当前位置:文档之家› 多孔形状记忆合金的变形特性

多孔形状记忆合金的变形特性

多孔形状记忆合金的变形特性
多孔形状记忆合金的变形特性

多孔形状记忆合金的变形特性 及热-机械循环对形状记忆性能的影响*

李丙运 戎利建 李依依

(中国科学院金属研究所, 沈阳110015)

V. E. Gjunter

(H. 17 Gvardeyskay Divisia St. 19, Tomsk 634034, Russia)

摘要 研究了传统粉末烧结制备工艺及热-机械循环压缩变形对多孔NiTi 形状记忆合金变形和记忆特性的影响. 结果表明,随烧结温度升高,合金的轴向应变恢复率和弹性应变均显著提高. 可见,提高烧结温度有利于合金的形状记忆和弹性性能. 同时发现,少量(二次)热-机械循环压缩变形可显著提高合金的应变恢复率和可逆应变,从而进一步改善了多孔形状记忆合金的形状记忆性能.

关键词 粉末烧结, 应变恢复率, 弹性应变, 可逆应变, 多孔形状记忆合金 中图法分类号 TG113, TG139 文献标识码 A 文章编号 0412-1961(1999)04-0362-64

DEFORMATION BEHAVIOR OF POROUS NiTi SHAPE MEMORY ALLOY AND EFFECT OF THERMAL-MECHANICAL CYCLING ON SHAPE MEMORY PROPERTY

LI Bingyun, RONG Lijian, LI Yiyi

Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110015

V. E. Gjunter

H. 17 Gvardeyskay Divisia St. 19, Tomsk 634034, Russia

Correspondent: LI Bingyun, Tel: (024)23843531-55445, Fax: (024)23891320

Manuscript received 1998-10-22, in revised form 1998-12-16

ABSTRACT The effect of conventional powder sintering and thermal-mechanical compression cycling on shape memory properties of porous NiTi alloy has been studied. The experimental results show that it is favorable to the shape memory and elastic properties of shape memory alloy by increasing sintering temperature as the axial strain recovery and elastic strain improve with increasing sintering temperature. Meanwhile, a few thermal-mechanical compression cyclings can further improve the shape memory effect of porous NiTi alloy as the strain recovery and reversible strain are enhanced greatly in the second compression cycling.

KEY WORDS powder sintering, strain recovery, elastic strain, reversible strain, porous shape memory alloy

*

中国科学院重点支持项目(资助号971524)

收到初稿日期:1998-10-22,收到修改稿日期:1998-12-16 作者简介:李丙运,男,1972年生,汉族,博士生

作为新型功能材料的NiTi 形状记忆合金在工业和医学上已获得广泛应用,传统上制备这种合金的方法是熔铸法. 但由于熔铸法使用的是块状原料,熔炼时成分难以精确控制,易产生偏析,从而影响材料的加工性能及其记忆性能,因此往往需要通过多次熔炼和高温均匀化处理来改善铸锭的性能[1]. 同时,熔铸法所得产品加工困难、价格昂贵. 粉末冶金方法克服了传统熔铸法易产生偏析的问题,使合金成分更趋均匀;同时对于形状复杂、难于加工的元件,可以减少加工工序,用该法直接获得

近终形产品. 因此,粉末冶金方法越来越引起人们的重视. 目前,已有一些研究人员采用粉末冶金方法制备出NiTi 形状记忆合金[2-5],但他们所制备的大部分是致密的NiTi 合金. 有关多孔合金的形状记忆性能的研究目前报道还比较少. 同时,采用氢化钛替代钛粉可以节省成本,减轻纯钛粉的氧化问题. 但是,加入氢化钛对合金形状记忆性能的影响尚未有人研究过.

此外,多孔形状记忆合金作为生物医用材料具有许多优点,如多孔结构有利于人体体液营养成分的传输;

第35卷 第4期 Vol. 35 No.4

1999年4月 April 1999 金 属 学 报 ACTA METALLURGICA SINICA

有利于骨的矿化组织和纤维组织长入而使其与周围组织结合更牢固. 同时,多孔NiTi 合金独特的体积记忆效应[6]也使植入物的植入过程简单化. 因此,多孔NiTi 形状记忆合金在生物医学领域的应用,尤其在骨、牙齿和关节等硬组织的修复和替换外科方面,引起国际生物医用材料界的关注. 本文的目的在于研究多孔NiTi 合金的变形和记忆性能,研究氢化钛替代钛粉对合金记忆性能的影响,探讨改善多孔形状记忆合金性能的有效途径.

1 实 验 方 法

为了提高合金孔隙分布均匀性和开孔率、降低生产成本,本文在常规Ti ,Ni 金属粉末制备多孔NiTi 合金的基础上,根据TiH 2在烧结过程中分解可以活化烧结,同时分解产生的气体在逸出过程中有可能提高合金的开孔率和生成新的孔隙[7],本文采用添加不同TiH 2粉含量,将Ti 、Ni 粉和TiH 2粉按Ni/Ti 等原子比配制、混合均匀(混合粉末的名义成分见表1). 采用70 MPa 的压力单向压制,成形生坯为圆柱体,直径为Φ11.5 mm, 高度在10.3~10.5 mm 之间,高径比约为0.9. 然后,在不同烧结温度下烧结1 h.

利用压缩实验测试了合金的应变特性和形状记忆性能. 压缩试样直接采用规则的圆柱形烧结体,压缩方向为生坯成形的压制方向(轴向). 压缩实验在DCS-10 t 拉伸机上进行. 热-机械循环压缩实验采用反复形变加退火的方式. 退火温度为200℃,退火时间为30 min. 由于大量实验表明[8],No.4混合粉末950℃烧结为制备多孔NiTi 合金的最佳工艺,而本工作又发现二次循环压缩变形即可使在900及950℃烧结的No.4合金的应变恢复率分别达到100%和98.7%,因此本文着重研究了二次循环压缩对不同合金形状记忆性能的改善.

2 实 验 结 果

2.1 多孔NiTi 合金的应变特性

多孔NiTi 合金的形状记忆性能与烧结制备条件有关. 表2是不同烧结温度下多孔NiTi 合金一次和二次循环压

缩(预应变εt 为8%)的轴向应变恢复率. 从表可见,较低温度下烧结合金的一次压缩轴向应变恢复率较低,如750

℃烧结No.1合金的轴向应变恢复率仅为14.6%; 但随烧

结温度的升高,4种合金的轴向应变恢复率均显著提高,

故提高烧结温度改善了多孔合金的形状记忆性能. 同时,

随着TiH 2含量的增加,相同条件下烧结合金的轴向应变

恢复率也增加. 另外,与块体形状记忆合金一样,大预应变(εt 为20%)下多孔合金的轴向应变恢复率也有较大程度的降低,如950℃烧结的No.1合金的轴向应变恢复率从预应变8%时的65.3%下降到预应变20%时的41.4%,在850℃烧结的No.4合金也相应地从51.8%下降到30.3%. 图1a 给出了在不同温度烧结No.1合金(预应变εt 为

8%)的弹性应变εe 、

可逆应变εr 和残余应变εR . 可见,多孔NiTi 合金具有很高的弹性应变. 同时,随烧结温度的升高,在εe 显著增加的同时,εR 明显减少,而εr 在800℃烧结时亦稍有提高. 因此,提高烧结温度明显改善了多孔合金的弹性性能.

2.2 循环压缩变形对多孔合金形状记忆性能的影响 多孔NiTi 合金二次循环压缩(预应变8%)的应变特性亦见表2. 由表可见,与一次压缩相比,所有合金的轴向应变恢复率均大幅度提高,900及950℃烧结的No.4合金的轴向应变恢复率分别达到100%和98.7%. 另外,比较图1a 和图1b 可以发现,No.1合金二次循环压缩的可逆应变εr 和残余应变εR 发生了较大的变化. 其中,二次循环压缩使合金的εr 大大提高,εR 减少很多,弹性应变εe 则略有增加(图1b). 因此,循环压缩变形明显改善了多孔合金的形状记忆性能.

3 讨 论

3.1 烧结制备工艺及形变量对合金形状记忆性能的影响

粉末烧结合金的形状记忆性能受合金的烧结工艺影响较大. 随烧结温度的升高和TiH 2含量的增加,合金的

烧结程度大大提高,合金强度相应地提高,合金抵抗塑性变形的能力增加. 同时,合金中形成的NiTi 相增多[8],而NiTi 相是形状记忆合金中唯一具有形状记忆特性的物相. 因此,随着随烧结温度的升高和TiH 2

含量的增加,

不论是一次压缩还是二次循环压缩,多孔合金的轴向应

变恢复率和弹性应变均增大,而残余应变则相应减小. 大预应变下多孔合金的轴向应变恢复率降低主要是由于随着变形量的增大,合金发生的塑性变形增大,从而导致合金的应变恢复率降低. 粉末烧结合金的弹性很高,这主要是由于孔隙的存

表1 实验混合粉末的化学成分

Table 1 The chemical composition of experimental blended powders

(mass fraction, %)

Sample No.

TiH 2 Ti Ni

1 0.0 44.9 bal.

2 9.

3 35.8 bal. 3 27.8 17.8 bal.

4 45.9 0.0 bal.

表2 多孔NiTi 形状记忆合金预应变8%时一次及二次 循环压缩的轴向应变恢复率

Table 2 The axial strain recovery(εt =8%) under 1st and 2nd compression cycling of porous NiTi alloy

%

Sintering Temperature, ℃

Sample No.

750 800 850 900 950

1 1st cycling 14.6 38.9 40.0 40.4 65.3 2nd cycling 20.5 57.7 80.0 91.8 90.8

2 1st cycling 17.5 30.7 47.5 59.1 53.

3 2nd cycling 25.5 42.7 66.

4 88.4 91.4 3 1st cycling 22.1 38.2 59.7 49.7 65.6 2nd cycling 33.9 49.1 66.3 91.7 90.9 4 1st cycling 32.2 31.9 51.8 52.0 75.8

2nd cycling 37.5 62.7 72.3 100 98.7

第4期 李丙运等: 多孔形状记忆合金的变形特性及热-机械循环对形状记忆性能的影响 363

在,预应变8%时,基体金属的实际变形比8%小很多. 因此,多孔合金可表现出比块体合金更好的弹性性能.

3.2 循环压缩变形的影响

循环压缩变形导致合金轴向应变恢复率大大提高这一现象与文献[6]的报道相一致. 但在文献[6]中,循环变形导致可逆应变减少,而本文中二次循环压缩后合金的可逆应变增加. 二次循环压缩实际上是一次压缩应力诱发马氏体及其逆转变过程的重复. 一次压缩导致母相基体内缺陷(如位错、位错缠结、层错等)浓度增大[9]. 这种由于热-机械循环所形成的母相内的缺陷具有两方面的作用:一方面,提高了母相强度,抑制了不可逆的塑性变形;另一方面,有可能提供了马氏体相变形核的位置,使马氏体相变形核的障碍减小,因而相变更容易进行. 此外,一次压缩后合金的孔隙度减小、密度以及颗粒间接触面增大,合金的强度提高,合金抵抗塑性变形的能力也增加. 因此,在二次循环压缩预应变过程中,母相实际塑性变形受到抑制,应力诱发马氏体得到充分发展,预应变过程中的马氏体数量增加,合金的可逆应变增大,从而记忆效应大幅度提高.

4 结 论

(1) 多孔NiTi 形状记忆合金的形状记忆性能与粉末烧结

制备条件有关. 随烧结温度升高,伴随合金中NiTi 相的增多以及合金强度的增加,合金的应变恢复率显著提高. 因此,提高烧结温度有利于改善多孔合金的形状记忆性能. 另外,大预应变下多孔合金的

轴向应变恢复率有一定程度的降低.

(2) 多孔NiTi 合金具有很好的弹性性能. 预应变8%时,

随烧结温度升高,合金的弹性应变明显提高,而残余应变则明显减少. 因此,提高烧结温度有利于改善多孔合金的弹性性能.

(3) 热-机械循环压缩变形提高了合金的轴向应变恢复

率和可逆应变,减少了合金的残余应变,合金的弹性应变略有提高. 此外,少量(二次)热-机械循环压缩即可大幅度地提高多孔形状记忆合金的形状记忆性能.

参考文献

[1] Zhang X M, Yin W H, Guo J H. Powder Metall Technol, 1995; 13:

121

(张小明, 殷为宏, 郭继红. 粉末冶金技术, 1995; 13: 121)

[2] Itin V I, Gjunter V E, Shabalovskaya S A, Sachdeva R L. Mater

Charact, 1994; 32: 179

[3] Kato H, Koyari T, Miura S, Isonishi K, Tokizane M. Scr Metall

Mater, 1990; 24: 2335

[4] Li T C, Qui Y B, Liu J T, Wang F T, Zhu M, Yang D Z. J Mater

Sci Lett, 1992; 11: 845

[5] Morris D G, Morris M A. Mater Sci Eng, 1989; A110: 139

[6] Martynova I, Skorohod V, Solonin S, Goncharuk S. J Phys Colloq

C4, 1991; 1: 421

[7] Shapovalov V. MRS Bull, 1994; 4: 24

[8] Li B Y, Rong L J, Li Y Y. J Mater Res, 1998; 13: 2847

[9] Rong L J. PhD Thesis, Institute of Metal Research, The Chinese

Academy of Sciences, 1995

(戎利建. 中国科学院金属研究所博士学位论文, 1995)

A x i a l r e c o v e r y s t r a i n , %

Sintering temperature, ??

A x i a l r e c o v e r y s t r a i n , %

Sintering temperature, ℃

图1 No.1混合粉末不同温度烧结合金压缩预应变为8%时的弹性应变、可逆应变和残余应变 Fig. 1 The elastic strain εe , reversible strain εr and residual strain εR in the compression cycling of sample No.1 sintered at different temperatures (εt =8%)

(a) 1st cycling (b) 2nd cycling

第4期 李丙运等: 多孔形状记忆合金的变形特性及热-机械循环对形状记忆性能的影响 364

变形高温合金的特性、分类及用途

科技名词定义 塑性变形 科技名词定义 中文名称:塑性变形 英文名称:plastic deformation 定义:岩体、土体受力产生的、力卸除后不能恢复的那部分变形。 应用学科:水利科技(一级学科);岩石力学、土力学、岩土工程(二级学科);土力学(水利)(三级学科) 本内容由全国科学技术名词审定委员会审定公布 塑性变形(Plastic Deformation),的定义是物质-包括流体及固体在一定的条件下,在外力的作用下产生形变,当施加的外力撤除或消失后该物体不能恢复原状的一种物理现象。

目录 介绍 机理 影响 介绍 机理 影响 展开 编辑本段介绍 材料在外力作用下产生而在外力去除后不能恢复的那部分变形 塑性变形 。材料在外力作用下产生应力和应变(即变形)。当应力未超过材料的弹性极限时,产生的变形在外力去除后全部消除,材料恢复原状,这种变形是可逆的弹性变形。当应力超过材料的弹性极限,则产生的变形在外力去除后不能全部恢复,而残留一部分变形,材料不能恢复到原来的形状,这种残留的变形是不可逆的塑性变形。在锻压、轧制、拔制等加工过程中,产生的弹性变形比塑性变形要小得多,通常忽略不计。这类利用塑性变形而使材料成形的加工方法,统称为塑性加工。 编辑本段机理 固态金属是由大量晶粒组成的多晶体,晶粒内的原子按照体心立方、面心立方或紧密六方等方式排列成有规则的空间结构。由于多种原因,晶粒内的原子结构会存在各种缺陷。原

塑性变形 子排列的线性参差称为位错。由于位错的存在,晶体在受力后原子容易沿位错线运动,降低晶体的变形抗力。通过位错运动的传递,原子的排列发生滑移和孪晶(图1)。滑移是一部分晶粒沿原子排列最紧密的平面和方向滑动,很多原子平面的滑移形成滑移带,很多滑移带集合起来就成为可见的变形。孪晶是晶粒一部分相对于一定的晶面沿一定方向相对移动,这个晶面称为孪晶面。原子移动的距离和孪晶面的距离成正比。两个孪晶面之间的原子排列方向改变,形成孪晶带。滑移和孪晶是低温时晶粒内塑性变形的两种基本方式。多晶体的晶粒边界是相邻晶粒原子结构的过渡区。晶粒越细,单位体积中的晶界面积越大,有利于晶间的移动和转动。某些金属在特定的细晶结构条件下,通过晶粒边界变形可以发生高达300~3000%的延伸率而不破裂。 编辑本段影响 金属在室温下的塑性变形,对金属的组织和性能影响很大,常会出现加工硬化、内应力和各向异性等现象。 加工硬化 塑性变形引起位错增殖,位错密度增加,不同方向的位错发 塑性变形力学原理 生交割,位错的运动受到阻碍,使金属产生加工硬化。加工硬化能提高金属的硬度、强度和变形抗力,同时降低塑性,使以后的冷态变形困难。

关于形状记忆合金在变体机翼方面的应用综述

关于形状记忆合金在变体机翼方面的应用综述 发表时间:2019-05-13T15:59:02.707Z 来源:《知识-力量》2019年8月26期作者:纪宇帆[导读] 形状记忆合金是目前很常用的一种智能材料,能够代替传统材料应用在广泛的工业领域。本文将通过综合比较分析不同文献及其理论依据,阐述形状记忆合金在航空航天领域的应用情况 (北京航空航天大学能源与动力工程学院,北京 100191) 摘要:形状记忆合金是目前很常用的一种智能材料,能够代替传统材料应用在广泛的工业领域。本文将通过综合比较分析不同文献及其理论依据,阐述形状记忆合金在航空航天领域的应用情况,并对目前存在的问题和未来发展的方向一一论述。在变体机翼方面,文章从中文文献和外文文献中分别选取了几篇有代表性的进行阐述,分析得到了国内外不同研究方向的侧重点以及未来的发展趋势。同时文章对形状记忆合金在航空航天领域的应用情况做了小结,提出了一些个人观点与评价,也指出了目前存在的问题与未来发展的方向。关键词:形状记忆合金;航空航天;国内外对比 引言 传统材料通常不能实时感知环境以及自身状态的变化,更不能做到自适应和自修复[1]。因此,在诸多工业领域,尤其是航空航天这样复杂多变的领域,需要越来越多智能材料才可以实现高精度控制。形状记忆合金就是其中一种常见的智能材料。它利用形状记忆效应可以实现不同于普通合金的优异性能,尤其是在高温环境下,抗疲劳性能和延展性能更加凸显。 1 问题提出 早在20世纪50-70年代,就有了变后掠翼技术。这使得飞机兼具低速、跨声速、超声速飞行性能,但也存在结构复杂、操纵困难等问题,变形形式也很单一[2]。随着科学技术的进步,智能变体机翼技术逐渐兴起。在美国的主导下,一系列智能变形技术验证试验得以展开:1979年,NASA与波音公司签订了任务自适应机翼技术合同;1985年,NASA与罗克韦尔公司合作开展主动柔性机翼计划;1996年,上述计划又扩展为主动气动弹性机翼计划。U.Icardi等人也提出了一种基于SMA的变弯度机翼方案[3]:依靠两个同轴的SMA驱动管,通过离合器与定位压电电机连接到翼肋的桁架上,内外管分别控制向上与向下的运动;工作时可以给其中一个加热,另一个隔离使其不参与工作,从而实现特定方向的变形[4]。总之,SMA在变体机翼上的应用很广泛,是值得深入研究的问题之一。 2 中文文献综述 就近几年的中文文献来说,有关SMA在变体机翼上的应用的文章有53篇,其中期刊论文16篇,博士论文5篇,其余为硕士论文。下面将选择一些进行深入分析。刘逸峰、徐志伟两人利用驱动器的两个驱动杆上下位移实现蒙皮的变形,通过控制流经SMA的电流大小和通电时间对驱动器进行测控,还进行了驱动器加载控制实验和机翼风洞吹风测试实验[5];雷鹏轩等人提出一种悬臂梁式柔性偏转结构,选择超临界翼型进行实验,并通过数学计算和折线图比较的办法给出了来流条件对SMA结构变形的影响[6];周本昊通过差动驱动方式设计驱动机构,对机翼的各个部位进行了应力分析,又设计了测控系统,利用离散化PID控制算法对被控量进行控制[7];刘俊兵等人根据实验分析出SMA卷簧的变形角与扭矩的关系,并对该驱动器承载能力进行了计算[8];董二宝将智能变形机翼结构按动力学特性分为非主动变形过程和主动变形过程,并据此求出了各参数的最优解,最后利用SMA的热-力耦合特性给出了仿真结果[9];聂瑞等人为了减小自适应机翼的波阻,对激波控制鼓包的特性进行了优化研究,在温度改变时,SMA能自动改变自身构型[10]。 3 外文文献综述 就近几年的外文文献来说,有关SMA在变体机翼上的应用的文章有81篇。不同作者对SMA的研究有不同的侧重点。Cees Bil等人主要研究的是三种不同的控制方法对机翼变形的影响,还在其中考虑了气动载荷下驱动器所需的功率与环境温度的影响[11];S.Barbarino等人将民用运输机机翼后缘处的翼型弯度通过无铰链的光滑变形襟翼控制,利用数值方法和实验研究对驱动性能进行了估计[12];J Colorado等人从仿生学的角度分析SMA在变体机翼中的驱动作用,并且利用SMA的传感功能实现了令人满意的跟踪误差,但在疲劳问题上还存在一定局限,SMA承受较大应力时寿命较短[13];Thomas Georges等人以设计具有柔性外拱的变形机翼为重点,通过应力应变关系计算SMA元件的横截面和长度,进而确定其他部件的尺寸,完成设计[14];Woo-Ram Kang等人为防止气动损失,利用SMA控制机翼形状,并用多种数值模拟软件将其与未变形机翼作比较,对尾翼偏转角与电流、压差之间的关系作了进一步分析[15];Salvatore Ameduri等人基于SMA技术对变形结构进行优化,由四个弹性元件构成可变形肋系统,利用有限元模型呈现其主要特征[16]。 结论 综合上述文献,可以看出SMA在变体机翼中应用广泛。不同学者从不同侧面研究SMA可以得到不同结果。国内研究更多是通过解析的办法分析驱动结构的可行性,计算和优化更准确,但有时会受到其他无法量化的因素影响,导致其结果偏离实际;国外研究则更加侧重数值模拟软件的应用,对驱动性能的分析综合考虑多种环境因素,在实验过程中也更加注重比较,并且对SMA的疲劳寿命有所估计。后续的SMA应用技术应该朝向更高的疲劳强度、更先进的数值模拟技术发展。与此同时,机翼的形状变化也应趋于平稳,以减少气流分离,使飞机拥有更好的气动性能。 未来形状记忆合金在航空航天领域将朝着更规范化、成熟化的方向前进:变体机翼的重量将进一步减轻,连接过渡将更加平缓,气流分离损失将进一步减少,机翼的颤振情况也将进一步改善;航空发动机中的结构将充分考虑其材料特性,不仅仅用于调节尾喷口、进气口,还可用于涡轮叶片,机匣等关键部件;卫星的发射也将更加可靠,连接分离装置运行也会更加平稳。参考文献 [1]杨正岩,张佳奇,高东岳,刘科海,武湛君.航空航天智能材料与智能结构研究进展[J].航空制造技术,2017(17):36-48. [2]朱倩.基于SMA的变体机翼精确控制研究[D].南京航空航天大学,2010. [3]Icardi,U.& Ferrero,L.(2010).SMA Actuated Mechanism for an Adaptive Wing. Journal of Aerospace Engineering - J AEROSP ENG. 24. 10.1061/(ASCE)AS.1943-5525.0000061. [4]张明德.变厚度机翼结构设计及精确控制[D].南京航空航天大学,2018. [5]刘逸峰,徐志伟.SMA驱动变厚度机翼结构设计及实验研究[J].江苏航空,2018(04):30-34.

GH4169 镍基变形高温合金资料

GH4169 镍基变形高温合金资料 中国牌号:GH4169/GH169 美国牌号:Inconel 718/UNS NO7718 法国牌号:NC19FeNb 一、GH4169概述 GH4169合金是以体心四方的γ"和面心立方的γ′相沉淀强化的镍基高温合金,在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位, 并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能和长期组织稳定性,能够制造各种形状复杂的零部件,在宇航、核能、石油工业中,在上述温度范围内获得了极为广泛的应用。 该合金的另一特点是合金组织对热加工工艺特别敏感,掌握合金中相析出和溶解规律及组织与工艺、性能间的相互关系,可针对不同的使用要求制定合理、可行的工艺规程,就能获得可满足不同强度级别和使用要求的各种零件。供应的品种有锻件、锻棒、轧棒、冷轧棒、圆饼、环件、板、带、丝、管等。可制成盘、环、叶片、轴、紧固件和弹性元件、板材结构件、机匣等零部件在航空上长期使用。 1.1 GH4169 材料牌号 GH4169(GH169)

1.2 GH4169 相近牌号 Inconel 718(美 国),NC19FeNb(法国) 1.3 GH4169 材料的技术标准 1.4 GH4169 化学成分该合金的化学成分分为3类:标准成分、优质成分、高纯成分,见表1-1。优质成分的在标准成分的基础上降碳增铌,从而减少碳化铌的数量,减少疲劳源和增加强化相的数量,提高抗疲劳性能和材料强度。同时减少有害杂质和气体含量。高纯成分是在优质标准基础上降低硫和有害杂质的含量,提高材料纯度和综合性能。 核能应用的GH4169合金,需控制硼含量(其他元素成分不变),具体含量由供需双方协商确定。当ω(B)≤0.002%时,为与宇航工业用的GH4169合金加以区别,合金牌号为GH4169A。 表 1-1[1]%

形状记忆合金在医学领域的应用

形状记忆合金在医学领域的应用 1.形状记忆合金的特性 1.1形状记忆合金的结构特性 形状记忆效应(Shape memory effec,t SME)是由于马氏体相变而产生的。具有热弹性(半热弹性)或应力诱发马氏体相变(Stress inducedMartensitic trans-formation, SIM)的形状记忆合金(Shape memory al-loys, SMAs),在马氏体状态下进行一定限度的塑性变形,则在随后的加热过程中,当温度超过马氏体逆相变温度时,材料就能恢复到变形前的体积和形状。 1.2形状记忆合金的分类 形状记忆合金主要分为Ti-Ni基、Cu基及Fe基形状记忆合金。前两种合金主要为热弹性形状记忆合金,Fe基形状记忆合金为半热弹性形状记忆合金,其中用于医学领域的 TiNi 形状记忆合金,除了利用其形状记忆效应或超弹性外,还应满足化学和生物学等方面的要求,即良好的生物相容性。TiNi 可与生物体形成稳定的钝化膜。 形状记忆效应主要分为:单程记忆效应,双程记忆效应和全程记忆效应。 形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。 2.形状记忆合金的发展 首次被发现并公开报道某些合金中具有形状记忆效应这一现象的发现,可以追溯至1938年,美国哈佛大学的A.B.Greningerh和Mooradian在Cu-Zn合金中发现了马氏体的热弹性转变,即在加热与冷却过程中,马氏体会随之收缩与长大。1918年前苏联学者Kerdjumov曾预测到有一部分具有马氏体相变的合金会出现热弹性马氏体相变。1951年张禄经和T.A.Read报道了原子比为1∶1的CsCl 型AuCd合金在热循环中会反复出现可逆相变。数年后.T.A.Read又和M.W.Burkard在InTi合金中发现了同样纳可逆相变。一直到20世纪60年代初,这种观察到的形状记忆效应只看作是个别材料的特殊现象。甚至在1958年布鲁塞尔国际博览会上展出过用AuCd合金制作的重物升降机,都未引起足够的注意。 1963年,美国海军武器实验室W.J.Buchler等人在等原子比NiTi合金中发现了形状记忆效应后,才引起人们的重视,从此形状记忆合金进入了研究和应用的新阶段。到1975年左右,全世界相继开发出具有形状记忆效应的合金达20

基于CPFEM的TA15钛合金高温塑性变形研究

基于CPFEM的TA15钛合金高温塑性变形研究晶体塑性理论将晶体塑性变形的物理机制及变形几何学与单晶或多晶的弹塑性本构方程相结合,从介观尺度(即晶粒尺度)上解释材料的各种塑性变形行为。将晶体塑性理论与有限元方法相结合的方法称为晶体塑性有限元方法(Crystal Plastic Finite Element Method,CPFEM),该方法从材料变形的物理机制出发,可以较为准确的反映材料的微观特性。 目前晶体塑性有限元模拟已成为力学界和材料界的研究热点。钛与钛合金是一种重要的结构材料,以其优异的性能广泛应用在航空航天等领域。 钛有两种同素异构晶型:密排六方(HCP)点阵的α-Ti相和体心立方(BCC)点阵的β-Ti相,由于晶格类型不同,其变形机制差别较大。文中综合采用了有限元方法、晶体塑性理论、元胞自动机等现代科学技术方法。 从介观尺度出发,根据合金微观晶格结构的不同,研究新型近α型钛合金—TA15钛合金的高温塑性变形,研究在相变点温度以上及以下的TA15钛合金高温的高温塑性变形行为。文中采用元胞自动机方法得到了相变点上的TA15钛合金的初始晶粒形貌。 建立了适用于变形温度在相变点以上的TA15合金的高温塑性变形的晶体塑性有限元模型。模拟结果表明多晶体在塑性变形的过程中,晶粒与晶粒之间以及晶粒内部的应力分布存在着明显的差异,晶粒内部与晶粒外部的塑性变形非常不均匀。 通过对滑移系上的剪应变进行分析表明由于各晶粒的取向不同和晶粒间的取向差的差异,不同晶粒的滑移系开动情况差别很大;在同一晶粒内部,由于需要协调相邻晶粒的应变情况,因此滑移系开动的程度也不完全相同。建立了适用

高温合金切削特点

切削特点 a、切削力大:比切削45号钢大2~3倍。 b、切削温度高:比切削45号钢高50%左右。 c、加工硬化严重:切削它时的加工表面和已加工表面的硬度比基体高50~100%。 d、刀具易磨损:切削时易粘结、扩散、氧化和沟纹磨损。 刀具材料 a、高速钢:应选用高钒、高碳、含铝高速钢。 b、硬质合金:应采用YG类硬质合金。最好采用含TaC或NbC的细颗粒和超细颗粒硬质合金。如YG8、YG6X、YG10H、YW4、YD15、YGRM、YS2、643、813、712、726等。 c、陶瓷:在切削铸造高温合金时,采用陶瓷刀具也有其独特的优越性。 刀具几何参数 变形高温合金(如锻造、热轧、冷拔)。刀具前角γ0为10°左右;铸造高温合金γ0为0°左右,一般不鐾负倒棱。刀具后角一般α=10°~15°。粗加工时刀倾角λs为-5°~-10°,精加工时λs =O~3°。主偏角κr为45°~75°。刀尖圆弧半径r为0.5~2mm,粗加工时,取大值。 切削用量 a、高速钢刀具:切削铸造高温合金切削速度Vc为3m/min左右,切削变形高温合金Vc=5~10m/min。 b、硬质合金刀具:切削变形高温合金Vc:40~60m/min;切削铸造高温合金Vc=7~10m/min。进给量f和切削深度αp均应大于0.1mm,以免刀具在硬化后的表面进行切削,而加剧刀具磨损。 切削液 粗加工时,采用乳化液、极压乳化液。精加工时,采用极压乳化液或极压切削油。铰孔时,采用硫化油85~90%+煤油10~15%,或硫化油(或猪油)+CCl4。高温合金攻丝十分困难,除适当加大底孔直径外,应采用白铅油+机械油,或氯化石蜡用煤油稀释,或用MoS2油膏。 高温合金钻孔

形状记忆合金的应用现状与发展趋势

形状记忆合金的应用现状与发展趋势 摘要:综述了形状记忆合金的发展概况,简要介绍了形状记忆合金在不同领域的应用现状,分析了当前形状记忆合金研究中存在的问题,指出了今后的发展前景与研究方向。 关键词:形状记忆合金、形状记忆合金效应、应用 一、引言 形状记忆合金(Shape Memory Alloy ,SMA) 是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应(Shape Memory Effect ,SME) 。 形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 二、形状记忆合金的发展史与现状 在金属中发现现状记忆效应最早追溯到20世纪30年代。1938年。当时美国的 Greningerh和Mooradian在Cu-Zn合金小发现了马氏体的热弹件转变。随后,前苏联的Kurdiumov对这种行为进行了研究。1951年美国的Chang相Read 在Au47·5Cd(%原子)合金中用光学显微镜观察到马氏体界面随温度的变化发生迁动。这是最早观察到金属形状记忆效应的报道。数年后,Burkhart 在In-Ti 合金中观察到同样的现象。然而在当时,这些现象的发现只被看作是个别材料的特殊现象而未能引起人们足够的兴趣和重视。直至1963年,美国海军武器实验室的Buehler等人发现了Ni-Ti合金中的的形状记忆效应,才开创了“形状记忆”的实用阶断[1]。

TA15钛合金高温变形行为研究

TA15钛合金高温变形行为研究 TA15钛合金的名义成分为Ti-6.5Al-2Zr-1Mo-1V,属于高Al当量的近α型钛合金。该合金既具有α型钛合金良好的热强性和可焊性,又具有接近于α+β型钛合金的工艺塑性,是一种综合性能优良的钛合金,被广泛用于制造高性能飞机的重要构件。对金属热态加工过程进行数值模拟,需要确定材料对热力参数的动态响应特征,即材料的流动应力与热力参数之间的本构关系,这对锻造工艺的合理制定,锻件组织的控制以及成型设备吨位的确定具有科学和实际的指导意义。 中国船舶重工集团公司725所的科研人员以TA15合金的热模拟压缩试验为基础,研究了变形工艺参数对TA15合金高温变形时流动应力的影响,这些研究对制定合理的TA15合金锻造热加工工艺,有效控制产品的性能、提高产品质量提供了借鉴。 热模拟压缩试验所用材料为轧制态Φ55mmTA15合金棒材,相变点为995±5℃,将该棒料切割加工成Φ8mm×12mm的小棒料进行试验。研究结果表明:(1)TA15合金在高温变形过程中,流动应力首先随应变的增大而增加,达到峰值后再下降,最后趋于稳定值。同一应变速率下,随着变形温度的升高,合金的流动应力降低;同一变形温度下,随着应变速率的减小,合金的流动应力减小。(2)TA15合金属于热敏感型和应变速率敏感型材料。应变速率较小时,变形温度对稳态应力和峰值应力的影响较小;应变速率较大时,变形温度对稳态应力和峰值应力的影响较大。变形温度较低时,应变速率对稳态应力和峰值应力的影响较大;变形温度较高时,应变速率对稳态应力和峰值应力的影响较小。(3)建立了TA15合金高温变形时的流动应力本构方程,经显著性检验和相关系数检验,证明所建立的方程具有较好的曲线拟合特性,方程的计算值与实验数据吻合较好。

形状记忆合金论文

形状记忆合金 摘要:扼要地叙述了形状记忆合金及其机理, 介绍了形状记忆合金在工程中应用的现状以及发展前景。 关键词:形状记忆合金、形状记忆合金效应、应用 引言:有一种特殊的金属材料,经适当的热处理后即具有回复形状的能力,这种材料被称为形状记忆合金( Shape Memory Alloy ,简称为SMA) ,这种能力亦称为形状记忆效应(Shape Memory Effect , 简称为SME) 。通常,SMA 低温时因外加应力产生塑性变形,温度升高后,克服塑性变形回复到所记忆的形状。研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。到目前为止,应用得最多的是Ni2Ti 合金和铜基合金(CuZnAl 和CuAlNi) 。 形状记忆合金(Shape Memory Alloys, SMA)是一种在加热升温后能完全消除其在较低的温度下发生的变形,恢复其变形前原始形状的合金材料。除上述形状记忆效应外,这种合金的另一个独特性质是在高温(奥氏体状态)下发生的“伪弹性”(又称“超弹性”,英文 pseudoelasticity)行为,表现为这种合金能承载比一般金属大几倍甚至几十倍的可恢复应变。形状记忆合金的这些独特性质源于其内部发生的一种独特的固态相变——热弹性马氏体相变。 一、形状记忆合金的发展史 最早关于形状记忆效应的报道是由Chang及Read等人在1952年作出的。他们观察到Au-Cd合金中相变的可逆性。后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。直到1962年,Buehler及其合作者在等原子比的TiNi合金中观察到具有宏观形状变化的记忆效应,才引起了材料科学界与工业界的重视。到70年代初,CuZn、CuZnAl、CuAlNi等合金中也发现了与马氏体相变有关的形状记忆效应。几十年来,有关形状记忆合金的研究已逐渐成为国际相变会议和材料会议的重要议题,并为此召开了多次专题讨论会,

高分子形状记忆合金的发展及趋势

高分子形状记忆合金的发展及趋势 摘要:本论文主要讨论形状记忆合金相关内容,扼要地叙述了形状记忆合金的发现以及发展历史和分类, 介绍了形状记忆合金在工程中应用的现状以及发展前景。 关键词:形状记忆合金、形状记忆合金效应、应用 1.形状记忆分子材料的特性 形状记忆合金是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应。研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。到目前为止,应用得最多的是Ni2Ti 合金和铜基合金 形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 1.1单程记忆效应: 形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。 1.2双程记忆效应: 某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。 1.3全程记忆效应: 加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。 2.形状记忆效应的应用 迄今为止,形状记忆合金在空间技术、医疗器械、机械器具、电子设备、能源开发、汽车工业及日常生活各方面都得到了广泛的应用,总的来说,按使用特性的不同,可归纳为下面几类: 2.1.自由回复 SMA 在马氏体相时产生塑性形变,温度升高自由回复到记忆的形状。自由回复的典型例子是人造卫星的天线和血栓过滤器。美国航空航天局(NASA) 将Ti2Ni

形状记忆合金文献综述

形状记忆合金性能及其应用 摘要:形状记忆合金具有形状记忆效应、超弹性效应、高阻尼特性、电阻突变效应以 及弹性模量随温度变化等一般金属不具备的力学特性,使其在仪器仪表、自动控制、机器人、机械制造、汽车、航天航空、生物医学等工程领域都能发挥重要的作用,对其本 构性能和在工程应用中的性能的研究十分必要。形状记忆合金作为一种特殊的新型功能 材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 关键字:形状记忆合金形状记忆合金效应分类应用 1形状记忆合金简介 1.1 形状记忆材料是指具有形状记忆效应(shape memory effect,简称SME)的材料。形 状记忆效应是指将材料在一定条件下进行一定限度以内的变形后,再对材料施加适当的 外界条件,材料的变形随之消失而回复到变形前的形状的现象。通常称有SME的金属材料为形状记忆合金(shape memory alloys,简称SMA)。研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。到目前为止,应用得最多的是Ni2Ti 合金和铜基合金(CuZnAl 和CuAlNi) 。 1.2 至今为止发现的记忆合金体系: Au-Cd、Ag-Cd、Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Sn、Cu-Zn-Ga、In-Ti、Au-Cu-Zn、Fe-Pt、Ti-Ni、Ti-Ni-Pd、Ti-Nb、U-Nb和Fe-Mn-Si等。 1.3 形状记忆合金的历史只有70多年,开发迄今不过20余年,但由于其在各领域的特效应用,正广为世人所瞩目,被誉为"神奇的功能材料",其实用价值相当广泛,其应用范围涉及机械、电子、化工、宇航、能源和医疗等许多领域。 2形状记忆合金效应分类 2.1 单程记忆效应 形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过

形状记忆合金材料的应用

形状记忆合金材料的性质与应用综述 【摘要】形状记忆合金是一种新型功能材料,在各个领域有着广泛的应用。本文简要介绍了形状记忆合金的特性、应用以及发展前景。 【关键词】形状记忆合金应用发展现状 【引言】形状记忆合金(Shape Memory Alloys, SMA),是一种在加热升温后能完全消除其在较低的温度下发生的变形,恢复其变形前原始形状的合金材料。最早关于形状记忆效应的报道是由Chang及Read等人在1952年做出的。他们观察到Au-Cd合金中相变的可逆性。[3]后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。直到1962年,Buehler及其合作者在等原子比的 Ti-Ni合金中观察到具有宏观形状变化的记忆效应,才引起了科学界与工业界的重视。这种新型功能材料目前已广泛用于电子仪器、汽车工业、医疗器械、空间技术和能源开发等领域。 一、形状记忆合金的分类 1、单程记忆效应:形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。 2、双程记忆效应:某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。 3、全程记忆效应:加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。 二、形状记忆合金的特性 1、形状记忆效应:合金在某一温度下受外力而变形,当外力去除后,仍保持其变形后的形状,但当温度上升到某一温度,材料会自动回复到变形前原有的形状,似乎对以前的形状保持记忆,这种效应称为形状记忆效应。 2、超弹性:在高于A f点、低于M d点的温度下施加外应力时产生应力诱发马氏体相变,卸载就产生逆相变,应变完全消失,回到母相状态,表观上呈现非线性拟弹性应变,这种现象称为超弹性。 3、高阻尼特性:形状记忆合金在低于Ms点的温度下进行热弹性马氏体相变,生成大量马氏体变体(结构相同、取向不同),变体间界面能和马氏体内部孪晶界面能都很低,易于迁移,能有效地衰减振动、冲击等外来的机械能,因此阻尼特性特别好。 4、耐磨性:在形状记忆合金中,Ti-Ni合金在高温(CsCl型体心立方结构)状态下同时具有很好的耐腐蚀性和耐磨性。可用作在化工介质中接触滑动部位的机械密封材料,原子能反应堆中用做冷却水泵机械密封件。 5、逆形状记忆特性:将Cu-Zn-Al记忆合金在Ms点上下的很小温度范围内进行大应变量变形,然后加热到高于Af点的温度时形状不完全恢复,但再加热到高于200oC时却逆向地恢复到变形后的形状,称为逆形状记忆特性。 三、形状记忆合金在各领域的应用 1、医疗方面: Ni-Ti合金是医用生物材料的佼佼者,在临床医学和医疗器械等方面广泛应用。 [1]如介入疗法,将各类人体腔内支架、经过预压缩变形后,能够经过很小的腔隙安放到人体血管、消化道、呼吸道、以及尿道等各种狭窄部位,支架扩展后,在人体腔内支撑起狭小的腔道。具有疗效可靠、使用方便、可大大缩短治疗时间和减

GH3039 镍基变形高温合金资料

GH3039 镍基变形高温合金资料 中国牌号:GH3039/GH39 俄罗斯牌号:ЭИ602/XH75MБГЮ 一、GH3039概述 GH3039为单相奥氏体型固溶强化合金,在800℃以下具有中等的热强性和良好的热疲劳性能,1000℃以下抗氧化性能良好。长期使用组织稳定,还具有良好的冷成形性和焊接性能。适宜于850℃以下长期使用的航空发动机燃烧室和加力燃烧室零部件。该合金可以生产板材、棒材、丝材、管材和锻件。 1.1 GH3039 材料牌号 GH3039(GH39) 1.2 GH3039 相近牌号ЭИ602,ХН75МБГЮ(俄罗斯) 1.3 GH3039 材料的技术标准 1.4 GH3039 化学成分见表1-1。 表 1-1%

注:1.合金中允许有Ce存在。 2.合金中ω(Cu)=0.20%。 1.5 GH3039 热处理制度热轧及冷轧板材和带材固溶处理:1050~1090℃,空冷。棒材及管材固溶处理:1050~1080℃,空冷或水冷。 1.6 GH3039 品种规格和供应状态可以供应各种规格的热轧板、冷轧板、带材、棒材、丝材、管材、和锻件。板材、带材和管材固溶处理和酸洗后交货。丝材于冷加工状态或固溶状态供应棒材不热处理交货。 1.7GH3039 熔炼和铸造工艺合金采用电弧炉熔炼、电弧炉或非真空感应炉加电渣重熔或真空电弧重熔以及真空感应炉加电渣或真空电弧重熔工艺。 1.8GH3039 应用概况与特殊要求用该合金材制作的航空 发动机燃烧室及加力燃烧室零部件,经过长期的生产和使用考验,使用性能良好。 二、GH3039 物理及化学性能 2.1 GH3039 热性能 2.1.1 GH3039 热导率见表2-1。 表 2-1[1]

形状记忆合金的应用现状与发展趋势

11 Santhanam A T,G odse R V,G rab G P et al.U.S.Patent. 1993(5):250,367 12 Nemeth B J,Santhanam A T,G rab G P.Proceed.10th Plansee Seminar,Plansee A.G.,Reutte/T yrol,1981:613~627 13 Santhanam A T,G rab G P,R olka G A et al.Proceed.con f. on High Productivity Machining-Materials and Processes. New Orleans,La,American S ociety for Metals,1985:113~121 14 Nemeth B J,G rab G P.U.S.Reissue Patent.1993,N o.34, 180 15 D oi H.Proceed.2nd Int.C on f.on the Science of Hard Mate2 rials,Adam Hilger Ltd.Ser.1986(75):489~523 16 Claussen N.Mater.Sci.Eng.1985(71):23~38 17 Wei G C,Becher P F.Am.Ceram.S oc.Bull.1985,64 (2):298~30418 Faber K T,Evans A G.Acta Metall.1983,31(4):565~576 19 N orth B,Baker R D.Int.J.of Refractory Hard Metals. 1984,3(1):46~51 20 Beeghly C W,Shuster A F.Proceed.S oc.of Carbide and T ool Engineers C on f.on Advances in T ool Materials for use in High S peed Machining,Scottsdale,AZ,AS M International, 1987,91~99 21 K ennametal Lathe T ooling Catalog4010.2004 22 Oles E J,Reiner K L,G ates et al.U.S.Patent.2003.6, 599,062 23 Inspektor A,Oles E J,Bauer C E.Int.J.of Refractory Met2 als and Hard Materials.1997(15):49~56 第一作者:M.S.G reen field,博士,美国肯纳金属公司材料总监 (胡红兵译) 收稿日期:2005年4月形状记忆合金的应用现状与发展趋势 肖恩忠 潍坊学院 摘 要:综述了形状记忆合金的发展概况,简要介绍了形状记忆合金在不同领域的应用现状,分析了当前形状记忆合金研究中存在的问题,指出了今后的发展前景与研究方向。 关键词:形状记忆合金, 形状记忆效应, 机理, 应用 Application Actuality and Development T rend of Shape Memory Alloy X iao Enzhong Abstract:The general development of the shape mem ory alloy(S M A)is summarized,and its applications in different fields are briefly introduced.Als o,problems in the study of S M A at present are analyzed.Finally,The development foreground and re2 search directions of S M A in the future are pointed out. K eyw ords:shape mem ory alloy, shape mem ory effect, mechanism, application 1 引言 形状记忆合金(Shape Mem ory Alloy,S MA)是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应(Shape Mem ory E ffect,S ME)。 形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 2 形状记忆合金的发展历史与现状 在金属中发现形状记忆效应最早可追溯到20世纪30年代。1938年,美国的G reningerh和M oora2 dian在Cu2Zn合金中发现了马氏体的热弹性转变。随后,前苏联的K urdium ov对这种现象进行了研究。1951年,Chang和Read在Au24715at%Cd合金中用光学显微镜观察到马氏体界面随温度的变化而发生迁动。这是最早观察到金属形状记忆效应的报道。数年后,Burkhart在In2T i合金中观察到同样的现象。然而在当时,这些现象的发现只被看作是个别材料的特殊现象而未能引起人们足够的兴趣和重视。直到1963年,美国海军武器实验室的Buehler等人发现等原子比的T i2Ni合金具有优良的形状记忆功能,

GH2150变形高温合金GH150

GH2150沉淀硬化型变形高温合金GH150 GH2150概述: GH2150是Fe-Ni-Cr基沉淀硬化型变形高温合金,使用温度小于750℃。合金加入铬、钨和钼元素进行固溶强化,加入钛、铝和铌元素形成时效强化相,加入微量硼、锆和铈元素净化并强化晶界。合金的强度高、塑性好、膨胀系数低,长期使用组织稳定;合金的热加工塑性好,并具有满意的焊接、冷成形和切削加工性能。适用于制作在700℃以下工作的喷气发动机板材焊接承力结构件,以及在600℃以下长期工作的燃气轮机转子和压气机叶片。 GH2150应用概况及特性: GH2150已用于制作航空发动机燃烧室外套、安装边等高温部件。相近合金在国外用于喷气发动机燃烧室外套和在600℃以下使用的涡轮叶片等零部件。 GH2150在超过800℃使用时,析出μ相及γ相聚集长大,会导致合金的力学性能下降。 GH2150对应牌号: GH150(中), BЖ105,XH45MBTЮБР, ЭП718, GH2150化学成分:

GH2150执行标准: GB/T 14992-2005 GH2150其他特点: 这类合金铬、镍含量相对较低,故抗氧化的温度仅约800%,但是含弥散强化相形成元素(v、A1、Ti)量相对较高,在固溶体基体上可形成化合物强化相,所以常用热处理形式为固溶处理+时效。通过固溶处理,可以使合金固溶强化;通过时效处理,可以使合金析出细小强化相[VC、Ni3A1、Ni3Ti,Ni3(A1?Ti)],从而提高室温和高温强度。固溶并时效处理后的组织为奥氏体+弥散化合物。例如GH2132的化合物量为2.5%、GH2135的化合物量为14%这类合金通常应用于高温下受力的零件,如涡轮盘、螺栓和工作温度不高的转子叶片等。 GH2150热处理制度: 棒材、圆饼、环形件:(1040-1060)℃/AC+ 750℃±10℃*(16-24)h/AC 冷轧板材:(1040-1080)℃/AC+ 750℃±10℃*16h/AC 冷拉焊丝:1050℃±10℃/AC GH2150熔化温度范围: 1320℃-1365℃ GH2150密度: 8.26 GH2150主要规格: GH2150无缝管、GH2150钢板、GH2150圆钢、GH2150锻件、GH2150法兰、 GH2150圆环、GH2150焊管、GH2150钢带、GH2150直条、GH2150丝材及配套焊材、GH2150圆饼、GH2150扁钢、GH2150六角棒、GH2150大小头、GH2150弯头、GH2150三通、GH2150加工件、GH2150螺栓螺母、GH2150紧固件。 篇幅有限,如需更多更详细介绍,欢迎咨询了解。

形状记忆合金在医学上的应用

论文名: 形状忆合金在医学上的应用 学院:材料与化工学院 专业:金属材料工程 班级: 学号: 姓名:

内容摘要形状记忆合金的研究是近几年工程技术界颇为关注的一项 高新尖技术,其在航空航天、机械电子、工程建筑、医学医疗等相关领域已取得了一些应用性研究成果.本文介绍了形状记忆合金特点、功能、以及在现代医学中的研究与应用的现状与发展趋势. 关键词形状记忆合金医学领域 1.前言 在人类文明发展史上,材料是科学技术进步的重要支柱,也是社会进步的物质基础。在科技日新月异的今天,新材料更是高科技发展的先导。形状记忆合金正是新科技领域的一朵奇葩,正在灿烂的绽放。 1932年,瑞典人奥兰德在金镉合金中首次观察到"记忆"效应,即合金的形状被改变之后,一旦加热到一定的跃变温度时,它又可以魔术般地变回到原来的形状,人们把具有这种特殊功能的合金称为形状记忆合金。记忆合金的开发迄今不过20余年,但由于其在各领域的特效应用,正广为世人所瞩目,被誉为"神奇的功能材料"。 1963年,美国海军军械研究所的比勒在研究工作中发现,在高于室温较多的某温度范围内,把一种镍-钛合金丝烧成弹簧,然后在冷水中把它拉直或铸成正方形、三角形等形状,再放在40 ℃以上的热水中,该合金丝就恢复成原来的弹簧形状。后来陆续发现,某些其他合金也有类似的功能。这一类合金被称为形状记忆合金。每种以一定元素按一定重量比组成的形状记忆合金都有一个转变温度;在这一温度以上将该合金加工成一定的形状,然后将其冷却到转变温度以下,人为地改变其形状后再加热到转变温度以上,该合金便会自动地恢复到原先在转变温度以上加工成的形状。 1969年,镍--钛合金的“形状记忆效应”首次在工业上应用。人们采用了一种与众不同的管道接头装置。为了将两根需要对接的金属管连接,选用转变温度低于使用温度的某种形状记忆合金,在高于其转变温度的条件下,做成内径比待对接管子外径略微小一点的短管(作接头用),然后在低于其转变温度下将其内径稍加扩到该接头的转变温度时,接头就自动收缩而扣紧被接管道,形成牢固紧密的连接。美国在某种喷气式战斗机的油压系统中便使用了一种镍-钦合金接头,从未发生过漏油、脱落或破损事故。 1969年7月20日,美国宇航员乘坐“阿波罗”11号登月舱在月球上首次留下了人类的脚印,并通过一个直径数米的半球形天线传输月球和地球之间的信息。这个庞然大物般的天线是怎么被带到月球上的呢?就是用一种形状记忆合金材料,先在其转变温度以上按预定要求做好,然后降低温度把它压成一团,装进登月舱带上天去。放置于月球后,在阳光照射下,达到该合金的转变温度,天线“记”起了自己的本来面貌,变成一个巨大的半球。科学家在镍-钛合金中添加其他元素,进一步研究开发了钦镍铜、钛镍铁、钛镍铬等新的镍钛系形状记忆合金;除此以外还有其他种类的形状记忆合金,如:铜镍系合金、铜铝系合金、铜锌系合金、铁系合金(Fe-Mn-Si, Fe-Pd)等。 而今形状记忆合金以应用到我们生活的各个领域,正在改变着我们的生活。

高温合金GH4169

常州市天志金属材料有限公司 一、GH4169 概述 GH4169合金是以体心四方的γ"和面心立方的γ′相沉淀强化的镍基高温合金,在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位,并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能和长期组织稳定性,能够制造各种形状复杂的零部件,在宇航、核能、石油工业中,在上述温度范围内获得了极为广泛的应用。 该合金的另一特点是合金组织对热加工工艺特别敏感,掌握合金中相析出和溶解规律及组织与工艺、性能间的相互关系,可针对不同的使用要求制定合理、可行的工艺规程,就能获得可满足不同强度级别和使用要求的各种零件。供应的品种有锻件、锻棒、轧棒、冷轧棒、圆饼、环件、板、带、丝、管等。可制成盘、环、叶片、轴、紧固件和弹性元件、板材结构件、机匣等零部件在航空上长期使用。 1.1 GH4169 材料牌号 GH4169(GH169) 1.2 GH4169 相近牌号 Inconel 718(美国),NC19FeNb(法国) 1.3 GH4169 材料的技术标准 GJB 2612-1996 《焊接用高温合金冷拉丝材规范》 HB 6702-1993 《WZ8系列用GH4169合金棒材》 GJB 3165 《航空承力件用高温合金热轧和锻制棒材规范》 GJB 1952 《航空用高温合金冷轧薄板规范》 GJB 1953《航空发动机转动件用高温合金热轧棒材规范》 GJB 2612 《焊接用高温合金冷拉丝材规范》 GJB 3317《航空用高温合金热轧板材规范》 GJB 2297 《航空用高温合金冷拔(轧)无缝管规范》 GJB 3020 《航空用高温合金环坯规范》 GJB 3167 《冷镦用高温合金冷拉丝材规范》 GJB 3318 《航空用高温合金冷轧带材规范》 GJB 2611《航空用高温合金冷拉棒材规范》 YB/T5247 《焊接用高温合金冷拉丝》 YB/T5249 《冷镦用高温合金冷拉丝》 YB/T5245 《普通承力件用高温合金热轧和锻制棒材》 GB/T14993《转动部件用高温合金热轧棒材》 GB/T14994 《高温合金冷拉棒材》 GB/T14995 《高温合金热轧板》 GB/T14996 《高温合金冷轧薄板》 GB/T14997 《高温合金锻制圆饼》 GB/T14998 《高温合金坯件毛坏》 GB/T14992 《高温合金和金属间化合物高温材料的分类和牌号》 HB 5199《航空用高温合金冷轧薄板》 HB 5198 《航空叶片用变形高温合金棒材》 HB 5189 《航空叶片用变形高温合金棒材》 HB 6072 《WZ8系列用GH4169合金棒材》

相关主题
文本预览
相关文档 最新文档