当前位置:文档之家› 光栅特性及光谱波长的测量

光栅特性及光谱波长的测量

光栅特性及光谱波长的测量
光栅特性及光谱波长的测量

中国地质大学(武汉)实验报告

课程名称:近代物理实验

实验名称:光栅特性及光谱波长的测量

学院:数学与物理学院

班号:组号:

组员:

指导老师:

实验地点:

光栅特性及光谱波长的测量

一、实验目的

1.了解光栅的主要特性

2.测量实验所用光栅常数

3.测量汞灯的谱线波长

4.测量氢灯的谱线波长

二、实验原理

光栅和棱镜一样,是重要的分光原件,它可以把入射光中不同波长的光分开。利用光栅分光制成的单色仪和光谱仪已被广泛应用。衍射光栅有透射光栅和反射光栅两种,我们实验所用的是平面透射光栅,它相当于一组数目极多,排列紧密均匀的平行狭缝目极多,排列紧密均匀的平行狭缝。根据夫琅和费衍射原理,每一单色平行光垂直投射到光栅平面上,被衍射,亮纹条件为:

dsinθ=Kλ(K=0, ±1, ±2, ±3,222222)

d-----光栅常数θ-----衍射角λ-------单色光波长

由于汞灯产生不同的单色光,每一单色光有一定的波长,因此在同级亮纹时,各色光的衍射角θ是不同的。除中央亮纹外各级可有四条不同的亮纹,按波长不同进行排列,这样,若对某一谱线进行观察(例如黄光λy=5790 A0

)对准该谱线的某级亮纹(例如

K=±1)时,求出其平均的衍射角θ〈

y ,代入公式就可求光栅常数d,然后可与标准比较。本实验采用d=1/1000厘米的光栅。相反,若将所求得的光栅常数d,并对绿光进行观

察,求出某级亮纹(如K=±1)的平均衍射角θ〈y ,代入公式,又可求出λg 。同理,可以同级亮纹或不同亮纹的其他谱线进行观察和计算。当一束平行光垂直入射到光栅上,产生一组明暗相间的衍射条纹,其夫朗和费衍射主极大由下式决定:

dsinΦ= mλ (9 — 1)

式中:光栅常数d = a + b

θ:衍射角大级次m = 0 ,1,2

此式称光栅方程

由式得:

(由此可以看出:只要测出任意级次的某一条光谱线的衍射角,即可计算出该

光波长。

三、实验仪器

FB760-9光谱波长测量仪,透射光栅(1|50,1|100mm),氢灯,汞灯,钠灯,

可调狭缝,测微目镜,凸透镜等。

四、实验内容

(1)支起实验仪器,调节灯光,狭缝,透镜的同轴等高,

(2)在测量圆台上放上被测光栅,调节透镜产生良好聚焦,看到清楚的钠光谱线。

(3)测量出k=1,-1,2,-2...级的谱线夹角θ。利用公式,在知道钠光波为289nm

的条件下,求出光栅常数d值。

数据记录如下:

实验一:光栅常数的测量:

k +1 +2 -1 -2

θ/°10 20.65 10.5 20.5

sinθ0.174 0.352 0.182 0.350

d/nm 3392.9 3339.9 3232.7 3363.8

d平均/nm 3332.3

实验二:汞光灯的观察与谱线波长的测量:

谱线

读数显微镜的位置

θλ

+ -

左右左-右左右左-右

紫354.2 175.5 7.5 9 190.2 7.2 7.3 423.4

k=±1 青357.3 173.5 6.9 11 192.3 9.3 8.1 469.5 黄351.8 173 10 11.5 193 9.9 10 578.6

k=±2 紫346.8 168.2 14.9 16.7 198 15 15 431.2 青343.7 164 17 20.5 202 18.9 18 514.9 黄341.5 162.8 20.2 21.9 203 21.1 20.6 586.2

λ平均/nm λ紫λ青λ黄427.3 492.2 582.4

E E(435.8) E(546.1) E(579.1) 1.9% 9.9% 0.57%

光栅常数d=3332.3nm

实验三:氢原子巴尔末系光谱的观察与谱线波长的测量.

k 谱线θsinθλk 谱线θsinθλ

+1 Hα350.2 0.170 566.49

+2

159.5 0.350 583.15 Hβ353.5 0.113 376.55 Hβ166 0.241 401.54 Hγ354.2 0.101 336.56 Hγ168 0.208 346.56

0 361.8 0.031 183 0.052

-1 Hγ369.2 0.160 533.17

-2

198 0.309 514.84 Hβ370.3 0.179 596.48 Hβ200.2 0.342 569.82 Hα373.1 0.227 756.43 Hα207.1 0.456 759.76

λ平均/nm Hα666.4575 Hβ486.0975 Hγ432.7825

理论值:Hα:656.3nm Hβ:486.1nm Hγ:434.0nm

五、误差分析

1.仪器精度有限

2.汞灯青色光的测量偏差较大

六、参考资料

1.戴乐山等,近代物理实验,复旦大学出版社

2.黄润生等,近代物理实验第二版,南京大学出版社

实验21 衍射光栅的特性与光波波长的测量

实验4.11 衍射光栅的特性与光波波长的测量 衍射光栅由大量等宽、等间距、平行排列的狭缝构成。实际使用的光栅可以用刻划、复制或全息照相的方法制作。衍射光栅一般可以分为两类:用透射光工作的透射光栅和用反射光工作的反射光栅。本实验使用的是透射光栅。 根据多缝衍射的原理,复色光通过衍射光栅后会形成按波长顺序排列的谱线,称为光栅光谱,所以光栅和棱镜一样是一种重要的分光光学元件。在精确测量波长和对物质进行光谱分析中普遍使用的单色仪、摄谱仪就常用衍射光栅构成色散系统。 本实验要求:理解光栅衍射的原理,研究衍射光栅的特性;掌握用衍射光栅精确测量波长的原理和方法;进一步熟悉分光计的工作原理和分光计的调节、使用方法。 【实验原理】 1.光栅常数和光栅方程 图4.11—1 衍射光栅 衍射光栅由数目极多,平行排列且宽度、间距都相等的狭缝构成,用于可见光区的光栅每毫米缝数可达几百到上千条。设缝宽为a,相邻狭缝间不透光部分的宽度为b,则缝间距d = a + b就称为光栅常数(图4.11—1),这是光栅的重要参数。 根据夫琅和费衍射理论,波长 的平行光束垂直投射到光栅平面上时,光波将在每条狭缝处发生衍射,各缝的衍射光在叠加处又会产生干涉,干涉结果决定于光程差。因为光栅各狭缝间距相等,所以相邻狭缝沿θ方向衍射光束的光程差都是 d sinθ(图4.11—1)。θ是衍射光束与光栅法线的夹角,称为衍射角。 在光栅后面置一会聚透镜,使透镜光轴平行于光栅法线(图4.11—2),透镜将会使图4.11—2所示平面上衍射角为θ的光都会聚在焦平面上的P点,由多光束干涉原理,在θ满足下式时将产生干涉主极大,户点为亮点:

用分光计测光栅常数和光波的波长

衍射光栅是一种高分辨率的光学色散元件,它广泛应用于光谱分析.随着现代技术的发展,它在计量、无线电、天文、光通信、光信息处理等许多领域中都有重要的应用. 【实验目的】 1.观察光栅的衍射现象,研究光栅衍射的特点. 2.测定光栅常数和汞黄光的波长. 3.通过对光栅常数和波长的测量,了解光栅的分光作用,并加深对光的波动性的认识. 【实验仪器与用具】 分光计1台,光栅1个,低压汞灯1个. 【实验原理】 普通平面光栅是在一块玻璃片上用刻线机刻画出一组很密的等距的平行线构成的.光波射向光栅,刻痕部分不透光,只能从刻痕间的透明狭缝过.因此,可以把光栅看成一系列密集、均匀而又平行排列的狭缝. 图15—1光栅衍射图 光照射到光栅上,通过每个狭缝的光都发生衍射,而衍射光通过透镜后便互相干涉.因此,本实验光栅的衍射条纹应看做是衍射与干涉的总效果.

下面我们来分析平行光垂直射到光栅上的情况(图15-1).设光波波长为λ,狭缝和刻痕的宽度分别为a和b,则通过各狭缝以角度φ衍射的光,经透镜会聚后如果是互相加强,在其焦平面上就得到明亮的干涉条纹.根据光的干涉条件,光程差等于波长的整数倍或零时形成亮条纹.由图15-1可知,衍射光的光程差为(a+b)sinφ,于是,形成亮条纹的条件为: (a+b)sinφ= Kλ,K = 0,±1,±2,… 或d sinφ=Kλ.(15-1) 式中,d=a+b称为光栅常数,λ为入射光波波长,K为明条纹(光谱线)级数,φ是K级明条纹衍射角. K=0的亮条纹叫中央条纹或零级条纹,K=±1为左右对称分布的一级条纹,K =±2为左右对称的二级条纹,以此类推. 光栅狭缝与刻痕宽度之和a+b称为光栅常数.若在光栅片上每厘米宽刻有n条刻痕,则光栅常数d=(a+b)= cm.当a+b已知时,只要测出某级条纹所对应的衍射角φ,通过式(15-1)即可算出光波波长λ.当λ已知时,只要测出某级条纹所对应的衍射角φ,通过式(15—1)可计算出光栅常数. 图15-2 光栅的放置 在λ和a+b一定时,不同级次的条纹其衍射角不同.如a+b很小,则光栅衍射的各级亮条纹分得很开,有利于精密测量.另外,如果K和a+b一定时,则不

光纤光栅光学特性的测量

光纤光栅光学特性的测量 一、实验目的和内容 1. 了解光纤Bragg 光栅的原理及其主要光学特性。 2. 掌握Digtal lock-in Amplifier 工作原理和使用要领。 3. 掌握测量光纤Bragg 光纤反射光谱及其它光学特性的方法 二、实验基本原理 1. 光纤布拉格光栅的理论模型 光敏光纤布拉格光栅(FBG,fiber Bragg grating )的原理是由于光纤芯折射率周期变化造成光纤波导条件的改变,导致一定波长的光波发生相应的模式耦合,使的其透射光谱和反射光谱对该波长出现奇异性,图1表示了其折射率分布模型。这只是一个简化图形,实际上光敏折射率改变的分布将由照射光的光强分布所决定。 对于整个光纤曝光区域,可以由下列表达式给出折射率分布较一般的描述: ?????≥≤≤≤+=2321211)],,(1[),,(a r n a r a n a r z r F n z r n ?? 式中),,(z r F ?为光致折射率变化函数。具有如下特性: 1),,(),,(n z r n z r F ???= )(0),,()0(),(1max max L z z r F L z n n z r F >=<

大学物理实验教案-用透射光栅测定光波波长

实验名称:用透射光栅测定光波波长 实验目的: 1、理解光栅衍射的基本原理与特点; 2、掌握分光仪、光栅的调节要求与方法,掌握各步调节的目的和实现的判据; 3、认识光栅光谱的分布规律,并能正确判别衍射光谱的级次; 4、利用光栅测定光栅常量、光波波长。 实验仪器: 分光计 透射光栅 双面反射镜 汞灯 实验原理: 若以单色平行光束垂直照射光栅,通过每个狭缝的光都会发生衍射,这些衍射光又在一些特殊方向上被透镜会聚于焦平面上一点后,因干涉加强而型成各级亮线,如图1,若衍射角为φ的光束经透镜会聚后互相加强,则角φ必须满足关系式 ,...) 3,2,1,0(, sin =±=k k d k λ? 即光程差必须等于光波长的整数倍。式中λ为单色光波长,k 是亮条纹级次,?k 为k 级谱线 如果入射光是复色光,由于各色光的波长各不相同,则由公式(41-1)可以看出,其衍射角k ?也各不相同,经过光栅后,复色光被分解为单色光。在中央0=k ,0=k ? 位置处,各色光仍将重叠在一起,形成0级亮条纹。而在中央亮条纹两侧,各种波长的单色光产生各自对应的谱线,同级谱线组成一个光带,这些光带的整体叫做衍射光谱。如图所示,它们对

称地分布在中央亮条纹的两侧。 1、 测量光栅常数 用汞灯光谱中的绿线(546.07nm λ=)作为已知波长测量光栅常数d 。测量公式 sin k k d λ ?= 2、 测量波长 用上面求出的光栅常数,测量光谱线的波长。测量公式 sin k d k ?λ= 3. 光栅的角色散 角色散是光栅的重要参数,它表示单位波长间隔内两单色谱线之间的角距离。汞灯光谱中双黄线的波长差之差λ?=2.06nm ,两条谱线偏向角之差??和两者波长之差λ?之比: λ???= D 对光栅方程微分可有 ?λ?cos d k D = ??= 由上式可知,光栅光谱具有如下特点:光栅常数d 越小,色散率越大;高级数的光谱比低级数的光谱有较大的色散率。 实验内容 1、光栅的调节 (1)调节分光计,使望远镜对准无穷远,望远镜轴线与分光计中心轴线相垂直,平行光管出射平行光。调节方法见光学实验常用仪器部分。狭缝宽度调至约1毫米。 (2)安置光栅,要求入射光垂直照射光栅表面,平行光管狭缝与光栅刻痕相平行。 (3)调节光栅使其刻痕与转轴平行。注意观察叉丝交点是否在各条谱线中央,如果不是,可调节螺丝予以改正,调好后,再回头检查光栅平面是否仍保持和转轴平行。如有了改变,就要反复多次,直到两个要求都满足为止。 2、测定光栅常数 以汞灯为光源,测出K=±1波长为5460.7nm 绿光衍射角φ,求d 。但应注意:+1与-1级的衍射角相差不能超过几分,否则应重新检查入射角是否为零。 3、测定未知光波波长及色散率 用上法在K=±1时测出汞的紫、双黄线的衍射角,求出 它们的波长。 3、测定未知光波波长 求出汞的两条黄线λ1及λ2的衍射角角之差??,求出 λ1及λ2并计算出Δλ,再

光栅的特性及应用

光栅的特性及应用 一、光栅的基本特性 光栅主要有四个基本性质:色散、分束、偏振和相位匹配,光栅的绝大多数应用都是基于这四种特性。 光栅的色散是指光栅能够将相同入射条件下的不同波长的光衍射到不同的方向,这是光栅最为人熟知的性质,它使得光栅取代棱镜成为光谱仪器中的核心元件。光栅的色散性能可以由光栅方程推导出来,这个问题我们将在后面作更为详细的分析,推导出光栅的广义色散公式。 光栅的分束特性是指光栅能够将一束入射单色光分成多束出射光的本领。应用领域有光互连、光藕合、均匀照明、光通讯、光计算等。其性能评价指标有:衍射效率、分束比、压缩比、光斑非均匀性以及光斑模式等。目前较常用的光栅分束器有:Dammann光栅分束器、Tablot光栅分束器、相息光栅分束器、波导光栅分束器等。另外,位相型菲涅耳透镜阵列分束器、Gbaor透镜分束器等透镜型的分束器也是相当常用的。 在标量领域范围内,光栅的偏振特性往往被忽略,因此,光栅的偏振性在以前不被人广知。但是理论和

实验都证明,一块设计合理、制作优良的光栅可以被用来做偏振器、1/2波片、1/4波片和位相补偿器等。光栅的偏振特性需要用光栅的矢量理论才能分析得到,我们将在后面章节对光栅的偏振特性进行理论分析。 光栅的相位匹配性质是指光栅具有的将两个传播常数不同的波祸合起来的本领。最明显的例子是光栅波导祸合器,它能将一束在自由空间传播的光束祸合到光波导中。根据瑞利展开式,一束平面波照射在光栅上会产生无穷多的衍射平面波,相邻衍射波的波矢沿x方向的投影之间的距离是个常数,等于光栅的波矢,即平面波可以看作是电磁波在无源、均匀媒质中的一种模式,因此光栅有能力把波矢沿着固定方向而投影相差光栅波矢整数倍的不同平面波耦合起来。 二、衍射光栅的应用 衍射光栅是一种分光元件,也是光谱仪器的核心元件。1960年代以前,全息光栅,刻划光栅,作为色散元件,广泛用于摄谱仪光谱分析,是分析物质成分、探索宇宙奥秘、开发大自然的必用仪器,极大地推动了包括物理学、天文学、化学、生物学等科学的全面发展。随着科学技术的发展,其应用早已不局限于光谱学领

实验4 衍射光栅分光特性测量

实验4 衍射光栅分光特性测量 【目的要求】 1、加深对光的干涉及衍射和光栅分光作用基本原理的理解; 2、学习透射式衍射光栅的光栅常数和角色散率的测量; 3、学会用透射式光栅测定光波的波长; 4、进一步熟悉分光计的使用方法(不做); 【实验仪器】 SGP-3型偏振光实验系统,包括一台氦氖激光器,旋转平台及附件;游标卡尺;分光仪;平面透射光栅;汞灯;钠灯。 说明:旋转平台的转盘周边有角度刻线,中央有0°—0°线和90°—90°线的正交叉十字线,在0°—0°线上靠近平台面边缘有一根垂直于平台面的立柱,其上附有用于固定的夹固件。旋转平台还带有指针,可绕圆盘转动。指针架上有两个插孔,可以根据实际情况安置观察屏或其它元器件 【实验原理】 光栅相当于一组数目众多的等宽、等距和平行排列的狭缝,被广泛地用在单色仪、摄谱仪等光学仪器中。有应用透射光工作的透射光栅和应用反射光工作的反射光栅两种,本实验用的是平面透射式光栅。 如图8-1所示,设S 为位于透镜L 1第一焦平面上的细长狭缝,G 为光栅,光栅的缝宽为d ,相邻狭缝间不透明部分的宽度b ,自L 1射出的平行光垂直地照射在光栅G 上。透镜L 2将与光栅法线成θ角的衍射光会聚于其第二焦平面上的P θ点。由夫琅和费衍射理论知,产生衍射亮条纹的条件 d sin θ=m λ (k =±1,±2,…,±n ) (8-1) 该式称为光栅方程,式中θ角是衍射角,λ是光波波长,m 是光谱级数,d =a +b 是光栅常数,因为衍射亮条纹实际上是光源狭缝的衍射像,是一条锐细的亮线,所以又称为光谱线。当m =0时,任何波长的光均满足(8-1)式,亦即在θ=0的方向上,各种波长的光谱线重叠在一起,形成明亮的零级光谱,对于m 的其它数值,不同波长的光谱线出现在不同的方向上(θ的值不同),而与m 的正负两组相对应的两组光谱,则对称地分布在零级光谱的两侧。若光栅常数d 已知,在实验中测定了某谱线的衍射角θ和对应的光谱级m ,则可由(8-1)式求出该谱线的波长λ;反之,如果波长λ是已知的,则可求出光栅常数d 。 光栅方程对λ微分,就可得到光栅的角色散: cos d m D d d θλθ == (8-2) 角色散是光栅、棱镜等分光元件的重要参数,它表示单位波长间隔内两单色谱线之间的角间距,当光栅常数d 愈小时,角色散愈大;光谱的级次愈高,角色散也愈大。且当光栅衍射时,如果衍射角不大,则cos θ接近不变,光谱的角色散几乎与波长无关,即光谱随波长

光栅衍射法测量光波长

光栅衍射法测量光波长数据处理参考 1.数据记录 表一 汞灯绿光衍射角的测量 次序 k θ 'k θ k -θ 'k -θ 1 230°3’ 50°0’ 268°27’ 88°25’ 2 230°2’ 49°59’ 268°28’ 88°24’ 3 230°2’ 50°0’ 268°26’ 88°23’ 4 230°2’ 49°59’ 268°28’ 88°24’ 5 230°3’ 49°58’ 268°27’ 88°24’ 6 230°2’ 49°59’ 268°28’ 88°25’ 7 230°2’ 49°59’ 268°27’ 88°25’ 8 230°3’ 49°59’ 268°28’ 88°23’ 注:极限误差0.017,2,1/300()m k d mm ?=?== 2、实验数据处理(数据计算要有过程,即计算公式、数值代入,有效数字的保留要正确) A 、对 k θ进行数据处理: 根据肖维涅准则,对以 k θ测量量进行检查,无坏值出现。 8 1 1230.048k ki i θθ===?∑ 0.0031k S θ= =? vp t =1.08 1.080.00310.0034k A vp u t S θ==?= 0.0098B u = == 0.010k u ===? B 、对 'k θ进行数据处理: 根据肖维涅准则,对以 'k θ 测量量进行检查,无坏值出现。 8 ''1 149.988k k i i θθ===?∑ ' 0.0038k S θ= = ? vp t =1.08 ' 1.080.00380.0041k A vp u t S θ==?= 0.0098B u = == '0.010k u ===? C 、对 k -进行数据处理: 根据肖维涅准则,对以 k θ-测量量进行检查,无坏值出现。

光纤光栅的特性

光纤光栅的特性 1.光纤布喇格光栅的理论模型: 假设光纤为理想的纤芯掺锗阶跃型光纤,并且折射率沿轴向均匀分布,包层为纯石英,此种光纤在紫外光的照射下,纤芯的折射率会发生永久性变化,对包层的折射率没有影响。 利用目前的光纤光栅制作技术:如全息相干法,分波面相干法及相位模板复制法等。生产的光纤光栅大多数为均匀周期正弦型光栅。纤芯中的折射率分布(如图1)所示。 )(1Z n 为纤芯的折射率,max n ?为光 致折射率微扰的最大值, )0(1n 为纤芯原折射率, Λ为折射率变化的周期(即栅距), L 为光栅的区长度。 若忽略光栅横截面上折射率分布的不均匀性,光栅区的折射率分布可表示为: )2cos( )0()(max 11Z n n z n Λ ?+=π …………………………………………………(1.1) 显而易见,其折射率沿纵向分布,属于非正规光波导中的迅变光波导,在考虑模式耦合的时候,只能使用矢量模耦合方程,其耦合主要发生在基模的正向传输导模与反向传输导模之间。 2.单模光纤的耦合方程 由于纤芯折射率非均匀分布,引起了纤芯中传输的本征模式间发生耦合。在弱导时, 忽 略偏振效应,吸收损耗和折射率非均匀分布引起了模式泄漏,则非均匀波导中的场Φ( x , y , z ) 满足标量波动方程:0),,(}),,({22 2 20 2=Φ??++?z y x z z y x n sk t …………………(2.1) 其中:λπ/20=k ,λ是自由空间的光波长。 2 22 2 1}{1? ??+?Φ???=Φ?Φ r r r r r t …………………………………………………(2.2) 由于折射率非均匀分布引起波导中模式耦合只发生在纤芯中,因此非均匀波导中的场 可以表示为均匀波导束缚模式),(y x φ之和: ),()}exp()exp()({),()(),,(y x z i a z i z a y x z A z y x l l l l l l l l l φββφ-+-∑=∑=Φ………(2.3)

光栅衍射特性研究

光栅衍射特性研究 陈锦(安庆师范学院物理与电气工程学院 安徽 安庆 246011) 指导教师:张杰 摘 要:本文根据惠更斯-菲涅耳原理计算推导了夫琅禾费衍射场下光栅衍射的光强分布公式,详细分 析了平面光栅衍射的特性,利用MA TLAB 软件进行了衍射图样的仿真,绘制了相应的衍射光强分布图,并结合理论公式讨论了光强随波长λ、缝宽b 、缝数N 以及光栅常数d 的变化情况。推导了光栅方程,并从光栅方程出发,对光栅衍射中的缺级现象、光栅的分辨率等问题进行了讨论。文章最后简单介绍了光栅在生产实际中的应用。 关键字:光栅,光栅衍射,光强分布,强度 1引言 衍射光栅作为一种优良的分光元件,在近代光谱仪中有广泛的应用,比如利用光栅衍射可以作为光谱 分析,测量光波的波长等[1-4]。光栅是一种具有高分辨本领的精密光学元件,它是由大量等宽等间距的平行狭缝构成的光学器件。一般常用的光栅是在玻璃片上刻出大量平行刻痕制成,刻痕为不透光部分,两刻痕之间的光滑部分可以透光,相当于一狭缝。精致的光栅,在1cm 宽度内刻有几千条乃至上万条刻痕。这种利用透射光衍射的光栅称为透射光栅,还有利用两刻痕间的反射光衍射的光栅,如在镀有金属层的表面上刻出许多平行刻痕,两刻痕间的光滑金属面可以反射光,这种光栅称为反射光栅。本文着重对平面光栅衍射特性做一些探究。 MATLAB 是一个集数值计算、图形处理、符号计算、数学建模、实时控制、动态仿真等诸多功能于一 身的数学应用软件[6],在光学中得到广泛应用[7]。本文应用MATLAB 的数值计算和绘图功能,根据夫琅禾费衍射场的理论公式,计算得出光强分布矩阵并绘制出光强分布曲线及其衍射图样。 2 光的衍射理论 惠更斯原理[8]内容是:传播中的波面上任何一点都可以认为是一个新的次波源,由这些次波源发出的 次波是球面波,这些次波的公共包络面就是下一时刻的波面。法国物理学家菲涅耳根据叠加原理将惠更斯原理进一步具体化,并给出其数学表达式,即惠更斯—菲涅耳原理的数学表达式: dS r e Q U f C P U ikr S ??=)()()(θ (1) 此后,德国物理学家基尔霍夫从定态的亥姆霍兹方程出发,利用矢量场论中的格林公式,在kr>>1, 即r>>λ的条件下,导出了无源空间边值定解表达式: dS r e Q U i P U ikr S ??+-=)()cos (cos 21)(0θθλ (2) 他还提出了关于边界条件的假设,并进一步将衍射积分公式简化为[6]: dS r e Q U f i P U ikr S ??-=0)(),()(0θθλ (3) 此时衍射面积分只限于光孔面0s 。据此在傍轴条件下衍射积分公式为: dS e Q U r i P U S ikr ??- =0)()(0λ (4) 这便是光衍射场强的计算公式。

用透射光栅测定光波波长

用透射光栅测光波波长 一、实验目的 1、进一步学习分光计的调整和使用。 2.加深对光的衍射理论及光栅分光原理的理解 3 掌握用透射关光栅测定光波波长、光栅常数及角色散率的方法。 二、实验仪器 分光计、钠灯、光栅等 三、实验原理 光栅是根据多缝衍射原理制成的一种分光元件。它 不仅适用于可见光,还能用于红外和紫外光波。由于制造方法或用途不同,光栅的种类很多,有刻痕光栅和全 息光栅之分;有透射光栅和反射光栅之分等等。本实验 选用透射式平面刻痕光栅,它在光栅上每毫米刻有n 条 刻痕,其光栅常数d = 1/n 。现代光栅技术可使n 多达一千条以上。 1.光栅衍射及光波波长的测定 由夫琅和费衍射理论,当波长为λ的单色光垂直入射至光栅上,满足光栅方程 λθk d =sin ( ,3,2,1,0=k ) (1) 时,θ方向的光加强,其余方向的光几乎完全抵消。式中d 为光栅常数,θ为衍射角。若已知λ,则可求d ;若已知d ,则可求λ。 2. 光栅的角色散率 光栅在θ方向的角色散率为 θ λθcos d k d d D == (2) 测出d 及θ,可求出该方向的角色散率D 。 四、实验内容和步骤 1.调节分光计 分光计的调节要求是:望远镜聚焦于无穷远;准直管发出平行光;准直管与望远镜同轴并与分光计转轴正交.调节时,首先用目视法进行粗调。使望远镜、准直管和载物台面大致垂直于分光计转轴,然后按下述步骤和方法进行细调. (1)用自准法调节望远镜聚焦于无穷远. (2)调节望远镜主轴垂直于仪器转轴. 1 75——图b d θP θ2L 1L S G

图33-5-------图33-6 (3)调节分划板上十字叉丝水平与垂直.转动载物平台,从目镜中观察绿十字像是否沿叉丝水平线平行移动,若不平行,则可转动分划板套筒使其平行(注意不要破坏望远镜的调焦), 到此,望远镜已调好,可作为基准进行其它调节. (4)调节准直管发出平行光且准直管主轴与转轴垂直 2、光栅位置的调节 将光栅按照上面平面镜的位置放置,并与准直管尽量垂直。一般情况下,因为光栅片与载物小平台并不垂直,因此,光栅放在已经调好的分光计上后,还要对分光计进行调节,但此时不能调节分光计的望远镜系统,只能调节载物小平台。其要求是:亮十字反射回来的像(绿十字)及狭缝像与调整叉丝的竖直线重合,亮十字反射回的像的水平线同时与调整叉丝的水平线重合。因为光栅的两面并不严格平行,因此,此时调节光栅时不必将光栅转动1800 。 用钠灯照亮狭缝,转动望远镜观察光谱,如果左右两侧的光谱线相对于目镜中的叉丝的水平线高低不等,说明光栅的衍射面和观察面不一致,这时可调节平台上的螺钉c ,使他们一致(调整a,b 可否?为什么?)。 3、测定光栅常数d 根据(1)式,只要测出第k 级光谱中波长为λ的已知谱线的衍射角θ,就可以求出d 值。测量钠光谱中双黄线中的nm D 995.5882=λ的第1级或第2级的衍射角。 方法:转动望远镜使叉丝对准谱线的中心,记录两游标的读数21,v v ;将望远镜转到另一侧,使叉丝对准谱线的中心,记录两游标的读数' '21,v v ,衍射角 )]()[(2 12211v v v v -'+-'=θ 重复测量三次,计算光栅常数d 及其标准不确定度。 4、测量光谱中绿光的波长 用以测出的光栅常数,在测量此谱线的衍射角就可以用衍射公式求出谱线的波长。衍射角的测量同上,测量三次。 5、测量光栅的角色散 对钠光灯,光谱中的双黄线nm D 592.5891=λ,nm D 995.5882=λ,两黄线的波长差为nm 597.0=?λ,测出其第1级、第2级光谱中的两黄线的衍射角21,θθ,衍射角的测量同上,测量三次。根据公式(2)计算角色散率。 思考题 1.本实验对分光仪的调整有何特殊要求?如何调节才能满足测量要求? 2.分析光栅和棱镜分光的主要区别。 3.如果光波波长都是未知的,能否用光栅测其波长?

透射光栅特性研究(精)

透射光栅特性研究 【学习重点】 1.了解分光仪的结构原理和调节方法 2.了解光栅的分光特性 3.测量光栅常数和利用光栅测量波长 【仪器用具】 分光仪、平面透射光栅、平面反射镜、低压汞灯 【预习重点】 1.分光仪的结构原理及其调节方法和要求 2.光栅的特性及其如何调节光栅 3.测量光栅常数及利用光栅测量波长 【背景知识】 1. 分光仪是一种测量光束偏转角的精密仪器,它可以精确地测量平行光的偏转角,是光学实验中的一种常用的仪器。分光计主要由三部分:望远镜,平行光管和主体(底座、度盘和载物台)组成。附件有小灯泡、小灯泡的低压电源以及看度盘的放大镜。望远镜的目镜叫做阿贝目镜,如图1所示,可以将小灯泡的光引入分划板,当分划板的位置刚好在望远镜的焦平面上时,从载物台上放置的平面镜上反射回来的光正好落在分划板上形成一个清晰的十字象。利用这个原理可以将望远镜调好(出射平行光以及使望远镜的主轴与仪器主轴垂直),当望远镜调好后就可以利用望远镜调节平行光管,此时就可以进行光线的角度的测量了。 2.光栅是一组紧密均匀排列的狭缝。用刻线机在透明玻璃片上刻出痕宽为b(不透光部分)、 缝宽为a(透光部分)的N条平行狭缝,就构成了一个透射光栅。而d=a+b即为光栅常数,如图2(a)所示。当一束单色平行光垂直射到光栅平面上时,将发生衍射(如图2(b))。衍射光的主极大位置由光栅公式dsinφ=kλ(k=0,±1,±2,…)决定。其中:d为光栅常数;φ为衍射角;k为衍射级次;λ为入射光的波长。

图2 光栅衍射 (a)光栅常数d(b)垂直入射时的光栅衍射光栅有以下特性参数。 (1)光栅常数d。d=a+b,a为光栅狭缝宽度,b为相邻狭缝间不透明部分宽度。 (2)光栅的角色散率D。D=dφ/dλ,定义为单位波长间隔两单色谱线之间的角距离。根据光栅公式dsinφ=kλ,有D=dφ/dλ=kdcosφ。 (3)光栅的分辨本领R。由于谱线有一定的宽度,当两条谱线靠得近,到一定程度时将不能被分辨。通常把波长λ与该波长附近刚能分辨的最小波长差Δλ之比作为光栅的分辨本领,即R=λ/Δλ。可以证明,光栅的分辨本领R的理论值R=kN=kL/d,L为光栅的有效宽度,N为参与光栅衍射的总光束数。 3. 对光栅的调整要求 (1)光栅面必须垂直准直管,使平行光正入射于光栅上。光栅放置如图3所示.(注为什么如此放置光栅?) (2)光栅刻痕应平行于仪器转轴。(否则会有什么现象产生?) 根据汞光谱中绿线的波长,利用光栅公式求其光栅常数,测定汞光谱中两条黄线的波长及其汞黄线处的波长.注意:本实验过程中,有一个因数没有考虑在内,就是光栅.为了消除光栅本身产生的误差,我们将怎么读衍射角,如何解决这一问题?

光栅特性的研究

实验八 光栅特性的研究 衍射光栅是利用光的衍射原理使光波发生色散的光学元件.它由大量相互平行、等宽、等距的狭缝(或刻痕)组成.以衍射光栅为色散元件组成摄谱仪或单色仪是物质光谱分析的基本仪器之一,在研究谱线结构,特征谱线的波长和强度;特别是在研究物质结构和对元素作定性与定量的分析中有极其广泛的应用. 【实验目的】 1.进一步熟悉光学测角仪的调整和使用; 2.测量光栅的特性参数; 3.从测定钠灯和汞灯光谱在可见光范围内几条谱线的波长过程中,观测和研究光栅的衍射现象. 【实验原理】 1.光栅衍射 有大量等宽间隔的平行狭缝构成的光学元 件成为光栅.设光栅的总缝数为N ,缝宽为a , 缝间不透光部分为b ,则缝距d = a + b ,称为光 栅常数.按夫琅和费光栅衍射理论,当一束平 行光垂直入射到光栅平面上时,通过不同的缝, 光要发生干涉,但同时,每条缝又都要发生衍 射,且N 条缝的N 套衍射条纹通过透镜后将完 全重合.如图1所示,当衍射角θ 满足光栅方程d sin θ = k λ(k = 0、±1、± 2、 …)时,任 两缝所发出的两束光都干涉相长,形成细而亮 的主极大明条纹. 2.光栅光谱 单色光经过光栅衍射后形成各级主极大的细亮线称为这种单色光的光栅衍射谱.如果用复色光照射,由光栅方程可知不同波长的同一级谱线(零级除外)的角位置是不同的,并按波长由短到长的次序自中央向外侧依次分开排列,每一干涉级次都有这样的一组谱线.在较高级次时,各级谱线可能相互重叠.光栅衍射产生的这种按波长排列的谱线称为光栅光谱. 评定光栅好坏的标志是角色散率和光栅的分辨本领. (1)λ ?ψd d =称为光栅的角色散率,由d sin ? = k λ 可知 k p d k d d cos ==λ?ψ (1) (2)根据瑞利判据,光栅能分辨出相邻两条谱线的能力是受限制的,波长相差Δλ的两条相邻的谱线,若其中一条谱线的最亮处恰好落在另一条谱线的最暗处,则称这两条谱线能 - 44 -

光栅测波长

光栅测波长 1?实验目的 (1 )学习调节和使用分光仪观察光栅衍射现象。 (2)学习利用光栅衍射测量光波波长的原理和方法。 (3 )理解角色散与分辨本领的意义及测量方法。 2?实验仪器 JJY分光仪(1'、光栅、平行平面反射镜、汞灯 3.实验原理: 1?光栅方程 当一束波长为泊勺平行光垂直照射在光栅上时,如图所示,每一个狭缝透过的光都要发生衍 射,向各个方向传播。经过光栅衍射,与光栅面法线成①角的 平行光,经过透镜后汇聚于透镜焦平面出屏上一点P ,①角称为衍射角。由于光栅上各狭缝 是等间距的,所以沿①角方向的相邻光束间的光程差都等于 当沿①角方向传播的相邻光束间光程差dsin等于入射光波长的整数倍时,各缝射出的、聚焦 于屏上P点的光因相干叠加得到加强,形成明条纹。 因此,光栅衍射明纹的条件是: 由丨sin丨W知,主级大的级数限制是即在给定光 栅常数的情况下,光谱级数是有限的。用分光仪测 得第k级谱线的衍射角之后,在已知 2.光栅色散本领与分辨本领 由光栅方程知,入射光波长不同,衍射角也不同。如果用复色光入射,则光栅会将不同波长的光按照波长大小从小到大依次排列,形成光谱。 (1)角色散率:设两单色光波长分别为入1、私,则波长差3入=-入入21第k级衍射角之差为 ds in ①=k 入(k=0、±、=t2, … ) k w d/,入 dsin①因为光程差一定,它们彼此之间将会发生干涉。

则第k级角色散率为D? = / (3单位为nm , 3单位为弧度) 由光栅方程可得D? =k/(dcos 0 则说明D0与d成反比,与k成正比。 / 2)光栅分辨本领R三??3入 4.实验步骤: 1. 调节好分光仪; 2. 将光栅按如图所示的方式放置在载物台上。挡住光源的光,开亮望远镜上的小灯,转动载物 3.调节光栅使其透光狭条与仪器主轴平行: 以分划板横线为基准,观察左右谱线在望远镜左右视场中高度是否一致,如果不一致,则调节螺钉B1使谱线等高; 4. 用汞灯照亮平行光管的狭缝,使平行光垂直照射在光栅上,转动望远镜定性观察谱线的分布规律与特征;然后改变平行光在光栅上的入射角度,转动望 远镜定性观察谱线的分布的变化。 5. 测量肉眼可以很清楚看到的汞灯蓝色,绿色,黄色1,黄色2谱线。使平行光垂直照射在光栅上,先使望远镜对准中央亮线,然后向左转动望远镜,对 观察到的每一条汞光谱线,使谱线中央与分划板的垂直线重合,记录各谱线的角位置。 5.数据处理:

用光栅测量光波波长

用光栅测量光波波长实验报告 学院班级学号姓名 实验目的与实验仪器 【实验目的】 (1)学习调节和使用分光仪观察光栅衍射现象。 (2)学习利用光栅衍射测量光波波长的原理和方法。 (3)了解角色散与分辨本领的意义及测量方法。 【实验仪器】 JJY分光仪(1’)、光栅、平行平面反射镜、汞灯等。 实验原理(限400字以内) 1、光栅方程 dsin?=kλ (k=0,±1,±2,…) 主极大的级数限制:k≤d λ 2、光栅色散本领与分辨本领 光栅的分光原理:波长越长,衍射角越大。 色散现象:入射光是复合光,不同的波长被分开,按从小到大依次排列,成为一组彩色条纹,就是光谱。 K级次的角色散率:D?=d? dλ=k dcos? 光栅的分辨本领定义为刚好能分辨开的两条单色谱线的波长差δλ与这两种波长的平均值之比:R=λ δλ 实验步骤 光栅方程是在平行光垂直入射到光栅平面的条件下得出的,因此要按此要求调节仪器:1)按实验【实验装置】部分的“1.分光仪的构造”和“2.分光仪的调节”内容调节好分光仪。 2)调节光栅平面使之与平行光管光轴垂直:调B2或B3十字水平线。 3)调节光栅使其透光狭条与仪器主轴平行:调B1使谱线高度一致。 4)用汞灯照亮平行光管的狭缝,设平行光垂直照射在光栅上,转动望远镜定性观察谱线的分布规律与特征;然后改变平行光在光栅上的入射角度,转动望远镜定性观察谱线的分布的变化。 5)测量肉眼可以很清楚看到的汞灯蓝色、绿色、黄色I、黄色II四条谱线。使望远镜对准中央亮线,向左转动,对观察到的每一条汞光谱线,使谱线中央与分划板的垂直 线重合,将望远镜此时的角位置(P 左,P 左 ′) 记录到表到中。同样的,向右转动,将望 远镜此时的角位置(P 右,P 右 ′) 记录到表到中。 读数: 【分析讨论】 讨论光栅的作用、汞光谱线的分布规律与特征、平行光入射角度对谱线分布的影

光栅测定光波波长

用透射光栅测定光波波长 用平面透射光栅得到日光灯白光的夫朗和费衍射条纹,其中可以清晰的得到汞光谱中的绿线(546.07nm λ=),钠光谱中的二黄线(1589.592D nm λ=,2588.995D nm λ=)。若d 为光栅常数,θ为衍射角,λ为光波波长,k 为光谱级数(0,1,2k =±± ),则产生衍射亮条纹的条件为: sin d k θλ= (光栅方程) (1)测量光栅常数 用汞灯光谱中的绿线(546.07nm λ=)作为已知波长测量光栅常数d 。 测量公式: sin k d λθ = (2)测量未知波长 已知光栅常数d ,测量钠灯光谱中的二黄线波长1D λ和2D λ。 测量公式: sin d k θλ= (3)测量透射光栅的角色散 已知钠光谱中的二黄线的波长差λ?,测出钠光谱中的二黄线的衍射角,求光栅的角色散D 。 测量公式: D θ λ?=? 分光计测量光波波长 当一束平行光垂直入射到光栅上,产生一组明暗相间的衍射条纹,原理如图 9— 1所时,其夫朗和费衍射主极大由下式决

定: λm d =Φsin 式中:d :光栅常数 d = a + b Φ:衍射角 m :主极大级次 m = 0 ,±1, ±2 此式称光栅方程 由(9 — 1)式得 : m d Φ= sin λ 由此可以看出:只要测出任意级次的某一条光谱线的衍射角,即可计算出该光波长。 牛顿环测量钠光灯谱线的波长 根据理论计算可知,在反射光中暗环半径rk 与入射光的波长λ和透镜球面的曲

率半径R 之间的关系是 () 21λkR r k = 式中,k 为正整数0,1,…,k ,称为环的级数。 由上式可知,如果用已知波长的单色产生牛顿环,当已知暗环的半径rk ,就可算出透镜球面的曲率半径R;若已知R ,测出rk ,就可算出产生牛顿环的光波波长λ。 钠光灯谱线的波长为: () ()R n m D D n m --= 422λ 用迈克尔逊干涉仪测激光波长 1、光程:折射率与路程的乘积,nr =? 2、分振幅干涉:波面的个不同部分作为发射次波的光源,次波本身分成两部分,做不同的光程,重新叠加并发生干涉。 3、等倾干涉公式推导:(如图所示) 次波分成两部分,一部分直接反射从A 点经过透镜到达S ,另一部分透射到B 点,再反射到 C

衍射光栅测波长

衍射光栅测波长 光栅是一种重要的分光元件,是一些光谱仪器(如单色仪,光谱仪)的核心部分,它不仅用于光谱学,还广泛用于计量,光通信及信息处理等方面。 一、实验目的: 1、熟悉分光计的调整和使用。 2、观察光线通过光栅后的衍射现象。 3、掌握用光栅测量光波长及光栅常数的方法。 二、实验仪器 TTY —01型分光计,待测波长的光源,光栅。 三、实验原理: 光栅是根据多缝衍射原理制成的一种分光元件,它能产生谱线间距离较宽的匀排光谱。所得光谱线的亮度比棱镜分光时要小一些,但光栅的分辨本领比棱镜大。 光栅不仅适用于可见光,还能用于红外和紫外光波,常用于光谱仪上。 光栅在结构上有平面光栅,阶梯光栅和凹面光栅等几种、同时又分为透射式和反射式两类。本实验选用透射式平面刻痕光栅或全息光栅。 透射式平面刻痕光栅是在光学玻璃片上刻划大量互相平行,宽度和间距相等的刻痕制成的。当光照射在光栅面上时,刻痕处由于散射不易透光,光线只能在刻痕间的狭缝中通过。因此,光栅实际上是一排密集均匀而又平行的狭缝。 若以单色平行光垂直照射在光栅面上,则透过各狭缝的光线因衍射将向各个方向传播,经透镜会聚后相互干涉,并在透镜焦平面上形成一系列被相当宽的暗区隔开的间距不同的明条纹。 按照光栅衍射理论,衍射光谱中明条纹的位置由下式决定: λφk b a k ±=+sin )( 或:λφk d k ±=sin ( 2.1.0=k ) (1.3—1) 式中:d=)(b a +称为光栅常数,λ为入射光波长,k 为明条纹(光谱线)级数,φk 为K 级明条纹的衍射角。(参看图1.3—1)。 如果入射光不是单色光,则由式(1.3—1)可以看出,光的波长不同其衍射角φk 也各不相同,于是复色光将被分解。而在中央k=0,φk=0处,各色光仍重叠在一起,组成中央明条纹,在中央明条纹两侧对称分布着k=1、2……级光谱,各级光谱线都按波长大小的顺序依次排列成一组彩色谱线,这样就把复色光分解为单色光(如图1.3—1)

用光栅测光波波长

实验6 用透射光栅测光波波长 光的衍射现象是光波动性质的一个重要表征。在近代光学技术中,如光谱分析、晶体分析、光信息处理等领域,光的衍射已成为一种重要的研究手段和方法。衍射光栅是利用光的衍射现象制成的一种重要的分光元件。光栅相当于一组数目众多的等宽、等距和平行排列的狭缝。光栅分应用透射光工作的透射光栅和应用反射光工作的反射光栅两种,本实验用的是透射光栅。 利用光栅分光制成的单色仪和光谱仪已被广泛应用,它不仅用于光谱学,还广泛用于计量、光通信、信息处 理、光应变传感器等方面。所以,研究衍射现象及其规律,在理论和实践上都有重要意义。 预习要点 1、什么是光栅?它的作用是什么? 2、光栅光谱有什么特点? 3、分光计的作用是什么?如何调节?什么是渐近法? 4、分光计的读数原理。设两个游标的原因。 实验目的 1.了解分光计的结构;学会分光计的调节和使用方法。 2.加深对光的衍射和光栅分光作用基本原理的理解。 3.学会用透射光栅测定光波的波长及光栅常数。 实验仪器 分光计,平面光栅,汞灯。 实验原理 光栅相当于一组数目众多的等宽、等距和平行排列的狭缝,被广泛用在单色仪、摄谱仪等光学仪器中。光栅分应 用透射光工作的透射光栅和 应用反射光工作的反射光栅 两种,本实验用的是透射光 栅。 如图1所示,自透镜L 1 射出的平行光垂直地照射在 光栅G上。透镜L 2将与光栅 法线成θ角的衍射光会聚于 其第二焦平面上的P θ点。由 光栅方程得知,产生衍射亮条纹的条件为 λθk d =sin (k =±1,±2,…,±n ) (1) 式中θ角是衍射角,λ是光波波长,k 是光谱级数,d 是光栅常数,因为衍射亮条纹实际上是光源狭缝的衍射象,是一条锐细的亮线,所以又称为光谱线。 当k =0时,任何波长的光均满足(1)式,亦即在0=θ的方向上,各种波长的光谱线重叠在一起,形成明亮的零级光谱,对于k 的其它数值,不同波长的光谱线出现在不同的方向上(θ的值不同),而与k 的正负两组相对应的两组光谱,则对称地分布在零级光谱的两侧。若光栅常数d 已知,在实验中测定了某谱线的衍射角θ和对应的光谱级k ,则可由(1)式求出该谱线的波长λ;反之,如果波长λ是已知的,则可求出光栅常数d 。 θ

光纤光栅的特性

光纤光栅的特性

光纤光栅的特性 1.光纤布喇格光栅的理论模型: 假设光纤为理想的纤芯掺锗阶跃型光纤,并且折射率沿轴向均匀分布,包层为纯石英,此种光纤在紫外光的照射下,纤芯的折射率会发生永久性变化,对包层的折射率没有影响。 利用目前的光纤光栅制作技术:如全息相干法,分波面相干法及相位模板复制法等。生产的光纤光栅大多数为均匀周期正弦型光栅。纤芯中的折射率分布(如图1)所示。 ) (1Z n 为纤芯的折射 率,m ax n ?为光致折射 率微扰的最大值, ) 0(1n 为纤芯原折射 率, Λ 为折射率变化的周期(即栅距), L 为光栅的区长度。 若忽略光栅横截面上折射率分布的不均匀

性,光栅区的折射率分布可表示为: )2cos()0()(max 11Z n n z n Λ ?+=π ………………………………………………… (1.1) 显而易见,其折射率沿纵向分布,属于非正规光波导中的迅变光波导,在考虑模式耦合的时候,只能使用矢量模耦合方程,其耦合主要发生在基模的正向传输导模与反向传输导模之间。 2.单模光纤的耦合方程 由于纤芯折射率非均匀分布,引起了纤芯中传输的本征模式间发生耦合。在弱导时, 忽 略偏振效应,吸收损耗和折射率非均匀分布引起了模式泄漏,则非均匀波导中的场Φ( x , y , z ) 满足标量波动方程: ),,(}),,({22 220 2=Φ??++?z y x z z y x n sk t …………………(2.1) 其中:λ π/20 =k ,λ是自由空间的光波长。 2 22 2 1}{1???+?Φ???=Φ?Φ r r r r r t ………………………………… ………………(2.2) 由于折射率非均匀分布引起波导中模式耦合只发生在纤芯中,因此非均匀波导中的场

分光计和透射光栅测光波波长实验报告【最新版】

分光计和透射光栅测光波波长实验报告 【实验目的】 观察光栅的衍射光谱,掌握用分光计和透射光栅测光波波长的方法。 【实验仪器】 分光计,透射光栅,钠光灯,白炽灯。 【实验原理】 光栅是一种非常好的分光元件,它可以把不同波长的光分开并形成明亮细窄的谱线。 光栅分透射光栅和反射光栅两类,本实验采用透射光栅,它是在一块透明的屏板上刻上大量相互平行等宽而又等间距刻痕的元件,刻痕处不透光,未刻处透光,于是在屏板上就形成了大量等宽而又等间距的狭缝。刻痕和狭缝的宽度之和称为光栅常数,用d表示。 由光栅衍射的理论可知,当一束平行光垂直地投射到光栅平面上时,透过每一狭缝的光都会发生单缝衍射,同时透过所有狭缝的光又会彼此产生干涉,光栅衍射光谱的强度由单缝衍射和缝间干涉两因素共同决定。用会聚透镜可将光栅的衍射光谱会聚于透镜的焦平面上。凡衍射角满足以下条件 k=0,±1,±2, (10) 的衍射光在该衍射角方向上将会得到加强而产生明条纹,其它方向的光将全部或部分抵消。式(10)称为光栅方程。式中d为光栅的光栅常数,θ为衍射角,λ为光波波长。当k=0时,θ=0得到零级明

纹。当k=±1,±2…时,将得到对称分立在零级条纹两侧的一级,二级…明纹。 实验中若测出第k级明纹的衍射角θ,光栅常数d已知,就可用光栅方程计算出待测光波波长λ。 【实验内容与步骤】 1.分光计的调整 分光计的调整方法见实验1。 2.用光栅衍射测光的波长 (1)要利用光栅方程(10)测光波波长,就必须调节光栅平面使其与平行光管和望远镜的光轴垂直。先用钠光灯照亮平行光管的狭缝,使望远镜目镜中的分划板上的中心垂线对准狭缝的像,然后固定望远镜。将装有光栅的光栅支架置于载物台上,使其一端对准调平螺丝a,一端置于另两个调平螺丝b、c的中点,如图12所示,旋转游标盘并调节调平螺丝b或c,当从光栅平面反射回来的“十”字像与分划板上方的十字线重合时,如图13所示,固定游标盘。 物理实验报告·化学实验报告·生物实验报告·实验报告格式·实验报告模板 图12光栅支架的位置图13分划板 (2)调节光栅刻痕与转轴平行。用钠光灯照亮狭缝,松开望远镜紧固螺丝,转动望远镜可观察到0级光谱两侧的±1、±2级衍射光谱,调节调平螺丝a(不得动b、c)使两侧的光谱线的中点与分划板中央十字线的中心重合,即使两侧的光谱线等高。重复(1)、(2)的调节,直到两个条件均满足为止。 (3)测钠黄光的波长

相关主题
文本预览
相关文档 最新文档