单片机原理、应用、历史、芯片等全面_中英文翻译_论文
- 格式:doc
- 大小:81.00 KB
- 文档页数:16
单片机中英文翻译(二)引言概述:在单片机开发中,中英文翻译是非常重要的一项技能。
在上一篇文章中,我们已经介绍了一些常见的单片机中英文翻译的基本知识。
本文将继续深入讨论单片机中英文翻译的进阶问题,包括多种实用技巧和常见错误。
正文:1.熟悉常用单片机相关词汇- 理解单片机的基本组成部分:CPU(中央处理器)、存储器(内部存储器和外部存储器)、输入输出接口(I/O接口)等。
- 学习掌握单片机的操作指令集:包括数据传输指令、算术逻辑指令、控制指令等。
- 理解中断和定时器的概念:了解中断的类型和使用方法,掌握定时器的配置和使用。
2.掌握单片机编程中常用的英语表达方式- 熟悉常见的单片机编程语言:如C语言、汇编语言等,了解它们的语法规则和特点。
- 学习掌握单片机编程中常用的英语关键词和表达方式:如if-else语句、for循环、while循环等。
- 掌握单片机编程中常用的函数和库函数的英语表达:如delay函数、ADC函数、UART函数等。
3.注意中英文词汇的准确对应- 避免常见的翻译错误:如将“中断”翻译为“interrupt”而不是“interruption”。
- 注意特定词汇的准确对应:如将“寄存器”翻译为“register”而不是“storage”。
- 注意不同单片机厂家之间的命名差异:例如AT89系列单片机的“P0口”在STC系列单片机中对应的是“P2口”。
4.学会查阅单片机相关资料和文档- 学习使用技术手册和数据表:仔细阅读单片机厂家提供的技术手册和数据表,了解每个模块的功能和操作方式。
- 积累使用常见单片机开发工具的经验:如Keil、IAR等集成开发环境,掌握其使用方法和调试技巧。
- 利用互联网资源:参考论坛、博客、开发者社区等,积极交流学习。
5.实践和调试的重要性- 多进行实际的单片机编程实验:通过实践,加深对单片机的理解,发现和解决实际问题。
- 多进行调试和排错:学会使用调试工具和仪器,如示波器、逻辑分析仪等,快速定位问题并解决。
单片机的发展与应用单片机(Microcontroller)是一种集成了处理器核、存储器、输入/输出接口等功能模块的芯片,广泛应用于电子设备中。
在过去的几十年里,单片机经历了快速的发展,不断推动着科技和工业的进步。
本文将从单片机的发展历程、应用领域和未来发展方向等方面进行探讨。
一、单片机的发展历程单片机的历史可以追溯到20世纪70年代。
当时,单片机仅具有简单的功能,常用于控制电子设备的基本操作。
随着科技的不断进步,单片机的功能逐渐增强,性能不断提升。
1980年代,Intel公司推出了8位微处理器8051系列单片机,成为了单片机应用的先驱。
此后,各大芯片厂商纷纷推出了自己的单片机产品,市场竞争日益激烈。
1990年代以后,随着工业自动化、智能家居、智能交通等领域的快速发展,单片机也得到了更广泛的应用。
单片机的集成度不断提高,功耗也得到了有效控制,使得其能够在更多的场景下发挥作用。
如今,单片机已经成为了智能设备和物联网应用中的重要组成部分,其应用范围逐渐扩大,功能也逐渐多样化。
二、单片机的应用领域1. 工业自动化在工业自动化领域,单片机被广泛应用于控制系统、传感器采集、工业机器人等方面。
通过单片机实现对生产线的自动控制,提高生产效率,提升产品质量,降低生产成本。
2. 智能家居在智能家居领域,单片机可以实现对家电设备的控制、环境监测、安防系统等功能。
通过单片机实现家居设备的智能化控制,提高生活便利性,实现能源节约和环境保护。
3. 智能交通在智能交通领域,单片机可以用于交通信号控制、车辆管理、智能停车系统等方面。
通过单片机实现交通系统的智能化管理,提高交通效率,减少交通拥堵和交通事故。
4. 物联网应用在物联网应用领域,单片机可以用于物联网终端设备的控制、数据采集、远程监测等方面。
通过单片机实现物联网设备的智能化控制和数据处理,实现设备互联互通,为人们的日常生活和生产活动提供更多便利。
5. 个人电子产品在各种个人电子产品中,单片机也有着广泛的应用,如手机、平板电脑、智能手表等。
Explored For Microcomputer ControlSystemGuohong Zou, Chengqi LiuAnshan NormalCollege MathematicsAnshan,ChinaAbstractThe appearance of single-chip Microcomputer is a important milestone computer technical development history,it has opened up computer technical another field---embedded(Embedded)comp uter field. Now, Single-chip Microcomputer has become work to control the computer most used extensively in field, militarily field and daily life. Single-Chip Microcomputer is a important branch of personal computer ,its development and application more and more arouse the attention of people. From Single-Chip Microcomputer birth so for, have developed for 100 kinds of last series near 1000 kind .This paper is the detailed introduction for Single-Chip Microcomputer. including MCU classification, principle and application of each respect such as outlined. Keywords:MCU;Application;chara cteristicsElectronic systems are used for handing information in the most general sense; this information may be telephone conversation, instrument read or a company’s accounts, but in each case the same main type of operation are involved: the processing, storage and transmission of information. in conventional electronic design these operations are combined at the function level; for example a counter, whether electronic or mechanical, stores the current and increments it by one as required. A system such as an electronic clock which employs counters has its storage and processing capabilities spread throughout the systembecause each counter is able to store and process numbers.Present day microprocessor based systems depart from this conventional approach by separating the three functions of processing, storage, and transmission into different section of the system. This partitioning into three main functions was devised by V on Neumann during the 1940s, and was not conceived especially for microcomputers.Almost every computer ever made has been designed with this structure, and despite the enormous range in their physical forms, they have all been of essentially the same basic design.In a microprocessor based system the processing will be performed in the microprocessor itself. The storage will be by means of memory circuits and the communication of information into and out of the system will be by means of special input/output(I/O) circuits. It would be impossible to identify a particular piece of hardware which performed the counting in a microprocessor based clock because the time would be stored in the memory and incremented at regular intervals but the microprocessor. However, the software which defined the system’s behavior would contain sections that performed as counters. The apparently rather abstract approach to the architecture of the microprocessor and its associated circuits allows it to be very flexible in use, since the system is defined almost entirely software. The design process is largely one of software engineering, and the similar problems of construction and maintenance which occur in conventional engineering are encountered when producing software.The illustrates how these three sections within a microcomputer are connected in terms of the communication of information within the machine. The system is controlled by the microprocessor which supervises the transfer of information between itself and the memory and input/output sections. The externalconnections relate to the rest (that is, the non-computer part) of the engineering system.Three Sections of a Typical MicrocomputerAlthough only one storage section has been shown in the diagram, in practice two distinct types of memory RAM and ROM are used. In each case, the word ‘memory’ is rather inappropriate since a computers memory is more like a filing cabinet in concept; information is stored in a set of numbered ‘boxes’ and it is referenced by the serial number of the ‘box’ in question.Microcomputers use RAM (Random Access Memory) into which data can be written and from which data can be read again when needed. This data can be read back from the memory in any sequence desired, and not necessarily the same order in which it was written, hence the expression ‘random’ access memory. Another type of ROM (Read Only Memory) is used to hold fixed patterns of information which cannot be affected by the microprocessor; these patterns are not lost when power is removed and are normally used to hold the program which defines the behavior of a microprocessor based system. ROMs can be read like RAMs, but unlike RAMs they cannot be used to store variable information. Some ROMs have their data patterns put in during manufacture, while others are programmable by the user by means of special equipment and are called programmable ROMs. The widely used programmable ROMs are erasable by means of special ultraviolet lamps and are referred to as EPROMs, short for ErasableProgrammable Read Only Memories. Other new types of device can be erased electrically without the need for ultraviolet light, which are called Electrically Erasable Programmable Read Only Memories, EEPROMs.The microprocessor processesdata under the control of the program, controlling the flow of information to and from memory and input/output devices. Some input/output devices are general-purpose types while others are designed for controlling special hardware such as disc drives or controlling information transmission to other computers. Most types of I/O devices are programmable to some extent, allowing different modes of operation, while some actually contain special-purpose microprocessors to permit quite complex operations to be carried out without directly involving the main microprocessor.The microprocessor processes data under the control of the program, controlling the flow of information to and from memory and input/output devices. Some input/output devices are general-purpose types while others are designed for controlling special hardware such as disc drives or controlling information transmission to other computers. Most types of I/O devices are programmable to some extent, allowing different modes of operation, while some actually contain special-purpose microprocessors to permit quite complex operations to be carried out without directly involving the main microprocessor.The microprocessor , memory and input/output circuit may all be contained on the same integrated circuit provided that the application does not require too much program or data storage . This is usually the case in low-cost application such as the controllers used in microwave ovens and automatic washing machines . The use of single package allows considerable cost savings to e made when articles are manufactured in large quantities . As technology develops , more and more powerful processors and larger and larger amounts of memory are being incorporated into single chip microcomputers with resulting saving in assembly costs in the final products . For the foreseeable future , however , it will continue to be necessary to interconnect a number of integratedcircuits to make a microcomputer whenever larger amounts of storage or input/output are required.Another major engineering application of microcomputers is in process control. Here the presence of the microcomputer is usually more apparent to the user because provision is normally made for programming the microcomputer for the particular application. In process control applications the benefits lf fitting the entire system on to single chip are usually outweighed by the high design cost involved, because this sort lf equipment is produced in smaller quantities. Moreover, process controllers are usually more complicated so that it is more difficult to make them as single integrated circuits. Two approaches are possible; the controller can be implemented as a general-purpose microcomputer rather like a more robust version lf a hobby computer, or as a ‘packaged’ system, signed for replacing controllers based on older technologies such as electromagnetic relays. In the former case the system would probably be programmed in conventional programming languages such as the ones to9 be introduced later, while in the other case a special-purpose language might be used, for example one which allowed the function of the controller to be described in terms of relay interconnections, In either case programs can be stored in RAM, which allows them to be altered to suit changes in application, but this makes the overall system vulnerable to loss lf power unless batteries are used to ensure continuity of supply. Alternatively programs can be stored in ROM, in which case they virtually become part of the electronic ‘hardware’ and are often referred to as firmware. More sophisticated process controllers require minicomputers for their implementation, although the use lf large scale integrated circuits ‘the distinction between mini and microcomputers, Products and process controllers of various kinds represent the majority of present-day microcomputer applications, the exact figuresdepending on one’s interpretation of the word ‘product’. Virtually all engineering and scientific uses of microcomputers can be assigned to one or other of these categories. But in the system we most study Pressure and Pressure Transmitters. Pressure arises when a force is applied over an area. Provided the force is one Newton and uniformly over the area of one square meters, the pressure has been designated one Pascal. Pressure is a universal processing condition. It is also a condition of life on the planet: we live at the bottom of an atmospheric ocean that extends upward for many miles. This mass of air has weight, and this weight pressing downward causes atmospheric pressure. Water, a fundamental necessity of life, is supplied to most of us under pressure. In the typical process plant, pressure influences boiling point temperatures, condensing point temperatures, process efficiency, costs, and other important factors. The measurement and control of pressure or lack of it-vacuum-in the typical process plant is critical.The working instruments in the plant usually include simple pressure gauges, precision recorders and indicators, and pneumatic and electronic pressure transmitters. A pressure transmitter makes a pressure measurement and generates either a pneumatic or electrical signal output that is proportional to the pressure being sensed.In the process plant, it is impractical to locate the control instruments out in the place near the process. It is also true that most measurements are not easily transmitted from some remote location. Pressure measurement is an exception, but if a high pressure of some dangerous chemical is to be indicated or recorded several hundred feet from the point of measurement, a hazard may be from the pressure or from the chemical carried.To eliminate this problem, a signal transmission system was developed. This system is usually either pneumatic or electrical. And control instruments in one location.This makes it practical for a minimum number of operators to run the plant efficiently.When a pneumatic transmission system is employed, the measurement signal is converted into pneumatic signal by the transmitter scaled from 0 to 100 percent of the measurement value. This transmitter is mounted close to the point of measurement in the process. The transmitter output-air pressure for a pneumatic transmitter-is piped to the recording or control instrument. The standard output range for a pneumatic transmitter is 20 to 100kPa, which is almost universally used.When an electronic pressure transmitter is used, the pressure is converted to electrical signal that may be current or voltage. Its standard range is from 4 to 20mA DC for current signal or from 1 to 5V DC for voltage signal. Nowadays, another type of electrical signal, which is becoming common, is the digital or discrete signal. The use of instruments and control systems based on computer or forcing increased use of this typeof signal.Sometimes it is important for analysis to obtain the parameters that describe the sensor/transmitter behavior. The gain is fairly simple to obtain once the span is known. Consider an electronic pressure transmitter with a range of 0~600kPa[2].The gain isdefined as the change in output divided by the change in input. In this case, the output is electrical signal (4~20mA DC) and the input is process pressure (0~600kPa). Thus the gain. Beside we must measure Temperature Temperature measurement is important in industrial control, as direct indications of system or product state and as indirect indications of such factors as reaction rates, energy flow, turbine efficiency, and lubricant quality. Present temperature scales have been in use for about 200 years, the earliest instruments were based on the thermal expansion of gases and liquids. Such filled systems are stillkPamAkPamAkPakPamAmAKr027.060016600420==--=employed, although many other types of instruments are available. Representative temperature sensors include: filled thermal systems, liquid-in-glass thermometers, thermocouples, resistance temperature detectors, thermostats, bimetallic devices, optical and radiation pyrometers and temperature-sensitive paints.Advantages of electrical systems include high accuracy and sensitivity, practicality of switching or scanning several measurements points, larger distances possible between measuring elements and controllers, replacement of components(rather than complete system), fast response, and ability to measure higher temperature. Among the electrical temperature sensors, thermocouples and resistance temperature detectors are most widely used.DescriptionThe AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash programmable and erasable read only memory (PEROM). The device is manufactured using Atmel’s high-density nonvolatile memory technology and is compatible with the industry-standard MCS-51 instruction[4]set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C51[1] is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications.Function characteristicThe AT89C51 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator and clock circuitry. In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power savingmodes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The Power-down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset.Pin DescriptionVCC:Supply voltage.GND:Ground.Port 0:Port 0 is an 8-bit open-drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as highimpedance 0 may also be configured to be the multiplexed loworder address/data bus during accesses to external program and data memory. In this mode P0 has internal 0 also receives the code bytes during Flash programming,and outputs the code bytes during programverification. External pullups are required during programverification.Port 1:Port 1 is an 8-bit bi-directional I/O port with internal pullups[1].The Port 1 output buffers can sink/source four TTL 1s are written to Port 1 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,Port 1 pins that are externally being pulled low will source current (IIL) because of the internal 1 also receives the low-order address bytes during Flash programming and verification.Port 2:Port 2 is an 8-bit bi-directional I/O port with internal Port 2 output buffers can sink/source four TTL 1s are written to Port 2 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,Port 2 pins that are externally being pulled low will source current, because of the internal 2 emits[2] the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses. In this application, it uses strong internal pullupswhen emitting 1s.During accesses to external data memory that use 8-bit addresses, Port 2 emits the contents of the P2 Special Function 2 also receives the high-order address bits and some control signals during Flash programming and verification.Port 3 :Port 3 is an 8-bit bi-directional I/O port with internal Port 3 output buffers can sink/source four TTL 1s are written to Port 3 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,Port 3 pins that are externally being pulled low will source current (IIL) because of the 3 also serves the functions of various special features of the AT89C51 as listed below:Port 3 also receives some control signals for Flash programming and verification.RST:Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. ALE/PROG:Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC[5]instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.PSEN :Program Store Enable is the read strobe to external program the AT89C51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activationsare skipped during each access to external data memory.EA/VPP:External Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on should be strapped to VCC for internal program pin also receives the 12-volt programming enable voltage(VPP) during Flash programming, for parts that require12-volt VPP.XTAL1:Input to the inverting oscillator amplifier and input to the internal clock operating circuit.XTAL2:Output from the inverting oscillator amplifier.Oscillator CharacteristicsXTAL1 and XTAL2 are the input and output, respectively,of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.References[1] Henning Dierks. PLC-automata: a new class of implementable real-time automate.Theotetical computer science, 2001, 253:61-93.[2] David G. Johnson. Programmable Controllers for Factory Automation. New York and Basel: Marcel Dekker Inc,1987.[3] Can Saygin, Firat Kahraman. A Web-based Programmable Logic Controller laboratory for manufacturing engineering education. The International Journal of Advanced Manufacturing Technology, 2004,24(7):590-598.[4] . Lee, . Hsu. An improved evaluation of Ladder logic diagrams and Petri nets for the sequence controller design in manufacturing systems. The International Journal of Advanced Manufacturing Technology, 2004, 2(5):279-287.[5] John, Karl-Heinz, Michael. Programming Industrial Automation System, Berlin. New York: Springer, 2001.。
单片机早期的单片机都是8位或4位的。
其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。
此后在8031上发展出了MCS51系列单片机系统。
基于这一系统的单片机系统直到现在还在广泛使用。
随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。
90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。
随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。
而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。
目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端[1]的型号也只有10美元。
当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。
而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。
单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。
事实上单片机是世界上数量最多的计算机。
现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。
手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。
而个人电脑中也会有为数不少的单片机在工作。
汽车上一般配备40多部单片机,复杂的工业控制系统上甚至可能有数百台单片机在同时工作。
单片机的数量不仅远超过PC机和其他计算的总和,甚至比人类的数量还要多。
单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。
相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。
概括的讲:一块芯片就成了一台计算机。
它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。
单片机应用外文翻译(总15页) -本页仅作为预览文档封面,使用时请删除本页-毕业设计(论文)译文及原稿译文题目:51单片机在编程电路中的应用原稿题目:AT89C51 In-Circuit Programming原稿出处:单片机在编程电路中的应用本应用指南说明了Atmel AT89C51是可在线可编程的微控制器。
它为电路编程提出了相应的例子,程序的修改需要在线编程的支持。
这类显示方法在应用程序中的AT89C51单片机可通过电话线远程控制。
该应用指南所描述的电路只支持5v电压下编程。
此应用软件可以到Atmel进行下载。
总论当不在进行程序设计的时候,在电路设计中的AT89C51设计将变得透明化。
在编程期间必须重视EA/VPP这一脚。
在不使用外部程序存储器的应用程序中,这脚可能会永久接到VCC。
应用程序使用的外部程序存储器要求这一脚为低电平才能正常运行。
RST在编程期间必须为高电平。
应该提供一种方法使得电路通入电源以后,使RST代替主要的复位电路起到复位的作用。
在编程过程中,PSEN必须保持低电平,在正常运行期间绝不能使用。
ALE/ PROG在编程过程中输出低电平,在正常运行期间绝不能使用。
在编程过程中,AT89C51的I / O端口是用于模式应用程序,地址和数据选择的,可能需要该控制器从应用的电路隔离。
如何做到这一点取决于应用程序。
输入端口在编程过程中,控制器必须与应用电路的信号来源隔离。
带有三个输出状态的缓冲区会在应用程序之间插入电路和控制器,同时在编程时缓冲区输出三种状态。
一个多路复用器可用于信号源之间进行选择,适用于任何一方的应用电路或编程控制器电路的信号。
输出端口如果应用的电路可以允许端口在编程过程中的状态变化,则不需要改变电路。
如果应用电路的状态,必须事先在编程过程中的保持不变,可能在控制器和应用电路中插入锁存。
锁存在编程期间是可用的,并保存应用程序的电路状态。
应用实例应用是该AT89C51一个移动的显示情况。
三、从经典电子技术时代到现代电子技术时代进入20世纪80年代,世纪经济中最重要的变革是计算机的产业革命。
而计算机产业革命的最重要标志则是计算机嵌入式应用的诞生。
近代电子计算机是应数值计算要求诞生的。
在很长的时间内,电子计算机都是以发展海量数值计算为己任。
但是电子计算机表现出的逻辑运算、处理、控制能力,吸引了电子控制领域的专家,他们要求发展能满足控制对象要求,实现嵌入式应用的计算机系统。
如果将满足海量数据处理的计算机系统称为通用计算机系统,那么则可把嵌入到对象体系(如舰船、飞机、机车等)中的计算机系统称作嵌入式计算机。
显而易见,两者的技术发展方向是不同的。
前者要求海量数据存储、吞吐、高速数据处理分析及传输;而后者要求在对象环境中可靠运行,对外部物理参数的高速采集、逻辑分析处理和对外部对象的快速控制等。
早期人们将通用计算机加上数据采集单元、输出驱动电路勉为其难地构成一个热处理炉的温控系统。
这样的通用计算机系统不可能为大多数电子系统采用,而且要使通用计算机系统满足嵌入式应用要求,必然影响高速数值处理技术的发展。
为了解决计算机技术发展的矛盾,在20世纪70年代,半导体专家另辟蹊径,完全按照电子系统的计算机嵌入式应用要求,将一个微型计算机的基本系统集成在一个芯片上,形成了早期的单片机(Single Chip Microcomputer)。
单片机问世后,在计算机领域中开始出现了通用计算机系统和嵌入式系统的两大分支。
此后,无论是嵌入式系统,还是通用计算机系统都得到了飞速的发展。
早期虽然有通用计算机改装而成的嵌入式计算机系统,而真正意义上的嵌入式系统始于单片机的出现。
因为单片机是专门为嵌入式应用设计的,单片机只能实现嵌入式应用。
单片机能最好地满足嵌入式应用的环境要求,例如,芯片级的物理空间、大规模集成电路的低价位、良好的外围接口总线和突出控制功能的指令系统。
单片机有计算机系统内核,嵌入到电子系统中,为电子系统智能化奠定了基础。
附录:英文技术资料翻译英文原文:Structure and function of the MCS-51 seriesStructure and function of the MCS-51 series one-chip computer MCS-51 is a name of a piece of one-chip computer series which Intel Company produces. This company introduced 8 top-grade one-chip computers of MCS-51 series in 1980 after introducing 8 one-chip computers of MCS-48 series in 1976. It belong to a lot of kinds this line of one-chip computer the chips have,such as 8051, 8031, 8751, 80C51BH, 80C31BH,etc., their basic composition, basic performance and instruction system are all the same. 8051 daily representatives- 51 serial one-chip computers .An one-chip computer system is made up of several following parts: ( 1) One microprocessor of 8 (CPU). ( 2) At slice data memory RAM (128B/256B),it use not depositting not can reading /data that write, such as result not middle of operation, final result and data wanted to show, etc. ( 3) Procedure memory ROM/EPROM (4KB/8KB ), is used to preserve the procedure , some initial data and form in slice. But does not take ROM/EPROM within some one-chip computers, such as 8031 , 8032, 80C ,etc.. ( 4) Four 8 run side by side I/O interface P0 four P3, each mouth can use as introduction , may use as exporting too. ( 5) Two timer / counter, each timer / counter may set up and count in the way, used to count to the external incident, can set up into a timing way too, and can according to count or result of timing realize the control of the computer. ( 6) Five cut off cutting off the control system of the source . ( 7) One all duplexing serial I/O mouth of UART (universal asynchronous receiver/transmitter (UART) ), is it realize one-chip computer or one-chip computer and serial communication of computer to use for. ( 8) Stretch oscillator and clock produce circuit, quartz crystal finely tune electric capacity need outer. Allow oscillation frequency as 12 megahertas now at most. Every the above-mentioned part was joined through the inside data bus .Amongthem, CPU is a core of the one-chip computer, it is the control of the computer and command centre, made up of such parts as arithmetic unit and controller , etc.. The arithmetic unit can carry on 8 persons of arithmetic operation and unit ALU of logic operation while including one, the 1 storing device temporarilies of 8, storing device 2 temporarily, 8's accumulation device ACC, register B and procedure state register PSW, etc. Person who accumulate ACC count by 2 input ends entered of checking etc. temporarily as one operation often, come from person who store 1 operation is it is it make operation to go on to count temporarily , operation result and loopback ACC with another one. In addition, ACC is often regarded as the transfer station of data transmission on 8051 inside . The same as general microprocessor, it is the busiest register. Help remembering that agreeing with A expresses in the order. The controller includes the procedure counter , the order is depositted, the order decipher, the oscillator and timing circuit, etc. The procedure counter is made up of counter of 8 for two, amounts to 16. It is a byte address counter of the procedure in fact, the content is the next IA that will carried out in PC. The content which changes it can change the direction that the procedure carries out . Shake the circuit in 8051 one-chip computers, only need outer quartz crystal and frequency to finely tune the electric capacity, its frequency range is its 12MHZ of 1.2MHZ. This pulse signal, as 8051 basic beats of working, namely the minimum unit of time. 8051 is the same as other computers, the work in harmony under the control of the basic beat, just like an orchestra according to the beat play that is commanded.There are ROM (procedure memory , can only read ) and RAM in 8051 slices (data memory, can is it can write ) two to read, they have each independent memory address space, dispose way to be the same with general memory of computer. Procedure 8051 memory and 8751 slice procedure memory capacity 4KB, address begin from 0000H, used for preserving the procedure and form constant. Data 8051- 8751 8031 of memory data memory 128B, address false 00FH, use for middle result to deposit operation, the data are stored temporarily and the data are buffered etc.. In RAM of this 128B, there is unit of 32 byteses that can be appointed as the job register, this and general microprocessor is different, 8051 slice RAM and job register rank one formation the same toarrange the location. It is not very the same that the memory of MCS-51 series one-chip computer and general computer disposes the way in addition. General computer for first address space, ROM and RAM can arrange in different space within the range of this address at will, namely the addresses of ROM and RAM, with distributing different address space in a formation. While visiting the memory, corresponding and only an address Memory unit, can ROM, it can be RAM too, and by visiting the order similarly. This kind of memory structure is called the structure of Princeton. 8051 memories are divided into procedure memory space and data memory space on the physics structure, there are four memory spaces in all: The procedure stores in one and data memory space outside data memory and one in procedure memory space and one outside one, the structure forms of this kind of procedure device and data memory separated form data memory, called Harvard structure. But use the angle from users, 8051 memory address space is divided into three kinds: (1) In the slice, arrange blocks of FFFFH , 0000H of location , in unison outside the slice (use 16 addresses). (2) The data memory address space outside one of 64KB, the address is arranged from 0000H 64KB FFFFH (with 16 addresses ) too to the location. (3) Data memory address space of 256B (use 8 addresses). Three above-mentioned memory space addresses overlap, for distinguishing and designing the order symbol of different data transmission in the instruction system of 8051: CPU visit slice, ROM order spend MOVC , visit block RAM order uses MOVX outside the slice, RAM order uses MOV to visit in slice.8051 one-chip computer have four 8 walk abreast I/O port, call P0, P1, P2 and P3. Each port is 8 accurate two-way mouths, accounts for 32 pins altogether. Every one I/O line can be used as introduction and exported independently. Each port includes a latch (namely special function register ), one exports the driver and a introduction buffer . Make data can latch when outputting, data can buffer when making introduction , but four function of passway these self-same. Expand among the system of memory outside having slice, four port these may serve as accurate two-way mouth of I/O in common use. Expand among the system of memory outside having slice, P2 mouth see high 8 address off; P0 mouth is a two-way bus, send the introduction of 8 low addresses and data / export in timesharingOutput grade , P3 of mouth , P1 of P1 , connect with inside have load resistance of drawing , every one of they can drive 4 Model LS TTL load to output. As while inputting the mouth, any TTL or NMOS circuit can drive P1 of 8051 one-chip computers as P3 mouth in a normal way . Because draw resistance on output grade of them have, can open a way collector too or drain-source resistance is it urge to open a way, do not need to have the resistance of drawing outerly . Mouths are all accurate two-way mouths too. When the conduct is input, must write the corresponding port latch with 1 first . As to 80C51 one-chip computer, port can only offer milliampere of output electric currents, is it output mouth go when urging one ordinary basing of transistor to regard as, should contact a resistance among the port and transistor base , in order to the electricity while restraining the high level from exporting P1~P3 Being restored to the throne is the operation of initializing of an one-chip computer. Its main function is to turn PC into 0000H initially , make the one-chip computer begin to hold the conduct procedure from unit 0000H. Except that the ones that enter the system are initialized normally,as because procedure operate it make mistakes or operate there aren't mistake, in order to extricate oneself from a predicament , need to be pressed and restored to the throne the key restarting too. It is an input end which is restored to the throne the signal in 8051 China RST pin. Restore to the throne signal high level effective , should sustain 24 shake cycle (namely 2 machine cycles ) the above its effective times. If 6 of frequency of utilization brilliant to shake, restore to the throne signal duration should exceed 4 delicate to finish restoring to the throne and operating. Produce the logic picture of circuit which is restored to the throne the signal:Restore to the throne the circuit and include two parts outside in the chip entirely. Outside that circuit produce to restore to the throne signal (RST ) hand over to Schmitt's trigger, restore to the throne circuit sample to output , Schmitt of trigger constantly in each S5P2 , machine of cycle in having one more , then just got and restored to the throne and operated the necessary signal insidly. Restore to the throne resistance of circuit generally, electric capacity parameter suitable for 6 brilliant to shake,can is it restore to the throne signal high level duration greater than 2 machine cycles to guarantee. Being restored to the throne in the circuit is simple, its function is very important. Pieces of one-chip computer system could normal running,should first check it can restore to the throne not succeeding. Checking and can pop one's head and monitor the pin with the oscillograph tentatively, push and is restored to the throne the key, the wave form that observes and has enough range is exported (instantaneous), can also through is it restore to the throne circuit group holding value carry on the experiment to change.注:文献来源中文译文:51系列单片机的功能和结构51系列单片机是Intel公司设计的单片机产品。
Structure and function of the MCS-51 seriesStructure and function of the MCS-51 series one-chip computer MCS-51 is a name of a piece of one-chip computer series which Intel Company produces。
This company introduced 8 top-grade one—chip computers of MCS—51 series in 1980 after introducing 8 one-chip computers of MCS-48 series in 1976. It belong to a lot of kinds this line of one—chip computer the chips have,such as 8051, 8031, 8751, 80C51BH, 80C31BH,etc。
, their basic composition, basic performance and instruction system are all the same. 8051 daily representatives— 51 serial one-chip computers 。
An one—chip computer system is made up of several following parts: ( 1) One microprocessor of 8 (CPU)。
( 2) At slice data memory RAM (128B/256B),it use not depositting not can reading /data that write, such as result not middle of operation,final result and data wanted to show, etc. ( 3) Procedure memory ROM/EPROM (4KB/8KB ),is used to preserve the procedure , some initial data and form in slice. But does not take ROM/EPROM within some one-chip computers, such as 8031 , 8032, 80C ,etc。
科技论文—-----—-浅谈单片机发展及应用摘要:单片机诞生于1971年,它包含了计算机的基本组成单元,仍由运算器、控制器、存储器、输入设备和输出设备五部分组成,经历了SCM、MCU、SoC三大阶段发展已成为现代计算机技术的支柱产业.单片机作为计算机发展的一个重要领域,应用一个较科学的分类方法。
根据目前发展情况,从不同角度单片机大致可以分为通用型/专用型、总线型/非总线型及工控型/家电型。
关键词:单片机发展现代化分类单片机是在一块芯片上集成了中央处理单元(CPU)、存储器(RAM/ROM)、定时器/计数器及输入/输出(I/O)接口等元器件的微型计算机系统。
单片机的出现是计算机制造技术不断发展的产物,是计算机发展的一个重要分支。
就单片机组成而言,虽然它只是一块芯片,但它包含了计算机的基本组成单元,仍由运算器、控制器、存储器、输入设备和输出设备五部分组成,只不过这些都集成在一块芯片上罢了,所谓“麻雀虽小,五脏俱全”,这种结构使得单片机成为具有独特功能和特色的计算机.[1]一、单片机的发展历史单片机诞生于1971年,经历了SCM、MCU、SoC三大阶段。
1971年intel公司研制出世界上第一个4位的微处理器;Intel公司的霍夫研制成功世界上第一块4位微处理器芯片Intel 4004,标志着第一代微处理器问世,微处理器和微机时代从此开始。
因发明微处理器,霍夫被英国《经济学家》杂志列为“二战以来最有影响力的7位科学家"之一。
早期的单片机都是8位或4位的。
其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评.此后在8031上发展出了MCS51系列单片机系统。
基于这一系统的单片机系统直到现在还在广泛使用.随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。
90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。
随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场.而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。
原文Title:DEVELOPMENT AND APPLICATION OF SINGLE CHIPMICROCOMPUTERPrinciple of MCUSingle-chip is an integrated on a single chip a complete computer system. Even though most of his features in a small chip, but it has a need to complete the majority of computer components: CPU memory internal and external bus system, most will have the core. At the same time such as integrated communication interfaces, timers, real-time clock and other peripheral equipments. And now the most powerful single-chip system can even voice, image, networking, input and output complex system integration on a single chip.Microcontroller is only the CPU chip developed from dedicated processors. Is the earliest design concept through the integration of a large number of peripherals and CPU in a chip, make the computer system smaller, more easily integrated into a more intricate and strict in volume control equipments.Single-chip microcomputer is different from the single machine, however, the chip before without development, it only has the strong function of very large scale integrated circuit, if giving it a particular program, it is a minimum, complete a microcomputer control system, it with the single machine or personal computer (PC) the distinction that having essence, MCU application belongs to the chip level, requires the user to understand the structure of the single-chip microcomputer and command system, and other integrated circuit application technology and system needs the theory and design technology, in this particular chip design application, so that the chip has the specific function.Different MCU have different hardware and software characteristics, the technical features is that they are not the same, depends on the internal structure of single-chip microcomputer hardware features, users want to use a single chip microcomputer, must know whether the products meet the need of function and characteristic parameters required by the application system. The technical features include the features, control and electrical properties, etc., the information need to get from the manufacturer's technical manuals. Software refers to the instruction system characteristics and development support environment, instruction features which we are familiar with single-chip microcomputeraddressing mode, data processing and logical approach, input/output characteristics and the requirement of power supply and so on. Development support of environmental compatible includes instructions and portability, supporting software (including can support the development of application software resources) and hardware resources. To take advantage of a type microcontroller to develop their own application system, to master its structure features and technical characteristics is a must.Single-chip microcomputer control system to replace previous use of complex electronic circuits or digital circuit of control system, can control software to realize, and can realize the intellectualized, now ubiquitous single-chip microcomputer control category, such as communication products, household appliances, smart instrumentation, process control and special control device and so on, single-chip computer is finding wider and wider application fields.Hardware introduction:The 8051 family of micro controllers is based on an architecture which is highly optimized for embedded control systems. It is used in a wide variety of applications from military equipment to automobiles to the keyboard on your PC. Second only to the Motorola 68HC11 in eight bit processors sales, the8051 family of microcontrollers is available in a wide array of variations from manufacturers such as Intel, Philips, and Siemens. These manufacturers have added numerous features and peripherals to the 8051 such as I2C interfaces, analog to digital converters watchdog timers, and pulse width modulated outputs. Variations of the 8051 with clock speeds up to 40MHz and voltage requirements down to 1.5volts are available. This wide range of parts based on one core makes the 8051family an excellent choice as the base architecture for a company's entire line of products since it can perform many functions and developers will only have to learn this one platform.The basic architecture consists of the following features:·an eight bit ALU·32descrete I/O pins (4 groups of 8) which can be individually accessed·two16 bit timer/counters·full duplex UART·6 interrupt sources with 2 priority levels·128bytes of on board RAM·separate 64K byte address spaces for DATA and CODE memoryOne 8051 processor cycle consists of twelve oscillator periods. Each of the twelve oscillator periods is used for a special function by the 8051 core such as op code fetches and samples of the interrupt daisy chain for pending interrupts. The time required for any 8051 instruction can be computed by dividing the clock frequency by 12, inverting that result and multiplying it by the number of processor cycles required by the instruction in question. Therefore, if you have a system which is using an11.059MHz clock, you can compute the number of instructions per second by dividing this value by 12. This gives an instruction frequency of 921583instructions per second. Inverting this will provide the amount of time taken by each instruction cycle (1.085 microseconds).MCU applicationsSCM now permeate all areas of our lives which is almost difficult to find traces of the field without SCM. Missile navigation equipment, aircraft, all types of instrument control, computer network communications and data transmission, industrial automation, real-time process control and data processing, extensive use of various smart IC card, civilian luxury car security system, video recorder, camera, fully automatic washing machine control, and program-controlled toys, electronic pet, etc., which are inseparable from the microcontroller. Not to mention the area of robot control, intelligent instruments medical equipment was. Therefore, the MCU learning, development and application of the large number of computer applications and intelligent control of the scientists and engineers.SCM is widely used in instruments and meters, household appliances, medical equipment, aerospace, specialized equipment, intelligent management and process control fields, roughly divided into the following several areas:1.In the application of Intelligent InstrumentsSCM has a small size, low power consumption, controlling function, expansion flexibility, the advantages of miniaturization and ease of use, widely used instrument, combining different types of sensors can be realized voltage, power, frequency, humidity, temperature, flow, speed, thickness, angle, length, hardness, elemental, physical pressure measurement. SCM makes use of digital instruments, intelligence, miniaturization, and functionality than electronic or digital circuits more powerful. Such as precision measuring equipment (power meter oscilloscope various analytical instrument).2.In the industrial control applicationWith the MCU can constitute a variety of control systems, data acquisition system Such as factory assembly line of intelligent control.3.In Household AppliancesCan be said that the appliance are basically using SCM, praise from the electric rice, washing machines, refrigerators, air conditioners, color TV, and other audio video equipment, to the electronic weighing equipment, varied, and omnipresent.4.In the field of computer networks and communications applicationsMCU general with modern communication interface, can be easy with the computer data communication, networking and communications in computer applications between devices had excellent material conditions, are basically all communication equipment to achieve a controlled by MCU from mobile phone, telephone, mini-program-controlled switchboards, building automated communications call system, train radio communication, to the daily work can be seen everywhere in the mobile phones trunk mobile radio, walkie-talkies, etc.译文题目:单片机的发展和应用单片机原理单片机是指将一个完整的计算机系统集成在一块芯片上。
中文原文:单片机介绍单片机也被称为微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。
单片机由芯片内仅有CPU的专用处理器发展而来。
最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。
INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。
早期的单片机都是8位或4位的。
其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。
此后在8031上发展出了MCS51系列单片机系统。
基于这一系统的单片机系统直到现在还在广泛使用。
随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。
90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。
随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。
而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。
目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端[1]的型号也只有10美元。
当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。
而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。
单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。
事实上单片机是世界上数量最多的计算机。
现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。
手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。
而个人电脑中也会有为数不少的单片机在工作。
汽车上一般配备40多部单片机,复杂的工业控制系统上甚至可能有数百台单片机在同时工作。
单片机的数量不仅远超过PC机和其他计算的总和,甚至比人类的数量还要多。
单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。
相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。
概括的讲:一块芯片就成了一台计算机。
它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。
同时,学习使用单片机是了解计算机原理与结构的最佳选择。
单片机内部也用和电脑功能类似的模块,比如CPU,内存,并行总线,还有和硬盘作用相同的存储器件,不同的是它的这些部件性能都相对我们的家用电脑弱很多,不过价钱也是低的,一般不超过10元即可......用它来做一些控制电器一类不是很复杂的工作足矣了。
我们现在用的全自动滚筒洗衣机、排烟罩、VCD等等的家电里面都可以看到它的身影。
......它主要是作为控制部分的核心部件。
它是一种在线式实时控制计算机,在线式就是现场控制,需要的是有较强的抗干扰能力,较低的成本,这也是和离线式计算机的(比如家用PC)的主要区别。
单片机芯片单片机是靠程序运行的,并且可以修改。
通过不同的程序实现不同的功能,尤其是一些特殊的功能,这是别的器件需要费很大力气才能做到的,有些则是花大力气也很难做到的。
一个不是很复杂的功能要是用美国50年代开发的74系列,或者60年代的CD4000系列这些纯硬件来搞定的话,电路一定是一块大PCB板。
但是如果要是用美国70年代成功投放市场的系列单片机,结果就会有天壤之别。
只因为单片机的通过你编写的程序可以实现高智能,高效率,以及高可靠性。
由于单片机对成本是敏感的,所以目前占统治地位的软件还是最低级汇编语言,它是除了二进制机器码以上最低级的语言了,既然这么低级为什么还要用呢?很多高级的语言已经达到了可视化编程的水平为什么不用呢?原因很简单,就是单片机没有家用计算机那样的CPU,也没有像硬盘那样的海量存储设备。
一个可视化高级语言编写的小程序里面即使只有一个按钮,也会达到几十K的尺寸。
对于家用PC的硬盘来讲没什么,可是对于单片机来讲是不能接受的。
单片机在硬件资源方面的利用率必须很高才行,所以汇编虽然原始却还是在大量使用。
一样的道理,如果把巨型计算机上的操作系统和应用软件拿到家用PC上来运行,家用PC的也是承受不了的。
可以说,二十世纪跨越了三个“电”的时代,即电气时代、电子时代和现已进入的电脑时代。
不过,这种电脑,通常是指个人计算机,简称PC机。
它由主机、键盘、显示器等组成。
还有一类计算机,大多数人却不怎么熟悉。
这种计算机就是把智能赋予各种机械的单片机(亦称微控制器)。
顾名思义,这种计算机的最小系统只用了一片集成电路,即可进行简单运算和控制。
因为它体积小,通常都藏在被控机械的“肚子”里。
它在整个装置中,起着有如人类头脑的作用,它出了毛病,整个装置就瘫痪了。
现在,这种单片机的使用领域已十分广泛,如智能仪表、实时工控、通讯设备、导航系统、家用电器等。
各种产品一旦用上了单片机,就能起到使产品升级换代的功效,常在产品名称前冠以形容词——“智能型”,如智能型洗衣机等。
现在有些工厂的技术人员或其它业余电子开发者搞出来的某些产品,不是电路太复杂,就是功能太简单且极易被仿制。
究其原因,可能就卡在产品未使用单片机或其它可编程逻辑器件上。
单片机历史单片机诞生于20世纪70年代末,经历了SCM、MCU、SoC三大阶段。
起初模型1.SCM即单片微型计算机(Single Chip Microcomputer)阶段,主要是寻求最佳的单片形态嵌入式系统的最佳体系结构。
“创新模式”获得成功,奠定了SCM与通用计算机完全不同的发展道路。
在开创嵌入式系统独立发展道路上,Intel公司功不可没。
2.MCU即微控制器(Micro Controller Unit)阶段,主要的技术发展方向是:不断扩展满足嵌入式应用时,对象系统要求的各种外围电路与接口电路,突显其对象的智能化控制能力。
它所涉及的领域都与对象系统相关,因此,发展MCU的重任不可避免地落在电气、电子技术厂家。
从这一角度来看,Intel逐渐淡出MCU的发展也有其客观因素。
在发展MCU方面,最著名的厂家当数Philips公司。
Philips公司以其在嵌入式应用方面的巨大优势,将MCS-51从单片微型计算机迅速发展到微控制器。
因此,当我们回顾嵌入式系统发展道路时,不要忘记Intel和Philips的历史功绩。
嵌入式系统单片机是嵌入式系统的独立发展之路,向MCU阶段发展的重要因素,就是寻求应用系统在芯片上的最大化解决;因此,专用单片机的发展自然形成了SoC化趋势。
随着微电子技术、IC设计、EDA工具的发展,基于SoC的单片机应用系统设计会有较大的发展。
因此,对单片机的理解可以从单片微型计算机、单片微控制器延伸到单片应用系统。
单片机的应用领域目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。
导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录像机、摄像机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。
更不用说自动控制领域的机器人、智能仪表、医疗器械了。
因此,单片机的学习、开发与应用将造就一批计算机应用与智能化控制的科学家、工程师。
单片机广泛应用于仪器仪表、家用电器、医用设备、航空航天、专用设备的智能化管理及过程控制等领域,大致可分如下几个范畴:1.在智能仪器仪表上的应用单片机具有体积小、功耗低、控制功能强、扩展灵活、微型化和使用方便等优点,广泛应用于仪器仪表中,结合不同类型的传感器,可实现诸如电压、功率、频率、湿度、温度、流量、速度、厚度、角度、长度、硬度、元素、压力等物理量的测量。
采用单片机控制使得仪器仪表数字化、智能化、微型化,且功能比起采用电子或数字电路更加强大。
例如精密的测量设备(功率计,示波器,各种分析仪)。
2.在工业控制中的应用用单片机可以构成形式多样的控制系统、数据采集系统。
例如工厂流水线的智能化管3.在家用电器中的应用可以这样说,现在的家用电器基本上都采用了单片机控制,从电饭褒、洗衣机、电冰箱、空调机、彩电、其他音响视频器材、再到电子秤量设备,五花八门,无所不在。
4.在计算机网络和通信领域中的应用现代的单片机普遍具备通信接口,可以很方便地与计算机进行数据通信,为在计算机网络和通信设备间的应用提供了极好的物质条件,现在的通信设备基本上都实现了单片机智能控制,从手机,电话机、小型程控交换机、楼宇自动通信呼叫系统、列车无线通信、再到日常工作中随处可见的移动电话,集群移动通信,无线电对讲机等。
5.单片机在医用设备领域中的应用单片机在医用设备中的用途亦相当广泛,例如医用呼吸机,各种分析仪,监护仪,超声诊断设备及病床呼叫系统等等。
6.在各种大型电器中的模块化应用某些专用单片机设计用于实现特定功能,从而在各种电路中进行模块化应用,而不要求使用人员了解其内部结构。
如音乐集成单片机,看似简单的功能,微缩在纯电子芯片中(有别于磁带机的原理),就需要复杂的类似于计算机的原理。
如:音乐信号以数字的形式存于存储器中(类似于ROM),由微控制器读出,转化为模拟音乐电信号(类似于声卡)。
在大型电路中,这种模块化应用极大地缩小了体积,简化了电路,降低了损坏、错误率,也方便于更换。
7.单片机在汽车设备领域中的应用单片机在汽车电子中的应用非常广泛,例如汽车中的发动机控制器,基于CAN总线的汽车发动机智能电子控制器,GPS导航系统,abs防抱死系统,制动系统等等。
此外,单片机在工商,金融,科研、教育,国防航空航天等领域都有着十分广泛的用途。
学习应用六大重要部分单片机学习应用的六大重要部分一、总线:我们知道,一个电路总是由元器件通过电线连接而成的,在模拟电路中,连线并不成为一个问题,因为各器件间一般是串行关系,各器件之间的连线并不很多,但计算机电路却不一样,它是以微处理器为核心,各器件都要与微处理器相连,各器件之间的工作必须相互协调,所以需要的连线就很多了,如果仍如同模拟电路一样,在各微处理器和各器件间单独连线,则线的数量将多得惊人,所以在微处理机中引入了总线的概念,各个器件共同享用连线,所有器件的8根数据线全部接到8根公用的线上,即相当于各个器件并联起来,但仅这样还不行,如果有两个器件同时送出数据,一个为0,一个为1,那么,接收方接收到的究竟是什么呢?这种情况是不允许的,所以要通过控制线进行控制,使器件分时工作,任何时候只能有一个器件发送数据(可以有多个器件同时接收)。