.4℃):13.3kPa;(14.5℃):53.3kPa;燃点:-27.8℃;自燃点:104.4℃;闪点:-14℃;爆炸极限:6.9~70%;在空气中极易燃烧,在-18℃以下也有着火的危险,遇明火则强烈燃烧,三氯氢硅燃烧时发出红色火焰和白色烟;三氯氢硅的蒸气能与空气形成浓度范围很宽的爆炸性混合气,受热时引起猛烈的爆炸。它的热稳定性比二氯硅烷好,三氯氢硅在900℃时分解产生氯化物有毒烟雾;遇潮气时发烟,与水激烈反应;在碱液中分解放出氢气;三氯氢硅与氧化性物质接触时产生爆炸性反应。与乙炔、烃等碳氢化合物反应产生有机氯硅烷;在氢化铝锂、氢化硼锂存在条件下,三氯氢硅可被还原为硅烷。容器中的液态三氯氢硅当容器受到强烈撞击时会着火。可溶解于苯、醚等。无水状态下三氯硅烷对铁和不锈钢不腐蚀,但是在有水分存在时腐蚀大部分金属。 二、三氯氢硅的用途 用于有机硅烷和烷基、芳基以及有机官能团氯硅烷的合成,是有机硅偶联剂中最基本的单体,同时也是制备多晶硅的主要原料。将三氯硅烷与氯乙烯或氯丙烯进行合成反应,再经精馏提纯,得到乙烯基或丙烯基系列硅烷偶联剂产品。硅烷偶联

剂几乎可以与任何一种材料交联,包括热固性材料、热塑性材料、密封剂、橡胶、亲水性聚合物以及无机材料等,在太阳能电池、玻璃纤维、增强树脂、精密陶瓷纤维和光纤保护膜等方面扮演着重要的角色,并在这些行业中发挥着不可或缺的重要作用。 三、三氯氢硅生产工艺 1、主要化学反应方程式为: Si + 3HCl = SiHCl3 + H2 Si + 4HCl = SiHCl4 + 2H2 2、生产装置主要由氯化氢干燥、三氯氢硅合成、三氯氢硅提纯和分离工序组成。生产工艺流程简述如下: 用管道送来的氯化氢气体,经冷却除水干燥、加压后依次进入氯化氢缓冲罐、-35℃石墨冷却器,酸雾脱水后,进入硫酸液环泵加压。加压后的氯化氢先经酸雾捕集器、氯化氢缓冲罐、再分别经流量调节阀、流量计、止逆阀进入三氯氢硅合成炉。外购袋装硅粉倒入硅粉池,用胶管借水环真空泵的抽力吸至硅粉干燥器,干燥后的硅粉经计量罐计量后由给料阀加入三氯氢硅合成炉,与来自氯化氢缓冲罐氯化氢在合成炉反应生成三氯氢硅和四氯化硅。 氯化氢与硅粉在三氯氢硅合成炉内反应生成三氯氢硅、四氯化硅、氢气。混合气体经沉降器、旋涡分离器、袋式过滤器、一级水冷器、二级水冷器、-35℃冷凝器,大部分三氯硅烷在膜压机前先冷凝下来,进入机前计量罐中,未冷凝的少量三氯硅烷、氯化氢和氢气进入隔膜压缩机加压,再经机后水冷凝器、-35℃盐水冷凝器冷凝,液体经机后产品计量罐计量后进入中间产品贮罐,不凝气送尾气变压吸附回收系统回收微量的三氯氢硅和氯化氢,氢气从尾气淋洗塔顶放空。变压吸附装置吸附的三氯氢硅和氯化氢定期用干式真空泵抽真空解析、并用隔膜压缩机加压送至硫酸液循

年产5万吨三氯氢硅化工生产项目可行性研究报告

专业编制可行性研究报告了解更多详情..咨询公司网址https://www.doczj.com/doc/ca18126517.html, 年产5万吨三氯氢硅项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限司 编制时间:https://www.doczj.com/doc/ca18126517.html,

专业编制可行性研究报告了解更多详情..咨询公司网址https://www.doczj.com/doc/ca18126517.html, 1、总论 1.1概述 1.1.1项目名称及主办单位 项目名称:5万吨\年三氯氢硅 主办单位: 建设地点: 法人代表: 1.1.2可行性报告编制依据及原则 1.编制依据 2.编制原则 (1)严格执行国家、地方颁发的现行法律法规及规定和标准及规范; (2)工艺技术力求先进可靠,体现国内外先进水平;合理布置总平面。各装置建构筑物之间留有足够的安全防护距离。建构筑物内外道路畅通并形成环状,以利消防和安全疏散;厂房尽可能采用敞开式框架结构,设备尽可能露天化布置; (3)严格控制污染物的排放,遵守国家和地方的环保要求,充分体现节能减排; (4)严格贯彻执行“生产必须安全,安全促进生产”的原则和“安全第一,预防为主”的安全卫生工作方针,遵循劳动保护与安全卫生“三同时”原则,必需对可能发生的各种事故和各种职业危险、危害因素进行全面系统分析并采取有效的防范措施,以确保生产安全和人体健康; (5)认真贯彻国家产业政策和行业节能设计规范,严格执行本行业

专业编制可行性研究报告了解更多详情..咨询公司网址https://www.doczj.com/doc/ca18126517.html, 节能技术规定,努力做到合理利用能源和节约能源; (6)充分依托和利用现有建设地周边地区现有的公用工程、市政设施与辅助生产设施,以节约建设投资,加快项目开发建设。 1.1.3企业概况 1.1.4项目背景、必要性 随着全球信息化时代的到来,半导体硅材料的用量剧增。同时绿色环保的太阳能发电技术越来越成熟、成本越来越低。太阳能发电成为全球新时尚。无论飞速发展的电子行业或太阳能发电都离不开多晶硅。近年来多晶硅市场出现严重的供不应求,价格飞涨。国内外许多大财团纷纷到中国来投资建设多晶硅生产线。三氯氢硅作为生产多晶硅的必须原料亦日趋紧张。 有机硅产品是一类性能优异而独特的新型化工材料,应用范围遍及国防、国民经济乃至人们日常生活的各个领域,已发展成为技术密集、资金密集、附加值高、在国民经济中占有一定地位的新型工业体系,并使相关行业获得了巨大的经济效益。有机硅产品大致分为硅油、硅橡胶、硅树脂、硅烷偶联剂等4大类产品。 。因带有氢三氯氢硅又称三氯硅烷或硅氯仿,化学分子式为SiHCl 3 键和含氯较多,可与其它有机基因反应形成一系列的有机硅产品,常用于有机硅烷和烷基、芳基以及有机官能团氯硅烷的合成,是有机硅烷偶联剂中最基本的单体,同时也是制备多晶硅的主要原料。将三氯氢硅与氯乙烯或氯丙烯进行合成反应,再经精馏提纯,得到乙烯基或丙烯基系列硅烷偶联剂产品。硅烷偶联剂几乎可与任何一种材料交联,包括热固性材料、热塑性材料、密封剂、橡胶、亲水性聚合物以及无机材料等,在太阳能电池、玻璃纤维、增强树脂、精密陶瓷纤维和光纤保护膜等方

三氯氢硅合成原理

三氯氢硅合成原理 三氯氢硅合成系统包括:1,硅粉加料装置,2,三氯氢硅合成炉,3,旋风干法除尘,4,过滤装置,5,STC湿法除尘,6,合成气分离回收(CDI)等工序。 硅粉加料装置完成向合成炉连续定量地供应硅粉;三氯氢硅合成炉是生产三氯氢硅的关键设备;旋风干法除尘、过滤装置与STC湿法除尘是回收硅粉和除去合成气的硅尘,CDI是将合成气进行分离回收,它们都是不可或缺的设备。 合成三氯氢硅的原料是硅粉与HCL气体。 3.1. 原料工业硅简介 工业硅的外观为深灰色与生铁颜色接近,也称硅铁。工业硅的块密度约2.0×103kg/m3,硬度为7,纯度一般为95%~99%,其中的主要杂质为Fe、Al、Ca。 工业硅的制备一般采用冶炼法,在冶炼炉中用还原剂将SiO2还原成单质硅(冶金硅)。通常用的还原剂有碳、镁、铝等。用镁或铝还原SiO2,如果还原剂的纯度较高得到的单质硅纯度可达3~4个“9”。不过,由于纯度较高的镁、铝价格高,会增加工业硅的生产成本,因此,目前国内的生产厂家都采用在电炉中用焦炭还原SiO2来制取单质硅(冶金硅),即把碳电极插入由焦炭(或木炭)和石英石组成的炉料中,温度控制在1600℃~1800℃还原出硅,反应式如下: 石英砂(硅石)与炭在电弧炉里还原成硅(MG-Si)

反应是在电弧炉(见图二)里的相邻电极之间发生的,该处温度超过2000℃,释放出来的SiO 和CO流到上部较冷区域(小于1500℃),形成所必要的SiC。 还原后的单质硅是以液态从反应炉中流进硅液煲,在这一过程中如Fe、Al、Ca、B、P、Cu等杂质也会以不同化合态进入液态的单质硅中,为了保证产品符合要求(一般控制在99%以上),硅液需要经过进一步处理去除其中的杂质。处理方法是利用杂质的化合态(氯化物或氧化物、硅酸盐等)在液体状态时会逐步离析到液体表面的规律,通过除去表层硅液来达到去除杂质的目的。因此,工业硅厂大都采用在硅液保温槽中通入Cl2或O2,促使大部分Fe、Al、Ca等杂质生成氯化盐或硅酸盐等物质,定期清除表层。这个过程会持续较长时间,并根据石英矿的杂质含量、成分和客户要求而定。这种方法主要是去除Fe、Al、Ca。 硅在常温下的化学性质很稳定,跟多数物质都不反应,只与部分强碱(NaOH、KOH)和酸(HF)反应。但在加热条件下(300℃±20℃)可以与多种物质反应,如与干燥的HCl气体反应生成氯硅烷,与Cl2反应生成四氯化硅,更高温度时还能和氧气反应生成氧化硅。 石灰砂(硅石) 煤、焦炭、木屑(CO、SiO、H2O)

三氯氢硅项目可行性研究报告

https://www.doczj.com/doc/ca18126517.html, 三氯氢硅项目可行性研究报告 编制工程师:郭兵

https://www.doczj.com/doc/ca18126517.html, 1、总论 1.1概述 1.1.1项目名称及主办单位 项目名称:5万吨\年三氯氢硅 主办单位: 建设地点: 法人代表: 1.1.2可行性报告编制依据及原则 1.编制依据 2.编制原则 (1)严格执行国家、地方颁发的现行法律法规及规定和标准及规范; (2)工艺技术力求先进可靠,体现国内外先进水平;合理布置总平面。各装置建构筑物之间留有足够的安全防护距离。建构筑物内外道路畅通并形成环状,以利消防和安全疏散;厂房尽可能采用敞开式框架结构,设备尽可能露天化布置; (3)严格控制污染物的排放,遵守国家和地方的环保要求,充分体现节能减排; (4)严格贯彻执行“生产必须安全,安全促进生产”的原则和“安全第一,预防为主”的安全卫生工作方针,遵循劳动保护与安全卫生“三同时”原则,必需对可能发生的各种事故和各种职业危险、危害因素进行全面系统分析并采取有效的防范措施,以确保生产安全和人体健康; (5)认真贯彻国家产业政策和行业节能设计规范,严格执行本行业

https://www.doczj.com/doc/ca18126517.html, 节能技术规定,努力做到合理利用能源和节约能源; (6)充分依托和利用现有建设地周边地区现有的公用工程、市政设施与辅助生产设施,以节约建设投资,加快项目开发建设。 1.1.3企业概况 1.1.4项目背景、必要性 随着全球信息化时代的到来,半导体硅材料的用量剧增。同时绿色环保的太阳能发电技术越来越成熟、成本越来越低。太阳能发电成为全球新时尚。无论飞速发展的电子行业或太阳能发电都离不开多晶硅。近年来多晶硅市场出现严重的供不应求,价格飞涨。国内外许多大财团纷纷到中国来投资建设多晶硅生产线。三氯氢硅作为生产多晶硅的必须原料亦日趋紧张。 有机硅产品是一类性能优异而独特的新型化工材料,应用范围遍及国防、国民经济乃至人们日常生活的各个领域,已发展成为技术密集、资金密集、附加值高、在国民经济中占有一定地位的新型工业体系,并使相关行业获得了巨大的经济效益。有机硅产品大致分为硅油、硅橡胶、硅树脂、硅烷偶联剂等4大类产品。 三氯氢硅又称三氯硅烷或硅氯仿,化学分子式为SiHCl 。因带有氢 3 键和含氯较多,可与其它有机基因反应形成一系列的有机硅产品,常用于有机硅烷和烷基、芳基以及有机官能团氯硅烷的合成,是有机硅烷偶联剂中最基本的单体,同时也是制备多晶硅的主要原料。将三氯氢硅与氯乙烯或氯丙烯进行合成反应,再经精馏提纯,得到乙烯基或丙烯基系列硅烷偶联剂产品。硅烷偶联剂几乎可与任何一种材料交联,包括热固性材料、热塑性材料、密封剂、橡胶、亲水性聚合物以及无机材料等,在太阳能电池、玻璃纤维、增强树脂、精密陶瓷纤维和光纤保护膜等方

三氯氢硅及四氯化硅的物化性质

三氯氢硅及四氯化硅的物化性质 - 我正在做一个三氯氢硅的项目设计,但三氯氢硅及四氯化硅的物化性质怎么也查不全,不知哪位高手能不吝赐教,万分感激。 TOP - 三氯氢硅又名三氯硅烷、硅氯仿,分子式SiHCl3,分子量135.45,相对密度1.34KG/L,熔点-126.5℃,沸点33.0℃,与水易分解,溶于CS2,CCl4,Cl Cl3苯,易燃,在空气中能自燃,燃点-27.8℃,自燃点104.4℃,与空气的爆炸极限:20.2~33.2%,有刺激性气体,有毒,吸入三氯氢硅蒸汽损伤呼吸道。四氯化硅的性质分子量169.90,相对密度1.483KG/L,熔点-70℃,沸点57.57℃,主要无色透明发烟液体具有难闻的窒息性气体,溅上皮肤会坏死,在潮湿的空气中水解放出HCL气体,遇氮气及氨剧烈反应生成氮化硅。 3 三氯氢硅三氯氢硅主要参数:三氯氢硅又称三氯硅烷、硅氯仿,英文名称:trichlorosilane 或silicochloroform ,分子式为SiHCl3 ,用于有机硅烷和烷基、芳基以及有机官能团氯硅烷的合成,是有机硅烷偶联剂中最基本的单体,也是生产半导体硅、单晶硅的原料,随着有机硅烷偶联剂工业的发展而出现供不应求,三氯氢硅生产量越来越大。三氯氢硅是无色液体,易挥发,易潮解,在空气中发生反应产生白烟,遇水分解,溶于苯、醚等有机溶剂。属一级遇湿易燃物品,易燃易爆,遇水反应产生氯化氢气体;它与氧化剂发生强烈反应,遇明火、高热时发生燃烧或爆炸。【CAS号】10025-78-2 【分子式】CL3-H-SI 【分子量】135.44 【比重】1.35 (0℃) 【熔点】-134 ℃【沸点】31.8 ℃【蒸汽压】400 毫米汞柱【蒸汽密度】4.7 【急性毒性】口服-大鼠LD50:1030毫克/公斤;吸入-小鼠LC50:1500毫克/立方米/2小时【毒性分级】中毒【闪点】-13.89 ℃【可燃性危险特性】遇明火、高温、氧化剂易燃;遇水或高温产生有毒氯化物烟雾【储运事项】库房通风低温干燥;与氧化剂、酸类分开存放【灭火剂】干粉、干砂、二氧化碳、泡沫三氯氢硅物理特性如下:比重:1.35 ;相对气体密度:4.7 ;沸点:31.8 ℃;饱和蒸气压(14. 5 ℃)53 .33Kpa ;闪点:-13.9 ℃(开杯);自燃温度:175 ℃;爆炸下限:6. 9 %;爆炸上限:70 %;溶解性:溶于苯、醚等有机溶剂;具有急性毒性。 7# 大中小发表于2008-12-22 08:36 只看该作者 三氯氢硅又称三氯硅烷、硅氯仿,英文名称:trichlorosilane或silicochloroform,分子式为SiHCl3,用于有机硅烷和烷基、芳基以及有机官能团氯硅烷的合成,是有机硅烷偶联剂中最基本的单体,也是生产半导体硅、单晶硅的原料,随着有机硅烷偶联剂工业的发展而出现供不应求,生产量越来越大。一、三氯氢硅的理化特性及生产原理三氯氢硅是采用硅粉与氯化氢气体在流化床反应器中生成。它是无色液体,易挥发,易潮解,在空气中发生反应产生白烟,遇水分解,溶于苯、醚等有机溶剂。属一级遇湿易燃物品,易燃易爆,遇水反应产生氯化氢气体;它与氧化剂发生强烈反应,遇明火、高热时发生燃烧或爆炸。其物理特性如下:比重:1.35;相对气体密度:4.7;沸点:31.8℃;饱和蒸气压(14.5℃)53.33Kpa;闪点:-13.9℃(开杯);自燃温度:175℃;爆炸下限:6.9%;爆炸上限:70%;溶解性:溶于苯、醚等有机溶剂;具有急性毒性。二、三氯氢硅生产的火灾危险性分析三氯氢硅生产的原料都是不燃物质,但是其生产过程中的产物大都是易燃易爆物质,如氢气、三氯氢硅、氯气等。1、电解食盐水的火灾危险性(1)电解时有强大的

三氯氢硅合成

目前,国内外应用最广,最主要的制备超纯硅的方法,是以三氯氢硅为原料,(即改良西门子法)。故三氯氢硅的合成在半导体材料硅的生产中引起了广泛注意,并取得不少成果。 三氯氢硅和四氯化硅的结构、化学性质相似。因此,它们的制备方法基本相似,只是前者用氯化氢气体代替氯气进行反应,在方法、设备、工艺操作等方面有共同之处,本章只介绍其特性。 三氯氢硅的制备方法很多,如: 1)用卤硅烷和过量的氢或氯化氢的混合物通过Al,Zn,或Mg的表面。 2)以氯化铝作催化剂,用氯化氢气体氯化SiH4。 3)在高温下用氢气部分还原SiCl4。 4)用干燥氯化氢气体氯化粗硅或硅合金。 前三种方法产率低、过程繁、产品沾污机会多、实用价值很小。因此,工厂和试验室多采用第4种方法制备三氯氢硅。 第一节三氯氢硅的性质 三氯氢硅(SiHCl3)又称三氯硅烷或硅氯仿。三氯氢硅是无色透明、在空气中强烈发烟的液体。极易挥发、易水解、易燃易爆、易溶于有机溶剂。有强腐蚀性、有毒,对人体呼吸系统有强烈的刺激作用。其物理化学性质见表 表3-1 三氯氢硅的物理化学性质 名称数值名称数值 分子量 135.45 氢含量% 0.74 液体密度(31.5℃) 1.318 闪点℃ 28 蒸气密度(31.5℃) 0.0055 在空气中的自燃点℃ 175 溶点℃ -128 偶极距德拜 0.85 沸点℃ 31.5 蒸发潜热kcal/mol 6.36 氯含量% 78.53 比热 kcal/kg.℃ 0.23(l) 0.132(g) 三氯氢硅在空气中的爆炸极 限% 1.2~90.5 附:四氯化硅的性质 四氯化硅(SiCl4)是无色透明、无极性、易挥发、有强烈刺激性的液体。水解后生成二氧化硅和氯化氢。可与苯、乙醚、氯仿及挥发油混合;与醇反应生成硅酸酯。因其易水解,并生成氯化氢,故它具有强腐蚀性。 表3-2 四氯化硅的性质 名称数值名称数值 分子量 169.2 蒸发热 kcal/mol 6.96 液体密度(在25℃)t/m³ 1.49 生成热 kcal/mol -153.0 蒸气密度kg/m³ 6.3 标准生成自由能kcal/mol 136.9 熔点℃ -70 临界温度℃ 206 沸点℃ 57.6 第二节三氯氢硅合成反应原理 三氯氢硅合成反应是一个放热反应,所以应将反应热及时导出,保持炉内反应温度相对稳定,以提高产品质量和收率。 化学反应(主反应):

三氯氢硅

一、三氯氢硅的市场发展前景 三氯氢硅是合成有机硅的重要中间体,也是制备多晶硅的主要原料,目前国内市场上三氯氢硅供不应求,缺口较大。有机硅产品是一类性能优异而独特的新型化工材料,应用范围遍及国防、国民经济乃至人们日常生活的各个领域,已发展成为技术密集、资金密集、附加值高、在国民经济中占有一定地位的新型工业体系,并使相关行业获得了巨大的经济效益。硅烷偶联剂的可水解基团可使非交联树脂实现交联固化或改性,使近年来硅烷偶联剂在玻璃纤维、铸造、高级油漆、轮胎橡胶等行业得到广泛应用,产品出口量和国内需求量较大。 三氯氢硅是生产有机硅烷偶联剂的重要原料,将三氯氢硅与氯乙烯或氯丙烯进行合成反应,再经精馏提纯,得到乙烯基或丙烯基系列硅烷偶联剂产品。硅烷偶联剂几乎可与任何一种材料交联,包括热固性材料、热塑性材料、密封剂、橡胶、亲水性聚合物以及无机材料等,在太阳能电池、玻璃纤维、增强树脂、精密陶瓷纤维和光纤保护膜等方面扮演着重要角色,并在这些行业中发挥着不可或缺的重要作用。四氯化硅是三氯氢硅生产中极为重要的原辅料,同样具有广阔的市场需求空间。 二、产业政策的符合性及行业准入条件分析 我国有机硅工业是在近几年才有所发展,有机硅产品生产厂家如雨后春笋般出现,遍布全国.国内对硅烷偶联剂产品的需求增长很快,每年均有新建企业投产,老厂也纷纷扩大规模,有机硅产业的迅猛发

展,对三氯氢硅的需求量激增,。而受技术条件等的限制,目前国内仅有几家三氯氢硅生产企业,产量不能满足市场需求,产品呈现供不应求的局面。由此可见,三氯氢硅是氯碱企业可规划的一个产值高,有发展前途的产品. 三、工艺技术方案 三氯氢硅(SiHCl3)又名硅氯仿、硅仿、三氯硅烷; 1、工艺制法 (1)在高温下Si和HCl反应。 (2)用氢还原四氯化硅(采用含铝化合物的催化剂)。 2、三氯氢硅性质 1)理化性质 分子量:135.43 熔点(101.325kPa):-134℃;沸点(101.325kPa):31.8℃;液体密度(0℃):1350kg/m3;相对密度(气体,空气=1): 4.7;蒸气压(-16.4℃):13.3kPa;(14.5℃):53.3kPa;燃点:-27.8℃;自燃点:104.4℃;闪点:-14℃;爆炸极限:6.9~70%;毒性级别:3;易燃性级别:4;易爆性级别: 2)化学性质 三氯硅烷在常温常压下为具有刺激性恶臭易流动易挥发的无 色透明液体。在空气中极易燃烧,在-18℃以下也有着火的危险,遇明火则强烈燃烧,燃烧时发出红色火焰和白色烟,生成SiO2、HCl和Cl2:

三氯氢硅生产性质

三氯氢硅生产性质 Company Document number : WTUT-WT88Y-W8BBGB-BWYTT-19998 —?氯气 1氯气的理化性质 (1)物理性质:氯气在常温常压下为黄绿色有刺激性气味的有毒气体。密度为,是 空气的倍。易溶于碱溶液、二硫化碳和四氯化碳,难溶于饱和食盐水。在常温

下,氯气被加压到~或在常压下冷却到-3H4crc时就能液化为黄绿色透明液体。 液氯的密度为,熔点-i02r.沸点 (2)化学性质:氯气的化学性质很活泼,是一种活泼的非金属。 2液氯的用途 用于农药、塑料、增塑剂、合成橡胶、合成纤维、消毒漂白、炼镁和稀有金属等行业。 3氯气泄漏爆炸的危害 液氯为第二类危险化学品,人体吸入浓度为m3的氯气时,就会死亡。氯气爆炸的危害包括两部分:爆炸本身造成的危害及泄漏的氯气造成的二次危害。 4化学性爆炸 氯气中含有XC13. H2,在一定浓度、条件下可引起爆炸;氯气与有机物、氨及金属粉末反应易引起爆炸。 0腐蚀 氯气微溶于水,在温度°C时溶解度为理,部分氯与水反应生成HC1和 HC10,故湿氯具有强氧化性。当氯中含水量小于%时,碳钢的腐蚀速率小于6 亦即干燥氯对碳钢基本上不腐蚀。当氯中含水量大于%时,不仅会腐蚀碳钢,而且还会腐蚀不锈钢,氯会破坏不锈钢表面的钝化膜而产生孔蚀或应力腐蚀破裂。在一定范围内,随着氯气含水量增大,对碳钢、不锈钢的腐蚀速率也随着增大。 液氯产品含有~%的水量,会对金属贮槽产生腐蚀,长期使用能引起局部器壁变薄、强度下降,可导致贮槽开裂发生液氯蒸气爆炸。 —■鑫气 1、氢是无色、无嗅的可燃气体。它是已知最轻的气体。其沸点为一c。。 2、化学性质 在环境温度下,虽然氢相对而言不是十分活泼,但在高温下,它可以和几乎所有别的元素发生反应。通常?氢和氧在高温下的反应异常激烈升高温度,氢可以还原金属氧化物。 三?氯化氢 1氯化氢的理化性质 (1)物理性质:氯化氢在常温常压下为具有刺激性臭味的无色有毒气体。盐酸为氯化氢的水溶液,是无色或微黄色的液体。空气中不燃烧,热稳定,到约 1500C。才分解。与氟激烈反应,与许多金属反应生成氯化物和氢,与氨激烈反应生成氯化钱白烟,与乙烯混合形成爆炸性气体。氯化氢与水不反应但易溶于水,空气中常以盐酸烟雾的形式存在。浓盐酸因氯化氢蒸气而在空气中发烟。易溶于乙醇和醯,也能

相关主题
文本预览
相关文档 最新文档