当前位置:文档之家› 美国增材制造实验室汇总

美国增材制造实验室汇总

美国增材制造实验室汇总
美国增材制造实验室汇总

美国增材制造实验室汇总

美国大学研究室主要是以基础研究为主,这些高校研究的资金主要来自NASA、能源部等大财主。金属材料3D打印大热,“2020年之前通用航空公司将制造出10万个增材零件”

在金属材料研究方面,美国的优势并不像高分子材料、纳米材料等其他新材料的那样明显,其最发达的是金属材料在军事和航空航天领域的应用。

众所周知,美国的军事、航空航天实力全球第一,这也得益于美国在这两个领域全球领先的金属材料研发能力。近年来,增材制造(即3D打印)迅速升温,美国也于2012年10月在俄亥俄州扬斯顿成立了首个世界前沿的国家增材制造创新研究所(NAMII),以巩固其在增材制造领域的优势。

在国家研究室方面,除了橡树岭国家实验室、劳伦斯伯克利国家实验室、阿贡国家实验室、埃姆斯国家实验室、国家航空航天局(NASA)等享誉全球的国家实验室,还有美国金属加工技术国家中心等专门从事金属材料研究室以及新近成立的国家增材制造创新研究所。

美国的大学研究室主要是以基础研究为主。除了知名的MIT、西北大学等老牌材料工程名校,还有侧重金属材料研究的康涅狄格大学等,这些高校研究的资金主要来自NASA、能源部等大财主。金属材料研究大名鼎鼎的公司,则主要是波音、通用等。

大学研究室:

MIT发现金属材料自我修复

大学方面,麻省理工学院、西北大学、加州大学圣芭芭拉分校、伊利诺伊大学香槟分校、斯坦福大学、康奈尔大学、哈佛大学、宾夕法尼亚大学等都是传统的材料科学工程研究顶尖院校,这些大学在细分的金属材料方面也有着较深的研究底蕴。

在全美高校之中,麻省理工学院材料工程专业全美排名第一。除了前期介绍过的纳米技术实验室、先进材料实验室,麻省理工学院材料科学与工程系还拥有一个快速成型实验室(RFL),主要进行金属材料等的快速成型试验。该实验室始建于2007年,初始启动资金来自于Lord Foundation。目前,该实验室RFL 拥有数控铣床和车床,两个3D打印机,激光切割机,和一个CAD/CAM工作站。

自然界中的生物体在遭受损伤时具有自我康复的功能,但你一定没听过金属材料也能自我修复。

日前,来自麻省理工学院的材料工程系的迈克尔·戴姆克维兹教授和研究生徐国强在一项金属特性实验中意外发现受损的金属也具有自我修复的功能,并通

过计算机模型重现了这一修复机制。发现这个机制后,MIT的研究人员计划进一步研究如何设计出相应的金属合金,以便在特殊应用条件下产生自我修复的功能。“我们为之打开了通途,如何设计出可以自我复原的金属材料不会太久。”上述研究人员称。

西北大学,材料科学与工程排名全美第二,其材料系与阿贡国家实验室广泛合作,尤其是光电子材料和纳米材料方面。西北大学的金属材料包括:形状记忆合金(生物医学植入物)、轻型车辆和高温引擎的多元合金、金属间化合物合金的储氢、电子显微技术的高级特征、合金中纳米析出相的原子探针研究等。

加州大学圣芭芭拉分校材料科学方面的研究位列美国前三。该学校除了拥有数个全球顶尖的纳米材料实验室,还拥有众多与金属材料研究相关的实验室,包括材料研究实验室(MRL)、多功能材料和结构中心(Cemmas)、节能材料中心(CEEM)、复合材料研究所(Los Alamos)、先进材料中心(MC-CAM)、国际材料研究中心(ICMR)等。

其中,材料研究实验室是世界公认的五大材料研究中心之一,研究范围宽广,在全球范围内影响力巨大。复合材料研究所(Los Alamos)则是加州大学圣芭芭拉分校与洛斯阿拉莫斯国家实验室合作成立研究项目,主要从事金属复合材料和工程材料方面的研究。此外,先进材料中心(MC-CAM)则是与日本三菱化学公司(Mitsubishi Chemical)合作成立的研究机构。

宾夕法尼亚大学,主要研究如何研发新型高强度、高韧性合金材料,致力于金属间化合物的基础系统研究,比如钛铝合金和银钼合金等。

此外,康涅狄格大学、密歇根理工大学、田纳西大学、奥本大学、新墨西哥矿业技术学院、密苏里大学-罗拉分校、普渡大学、凯斯西储大学、密歇根州立大学伍斯特理工学院等院校的材料科学与工程专业名气虽不如MIT等名校,但这些学校的材料工程偏重金属材料的研究,各有千秋。

康涅狄格大学材料科学研究所(IMS)成立于1965年,是一个先进材料研究中心,研究所占地面积达80000平方英尺。该研究所材料科学方面的研究横跨金属聚合物、金属纳米材料、生物医学金属材料等领域。此外,该研究室拥有一系列生物金属材料、金属材料加工、金属机械材料测试、核磁共振及磁检测、金属粉末特征等相关的先进研究仪器设备。

“美国学校做的也都是基础方面的研究为主,很多学校研究资金的来源都是NASA。”一位新加坡南洋理工大学机械与宇航工程系研究员表示,“就增材制造(3D打印)涉及的金属材料方面,美国做得比较好的学校有德雷克赛尔大学、

密苏里大学和卡耐基梅隆大学等。”

“在以上大学中,德雷克赛尔大学的钛合金、镁合金研究比较出色,钛合金可用于人造植入物,镁合金可以溶解,用于飞机制造。密苏里大学准备要做这方面的研究,最近刚争取到资金支持;卡耐基梅隆大学研发了10年的钛合金,但没什么特别的成果。”上述研究员进一步表示。

国家实验室:美国国家

增材制造创新研究所阵容庞大

在美国,除了世界鼎鼎有名的橡树岭国家实验室、劳伦斯伯克利国家实验室、阿贡国家实验室、埃姆斯国家实验室、国家航空航天局(NASA)设有专门的研究金属材料团队之外,还有一些并不耳熟能详但是在高端金属研究领域极具地位的研究所,其中包括美国金属加工技术国家中心(NCEMT)、美国国家增材制造创新研究所。

橡树岭国家实验室下设一个专门的材料科学和技术部,该部门是由之前的凝聚态物质科学部和金属与陶瓷部整合而成的,金属方面的研究涉及合金、材料在极端环境,如高温、强腐蚀性介质、强辐射下的交互以及材料的物理应用,其中包括材料的超导、热电、储氢、光电催化、能源存储性能等。

埃姆斯国家实验室材料制备中心(MPC)对金属的研究开发业界知名的,在2013年1月份,美国能源部宣布在该实验室设立重要材料研究所(CMI),主要目的是解决维护美国能源安全所需的稀土金属和其他材料短缺的问题。

美国金属加工技术国家中心专业研究范围包括金属的浇铸、半固态、成型、焊接和粉末冶金,其中粉末冶金等静压技术的研究处于前沿。

“钛合金在航空航天领域用得比较多,现在可以用激光以及电子束加工成型,这些金属加工技术是这几年才兴起来的。”前述南洋理工大学研究员向记者表示。

而这位研究员提到的用激光和电子束加工成型的技术正是近年来炒得火热

的3D打印,也叫做增材制造。作为科技强国,美国在这方面自然不甘人后,2012年10月,美国在俄亥俄州扬斯顿成立了首个世界前沿的国家增材制造创新研究所(NAMII)。

美国国家增材制造创新研究所由来自行业、学术界、政府和劳动力发展资源领域的成员组成,是奥巴马政府提议在全国建立的15个制造业创新学院的一个。

目前该研究所至少拥有85家公司,主要包括全球知名的特种金属生产商阿勒格尼技术公司、马丁航空公司,以及3D打印公司ExOne公司、波音公司、通用动力、通用电气、IBM等企业,此外,还包括至少13所研究型大学,主要有

卡内基-梅隆大学,凯斯西储大学,肯特州立大学,宾夕法尼亚州立大学,罗伯特莫里斯大学,美国里海大学、阿克伦大学,匹兹堡大学、扬斯顿州立大学以及

9个社区学院和18个非营利机构。

研究所所有成员的目标是将3D打印技术转变成美国制造技术的主流,而研究所的主管爱德华·莫里斯也表示,美国国家增材制造研究所正探索方法,把美国制造业再次转变成主导全球经济的力量。

公司研究室:3D打印

改变公司金属加工方法

学术、研究和商业形成一体,相辅相成,不仅是美国众多高校研究所和国家实验室运营模式,美国很多大型公司的研究和生产相结合的模式也日臻成熟,波音公司和通用电气公司是当之无愧的典型。

美国波音公司是世界上航空航天领域规模最大的公司,世界上最大的民用和军用飞机制造商,也是美国国家航空航天局的主要服务提供商。除了设计和生产我们所熟知的民用飞机外,同时也是军用飞机、卫星、导弹防御、人类太空飞行和运载火箭发射领域的全球市场领先者,而且还处于无人驾驶系统军事技术领域的前沿。

波音公司研发机构命名为鬼怪工程部(Phantom Works),与该研究部产生的各种天马行空的想法相互映衬。

在美国,有4000多名波音员工投身其中成为波音特种工程师,从事着近500个高科技项目的研究。鬼怪工程部的制造加工团队曾率先使用高速加工、搅拌摩擦连接、自动化纤维放置和树脂膜注入缝合的方法生产出结构更强、质量更轻、体积巨大的整块复合金属结构并运用于F/A-18E/F“超黄蜂”舰载战斗机上。

另外一个非常重视前沿金属材料研发和生产的公司是通用电气。打开通用电气公司的增材制造主页,“增材制造正在重塑我们的工作方式”的标语赫然出现。目前,通用电气公司使用了超过300件的3D打印器材。

通用电气研究增材制造有20多年之久,其公司著名的全球研发中心下面专门设有一个增材制造实验室,团队里面包含600名工程师,分布在世界21个点,主要专注于新合金的开发、扩充、加工和运用。

实验室管理制度

****有限公司实验室管理制度 1 安全与管理 安全规程总则: 树立“预防为主,安全第一;爱岗敬业,人人有责”的安全理念观念。全体员工必须牢记和执行,国家和公司,相关财产安全、人身安全、安全生产、劳动保护的法令法规和公司制定的规章制度。凡不符合安全要求、存在安全隐患的实验室和仪器设备,以及可能给安全生产带来潜在安全风险的因素,员工有责任义务及时向负责人报告。出现危险的情况,员工必须停止实验操作并及时报告负责人处理。 1.1 实验室安全责任 安全员责任内容 (1)组织月度安全检查(时间暂定为每月中旬),重点对实验室用电、用气、用水、蒸汽、危险化学品等安全进行检查,填写月度安全检查表并存档; (2)对与安全检查中发现的安全隐患、漏洞的排除工作进行监督; (3)对客观原因引起的安全隐患实验室难以排除的,及时形成书面报告,向主管领导汇报; (4)对新员工、实习生进行安全培训; (5)组织消防安全、实验室安全等讲座或安全教育活动,增强员工安全意识。 2 仪器及试剂管理 2.1 岗位安排 仪器名称 小型仪器 对外服务区 内部实验室 大型仪器 气相色谱 液相色谱 制备液相 蛋白纯化 倒置荧光显微镜

酶标仪 PCR 全波长分光光度计纯水系统 流式细胞仪 30L发酵罐 5L发酵罐 凝胶成像仪 落地离心机 试剂 常规试剂 色谱试剂 易制毒化学品、危险品 2.2 岗位职责 2.2.1 小型仪器方面 小型仪器包括:超净台、培养箱、摇床、移液枪、离心机、冰箱等价值10万元以下的仪器设备。 工作内容如下: (1)统计区域内小型仪器的型号、数量、使用情况及相关配件耗材情况; (2)协调小型仪器的使用,对使用率较高的仪器如超净台建立预约使用制度、冰箱建立分区域使用制度等; (3)对需要添置的小型设备进行调研和提交采购申请; (4)对区域内设备进行常规维护,整理操作注意事项,对操作不规范的现象及时制止和整改; (5)对出现故障的设备进行报修。 2.2.2 大型仪器方面 大型仪器包括:流式细胞仪、气相、液相、蛋白纯化、酶标仪等价值10万元以上的仪器设备。大型仪器负责人要对所负责的仪器有充分的了解,熟悉仪器的使用、保养、维护等内容。 工作内容如下:

美国能源部所属的国家实验室

美国能源部所属的国家实验室 艾姆斯实验室(Ames Laboratory) 地址:Lowa State University,Amer,IA50011 研究领域:该实验室是能源部与衣阿华州立大学联合管理的研究机构。研究范围包括能源与环境领域的物理学基础研究以及面向目标的研究计划。该实验室的主要研究计划是材料科学计划,这一计划的中心是新材料的制备、提纯、化学特性表征和结构识别,其次是材料的化学。物理及机械性能的评价与分析。其他研究计划包括:化学分析计划:化学及化学工程计划;材料以及机器、结构元件的无损检测开拓研究。 阿贡国家实验室(Argonne National Laboratory) 地址:9700 S.Cass Aue,.Argonne,IL60439-4837 研究领域:该实验室是能源部与芝加哥大学联合管理的跨学科研究中心。研究重点集中在:工程研究、重点是核能及其他先进能源技术;基础科学,重点是化学物理学和材料科学;生物医学及环境科学与技术。物理学领域的研究计划包括研究高能物理学、核物理学、核科学、材料科学、化学、数学和地球科学;聚变反应堆研究计划集中在两大方面:液态金属反应堆技术和先进反应堆技术;生物研究包括人体放射生物学;低剂量辐射效应、癌作用及化学诱变等;环境研究包括废物管理;大气物理学、分子物理学与化学、检测仪器开发以及环境的综合评估等。 布鲁克海文国立实验所(Broodhaver National Laboratory) 地址:Upton,NY11973 研究领域:该所由能源部和大学联合体共同管理。主要任务是设计、建造和运用来研究物质基本成分以及各成分特性与相互作用的大型综合研究设施,研究主要侧重在高能物理学、核物理学、固体物理学、化学和生物学领域,其中包括研究能源生产与利用过程中化学物质及辐射的物理、化学和生物效应。此外,该所还从事旨在解决具有国家意义的能源系统问题的应用研究与开发。 费米国家加速器实验室(Fermi National Accelerator Laboratory) 地址:P.O.Box 500,Batavia,IL60510 研究领域:该实验室是能源部针对计划的研究机构,由美国及加拿大的54所大学组成的大学研究联盟管理。其中心任务是研究和探索基本粒子物理学,以扩大和加深对物质基本结构的了解。与此任务有关的研究活动包括改进加速器设计,

金属材料激光增材制造技术

金属材料激光增材制造技术 孙峰、李广生 金属材料增材制造技术是通过对CAD模型进行离散处理,以金属粉末、颗粒、金属丝材等为原材料,采用高功率激光束熔化/快速凝固逐层堆积生长,直接从零件数模完成高性能零件的近终成形制造。 金属材料增材制造技术,可分为以送粉为技术特征的激光沉积制造(Laser Deposition Melting,LDM)技术和以粉床铺粉为技术特征的选区激光熔化(Selective Laser Melting,SLM)技术。 LDM技术是快速成形技术和激光熔覆技术的有机结合,是以金属粉末为原材料,以高能束的激光作为热源,根据成形零件CAD模型分层切片信息规划的扫描路径,将送给的金属粉末进行逐层熔化、快速凝固、逐层沉积,从而实现整个金属零件的直接制造。 LDM系统主要包括:激光器及光路系统、水冷机及冷却系统、数控机床系统、送粉器及送粉系统、惰性气体保护系统、激光熔化沉积腔及工艺监控系统等。 图1LDM激光沉积制造技术 LDM技术集成了快速成形技术和激光熔覆技术的特点,具有以下优点: (1)无需大型设备与模具,零件近净成形,材料利用率高;工艺流程、制造周期短,制造成本低; (2)零件无宏观偏析,组织细小、致密,力学性能达到锻件水平; (3)成形尺寸不受限制,可实现大尺寸零件的制造; (4)激光束能量密度高,可实现难熔、难加工材料的近净成形; (5)可对失效和受损零件实现快速修复,并可实现定向组织的修复与制造。 主要缺点: (1)制造成本较高;

(2)制造效率较低; (3)制造精度较差,悬臂结构需要添加相应的支撑结构。 SLM技术是以快速原型制造技术为基本原理发展起来的先进激光增材制造技术。通过专用软件对零件三维数模进行切片分层,获得各截面的轮廓数据后,利用高能激光束根据轮廓数据逐层选择性地熔化金属粉末,通过逐层铺粉,逐层熔化凝固堆积的方式,实现三维实体金属零件制造。 SLM系统主要由激光器及光路系统、气体净化系统、铺粉系统、控制系统4部分组成。 图2SLM激光选区熔化制造技术 SLM技术具有以下优点: (1)原材料范围广,包括不锈钢、高温合金、钛合金、钴-铬合金及难熔金属等; (2)成形零件精度高,表面稍经打磨、喷砂等简单后处理即可达到使用精度要求; (3)复杂零件制造工艺简单,周期短,材料利用率高; (4)成形零件的力学性能良好,一般力学性能优于铸件,与锻件相当; (5)适合多孔零件的制造,实现零件的轻量化的需求。 主要缺点: (1)层厚和光斑直径很小,导致成形效率很低;

美国贝尔实验室兴衰及启示

龙源期刊网 https://www.doczj.com/doc/ce8990239.html, 美国贝尔实验室兴衰及启示 作者:周尊丽高显扬 来源:《合作经济与科技》2018年第01期 [提要] 实验室在一个国家的创新体系中具有基础性作用。本文以创新价值链为理论基础,对有近百年历史的贝尔实验室的兴衰进行案例分析,分析其成功的机制,也总结其走向衰弱的原因。并对我国建设实验室提出若干有针对性的建议。 关键词:贝尔实验室;创新价值链;国家实验室;科技创新 中图分类号:F27 文献标识码:A 收录日期:2017年10月23日 实验室在一个国家的创新体系中具有基础性的作用,对促进原始创新、培养创新人才、培育新兴产业起着至关重要的作用。本文以创新价值链为理论基础,以美国贝尔实验室为案例,分析其近百年发展历程,对我国实验室资助体系提出政策建议。 一、文献综述 以贝尔实验室为案例进行专题研究的文献在我国比较少。在知网上以“贝尔实验室”为标题关键词检索,截至2016年底,共有文献193篇,剔除介绍类、技术类文献外,大多分析贝尔实验室的成功之道。1984年,美国电报电话公司(AT&T)被拆分后,贝尔实验室走向衰弱,2008年金融危机后贝尔实验室放弃了基础物理研究,对其由盛转衰的专题研究更少,大多以 报道、评论的形式见诸报纸与网络。 我国学者更多的是对国家实验室进行面上研究,周岱等(2008)将美国实验室分为三类:GOGO(Government-Owned and Government-Operated)实验室,政府拥有资产、政府直接管理的国家实验室;GOCO(Government-Owned and Contractor-Operated)实验室,政府拥有资 产、政府委托承包商管理的国家实验室;COCO(Contractor-Owned and Contractor-Operated)实验室,政府提供资助,与大学或企业界共同建设的国家实验室。分析了国家实验室三要素:物质要素、人才要素和制度要素,着重研究国家实验室的管理体制和运行机制。吴松强等(2013)比较美、英、德、日国家重点实验室在经费、人员管理与流动、监督与评估、资源与设备共享、合作与竞争等方面的特征,对中国建设国家实验室起到借鉴作用。林耕等(2009)、刘学之等(2015)研究了美国国家实验室技术转移制度,提出了政策建议。从现有文献看,我国学者对实验室的运行及管理机制研究较多,对实验室运行原理及成果扩展机制的理论研究较少;对国内外实验室管理模式比较较多,对典型案例的深入分析较少;对国家拥有或资助的实验室研究较多,对企业实验室研究较少。 二、贝尔实验室发展概况

实验室规范化管理制度

实验室规范化管理制度 1. 总则 1.1. 为进一步加强实验室建设和管理,促进实验室规范化管理,提高实验室的综合能力和检测数据的准确性,充分发挥实验室在质量控制中的作用,本规定进一步规范实验室仪器、药品使用及储存管理,加强实验室危险化学品的安全管理,规范各类仪器、设备的维护和保养,建立起标准化、规范化的实验室,特制定本规定。 1.2. 本规定适用于四川光亚聚合物化工有限公司质管部实验室内部管理。 2、实验室规范化管理基本要求 2.1. 实验室是进行检测、检定、校验工作的场所,应保持清洁、整齐、安静,检测室 温度、湿度符合相关项目检测环境条件需要。 2.2. 与试验检测工作无关的人员及物品不得入各检测室,实验人员不得做与检测和质 量改进实验无关的事情。工作期间严禁离岗、聊天、嬉戏、打闹、吸烟 2.3. 严格遵守安全生产的规章制度,工作时应戴相关的手套,严禁用手触摸带电器柜, 遵守安全用电规定。 2.4. 相互产生交叉污染或干扰的项目必须分室进行,不同项目的台面和物品不准混用。 2.5. 严格遵守本行业的有关法律、法规和规章,每次实验必须有详尽的实验记录,原 始实验记录、数据按规范和要求必须严格管理。 2.6. 工作完备后清理试验场地,关闭电源,水龙头和门窗,做好防水、防火、防盗等 工作。 2.7. 必须遵守危险品的有关规程,对于使用的易燃、易爆、剧毒和有腐蚀性物品,从 进场、领取、使用、废弃等环节上严格按操作程序和细则进行管理。 2.8. 实验室钥匙管理应严格遵守实验室有关钥匙管理的要求,严禁任何人以任何借口 私自配制或转借他人。 2.9. 建立卫生值日制度,实验室清洁卫生落实到人,定期打扫室内外环境卫生, 疏通排水沟

美国国家实验室的发展及其体制机制简析

美国国家实验室的发展及其体制机制简析 1.美国国家实验室的发展 美国国家实验室是美国国家级科研机构。迄今,由联邦政府主办或资助的国家级实验室约有720所。这些国家级实验室形成了规模庞大、结构合理、素质一流的研究队伍,汇聚了大量大型先进科学实验装置与仪器设备,构建了一整套优良的管理体制和运行机制。在完成国家不同时期的紧迫战略任务的过程中,逐步成为一支强有力的国家科技创新的持续力量。美国国家级实验室主要隶属于国防部、能源部、国家航空航天局(NASA )、农业部、环保署、商务部、卫生部等联邦政府部门。其布局还考虑大学及大型工业企业的空间分布,从而更有效凝聚和整合国家科技资源。美国国家级实验室的经费主要来自政府根据预算法案给予的拨款,也接受来自企业的研究经费和私人机构的捐赠。美国国家级实验室在规模、使命、组织机构和管理上存在较大差异。其中大型综合性实验室有l00个左右,包括美国能源部下属的全部多目标实验室,国家航天局(NASA)的大部分野外中心,农业部的科学研究设施基地、国立卫生研究院(N IH)及国家标准技术局的实验室。 美国国家实验室的建设与管理从一开始就体现国家意志,服从服务于国家战略目标,完成联邦政府赋予的使命,从事国家所需的前沿基础研究、竞争前战略高技术和重要公益性研究和高新技术开发与转移。亦负责有限范围内的管理活动,如向民间科研机构委托部分研究项目等。美国国家实验室为国家战略目标服务主要体现在: ( 1)从事联邦政府必须负责的领域内的基础研究和应用研究,如核能、武器系统与装备、空间、卫生和农业等; (2)完成政府职能所需的研究工作,如保存农作物种子库、国家的标准、计量等; ( 3)承担长期的、需要进行多学科综合研究的项目; ( 4)通过与大学的合作,为那些在大学受到一定限制的应用研究培养科学家和工程师; ( 5)从事投资大、周期长并具有一定风险、民营企业又无力承担或不愿意承担的研究开发项目; (6)从事有助于促进企业间竞争的研究与开发项目; ( 7)从事国民和社会需要而研究与开发成果不能直接获得经济效益的研究工作,如环境保护等。 2 管理体制和运行机制简析 美国在国家实验室管理体制和运行机制方面,积累了一整套完善的成功经验。 (1)美国国家实验室的管理体制 分类管理的体制。联邦政府对国家实验室的管理主要分为三类。第一类是政府拥有资产,政府直接管理运营的国家实验室,即GOGO( Government - Owned and Government - Operated) 实验室。其雇员和管理者均为政府雇员。这类实验室主要开展探索性和保密性研究工作,研究领域相对较窄。第二类是政府拥有资产、政府委托承包商管理的国家实验室,即GOCO ( Government- Owned and Contractor - Operated)实验室,政府一般从大学、学术界和企业界中选择管理承包者。第三类是政府提供资助,与大学或企业界共同建设的国家实验室,属于承包商拥有并进行管理,即COCO (Contractor - Owned and Contractor - Opera2ted)实验室;第三类实验室由承包商直接管理,负责制定其目标、使命等,不受政府过多约束,政府资助部分研究与开发经费。在三类管理模式中,政府委托承包商管理国家实验室的GOCO 方式,更有利于对广泛多样的国家和社会需求做出快速响应,更有利于资源的灵活配置;同时,还有利于将大学和企业对科技研发工作的优秀管理经验带入政府管理系统,提高政府部门工作水平和工作效率。在国家实验室内部,实行理事会决策,监事会监督,实验室主任负责的领导体制。 目标任务合同制。美国联邦政府对国家实验室实行合同制管理。通过签订具有法律约束的合同,保证政府对国家实验室的领导和宏观调控,保证国家科技发展目标的实现,最大限度地发挥国家实验室的作用。联邦政府有关职能部门是国家实验室的宏观管理部门,是国家实验室的最高负责部门,统筹国家实验室的建设和管理工作。联邦政府职能部门(如能源部)设有国家实验室总管理办公室和区域管理办公室;同时专设国家实验室拨款办公室。区域管理办公室对总管理办公室

金属材料在增材制造技术中的研究进展_胡捷

金属材料在增材制造技术中的研究进展 胡 捷,廖文俊,丁柳柳,胡 阳 (上海电气集团股份有限公司中央研究院,上海200 070)摘要 对金属材料在增材制造技术研究中的发展史进行了概述,并分类描述了不同的成形机制。重点详细介绍了增材制造技术领域内各类金属材料的研究进展,种类涵盖到钛合金、镍合金、钢、铝合金和硬质合金等材料。最后提出行业应该更注重“政用产学研”五位一体化,以市场为导向,逐渐形成一系列金属材料的增材制造工艺方法及标准。 关键词 增材制造 钛合金 镍合金 钢中图分类号:TG14 文献标识码:A Research Progress of Metal Materials in Additive Manufacturing HU Jie,LIAO Wenjun,DING Liuliu,HU Yang (Central Academe,Shanghai Electric Group  Co.,Ltd,Shanghai 200070)Abstract The development history of metal materials in additive manufacturing research is described.Researchprogress of various metal materials including titanium alloy,nickel alloy,steel and so on,is introduced.In the future,a series of metal material manufacturing  process and standard is indispensable in additive manufacturing.Key  words additive manufacturing,titanium alloy,nickel alloy,steel 胡捷:男,1988年生,硕士,工程师,研究方向为金属材料的制备和加工 E-mail:hujie3@shang hai-electric.com0 引言 增材制造技术, 顾名思义,是指运用离散-堆积的方法将材料一点一点地增加起来的加工技术,主要工艺流程如图1所示 。 图1 增材制造的工艺流程 Fig.1 Technical scheme of additive manufacturing早期的增材制造技术主要为原型制造, 用于快速响应产品的外观设计,所用材料包括树脂和塑料。随着市场需求的不断提高,增材制造技术不能仅仅满足于外观要求,还必须 逐渐向制造功能件方向转变,由此关于金属材料的研究便不曾间断。 在20世纪90年代中期,美国联合技术研究中心(UTC)与桑地亚国家实验室(Sandia National Laboratories)合作开发了激光工程化近成形制造技术(Laser engineered net sha-ping ,LENS),该技术使用了Nd∶YAG固体激光器和同步粉末输送系统,用于金属零件的近形制造和局部修复。与此同时,瑞典的Arcam公司基于电子束熔炼快速制造技术(E-lectric beam melting ,EBM)发展出金属材料“自由成形技术”(Free form fabrication,FFF),可直接由金属粉末生成完全致密零件;国内西北工业大学凝固技术国家重点实验室的黄卫东教授突破了快速原型制造的界限,发展出激光立体成形技术(Laser solid forming,LSF),获得了形状较为复杂的金属零部件。随后,美国Los Alamos国家实验室开发了直接光学制造(Directed lig ht fabrication,DLF)的金属零件快速成型;美国Stanford University和Carnegie Mellon Uni-verisity合作开发了形状沉积制造技术(Shap e depositionmanufacturing,SDM);美国密西根大学研究开发了直接金属沉积技术(Direct metal dep ositon,DMD);德国弗朗和夫研究所(Fraunhofer)开发了控制金属堆积技术(Controlledmetal depositon,CMD);英国Birming ham大学的吴鑫华教授提出了受控激光制造技术(Direct laser fabrication)等[1-4] 。如今,在国内以金属激光熔覆(Laser cladding,LC)、金属材料选区激光熔化(Selective laser melting ,SLM)或烧结(Se-lective laser sintering ,SLS)技术占据市场主导地位,SLS技· 954·金属材料在增材制造技术中的研究进展/胡 捷等

实验室的卫生管理制度

实验室的卫生管理制度 目的:建立实验室内的卫生管理制度,为实验室进行试验提供优良的环境。 范围:公司实验室的卫生管理。 责任:质检员、检测中心主任、质量部经理。 内容: 1. 概述 实验室是进行科学实验的地方,不但要保证实验室的安全性而且还要务必使实验室保持清洁,为科学实验创造良好的环境,实验室卫生重在保持而不再打扫,各实验人员在进入实验室后必须遵守以下细则,否则禁止其在本实验室进行实验。 2. 实验室卫生制度细则 2.1:实验室参加实验的人员,必须整洁、文明、肃静。 2.2:进入实验室的所有人员必须遵守实验室的规章制度,实验室为无烟实验室,严禁在实验室内吸烟,不得吃口香糖,不得随地吐痰和乱扔纸张 2.3:参加实验的人员在实验过程中,要注意保持室内卫生及良好的实验秩序。实验结束后,必须及时做好清洁整理工作实验人员必须将工作台、仪器设备、器皿等清洁干净,并将仪器设备和器皿按规定归类放好,不能任意搬动和堆放。所有实验所产生的废物放入废物箱内,并及时处理,清理好现场。 2.4:在每次实验结束后,实验人员必须对实验室进行清扫。 2.5:实验室主任负责安排日常的卫生清扫、仪器设备的维护保养工作。实验室成员有参加本室清扫及维护保养仪器设备的义务。 2.6:实验室内各种设备、物品摆放要合理、整齐,与实验无关的物品禁止存放在实验室。 2.7:实验室为保持室内地面、实验台、设备和工作环境的干净整洁,必须坚持每天一小扫,每周一大扫的卫生制度,每年彻底清扫1--2次。 2.8:实验室内的仪器设备、各人实验台架、凳和各种设施摆放整齐,并经常擦拭,保持无污渍、无灰尘。 2.9:卫生责任人应对实验室桌面、地面及时打扫。注意保持室内场地和仪器设

金属零件激光增材制造技术及其应用

内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 传统零件制备工艺主要是减材制造。从一块原材料开始,通过切割、钻、铣削等机械工艺方式去除部分材料,从而获得一个三维物体形态,这个过程中材料的利用率较低。而增材制造通过极小单位的原材料的叠加产生三维物体形态,虽然后期也可能通过再加工产生废料,但总体来说对材料的浪费是很少的。这在原型制作以及小批量生产上明显优于传统减材技术。 激光增材制造技术是一种基于离散/ 堆积成形思想的新型制造技术,是集成计算机、数控、激光和新材料等新技术而发展起来的先进产品研究与开发技术。其基本过程是将三维模型沿一定方向离散成一系列有序的二维层片;根据每层轮廓信息,进行工艺规划,选择加工参数,自动生成数控代码;成形机制造一系列层片并自动通过激光熔敷、烧结、沉积等将它们联接起来,得到三维物理实体。这样将一个物理实体的复杂三维加工离散成一系列层片的加工,大大降低了加工难度,且成形过程的难度与待成形的物理实体形状和结构的复杂程度无关。该技术的主要特点有:高柔性,可以制造任意复杂形状的三维实体;CAD模型直接驱动,设计制造高度一体化;成形过程无需专用夹具或工具;无需人员干预或只需较少干预,是一种自动化的成形过程;成形全过程的快速响应,适合现代激烈的产品市场。 尤其是金属零件,其主要采用激光增材制造技术,以高功率或高亮度激光为热源,逐层熔化金属粉末,直接制造出任意复杂形状的零件。其主要方法有: 1、激光直接沉积增材制造技 该技术可追溯到20 世纪70 年代末期的激光多层熔覆研究,但直到20世纪90年代,国内外众多研究机构才开始对同轴送粉激光快速成形技术的原理、成形工艺、熔凝组织、零件的几何形状和力学性能等基础性问题开展大量的研究工作。

3D打印典型金属材料

316L奥氏体不锈钢具有高强度和耐腐蚀特性。316L可在很宽的温度范围内下降到低温,用于航空航天、石油、天然气等多种工程应用,也可用于食品加工和医疗等领域。 17-4PH马氏体不锈钢耐腐蚀性,在高达315°C下仍然拥有高强度、高韧性,激光加工状态具有极佳的延展性。 马氏体MS1(18Ni300) “马氏体时效”钢在时效过程中具有高强度、韧性和尺寸稳定性。与其他钢不同,MS1不含碳,属于金属间化合物,通过丰富的镍,钴和钼的冶金反应硬化。由于高硬度和耐磨性,马氏体300适用于许多模具的应用(注塑模具、轻金属合金铸造、冲压和挤压),也为应用于各种高性能的工业工程部件(航空航天、高强度机身部件和赛车)。德国EOS AlSi10Mg 铝/镁组合可带来显著的强度和硬度的增加。适用于薄壁,几何形状复杂的零件,在需要良好的热性能和低重量场合中作为理想的应用材料。其零件组织致密,有铸造或锻造零件的相似性。 铝硅12 一种具有良好的热性能的轻质增材制造金属粉末材料。典型应用在薄壁零件如换热器,汽车,航空航天和航空工业级的原型及生产零部件。 青铜CuSn合金 这种合金具有优异的导热性和导电性。热管理应用中的具优良热传导率的铜,可以结合设计自由度,产生复杂的内部结构和冷却通道。适合冷却更有效的工具插入模具,如半导体器件。也用于具有壁薄、形状复杂特征的微型换热器. 激光铜合金加工(LAAM)是具有挑战性的技术,铜的高导热迅速将热量从熔池通过高反射率高转移大量的电力。因此,较高的激光功率是必需的。 CoCr合金 具有高的强度,优良的耐腐蚀性和良好的生物相容性,无磁性。由于高耐磨性,良好的生物相容性,无镍(镍含量<0.1%)特点,常用于外科植入物如合金人工关节、膝关节和髋关节。 也可用于发动机部件,风力涡轮机和许多其他工业部件,以及时装行业,珠宝等。 In718 基于铁镍硬化的超合金,具有优异的耐腐蚀性以及良好的耐热和拉伸、疲劳、蠕变性能,Inconel718适合各种高端应用包括飞机涡轮发动机和陆基涡轮机(叶片,环,套管,紧固件和仪表零件)。 In625 在温度高达约815C条件下依然提供优良的负载性能,此外,耐腐蚀性能,这种合金广泛应用于需要高的点蚀、缝隙腐蚀和耐高温的行业,例如航空航天,化工和电力工业中的应用。TC4 具有优异的强度和韧性,结合耐腐蚀、低比重和生物相容性使其在航空航天和汽车比赛中许多高性能工程应用非常理想,而且还用于生产生物医学植入物,强度高、模量低、耐疲劳性强。

Telcordia标准简介

Telcordia(电信行业网络设备构建系统标准)标准简介现代光纤通信行业发展,从1966年英籍华裔学者高锟指出了利用光纤(optical fiber) 进行信息传输的可能和技术途径,奠定了现代光通信——光纤通信的基础。到今天,已经有五十多年了。 伴随着现代光纤通信行业的飞速发展,光通行业的各种标准一直起着主导作用。涉及的标准有EIA(美国电子工业协会标准)、MIL-STD(美国军用标准)、IEEE(电气与电子工程师协会标准)、JIS(日本工业标准)、IEC(国际电工委员会标准),以及Telcordia(电信行业网络设备构建系统标准)。当然国内也有YD/T(国内通信行业标准)。其中Telcordia标准在全球电信行业使用最为广泛,通用性最强。 Telcordia是多项电信和网络技术的创始者,还是全球顶尖的通讯设备测试机构,一直致力并引领光学器件及仪器相关国际标准的制定,在全球范围内拥有运营商用于设计、应用并建设基础网的诸多标准(GR系列)。 Telcordia前身为贝尔通信研究所(或贝尔通信研究公司)(Bellcore,Bell Communication Research)。Bellcore于1984年创立,是美国电话电报公司(AT&T)分出的七家子贝尔(Baby Bells)公司之一,负责创新和技术的研发部分,为分出的地方贝尔公司提供技术、标准、培训等服务。1997年,Bellcore被美国科学应用国际公司(SAIC,Science Applications International Corporation )公司(美军工巨头)收购,并于1999年更名为Telcordia。2012年,爱立信收购了Telcordia 的全部股权。 Telcordia标准家族里面,包含无源、有源、光纤连接头、模块等众多系列,为架构网络的产品撰写US/全球的标准,如GR-326,GR-20,GR-409,GR-1209,GR-1221等。例如,光开关系列会用到GR-1073-CORE标准,有源器件可靠性方面会用到GR-468标准,光纤放大器方面会用到GR-1312-CORE标准,有最具有参考意义的光纤无源器件可靠性方面的GR-1209-CORE和GR-1221-CORE标准,还有纤缆领域的“圣经”GR-20-CORE标准。

美国在研究型大学创立国家实验室的启示

第16卷 第3期2004年6月 研究与发展管理 R&D MANA GEM EN T Vol.16No.3  J un.2004 文章编号:100428308(2004)0320101205 美国在研究型大学创立国家实验室的启示  Ξ 黄 缨,赵文华 (上海交通大学高等教育研究所,上海 200030) 摘 要:通过对美国设在研究型大学中的国家实验室历史发展的分析,提出我国应在研究型大学中 建立代表国家最高科技水平、为国家战略目标服务的国家实验室,使之成为国家创新的核心。 关键词:美国;大学;国家实验室;科研管理 中图分类号:G311(712) 文献标识码:A 美国联邦政府拥有800多个联邦科研机构,是全美第3大科技力量,是美国科学交叉和科技创新的平台。其中一些规模大、水平高、设施一流的实验室被冠之为国家实验室。它们集中在国防部、能源部、卫生部、农业部和航空航天局等部门,主要从事国家安全(主要是核武器)、能源自给自足、疾病防治、食品生产以及科学和工程等方面的研究,以承担国家大规模的科学计划项目,履行国家职责为使命。其中一批著名的国家实验室由政府拥有,以合同形式委托给研究型大学管理的成功经验值得我们借鉴。 1 美国研究型大学中国家实验室的创立 111 初创时期美国研究型大学中的国家实验室 由研究型大学代管的国家实验室大部分是在大学实验室的基础上发展起来的。二战以前,美国政府对科学研究采取顺其自然的态度,并不直接资助大学的科学研究,而是通过如1862年的莫里尔法案(Morrill Act)那样以间接方式推动高等教育的发展。在20世纪二三十年代,一些大学的实验室开始主动寻求国家和社会的资助,并向着多学科综合的大科学发展,使实验室的规模不断扩大。 1929年伯克利加州大学物理系教授、“大科学”的倡导者欧内斯特?奥兰多?劳伦斯(Ernest Orlando Lawrence)成功地研制出5英 的回旋加速器,并于1931年成立辐射实验室(Radiation Laboratory)。虽然美国当时处于经济大萧条时期,实验室仍从社会和政府处募集了资金,并吸引了很多科学家、工程师等各个学科的人才。劳伦斯十分善于组织多学科的研究人员进行交叉学科的研究,在他的带领下,伯克利实验室从最初的回旋加速器的物理学研究逐渐拓展到生物学、化学和原子能科学研究,并在此基础上展开系列的交叉科学及边缘科学的研究。 伯克利实验室的“大科学”的持续性高水平研究不仅使该实验室9次折桂诺贝尔奖,而且为后来的“曼哈顿计划”(Manhattan Project)的顺利实施奠定了思想和人员的基础。 在加州理工学院,冯?卡门(Theodore von K rm n)教授从20世纪30年代对火箭推进技术进Ξ收稿日期:2003209215。 作者简介:黄 缨(1967—),女,硕士;赵文华(1967—),博士,副教授,上海交通大学高等教育研究所副所长,研究方向:高等教育管理,现代大学制度,高等学校科技战略。

赞!!图文并茂,来看看全球顶级的科研实验室有哪些(完结版)

赞!!图文并茂,来看看全球顶级的科研实验室有哪些(完 结版) 12、贝尔实验室 美国贝尔实验室是晶体管、激光器、太阳能电池、发光二极管、数字交换机、通信卫星、电子数字计算机、蜂窝移动通信设备、长途电视传送、仿真语言、有声电影、立体声录音,以及通信网等许多重大发明的诞生地。自1925年以来,贝尔实验室共获得两万五千多项专利,现在,平均每个工作日获得三项多专利。贝尔实验室的使命是为客户创造、生产和提供富有创新性的技术,这些技术使朗讯科技(Lucent Technologies)公司在通信系统、产品、元件和网络软件方面处于全球领先地位。一共获得8项诺贝尔奖(其中7项物理学奖,1项化学奖)。 贝尔实验室的很多著名发现和发明——例如晶体管和激光——都源于对基础物理学的潜心研究,它们的问世让我们的生活发生了翻天覆地的变化。由于上演这些发现,贝尔实验室在国际上享有巨大声望。自1937年实验室研究员克林顿·戴维森(Clinton Davisson)因发现晶体对电子的衍射作用荣获诺贝尔物理学奖以来,贝尔实验室已经6次问鼎这一科学界的最高荣誉。 现在的贝尔实验室将目光锁定在网络、高速电子、无线

电、纳米技术、软件等可能更快为母公司“阿尔卡特-朗讯”带来回报的领域。在即将向这个基础物理学研究的一个最后堡垒说“再见”的时候,我们不妨细数一下贝尔实验室在物理学 研究方面取得的伟大成就。 贝尔实验室大楼 我们在图片中看到的就是位于新泽西霍姆德(Holmdel) 的贝尔实验室大楼。这是一个基础物理学研究的家园。由建筑师埃罗·沙里宁(Eero Saarinen)设计的贝尔实验室大楼建 于1962年,是当地的一座标志性建筑,可容纳6000名员工。但现在的它已经人走楼空,惨遭忽视。据悉,阿尔卡特-朗讯已将这座大楼卖给一名开发商,后者计划将它变成一个集居住、办公和零售于一体的“多面手”。 贝尔实验室美国总部 图中所示建筑就是贝尔实验室位于新泽西默里·希尔的 美国总部,这里是很多发明创造和科学突破的诞生地。阿尔卡特-朗讯表示,贝尔实验室总部仍具有令人无法抵御的魅力。相比之下,身为基础物理学研究“老巢”的霍姆德大楼运气就 没有这么好了,现在已成他人囊中之物。霍姆德大楼取得的技术成就包括研制第一颗通讯卫星,以及朱棣文(Steven Chu)在激光冷却和“捕获”原子的研究中取得的巨大突破——他曾凭借这一成就摘得诺贝尔奖。 验证电子波动性

公司实验室管理制度(试行)

公司实验室管理制度(试行) 实验室是化验分析、科学研究和技术开发的重要基地,实验时要始终贯彻“安全第一”思想,确保人员和设备的安全。 1.管理目的 实验室仪器和设施是测试产品及各种材料物资性能和质量情况的基本工具,只有实验分析仪器设施的质量可靠,功能正常,正确使用,才能提供出准确、可告、真实的检测实验数据。所以公司必须加强对实验室仪器设施的规范管理,特制定本制度。 2.管理职责 实验室仪器、设施的管理由研发中心负责,其责任内容包括保管、使用、保养、检修、申请更新等各个环节的工作。公司技术员工在使用实验室、设备和仪器前需要在研发中心进行登记并身着实验服,研发中心负责对本次实验责任人的工作进行指导和管理,并按本制度规定的实施内容进行工作检查和考核。 3.精密仪器的管理 3.1 各种精密仪器(包括电子天平、紫外可见光分度计、GC-MS气质联用仪、 激光气体分析仪、大气重金属分析仪、颗粒物分析仪等)需保持环境清洁、安放安全稳固,并注意防尘、防震、防潮、防止阳光直接照射、防腐蚀和防止电炉高温热源的影响。 3.2 不得随意搬动拆卸、改装精密仪器,如确有需要必须上报主管领导同意, 并应作出相关的备查记录。 3.3 精密仪器的使用操作方法必须严格按说明书规定,使用完后必须清理干 净设备、仪器残留样品、试剂,并整理归位。实验无关人员不得随意拨动仪器旋钮,以免损坏仪器,也不得挪作它用。 3.4 精密仪器技术资料应作为技术档案妥善保管,并做好使用检修记录。非 常用的技术资料应统一存放公司研发中心保管。 4. 玻璃仪器及化验仪器用具的管理

4.1 滴定管、移液管、容量瓶等玻璃仪器须放在平稳不易摔落之处。 4.2 容量仪器的使用方法应严格按操作规定进行,以保证分析结果的准确度。 4.3带磨口塞的仪器(包括容量瓶、酸式滴定管、比色管、试剂瓶等)在清 洗前必须先作记号,塞口不能互混。带磨口塞的仪器长期不用时,磨口塞应垫一张纸片,磨口塞间若有沙粒时不能用力转动,磨口塞间不能用去污粉擦洗,以免损伤。 4.4 所有玻璃仪器在使用过程应特别注意轻拿轻放,防止破损。使用完毕后 必须洗干净,不要在容器内遗留油脂、酸、碱液等腐蚀性及毒性物质,并及时归回原位。滴定管、移液管等洗净后要用净滤纸包住两端,以防沾污。5. 实验设备(设施)的管理 5.1 所有的实验设备均应制定安全技术操作规程,严格要求操作者照章使用 设备,防范事故发生。 5.2 实验设备的配套电气设施如电源控制柜等如发生故障应通知相关专业人 员修理,非本专业操作者不得擅自处理,以防意外事故。 5.3 实验设备中的机械传动部位的润滑和维护等工作,应按设备动力科制定 的润滑控制点图表和检查维护部位,按时进行保养和检查。常见的一般故障由操作者排除,出现大故障应通知设备科安排解决。 5.4 实验设备使用后均要进行保养和场地清理,保持良好的实验环境,离开 实验室前必须检查设备开关断电情况,做好防火防电和防漏等安全事项。6. 实验仪器及设备的报废、更新管理 6.1 实验仪器(包括器具)和设备由公司各部门根据公司产品生产的需要, 统一进行计划管理,由各部门报出申购计划,经公司审核后统一规划安排采购,并在研发中心做好仪器、设备等进出情况记录。 6.2 仪器、设备的更新应遵循精度对口、选型先进、经济合理的原则。对有 特殊要求的仪器在购置时,实验室可派专人配合采购部门进行质量把关。 6.3 实验室应本着节约的原则,对能修复使用,又不影响测试工作精度的仪 器设备不能作报废更新上报。无法修复,失去使用价值的,也要报请上级部门组织鉴定方能作报废和淘汰更新处理。 7. 设备报废及事故的处理

适用于金属3D打印机三种材料解析

适用于金属3D打印机三种材料解析 现如今市场上金属3D打印机的材料几乎都以金属粉末为主。不管是直接用作3D打印原材料还是将其掺杂在线材中,金属材料能够成为3D打印机制作金属件的基本成分。这意味着一款金属3D打印材料的可用性几乎取决于金属粉末可融性的难易程度。例如,铝粉比钢粉更难以粘接,因此在金属3D打印机材料中并不常见。 与传统制造方法相比,最适用于金属3D打印机的材料能够为制造商提供最大受益。通常,这源于可加工性的难度高低。在传统制造工艺下,例如工具钢和钛金属很难加工,但机械加工难易性并不适用于3D打印领域,因此可以在3D打印机上能够以最少的人工、时间成本加工这类金属。 今天小编为大家带来三种最适用于金属3D打印机上的材料,以及每种材料在3D打印制造过程中的利弊分析。 1、不锈钢 不锈钢的特点是机械强度高,耐腐蚀性强。从早期工业制造到3D 打印技术的应用,该金属材料广泛用于各行各业的生产中。3D打印不锈钢的材料主要包括极耐腐蚀的316L和可热处理的17-4 PH不锈钢。 工具钢顾名思义,此类钢用于各种制造工具。切割,冲压,模制或成型的生产线上的任何物品都可能由工具钢制成。工具钢由于具有很高的硬度,出色的高耐热性和耐磨性,因此可以承受各类苛刻环境。由于具备这些特性,传统工艺下工具钢一般很难加工且价格昂贵,故

而使其成为3D打印的理想选择。流行的粉末和线材包括A2,D2和H13工具钢。 2、钛 钛这种金属坚固,轻巧,耐热和耐化学腐蚀。通常,钛在加工方面极具挑战性(导致其成本高昂),因而使其成为金属3D打印机材料的理想之选。最常见的3D打印钛是Titanium 64(Ti-6Al-4V),可用于强度/重量比非常高的零件加工,例如军工、航天航空领域的应用。 3、镍铬铁合金 金属3D打印机主要用普通金属(例如钢)生产零件,但它们也可以用镍铬铁合金 625等此类合金制造零件,这些零件特别适合极端环境。镍铬铁合金 625是一种坚固,坚硬且非常耐腐蚀和耐热的镍基高温合金,通常用于涡轮机和火箭制造等零件生产。其他类型的镍铬铁合金,如镍铬铁合金 718,并不具有与镍铬铁合金 625相同的耐热性。从传统加工生产方式难易度上来说,这种材料的加工非常昂贵。相反,人们可以利用镍铬铁合金粉末在3D打印机上进行特殊零件加工,这为镍铬铁合金在3D打印机上的应用打开了大门。 4、金属3D打印机材料的展望 当前可用于金属3D打印机上的材料相对较少,并且多数集中在对增材制造最有利的特殊合成材料上。然而,随着金属3D打印的不断成熟,人们有望在不同的金属3D打印机上看到更多便宜的金属3D打印线材和粉末材料。这些材料具有与本文所述金属相同的成本优势,将为金属3D打印开辟新的应用领域,并进一步为各行业特殊零件制造加

CCD发展史

CCD发展史 CCD是于1969年由美国贝尔实验室(Bell Labs)的维拉·博伊尔(Willard S. Boyle)和乔治·史密斯(George E. Smith)所发明的。当时贝尔实验室正在发展影像电话和半导体气泡式内存。将这两种新技术结合起来后,波义耳和史密斯得出一种装置,他们命名为“电荷‘气泡’元件”(Charge "Bubble" Devices)。这种装置的特性就是它能沿着一片半导体的表面传递电荷,便尝试用来做为记忆装置,当时只能从暂存器用“注入”电荷的方式输入记忆。但随即发现光电效应能使此种元件表面产生电荷,而组成数位影像。 到了70年代,贝尔实验室的研究员已能用简单的线性装置捕捉影像,CCD就此诞生。有几家公司接续此一发明,着手进行进一步的研究,包括快捷半导体(Fairchild Semiconductor)、美国无线电公司(RCA)和德州仪器(Texas Instruments)。其中快捷半导体的产品率先上市,于1974年发表500单元的线性装置和100x100像素的平面装置。 CCD发明者——维拉·博伊尔和乔治·史密斯 发明者荣誉 2006年元月,波义耳和史密斯获颁电机电子工程师学会(IEEE)颁发的Charles Stark Draper奖章,以表彰他们对CCD发展的贡献。 北京时间2009年10月6日,2009年诺贝尔物理学奖揭晓,瑞典皇家科学院诺贝尔奖委员会宣布将该奖项授予一名中国香港科学家高锟(Charl es K. Kao)和两名科学家维拉·博伊尔(Willard S. Boyle)和乔治·史密斯(George E. Smith)。科学家Charles K. Kao 因为“在光学通信领域中光的传输的开创性成就” 而获奖,科学家因博伊尔和乔治-E-史密斯因“发明了成像半导体电路——电荷藕合器件图像传感器CCD”获此殊荣。

公司实验室管理制度

实验室管理制度 1.目的 规范实验室的各项管理。 2.适用范围 本制度适用于本公司实验室内部的日常管理。 3.定义 无 4.职责 4.1 仪器工程师负责本制度的起草、修订; 4.2 质量经理负责本制度的批准; 4.3 QC负责严格按照本制度执行、记录并定期归档。 5.程序 5.1实验室日常工作管理规定 5.1.1 实验室检测区域内一律穿实验服;实验室人员在进入实验室后及离开实验室前,应以洗手液洗净双手。外单位人员不得擅自进入,经实验室负责人同意,方可进入。 5.1.2 消防、卫生设施配备齐全,灭火器及洗眼器不得随意挪动位置。离开实验室应切断水、不必要的电源,关好门窗。 5.1.3 严禁携带食物、饮料、口香糖或药物进入检测区域,禁止在实验室抽烟。实验用器皿、冰箱内不得存放个人物品,实验室内不得存放与实验无关的物品,严禁在实验室内存放食物,吃东西。 5.1.4 实验室工作人员应保持个人卫生及实验室的良好内务,保持室内、

场地整洁卫生、整齐规范、安静,方便检测工作的进行,不得从事与实验无关的事务。凡进入实验室及参加试验的人员在实验过程中要注意保持室内卫生和良好的实验秩序,试验完毕后,应将所有的仪器设备复原,清理好实验现场。 5.1.5 实验员在进行试验操作时应遵循良好操作规范(GLP)的要求。 5.1.6 实验结束后应按操作规程将所使用的器皿清洗干净,晾干备用,不得遗留过夜。 5.1.7 实验室化验员每天上班后及每班试验结束后应立即进行清理,发生洒落、破碎等特殊情况时也应随时清洁。 5.1.8 实验室的垃圾应分类存放,尤其是破碎玻璃应单独存放,最后再集中处理。 5.1.9 严格按照交接班要求进行交接班,并填写《交接班记录》。交接班时应按照如下要求进行交接: a) 接班人员要按照规定时间与班次提前10分钟到岗,否则按迟到处理,同时详细了解生产、化验及其他有关情况; b) 交接者要提前作好交接班前的准备工作,打扫好室内外卫生,物品摆放要整齐并清理干净,各种表单填写详细、准确; c) 交接班记录应详细记录当班工作内容,有关问题的处置结果,在岗人员状况,室内各物品的出入情况; d) 交接双方应在交接班记录上签字方视为正式交接,否则按早退迟到处理; e) 交班时如接班人员未到岗,交班人员不得离开工作岗位,并立即通知仪器工程师; f) 如出现卫生不合格、仪器损坏或工具及用具不全等情况,而交班者未如

相关主题
文本预览
相关文档 最新文档