当前位置:文档之家› 水上作业平台计算书(力学求解器计算)

水上作业平台计算书(力学求解器计算)

水上作业平台计算书(力学求解器计算)
水上作业平台计算书(力学求解器计算)

省道263线南北长山联岛大桥

钢平台计算书

编制:

审核:

审批:

中铁十四局集团有限公司南北长山联岛大桥项目经理部

2011年12月24日

目录

一概述 (1)

1设计说明 (1)

1.2设计依据 (2)

1.3技术标准 (2)

二荷载布置 (2)

2.1上部结构恒重 (3)

2.2车辆荷载 (3)

2.2.1 9m3罐车荷载 (3)

2.2.2 履带吊50t(计算中考虑最大吊重20t) (4)

2.2.3 35t吊车荷载 (4)

2.2.4 钻机荷载 (5)

2.2.5 泥浆池荷载 (6)

2.2.6 施工荷载及人群荷载 (6)

三上部结构内力计算 (7)

3.1支撑反力计算 (7)

3.1.1 汽车荷载 (7)

3.1.2 支承反力 (7)

3.2桥面I12工字钢承载力计算 (9)

3.3I16工字钢分配横梁承载力计算 (10)

3.3.1 汽车荷载 (10)

3.3.1 计算分析 (11)

3.4贝雷梁计算 (12)

四下部结构内力计算 (15)

4.12I25工字钢计算 (15)

4.2Φ630钢管计算 (18)

4.1入土深度计算 (18)

4.2钢管桩稳定性计算 (19)

4.2.1 单根钢管桩流水压力计算 (19)

4.2.2 单根钢管桩横桥向风力计算 (19)

4.2.3钢栈桥横桥向风力计算 (20)

4.2.4 单根钢管桩顺桥向风力计算 (20)

4.2.5 波浪力 (20)

4.3结论 (23)

钻孔平台计算书

一概述

1 设计说明

根据省道263线南北长山联岛大桥的具体地质情况、水文情况和气候情况,施工海域受季风、大雾及风浪影响较大,为满足施工总体进度要求以及安全生产和环保方面的需要,下部结构施工我部拟采用钢平台施工方案。

钢平台根据桥梁墩台的形式钻孔平台共分为三种形式。钢平台的下部为壁厚8mm的Φ720螺旋钢管,钢管桩上部采用2I45工字钢作为主纵梁,使用贝雷片作为横梁,使用I20工字钢作为分配横梁,上部铺设1cm厚钢板作为平台工作面,使用Φ48×3.5mm钢管作为护栏使用。

主墩钻孔平台的主要尺寸为21m×15m,共5个,主、引桥共用墩钻孔平台主要尺寸为18m×15m,共2个,引桥墩钻孔平台为23m×12m,共18个。

三种钻孔平台立面图

侧面图

1.2 设计依据

1)《公路桥涵设计通用规范》(JTG D60-2004)2)《公路桥涵地基与基础设计规范》(JTJ024-85)

3)《公路桥涵钢结构及木结构设计规范》(JTJ025-86)

4)《公路桥涵施工技术规范》(JTJ041—2000)5)《海港水文规范》(JTJ213-98)

6)省道263线南北长山联岛大桥施工图(2011.10)

1.3 技术标准

1)设计顶标高+5.40m,与设计桥梁重合;

2)设计控制荷载:9m3罐车、50t车(最大吊重按20t考虑)、20t钻机;

3)设计使用寿命:2年;

4)水位:取20年一遇最高水位+3.04m;

5)河床高程取-5.20m,最大冲刷深度考虑3m,即冲刷后地面线高程为-8.2m;

6)流速:v=1.53m/s;

7)河床覆盖层:淤泥,厚度4.5m;

8)基本风速:27.3m/s;

9)浪高:3.01m;

10)设计行车速度5km/h。

二荷载布置

2.1 上部结构恒重

1)面层:平台上部铺设1cm厚钢板荷载为:0.785kN/m2;

2)面层横向分配梁:I20,0.279kN/m ,间距0.35m;

3)纵向主梁:321型贝雷梁,6.66 KN/m;

,1.608kN/m;

4)桩顶分配主梁:2I

45a

2.2 车辆荷载

2.2.1 9m3罐车荷载

9m3罐车荷载模型

主要参数:整备车重140kN;载重9m3砼重216kN;轴距为3545

㎜+1350㎜;前轴重76kN ,后轴重140kN ,前轮轮胎着地尺寸为300㎜×200㎜;后轮轮胎着地面积600㎜×200㎜;后轮轮距为1.8m 。

按照《公路桥涵设计通用规范》(JTG D60-2004)要求,结构重要系数γ0取为1.0,汽车荷载效应系数γQ1取为1.4,冲击系数μ取为0.05,前轮均载

2

176

633.33/20.30.2

k q kN m =

=??,后轮均载

22140

583.33/20.60.2

k q kN m =

=??。

图2.2.1罐车荷载的纵向排列和横向布置(重力单位:kN ;尺寸单位:cm )

2.2.2 履带吊50t (计算中考虑最大吊重20t )

50T 履带吊车荷载的纵向排列和横向布置(重力单位:kN ;尺寸单位:m )

2.2.3 35t 吊车荷载

现按照35t 汽车吊吊装20t 荷载,支腿全部打开的形式来考虑,荷载模型为:

荷载模型

支腿B 处的反力最大为393kN ,按照支腿下部支垫1m ×1m 垫板考虑将支腿荷载均匀分散至钻孔平台上。因此在计算时考虑三根I20工字钢受力,每根承受的荷载值为3

1

39310131/31

k q kN m ?==?吊,考虑系数

为1.45后荷载取值为1131 1.45=189.95/q kN m =?吊。其他按照43kN 计算

32

431014.33/31

k q kN m ?==?吊,214.33 1.4520.783/q kN m =?=吊。 2.2.4 钻机荷载

钻机按照10t 考虑,钻机尺寸为10m ×3m ,按照均布荷载计算为:

3

210010 3.33/103

k q kN m ?==?,计算时按照下部7根I20工字钢受力长度为

2m ,每根工字钢的荷载值为: 31100107.14/72k q kN m ?==?钻;工作状态下重量按照430kN 计算荷载值为32

4301030.7/72

k q kN m ?==?钻受力模型为:

非工作状态

2.2.5 泥浆池荷载

泥浆池尺寸为3m ×4m ×2m ,泥浆的密度为1.2g/cm 3,按照满布计算。泥浆池为钢模板拼装制作,自身重量为42kN,泥浆重量为288kN ,342+288

1012.22/93

k q kN m =

?=?池。

2.2.6 施工荷载及人群荷载

施工荷载及人群荷载:4KN/m2

根据现场施工实际,履带吊与9m3罐车是主要的荷载,对整个平台的强度、刚度、稳定性影响较大,因此,计算时主要考虑两者。

履带吊与9m3罐车的主要技术指标

三上部结构内力计算

3.1 1cm面板计算

3.1.1 汽车荷载

单边车轮作用在跨中时,1cm厚钢板弯矩最大,轮压力为均布荷载来计算。

荷载分析:

1)自重均布荷载:0.785kN/m 2;

2)施工及人群荷载:不考虑与汽车同时作用 ;

3)汽车轮压:最大轴重为140kN ,每轴2组车轮,则单组车轮荷载为76kN ,车轮着地宽度和长度为0.6m ×0.2m ,单组车轮作用在1个单位宽度钢板上,汽车的冲击系数取为0.05,则1cm 厚钢板受到的荷载为:

3

70101.45 1.45845.833/0.60.2

k q q kN m ?=?=?=?。

3.1.2 支承反力

现场车辆轮胎主要尺寸为0.6m ×0.2m 和0.3m ×0.2m 两种,现场I20工字钢分配横梁间距为0.35m ,净距为0.25m 即,最不利情况为每个轮胎位于一根工字钢上此处,若考虑1cm 厚钢板的应力分散最钢板的受力更为有利现不在计算钢板的受力,仅计算钢板的支承反力作为计算I20分配纵梁使用。1cm 厚钢板的计算模型可以简化为三跨连续梁来计算,车轮位于产生的支反力模型如下:

受力简图一

反力图一

受力简图二

反力图二

最大反力

max 0.2347.690.269.538

R R kN

=?=?=

3.2 桥面I20工字钢承载力计算

最不利情况为单个后轴车轮位于同一根I12工字钢上部,即347.69/

q R kN m

==,作用长度为0.2m。同时I20分配横梁的跨度也是最大时最为不利该情况的计算模型为:

最不利弯矩模型图

最不利弯矩图

最不利剪力图

最不利弯矩反力图

最大弯矩:max 32.72M kN m =? 正应力:

3

-6

32,7210138.059[]21523710M MPa MPa w σσ?===<=?(满足强度要求)

最大剪应力:max 74.1Q kN =

*3

3374.11079.392[]125220.20.007

QS Q MPa MPa Ib bh τσ?==?=?=<=?(满足强度要求)

3.3 贝雷梁计算

通过荷载分析,当履带吊与钢护筒平行时,即只有两组贝雷梁受力时最为不利,按照该工况计算受力对于结构比较有利,同时在靠近钢护筒的位置处设置抱箍,作为牛腿使用支撑贝雷梁。

56 4.5

1.45 1.45261/20.7

k q q kN m

?=?=?

=?

受力简图

弯矩图

剪力图

反力图

最大弯矩:

max 143.9

M kN m

=?

最大剪力:

max 215.03

Q kN

=

支反力为:

max 215.03

R kN

=

查贝雷梁参数得,单层单片贝雷梁承受的参数

max 788.2

M kN m

=?,

最大剪力为

max 245.2

Q kN

=,满足要求。四下部结构内力计算

4.1 2I45工字钢计算

2I45工字钢所承受的荷载主要为贝雷梁传递的结构自重和车辆荷载,施工中考虑9m 3罐车偏载的现象及车辆位于2I25工字钢跨度中心两种不利情况。

结构自重:主要为桥梁上部结构自重及2I25工字钢自重两种,其中上部结构的荷载主要重量为:

0.0161578.50.14215170.25306 2.756232.86G kN =???+??+??+??=,

荷载值通过贝雷梁传递至2I25工字钢主横梁上,每道贝雷梁传递的竖向荷载为:232.861.2 1.246.57266

G q kN =?

=?=;

偏载断面示意图

当履带吊偏载时,即一条履带位于单片贝雷梁顶部时:按照整个履带吊的重量全部由一排钢管桩来承重,由于其他相邻两排钢管桩也为受力,采用该模型较为有利。

4.556

1.45 1.45522/0.7

k q q kN m ?=?=?

=

受力模型

反力图

将贝雷梁的支承反力转化为2I25的荷载,每个荷载值为:

1 3.58+46.57250.152R kN

==,

2-15.33+46.572=31.242R kN

=,

3317.39+46.572363.962R kN ==,447.94+46.57294.512R kN ==

5174.45+46.572221.022R kN ==,6203.28+46.572249.852R kN ==

受力模型图

弯矩图

剪力图

反力图

最大弯矩为:max 112.35M kN m =?

3

-6

112.3510135.978[]21580410M MPa MPa w σσ?===<=?(满足强度要求)

最大剪力为:max 313.86Q kN =

*36

-8313.8610230.721090.149[]125250201020.008

QS MPa MPa Ib τσ-????===<=????(满足强度要求)

最大反力为:max 465.96R kN =

通过以上计算2I25工字钢满足荷载要求。 4.2 Φ630钢管计算

通过以上计算Φ630钢管桩基础最大承重荷载为384.19kN ,施工时使用DZJ-90振动锤打设。

表4.1 DZJ-90振动锤性能表

电机功率 偏心力矩 振动频率r/min 激振力 机重 允许拔桩力 (kW) N ·m kN kg kN 90

0~403

1100

546

7300

254

4.1 入土深度计算

根据《港口工程桩基规范》(JTJ254-98)第4.2.4条:

)(1

A q l q U Q R i fi R

d +=

∑γ

式中:

Q d —单桩垂直极限承载力设计值(kN );

d γ—单桩垂直承载力分项系数,取1.45;

U —桩身截面周长 (m ),本处为1.978m ;

fi q —单桩第i 层土的极限侧摩阻力标准值(kPa ); i l —桩身穿过第i 层土的长度(m ); R q —单桩极限桩端阻力标准值(kPa );

A — 桩身截面面积,Φ630×12mm 钢管桩A=232.981cm 2;

查看地质资料可得下表

由计算得知:2.64米厚的卵石层作为从刷层,钢管桩入土深度10米,即穿过粉质粘土7米、进入粘土层3米即可满足承载力要求。 4.2 钢管桩稳定性计算

河床面高程为-7.36m ,按3m 冲刷深度考虑,则可假定钢管桩悬臂固结点在-10m 处,桩顶标高取+4.0m ,钢管悬臂长度为15m 。

4.2.1 单根钢管桩流水压力计算 单根桩流水压力计算:22

w F Cw V A ρ

=

式中:w F ――流水压力标准值(kN );

w C ――形状系数(钢管桩取0.8);

A ――阻水面积(m 2)

,计算至一般冲刷线处; ρ――海水的重力密度1.025(kN/m 3); V ――设计流速(1.53m/s )

; 221.025

=0.8 1.530.6313=7.8612

2

w w

F C V A kN ρ

=?

??? 4.2.2 单根钢管桩横桥向风力计算

根据《公路桥涵设计通用规范》(JTJ-02189) 第2.3.8条计算横桥向风压:

013wh d wh F k k k W A =

0k —设计风速重现期系数取1.0; 1k —风载阻力系数,取1.0;

3k —地形地理条件系数,1.0; d W —设计基准风压取为0.8kPa ; wh A —迎风面积11.39m 2;

横桥向风载:013=1.0 1.0 1.00.811.39=9.112wh d wh F k k k W A kN =????

4.2.3钢栈桥横桥向风力计算

013=1.0 1.0 1.00.812.626=10.1wh d wh F k k k W A kN =????

4.2.4 单根钢管桩顺桥向风力计算 纵桥向风压按横桥向风压的70%计算。

横桥向风载:013=1.0 1.0 1.00.80.714.95=8.372wh d wh F k k k W A kN =?????

4.2.5 波浪力

浪高按3.01m 计算,根据盖拉德经验公式计算浪长:9~15L H =(H 为浪高),取12=12.301=36.12L H m =?。对于圆形柱桩当D/L ≤0.2时为小尺寸桩柱(D 为桩径)用下式计算波浪力:

22

ax 140.1674sinh()

DM v d

p k D H d

L L

πγπ+=????

220.785tanh

LMax v d

p k D H L

πγ=??? 式中:

D Max p ——水平波压速度分力的最大值,出现在波峰位置处0t ω=;

I Max p ——水平波压惯性分力(由加速度引起)的最大值,出现在

波峰和1/4波长之间270t ω=?;

v k ——建筑物附近速度修正值,

0.0370.12D

L

=<,所以v k 取1.00;

D ——桩径,取为0.63m ; d ——静水水深,取7.36m ;

H ——浪高3.01m ;

γ——水的容重10kN/m 3;

22

14 3.140.63

0.167 1.0100.63 3.01=13.74 3.14 6.14

36.12sinh()

36.12

DMax P kN +??=???????

22 3.147.36

0.785 1.0100.630 3.01tanh

=6.7136.12

LMax p kN ??=?????

当DMax P ≥0.5L Max p 时,最大波压Max P 可用下式计算:

0.671

=(10.25

=15.3813.7

Max DMax P P kN +)

受力模型

水上工作平台施工方案

水上工作平台施工方案 水上工作平台施工方案 1工程概况2现场水文,地形调查 白云区人和大桥是缓解国道G106线交通拥堵现象的重 点工程,大桥的起点桩号为K2465+126.2,终点桩号为 K2465+360.7,全长234.5m.大桥横跨流溪河,共八跨,跨径组 成为40+3X25+3X25+40.双幅桥全宽32_5m,按双向六车道 设置.新桥1#~7#墩为水上施工,下部基础为8根中1.8m 和38根中1_5米的钻孑L灌注桩,(均为支承桩),桩长约23m, 钻孔桩与系梁均为C25混凝土. 由于旧人和桥为国道G106线咽喉要道,我项且部为在施 工过程中必须保证其通车,决定采取先进行下游右半幅施工, 建成右幅恢复通车后,再拆除旧桥进行上游左半幅的施工.就人和桥与附属的人和拦河坝属于桥坝一体结构,新桥施工所在河床浇筑有厚达50~70cm的防冲刷混凝土板并抛填了数量较多锥形,方形防洪预制块,且因堤坝蓄水及潮汐的影响,河水水位变化较大(相差1_5~2_5m),常时下游水深约为0.5~ 1_5m之间,不能够满足浮箱作业的安全水深.另外,如果进行筑岛施工,虽然可以加快工程进度,但难于保证汛期到来时拦河坝的泄洪作用.故进行浮箱作业及筑岛方案均不可行. 根据施工现场情况,下游右半幅1#~7#墩桩基础全部采 用搭设钢便桥及贝雷架水上平台进行桩基础施工,施工便桥及平台平面图如下. 便桥及平台搭设平面布置图 —?尫—尭—尭—-一十一尫—- 从公路沿线的处治结果来看,红粘土加入NCS一4固化剂 天然,塑性指数下降,其原土样的物理性质指标发生了变化,后 稠度增大,CBR值增大,水稳性增强,路基的施工质量得到了保证,从而延长了公路的使用寿命. 路桥,航运与交通I专栏 口黄科鹏 在水上平台及便桥施工开展之前,项目部组织测量及施工 人员对施工范围内的水文及地形情况进行彻底的调查.通过水利所提供的水文数据可知,汛期水位标高不超过7.5m.旧桥下游抛填的片石,预制水泥块约为3m厚,防冲刷现浇混凝土厚度在50cm~70cm之间.枯水期(10月至次年3月)涨潮时最深 水处约为1_5—2.0m,最浅水处约为0.5m.退潮时最深水处约为0.8~1.2m,最浅水处预制块及防冲刷混凝土板已露出水面. 3施工方案

《土力学》作业解答

《土力学》 第一次、简答题 1、挡土墙设计中需要进行哪些验算?要求稳定安全系数多大?采取什么措施可以提高抗倾覆稳定安全系数。 答:1) 需要进行抗滑稳定验算、抗倾覆稳定验算、地基承载力验算。 2) 抗滑稳定系数大于1.3,抗倾覆稳定系数大于1.5。 3) 修改挡土墙尺寸;伸长墙前趾;将墙背做成仰斜;做卸荷台。 2、集中力作用下,土中附加应力的分布有何规律? 答:1)在集中力作用线上,附加应力随深度的增加逐渐减小。 2)在集中力作用线以外的竖直线上,附加应力随深度的增加逐渐增大,超过一定深度后,随深度逐渐减小。 3)在地面下任意深度的水平面上,附加应力在集中力作用线上最大,向四周逐渐减小。 3、分层总和法计算地基最终沉降量分为哪几个步骤? 答:分层总和法具体的计算步骤如下 1)按比例绘制地基和基础剖面图。 2)划分计算薄层。计算薄层厚度为基础宽度的0.4倍;土层的界面和地下水面是计算薄层层面。 3)计算基底中心点下各薄层界面处的自重应力和附加应力。按比例分别绘于基础中心线的左右两侧。 4)确定地基沉降计算深度。 5)计算各薄层土在侧限条件下的压缩量。 6)计算地基的最终沉降量。 4、地基变形按其变形特征分为哪几种?每种的基本定义是什么? 答:地基变形按其变形特征划分为沉降量、沉降差、倾斜和局部倾斜,其基本定义是: 1)沉降量――一般指基础中点的沉降量 2)沉降差――相邻两基础的沉降量之差 3)倾斜――基础倾斜方向两端点的沉降差与其距离之比 4)局部倾斜――承重砌体沿纵墙6~10m内基础两点的沉降差与其距离之比 5、土力学中的土中水包括哪几种?结合水有何特性? 答: 1) 土中的水包括强结合水、弱结合水、重力水和毛细水。 2) 强结合水的特性接近固体,不传递静水压力,100度不蒸发;弱结合水是紧靠于强结合水的一层结合水膜,也不传递静水压力 6、集中力作用下,土中附加应力的分布有何规律? 答: 1)在集中力作用线上,附加应力随深度的增加逐渐减小。 2)在集中力作用线以外的竖直线上,附加应力随深度的增加逐渐增大,超过一定深度后,随深度逐渐减小。 3)在地面下任意深度的水平面上,附加应力在集中力作用线上最大,向四周逐渐减小。7、地基破坏有哪三个阶段?各阶段有何特征? 答:地基破坏分为压密阶段、剪切阶段和破坏阶段。

工程地质与土力学试题库(计算题)

工程地质与土力学试题库(计算题) 1、用体积为72cm 3的环刀取得某原状土样重132g ,烘干后土重122g ,s d =2.72,试计算该土样的ω、e 、r s 、γ、 sat γ、γ'、d γ,并比较各重度的大小。 (答案:%2.8=ω,61.0=e ,%6.36=r S ,33.18=γKN/m 3,68.20=sat γKN/m 3,68.10='γ KN/m 3,89.16=d γKN/m 3,γγγγ'>>>d sat ) 解:(1)土的密度72132 =ρ=1.83 g /cm 3,重度γ=10×1.83=18.3 KN/m 3 (2)含水量ω=122 122 132-=8.2% (3)天然孔隙比1)1(-+=ρρωw s d e =13 .1810 )082.01(72.2-?+?=0.61 (4)d γ=ωγ+1=082 .013 .18+=16.9 KN/m 3 (5)w s sat e e d γγ ++= 1=20.68 KN/m 3 (6)γ'=sat γ-w γ=10.68 KN/m 3 (7)饱和度r s = 61 .072 .2082.0?= e d s ω=36.6% 各重度之间大小关系为:γγγγ'>>>d sat 2、某土样处于完全饱和状态,土粒比重为2.68,含水量为32.0%,试求该土样的孔隙比e 和重度γ。 (答案:e =0.86; γ=19kN /m 3 ) 3、某完全饱和的土样,经测得其含水率ω=30%,土粒比重s d =2.72。试求该土的孔隙比e 、密度 ρ和干密度 d ρ。 解:(1)根据土样饱和e d S s r ω= =1.0,得孔隙比e =s d ω=0.3×2.72=0.816 (2)由1)1(-+= ρ ρωw s d e ,得ρ= e d w s ++1)1(ρω=95.1816 .011 )3.01(72.2=+?+? g /cm 3 (3)干密度d ρ=ωρ+1=3 .0195 .1+=1.5 g /cm 3 4、某干砂试样密度ρ=1.66g /cm 3,土粒比重s d =2.69,置于雨中,若砂样体积不变,饱和度增至40%时,此 砂在雨中的含水量ω为多少? 解:(答案:ω=9.2%) 5、某原状土,ω=32%,L ω=30%,P ω=18%,确定土的名称与物理状态。 解:(1)定名:P L P I ωω-==30-18=12,大于10小于17,故该土样为粉质黏土。 (2)确定状态:土的液性指数P L P L I ωωωω--= =18 301832--=1.17>1,属于流塑状态。 6、 某砂土的颗粒级配曲线,10d =0.07mm , 30d =0.2mm ,60d =0.45mm ,求不均匀系数和曲率系数,并进行 土的级配判别。 解:不均匀系数1060d d C u =07.045.0==6.4,曲率系数10 602 30d d d C c =45.007.02 .02.0??==1.27,满足u C ≥5

贝雷梁栈桥及平台计算书

仁义桂江大桥 贝雷梁栈桥及作业平台计算书 编制: 复核: 审核:

西部中大建设集团有限公司 梧州环城公路工程N02合同段工程总承包项目经理部 二○一五年十二月

目录 一、工程概述........................................... 错误!未定义书签。 二、设计依据........................................... 错误!未定义书签。 三、计算参数........................................... 错误!未定义书签。 、材料参数......................................................... 错误!未定义书签。 、荷载参数......................................................... 错误!未定义书签。、材料说明............................................. 错误!未定义书签。 、验算准则......................................................... 错误!未定义书签。 四、栈桥计算........................................... 错误!未定义书签。 、计算工况......................................................... 错误!未定义书签。 、建立模型......................................................... 错误!未定义书签。 、面板计算......................................................... 错误!未定义书签。 、工况一计算结果................................................... 错误!未定义书签。 、工况二计算结果................................................... 错误!未定义书签。 、工况三计算结果................................................... 错误!未定义书签。 、工况四计算结果................................................... 错误!未定义书签。 、工况五计算结果................................................... 错误!未定义书签。 、入土深度计算结果................................................. 错误!未定义书签。 、屈曲计算......................................................... 错误!未定义书签。 、栈桥计算结果汇总................................................. 错误!未定义书签。 五、7#墩平台计算....................................... 错误!未定义书签。 、建立模型......................................................... 错误!未定义书签。 、荷载加载......................................................... 错误!未定义书签。 、荷载工况......................................................... 错误!未定义书签。 、工况一计算....................................................... 错误!未定义书签。 、工况二计算....................................................... 错误!未定义书签。 、工况三计算....................................................... 错误!未定义书签。 、屈曲计算......................................................... 错误!未定义书签。 、7#墩平台计算结果汇总............................................. 错误!未定义书签。 六、8#墩平台计算....................................... 错误!未定义书签。 、建立模型......................................................... 错误!未定义书签。 、荷载加载......................................................... 错误!未定义书签。 、荷载工况......................................................... 错误!未定义书签。 、工况一计算结果................................................... 错误!未定义书签。 、工况二计算结果................................................... 错误!未定义书签。 、工况三计算结果................................................... 错误!未定义书签。 、屈曲计算......................................................... 错误!未定义书签。 、8#墩平台计算结果汇总............................................. 错误!未定义书签。 七、结论............................................... 错误!未定义书签。

结构力学大作业

结构力学大作业——五层三跨框架结构内力计算 专业班级:土木工程XXXX班 姓名 XXXXX 学号:XXXXX 指导教师:XX

目录 一、题目 (3) 二、任务 (5) 三、结构的基本数据 (5) 1.构件尺寸: (5) 2.荷载: (5) 3.材料性质: (5) 四、水平荷载作用下的计算 (5) 1.反弯点法 (6) 2.D值法 (8) 3.求解器法 (12) 五、竖直荷载作用下的计算 (15) 1.分层法 (16) 2.求解器法 (21) 六、感想 (24)

二、题目 结构(一) 1、计算简图如图1所示。 4 . 2 m 3 . 6 m 3 . 6 m 3 . 6 m 3 . 6 m 图1

’ 图2 q’ 图3

二、任务 1、计算多层多跨框架结构在荷载作用下的内力,画出内力图。 2、计算方法: (1) 水平荷载: D 值法、反弯点法、求解器,计算水平荷载作用下的框架 弯矩; (2) 竖向荷载:迭代法、分层法、求解器,计算竖向荷载作用下框架弯矩。 3、对各种方法的计算结果进行对比,分析近似法的误差。 4、把计算过程写成计算书的形式。 三、结构的基本数据 E h =3.0×107kN/m 2 柱尺寸:400×400,梁尺寸(边梁):250×600,(中间梁)300×400 竖向荷载:q '=17kN/m 水平荷载:F P '=15kN 构件线刚度:)12 (,3 bh I l EI i == 柱子:43-3 10133.212 400400m I ?=?= 柱 第一层:m kN i ?=???= -152382.410133.2100.33 71 第二--五层:m kN i ?=???= -177786.310133.2100.33 72 梁: 边梁:43-3105.412 600250m I ?=?=边梁 m kN i ?=???=-225006105.4100.3373 中间梁:43-3106.112 400300m I ?=?=中间梁 m kN i ?=???=-228571 .2106.1100.3374 四、水平荷载作用下的计算 水平荷载: F P =16kN ,F p '=15kN

最新土力学习题答案(完整版)

《土力学》作业答案 第一章 1—1根据下列颗粒分析试验结果,作出级配曲线,算出Cu 及Cv 值,并判断其级配情况是否良好。 解: 级配曲线见附图。 小于某直径之土重百分数% 土粒直径以毫米计 习题1-1 颗粒大小级配曲线 由级配曲线查得:d 60=0.45,d 10=0.055,d 30=0.2; 18.8055 .045 .01060=== d d C u 62.1055 .045.02.02 6010230=?==d d d C c C u >5,1

故,为级配良好的土。 (2)确定不均匀系数Cu 及曲率系数Cv ,并由Cu 、Cv 判断级配情况。 解: 土粒直径以毫米计 小于某直径之土重百分数%习题1-2 颗粒大小级配曲线

1—3某土样孔隙体积等于颗粒体积,求孔隙比e 为若干? 若Gs=2.66,求ρd =? 若孔隙为水所充满求其密度ρ?含水量W 。 解: 11 1 === s v V V e ; /33.12 66 .2g V M s d === ρ.121 66.2V M M w s =+=+= ρ%6.3766 .21=== s w M M ω。 1—4在某一层土中,用容积为72cm 3的环刀取样,经测定,土样质量129.1g ,烘干后质量121.5g ,土粒比重为2.70,问该土样的含水量、密度、饱和密度、浮密度、干密度各是多少? 解: 3457 .25 .121cm G M V s s s === ; 3274572cm V V V s V =-=-=; %26.60626.05 .1215 .1211.129==-== s w M M ω; 3/79.172 1.129cm g V M === ρ; 3/06.272 27 15.121cm g V V M v w s sat =?+=+= ρρ;

水上平台设计及计算

洋溪河大桥水上平台设计及计算 钱洛路新建一期工程的主要工程为洋溪河大桥水中灌注桩的施工,洋溪河大桥总长334.6m,其中主桥为预应力混凝土简支组合箱梁,全长30m;引桥为20m、25m预应力混凝土空心板梁,全长300m;跨径组合为:(20+20+25+20)+(20+20+25)+(25+30+20)+(20+20+25+20+20)m,全桥共有88根桩基。其中7#、8#、9#、10#、11#墩桩基位于洋溪河中,有一定的施工难度,经过技术、经济等方面考虑,决定搭设水上作业平台进行桩基的施工。 一、编制依据 1、钱洛路新建一期工程施工图设计 2、相关水文资料和地质资料及现有施工条件 3、相关海事、航道的法律、法规及通航要求 4、施工期间人员、各种机械的施工荷载和空间要求 二、编制原则 1、满足通航、防洪有关要求,确定作业平台位置、大小 2、本着“安全第一”的原则,确保施工期间人员设备的安全及通 航船只的安全 3、以经济实用、减低成本为原则,达到易施工、易拆卸的要求, 提高所使用的材料周转使用。 三、现场条件简介 1、现场情况 现有河道150M宽,主航道宽30M,现在水位高程1.90M,历年

设计水位2.38M,主墩处水深4.0M,附近驳岸高程2.33M。 2、地质情况 高程土质极限承力KPa 极限摩阻力KPa -2.9~-5.9M 粘土 190 40 四、工程特点及难点 1、作为施工人员行走和钻机的轨道,便道和水上平台是极为重要的工程,对安全和稳定性要求极高,施工环境均在水中,施工难度大。 2、便道和平台施工木桩基础均位于水中,在水中进行测量放样控制、定位、施工难度大。 3、沿路线方向有一污水管线位于中分带位置,施工时要为其留有一定的安全距离。 五、排架施工工艺 1.木桩的插打 木桩采用振动沉桩的方法进行木桩的施工,采用船载10吨的振动打桩锤进行施工,木桩插打按最后的入土深度控制,通过桩承载力的计算洋溪河桥木桩打入粘土层不小于2米,即可保证单桩承载力满足要求。(见附后计算书) 打桩顺序按先岸边后水中,先浅后深的顺序施打。每打完一根桩进行平面位置垂直度及高程的复测,对不满足要求的桩拔出重打。相邻桩施工完毕,即横向联接加固,后续上部承重结构的安装。 2.木桩纵、横向联接

2018西南大学[0729]《结构力学》大作业答案

1、结构的刚度是指 1. C. 结构抵抗变形的能力 2、 图7中图A~图所示结构均可作为图7(a)所示结构的力法基本结构,使得力法计算最为简便的 C 3、图5所示梁受外力偶作用,其正确的弯矩图形状应为()C 4、对结构进行强度计算的目的,是为了保证结构 1. A. 既经济又安全 5、改变荷载值的大小,三铰拱的合理拱轴线不变。 1. A.√ 6、多余约束是体系中不需要的约束。 1. B.×

7、结构发生了变形必然会引起位移,结构有位移必然有变形发生。 1. B.× 8、如果梁的截面刚度是截面位置的函数,则它的位移不能用图乘法计算。 1. A.√ 9、一根连杆相当于一个约束。 1. A.√ 10、单铰是联接两个刚片的铰。 1. A.√ 11、虚功原理中的力状态和位移状态都是虚设的。 1. B.× 12、带拉杆三铰拱中拉杆的拉力等于无拉杆三铰拱的水平推力。 1. A.√ 13、瞬变体系在很小的荷载作用下会产生很大的内力,所以不能作为结构使用。 1. A.√ 14、虚位移原理中的虚功方程等价于静力平衡方程,虚力原理中虚功方程等价于变形协调方程。 1. A.√ 15、体系的多余约束对体系的计算自由度、自由度及受力状态都没有影响,故称多余约束。 1. B.× 16、力矩分配中的传递系数等于传递弯矩与分配弯矩之比,它与外因无关。 1. A.√ 17、当上部体系只用不交于一点也不全平行的三根链杆与大地相连时,只需分析上部体系的几何组成,就能确1. A.√ 18、用力法计算超静定结构时,其基本未知量是未知结点位移。

B.× 19、静定结构在非荷载外因(支座移动、温度改变、制造误差)作用下,不产生内力,但产生位移。 1. A.√ 20、力法和位移法既能用于求超静定结构的内力,又能用于求静定结构的内力。() 1. B.× 21、静定结构在非荷载外因(支座移动、温度改变、制造误差)作用下,不产生内力,但产生位移。()1. A.√ 22、位移法和力矩分配法只能用于求超静定结构的内力,不能用于求静定结构的内力。( ) 1. B.× 23、 图2所示体系是一个静定结构。() 1. B.× 24、力矩分配法中的分配系数、传递系数与外来因素(荷载、温度变化等)有关。 1. B.× 25、三铰拱的水平推力不仅与三铰的位置有关,还与拱轴线的形状有关。 1. B.× 26、三铰拱的主要受力特点是:在竖向荷载作用下产生水平反力。 1. A.√ 27、两根链杆的约束作用相当于一个单铰。 B.× 28、不能用图乘法求三铰拱的位移。

土力学习题参考答案(完整版)

精心整理《土力学》作业答案 第一章 土粒直径以毫米计 习题1-1颗粒大 小级配曲线 由级配曲线查得:d60=0.45,d10=0.055,d30=0.2; C u>5,1

(2)确定不均匀系数Cu 及曲率系数Cv ,并由Cu 、Cv 判断级配情况。 解: 1—3d 其密度?和含水量W 。 解: 11 1 === s v V V e ;

3/33.12 66 .2cm g V M s d === ρ; 3/83.121 66.2cm g V M M w s =+=+= ρ; %6.3766 .21=== s w M M ω。 1—4在某一层土中,用容积为72cm 3的环刀取样,经测定,土样质量129.1g ,烘干后质量121.5g ,土粒比重为2.70,问该土样的含水量、密度、饱和密度、浮密度、干密度各是多少? 解: V s V V = ω= ρsat ρ'= ρ[或d ρ1— 365.04.083 .14.1=-=s V ; 74.2365 .01 === w s s s V M G ρ; 10.1365 .04.0=== s v V V e 。 1—6某科研试验,需配制含水量等于62%的饱和软土1m 3,现有含水量为15%、比重为2.70的湿土,问需湿土多少公斤?加水多少公斤? 解:

1m 3饱和软土中含土粒:t M s 01.17 .21 62.01=+ = ; 折合%15=ω的湿土: kg t M M M M s w s 116016.1)15.01(01.1)1(==+?=+=+=ω; 需要加水: kg t M M s w 475475.0)15.062.0(01.1)(12==-?=-=ωω。 1—7已知土粒比重为2.72,饱和度为37%,孔隙比为0.95,问孔隙比不变的条件下,饱和度提高到90%时,每立方米的土应加多少水? 解: 1m 3 S r 提高到1m 31—8混成10%解: 1V =解得:2V 1—9γ',并 求饱和度Sr 为75%时的重度γ和含水量w 。(分别设Vs=1、V=1和M=1进行计算,比较哪种方法更简单些?) 解: 3/6.17 .0172 .2cm g V M s d =+== ρ; 3/0.27 .011 7.072.2cm g V V M w v s sat =+?+=+= ρρ; 3/91.17 .01175.07.072.2cm g V M =+??+== ρ;

土力学计算题

第一部分 土的物理性质 1、一粘土试样,体积为29cm 3,湿土重力为0、5N,ω=40%,γs =27×10-3N/ cm 3。求 土样饱与度S r ,孔隙比e ,孔隙率n 。 2、某饱与土样,其含水量ω=40%,液限ωL =42%,塑限ωp =20%,土体容重γ=18、 2kN/m 3,求I L 、I p 、e 与土粒比重G s 各为多少? 3、试证明以下关系式:1s d e γγ=+ 。 4、试证明以下关系式:(1)s r w n S n ωγγ-=。 5、某饱与土体积为97cm 3,土的重力为1、98N,土烘干后重力为1、64N,求ω、γs 、 e 及γd 。 6、一击实试验土样为1000cm 3,测得其密度ρ=1、95g/cm 3,含水量ω=18%,如拌制 ω=20%的土样,需加多少水? 7、有一块体积为60 cm 3的原状土样,重1、05 N, 烘干后0、85 N 。 已知土粒比 重(相对密度)s G =2、67。求土的天然重度γ、天然含水量ω、孔隙比e 及饱与度S r 。 8、已知某粘性土的液限为42%,塑限为22%,土粒密度γs 为27、5,饱与度为0、9, 孔隙比为1、6,试计算塑性指数、液性指数并确定粘性土的状态。 9、一体积为50cm 3的土样,湿土质量为90g,烘干后质量为68g,土粒比重(相对密 度)s G =2、69,求其孔隙比?若将土样压密,使其干密度达到1、61g/cm 3,土样孔隙比将减少多少? 10、 用土粒比重s G =2、7,天然孔隙比为0、9的某原状土开挖后运到另处作路 基填料,填筑干密度要求达到1、65 g/cm 3,试求填筑1m 3的土需要挖方多少体积? 11、 已知某地基土试样有关数据如下:①天然重度γ=18、4kN/m 3,干重度γd =13、 2kN/m 3;②液限试验,取湿土14、5g,烘干后重10、3g;③搓条试验:取湿土条5、2g,烘干后重4、1g,试确定土的天然含水量,塑性指数与液性指数? 12、 某一取自地下的试样,用环刀法测定其密度。环刀的体积为60cm 3,环刀质量

水上施工平台计算资料

湖南省长沙市XXX 湘江大桥 水上施工平台计算书 2010年10月

目录 一、前言 (1) 二、工程概况 (1) 三、计算依据 (1) 四、计算条件 (2) 1.水文条件及高程 (2) 2.地质条件 (2) 3.平台使用荷载 (2) 4.河床冲刷计算 (2) 五、计算荷载 (2) 1.作用在钢管上的水流力 (2) 2.作用在钢管顶上的水流力 (3) 3.风荷载 (3) 4.平台上部荷载 (4) 六、平台结构验算 (5) 1.计算步骤 (5) 2.结构分析计算 (5) 2.1荷载组合 (6) 2.2强度计算结果 (7) 2.3刚度计算结果 (9) 2.4整体稳定性计算 (10) 七、结语 (11) 八、钢管桩埋入深度计算 (11)

水上施工平台计算书 一、前言 本计算书根据水上施工平台的结构构造建立有限元模型,并根据其使用功能要求确定相应的荷载组合,计入荷载分项系数影响后,进行结构分析计算。主要计算项目和内容包括: 1.荷载计算,包括使用荷载(指一台履带吊机、一台旋挖钻机、三台回旋钻机、三台泥浆渣箱、三台空压机)、风荷载、流水压力荷载的取值计算。 2.平台型钢梁的内力计算、抗弯抗剪承载力验算; 3.平台下部构造(含横梁、纵梁、平联和钢管桩)的应力验算。并考虑了按规范公式进行稳定验算。 二、工程概况 大桥主墩Z1-Z5均位于湘江中,在枯水期水位27M时的最大水深在Z5主墩位置,水深为12M,最小水深在Z1主墩位置,水深为7.8M,所以,Z1-Z5主墩桩基及承台均采用水上钻孔平台施工。Z6主墩位于河东江边位置,采用筑岛施工。 水上钻孔平台的几何尺寸为39m(顺河)х33.8m(顺桥),平台顶标高为32.00m。 每个主墩的水上钻孔平台均采用υ720×8mm钢管桩基础,桩顶设3I40b工字钢横梁,其上铺设I40b工字钢纵梁。为增加整个平台的稳定性,钢管桩腰身水面以上位置,纵、横向均采用υ290×8mm钢管进行水平联接。 平台顶面采用在纵梁工字钢上横向满铺[32b槽钢。 三、计算依据 ●《公路桥涵设计通用规范》(JTG D60-2004) ●《钢结构设计规范》 (GB50017-2003) ●《公路桥涵钢结构及木结构设计规范》,TJ025-86 ●《港口工程荷载规范》 JTJ215-98 ●《港口工程桩基规范》 JTJ254-98

土力学计算题

第一部分 土的物理性质 1、一粘土试样,体积为29cm 3,湿土重力为0.5N ,ω=40%,γs =27×10-3N/ cm 3。求土样饱和度S r ,孔隙比e ,孔隙率n 。 2、某饱和土样,其含水量ω=40%,液限ωL =42%,塑限ωp =20%,土体容重γ=18.2kN/m 3,求I L 、I p 、e 与土粒比重G s 各为多少? 3、试证明以下关系式:1s d e γγ= + 。 4、试证明以下关系式:(1) s r w n S n ωγγ-=。 5、某饱和土体积为97cm 3,土的重力为1.98N ,土烘干后重力为1.64N ,求ω、γs 、e 及γd 。 6、一击实试验土样为1000cm 3,测得其密度ρ=1.95g/cm 3,含水量ω=18%,如拌制ω=20%的土样,需加多少水? 7、有一块体积为60 cm 3的原状土样,重1.05 N, 烘干后0.85 N 。 已知土粒比重(相对密度)s G =2.67。求土的天然重度γ、天然含水量ω、孔隙比e 及饱和度S r 。 8、已知某粘性土的液限为42%,塑限为22%,土粒密度γs 为27.5,饱和度为0.9,孔隙比为1.6,试计算塑性指数、液性指数并确定粘性土的状态。 9、一体积为50cm 3的土样,湿土质量为90g ,烘干后质量为68g ,土粒比重(相对密度)s G =2.69,求其孔隙比?若将土样压密,使其干密度达到1.61g/cm 3,土样孔隙比将减少多少? 10、 用土粒比重s G =2.7,天然孔隙比为0.9的某原状土开挖后运到另处作路基 填料,填筑干密度要求达到1.65 g/cm 3,试求填筑1m 3的土需要挖方多少体积? 11、 已知某地基土试样有关数据如下:①天然重度γ=18.4kN/m 3,干重度γd = 13.2kN/m 3;②液限试验,取湿土14.5g ,烘干后重10.3g ;③搓条试验:取湿土条5.2g ,烘干后重4.1g ,试确定土的天然含水量,塑性指数和液性指数?

水上平台施工方案

袍中路南延工程施工I标段 水 上 平 台 专 项 方 案 浙江凯胜园林市政建设有限公司 2011年7月

一、工程概况 工程名称:袍中路南延工程施工I标段 工程地点:袍江工业区 地理位置:袍中路南延(洋江路——北复线) 设计单位:深圳市市政设计研究院有限公司 建设单位:绍兴袍江工业区投资开发有限公司 监理单位:浙江中誉工程管理有限公司 施工单位:浙江凯胜园林市政建设有限公司 项目实施范围:袍中路南延工程施工I标段桩号K0+008.28~K1+070,包括施工图范围内道路路基、路面、桥梁、管涵、雨水管道(不包括人行道及部分挡墙、污水管)等相关内容施工总承包。 要求工期:600天 太湖龙江桥上部结构为先简支后连续预应力砼空心板梁。桥下部结构采用桩柱式桥墩,重力式桥台,钻孔灌注桩基础,钻孔灌注桩为C25水下混凝土。 二、具体施工方案 1、根据设计图纸,按照排架进行科学合理的钻孔平台的搭设,本方案将整个水上钻孔平台搭设成一个整体的施工平台,水上钻孔平台桩基采用?114mm钢管,钢管间距根据排架平面尺寸进行合理布置,钢管间距横

向2m,纵向2m。(主要材料数量见附表1) 2、钻孔平台钢管沉桩施工采用简易小型打桩机人工锤打工艺, 入土深度根据土质不同分别为3~4m,平台横梁及纵梁采用[14槽钢,钢管立杆之间采用?90mm钢管交叉支撑。(见附图1) 3、?114mm钢管顶上焊接100×100mmδ6mm的三角板支撑,横梁[14槽钢直接搁置于上面。 4、钢管与纵横梁[14槽钢的连接采用100×100mmδ6mm的三角板两边绑焊或?10的钢筋包焊。(见附图2)

附图1 钻孔灌注桩施工平台简图 横杆 钢管 钢管

土力学第七次作业解答

1.表述朗肯土压力理论和库仑土压力理论的相同点和不同点,主要分析假设条件,实用土的种类、误差等等。 答:朗肯上压力理论是根据半空间体的应力状态和土单元体(土中一点)的极限平衡理论得出的上压力计算理论。 相同点:都要求挡土墙的移动是以使墙后填土的剪力达到抗剪强度土压力。两种土压力理论都是极限平衡状态下作用在挡土墙上的土压力,都属于极限平衡理论。 不同点: 1)假设条件不同:郎肯假设墙背直立、光滑、填土水平面无限延伸; 库仑假定:填土为均匀,各自同性,无粘土;滑动土体看做滑动土楔,其滑裂面为通过墙踵的平面;滑动土楔视为刚体。 2)求解方法不同:郎肯是从一点的应力状态出发,先求出压力强度,再求出总压力,属于极限应力法,适用于填土表面为水平的无粘土或粘性土的土压力计算;而库仑考虑整个滑动楔体静力平衡,直接求出总土压力,需要时再求解压力强度,属于滑动楔体法,只适用于填土表面为水平的粘性土,对无粘性土只能用图解法计算。 3)适用范围不同:库仑要广。 4)计算精度不同:郎肯主动土压力偏大,被动土压力偏小,墙体粗糙;库仑主动土压力接近实际土压力,被动土压力差距较大,墙体滑动面为平面。 2.某挡土墙高5m ,墙后填土为黏土,重度3 18.6/kN m γ=,饱和重度319.6/sat kN m γ=,粘聚力20c kPa =,内摩擦角0 25?=,地下水2w H m =,试计算该挡土墙后静止土压力 分布图,总静止土压力值及其作用点位置。【本题按照“水土分算”计算】

解: 21.58B kPa σ=38.28C kPa σ=30wC kPa σ=A B C 2m 3m 地下水位以上(下)的静止土压力系数001sin 1sin 250.58 K ?=-=-= B 点土压应力为 300.5818.6/221.58B K z kN m m kPa σγ==??= 水位以下,C 点土压应力()300.5819.610/338.28C B K z kN m m kPa σγσ==+?-?= C 处的水压力 3310/30wc m kN m kPa σ=?=(图中红色所示) 总的整体土压力包括地下水位上下土压力和水压力。 AB BC wBC F F F F =++∑ 0.521.58221.58/AB F kPa m kN m =??= ()21.5830.538.2821.58364.7425.0589.79BC F kPa m kPa m kN kN kN =?+?-?=+= 0.533045/wBC F m kPa kN m =??=

土力学计算题48003

五、计算题 1. 甲乙两土样的颗粒分析结果列于下表,试绘制级配曲线,并确定不均匀系数以及评价级 配均匀情况。 粒径/mm 2~0.50.5~ 0.25 0.25~ 0.1 0.1~ 0.05 0.05~ 0.02 0.02~ 0.01 0.01~ 0.005 0.005~ 0.002 ﹤ 0.002相对 含量 (%) 甲土 24.314.220.214.810.5 6.0 4.1 2.9 3.0 乙土 5.0 5.017.132.918.612.49.0五、计算题 解:甲土颗粒级配曲线如下: ,, ,因为>10 粒度分布范围较大,土粒越不均匀,级配良好。乙土颗粒级配曲线如下: 孔径(mm)留筛土质量(g)小于该孔径的土质量 (g) 小于该孔径的土的百 分数% 20100100 孔径(mm)留筛土质量(g)小于该孔径的土质量 (g) 小于该孔径的土的百 分数% 20100100 0.524.375.775.7 0.2514.261.561.5 0.120.241.341.3 0.0514.826.526.5 0.0210.51616 0.01 6.01010 0.005 4.1 5.9 5.9 0.002 2.933 <0.002 3.0

0.159595 0.0559090 0.0217.172.972.9 0.0132.94040 0.00518.621.421.4 0.00212.499 <0.0029 , 因为大于5,在1-3之间所以为良好级配砂 五、计算题 1. 有一完全饱和的原状土样切满于容积为21.7cm3的环刀内,称得总质量为7 2.49g,经10 5℃烘干至恒重为61.28g,已知环刀质量为32.54g,土粒相对密度(比重)为2.74,试求该土样的湿密度、含水量、干密度及孔隙比(要求按三项比例指标定义求解)。 2. 某原状土样的密度为1.85g/cm3、含水量为34%、土粒相对密度为2.71,试求该土样的饱和密度、有效密度和有效重度(先导得公式然后求解)。 3. 某砂土土样的密度为1.77g/cm3,含水量为9.8%,土粒相对密度为2.67,烘干后测定最小孔隙比为0.461,最大孔隙比为0.943,试求孔隙比和相对密度,判断该砂土的密实度。

水上钢平台施工方案

目录 1.概述 (1) 1.1.编制依据 (1) 1.2.概述 (1) 2.施工平台的布置 (2) 2.1.编制原则 (2) 2.2.施工平台编制说明 (2) 3.施工平台的施工 (5) 3.1.施工平台搭建施工工艺 (5) 3.2.施工平台施工 (6) 3.3.施工平台施工组织 (9) 4.施工安全措施 (10) 4.1.水上施工安全措施 (10) 4.2.起重吊装安全作业措施 (10) 4.3.电气焊工 (11) 4.4.安全用电措施 (12) 4.5.现场安全管理 (12) 4.6.防范施工人员落水风险的对策措施 (12) 4.7.水上作业基本要求 (13) 5.施工平台的使用及安全维护 (13) 5.1.施工平台观测 (13) 5.2.施工平台的使用、维护和检修 (14) 5.3.施工平台预警及抢险 (15) 6.施工平台验算 (15) 6.1.验算资料 (15) 6.2.施工平台上部结构验算 (15) 6.3.结论 (20)

1.概述 1.1.编制依据 1)《公路桥涵地基与基础设计规范》JTG_D63-2007 2)《公路桥涵钢结构及木结构设计规范》JTJ025-86 3)《公路桥涵设计通用规范》JTG D60-2004 4)《铁路钢桥制造规范》TB10212-2009 5)《装配式公路钢桥多用途使作手册》 6)《路桥施工计算手册》 7)《桥梁工程》、《结构力学》、《材料力学》 8)其他相关规范手册 1.2.概述 河源市区水源工程是由新丰江水库取水,通过隧洞引水及专用管道,将新丰江水库的水输送到河源市源城区的自来水厂。 项目主要包括水闸工程、引水隧洞工程和管道工程。①取水口位于新丰江水库大坝上游右岸1400M处的岸边,取水口布置一座取水控制闸,闸孔尺寸3.6MX3.6M(宽X高),闸孔数为一孔;②原水自取水口进入取水隧洞,隧洞长1781.8M,桩号:K0+000.00~K1+781.8,隧洞过水断面为圆形,洞直径3600MM,为有压过水隧洞。③主干管长40M,管径为DN3600MM,管材质为34MM厚的钢管;第一分水口至南水厂分水口545.56M,管径为DN3000MM厚度215MM 厚的PCCP管;至南水厂200M DN2400管道,管道材质为30MM钢管。 进水口设计方案变更情况:进水口取消原设计方案中的砂平台,采取用灌注桩替代连续墙的方式进行施工;灌注桩水中部分施工采用钢平台作为施工平台;钢平台由钢管桩(基桩)、工字钢与贝雷架组合而成,其作为施工通道和施工平台使用。

结构力学大作业(华科)

一、任务 1.求解多层多跨框架结构在竖向荷载作用下的弯矩以及水平荷载作用下的弯矩和 各层的侧移。 2.计算方法: (1)用近似法计算:水平荷载作用用反弯点法计算,竖向荷载作用采用分层法和二次力矩分配法计算。 (2)用电算(结构力学求解器)进行复算。 3. 就最大相对误差处,说明近似法产生误差的来源。 4. 将手算结果写成计算书形式。 二、结构形式及各种资料 1. 计算简图:如图1所示。 2. 基本计算参数 底层柱bXh(mm) 其它层bXh(mm) 边梁bXh(mm) 中间梁bXh(mm) 500X500 450X450 250X450 250X450 材料弹性模量: 72 3.210/ h E kN m =? 竖向荷载: 2 1 =23/ g kN m,2 2 =20/ g kN m 水平荷载: =32 p F kN 1,2 =18 P F kN 3. 荷载分组: (1)计算水平荷载(见图2);(2)计算竖向恒载(见图3); L1L2H1 H2 H2 H2 H2 F F F F F 图1 计算简图图2 水平荷载作用

g2 g1 g1 g1 g1 q2 q1 图3 竖向荷载作用 三、计算内容 ?水平荷载 1、反弯点法 (1)求柱的剪力 由所给数据可得各层梁柱的线刚度(单位:kN·m)如下表: i底柱i其它柱i左梁i右梁 34792363331270825417 第五层柱;F Q14 = F Q25 = F Q36 = 18/3kN = 6kN 第四层柱;F Q47 = F Q58 = F Q69 = 50/3kN 第三层柱;F Q710 = F Q811 = F Q912 = 82/3kN 第二层柱;F Q1013 = F Q1114 = F Q1215 = 114/3kN 第一层柱;F Q1316 = F Q1417 = F Q1518 = 146/3kN (2)求柱的弯矩 第五层柱;M 14 = M 41 = M 25 = M 52 = M 36 = M 63 = 6×3/2 = 9kN·m 第四层柱;M 47 = M 74 = M 58 = M 85 = M 69 = M 96 = 50/3×3/2 = 25kN·m 第三层柱;M 710 = M 107 = M 811 = M 118 = M 912 = M 129 = 82/3×3/2 = 41kN·m 第二层柱;M 1013 = M 1310 = M 1114 = M 1411 = M 1215 = M 1512 = 114/3×3/2 = 57kN·m 第一层柱;M 1316 = M 1417 = M 1518 = 146/3×4.8/3 = 77.87kN·m M 1613 = M 1714 = M 1815 = 146/3×2×4.8/3 = 155.74kN·m (3)求梁的弯矩 分别取结点1、2为隔离体 1 M12 ∑M1=0 M12=M14=9kN·m M14

相关主题
文本预览
相关文档 最新文档