当前位置:文档之家› 电机学-同步发电机的不对称运行

电机学-同步发电机的不对称运行

发电机原理介绍

水力发电的基本流程及发电系统设备简介 水力发电的基本流程 1、什么是水电站?水电站枢纽的组成。 水电站是将水能转变为电能的水力装置,它由各种水工建筑物,以及发电、变电、配电等机械、电气设备,组成为一个有机的综合体,互相配合,协同工作,这种水力装置,就是水电站枢纽或者水力枢纽,简称水电站。它由挡水建筑物、泄水建筑物、进水建筑物、引水建筑物、平水建筑物及水电站厂房等水工建筑物共7个部分组成,机电设备则安装在各种建筑物上,主要是在厂房内及其附近。 (1)挡水建筑物。是拦截水流、雍高水位、形成水库,以集中落差、调节流量的建筑物,例如坝和闸。 (2)泄水建筑物。其作用主要是泄放水库容纳不了的来水,防止洪水漫过坝顶,确保水库安全运用,因而是水库中必不可少的建筑物,例如溢流坝、河岸溢洪道、坝下泄水管及隧洞、引水明渠溢水道等。 (3)进水建筑物。使水轮机从河流或水库取得所需的流量,如进水口。 (4)引水建筑物。引水建筑物是引水式或混合式水电站中,用来集中落差(对混合式水电站而言,则只是集中总会落差)和输送流量的工程设施,如明渠、隧洞等。有时水轮机管道也被称为引水建筑物,但严格说来,由于它主要是输送流量的,所以与同时具有集中落差和输送流量双重作用的引水建筑物并不完全相同。有些水电站具有较长的尾水隧洞及尾水渠道,这也属于引水建筑物。 (5)平水建筑物。其作用是当负荷突然变化引起引水系统中流量和压力剧烈波动时,借以调整供水流量及压力,保证引水建筑物、水轮机管道的安全和水轮发电机组的稳定运行。如引水式或混合式水电站的引水系统中设置的平水建筑物如压力池或高压池。 (6)厂区建筑物。包括厂房、变电站和开关站。厂房是水电站枢纽中最重要的建筑物之一,它不同于一般的工业厂房,而是是水力机械、电气设备等有机地结合在一起的特殊的水工建筑物;变电站是安装升压变压器的场所;而开关站则是安装各种高压配电装置的地方,故也称高压配电场。 (7)枢纽中的其它建筑物。此类建筑物指对于将水能转变为电能这个生产过程没有直接作用的船闸或升船机、筏道、鱼道或鱼闸以及为灌溉或城市供水而设的取水设施等。为了综合利用水资源,它们在整个水电站枢纽中也是不可分割的一部分,对枢纽的布置和运用也有重要的影响。 将水能转变成电能的生产全过程是在整个水电站枢纽中进行的,而不仅仅是在厂房中进行的。 2、水电站的基本类型。 水电站是借助于建筑物和机电设备将水能转变为电能的企业。水电站包括哪些建筑物以及它们之间的相互关系,主要取决于集中水头的方式。所以按集中水头的方式来对水电站进行分类,最能反映出水电站建筑物的组成和布置特点。 (1)按集中水头的方式对水电站进行分类,水电站可分为:坝式、引水式和混合式。 坝式水电站。它的水头是由坝抬高上游水位而形成。分为坝后式和河床式。

发电机的运行特性

1.为什么发电机在并网后,电压一般会有些降低? (2) 2.为什么调节无功功率时有功功率不会变,而调节有功功率时无功功率会自动变化? (2) 3.发电机运行时为什么会发热? (2) 4.定子绕组单相接地时对发电机有危险吗? (2) 5.大修后的发电机为什么要做空载和短路试验? (2) 6.什么是保护接地与保护接零? (3) 7.发电机启动前,对碳刷和滑环应进行那些检查? (3) 8.发电机升压操作时应注意什么? (3) 9.发电机并解列前为什么必须投入主变中性点地刀? (3) 10.何谓发动机的调相运行?如何实现? (4) 11.何谓发动机的进相运行,应注意什么,为什么? (4) 12.何谓发动机自励磁,一般在什么情况下发生,如何避免? (4) 13.失磁现象? (4) 14.转子两点接地的危害表现为: (5) 15.发动机非全相运行的危害? (5) 16.与发电厂相连的线路在什么情况下可采用零起升压? (5) 17.定子单相接地时对发电机是否有危险? (5) 18.转子一点接地时发电机是否可以继续运行? (6) 19.发电机为什么要做直流耐压试验并测泄漏电流? (6) 20.发电机的空载特性试验有什么意义?做发电机空载特性试验应注意哪些事项? (6) 21.发电机产生轴电压的原因是什么?它对发电机的运行有何危害? (6)

1.为什么发电机在并网后,电压一般会有些降低? 对于发电机来说,一般都是迟相运行,他的负载也一般是阻性和感性负载。当发电机升压并网后,定子绕组流过电流,此电流是感性的,感性电流在发电机内部的电枢反应作用比较大,他对转子磁场起削弱作用,从而引起端电压下降。当流过的只是有功电流时,也有相同的作用,只是影响比较小。这是因为定子绕组流过电流时产生磁场,这个磁场的一半对转子磁场起助磁作用,而另一半起去磁作用,由于转子磁场的饱和性,助磁一方总是弱于去磁的一方。因此,磁场会有所减弱,导致端电压有所下降。 2.为什么调节无功功率时有功功率不会变,而调节有功功率时无功功率会自动变化? 调无功功率时,因为励磁电流的变化引起功角的变化,从式看出,当发电机电动势增加,SIN¥值减小时,有功基本不变。 调有功功率时,对无功功率输出的影响就较大。发电机能不能送无功功率与电压差有关这个电压差指的是发电机电动势和端电压(系统电压)的同相部分的电压差,只有这个电压差才产生无功电流。当发电机送出有功功率,电动势就与系统电压错开一个角度,这样无功电压变小了。当有功变化越大,差角就越大,无功电压更小,因此无功自动减小,反之,当差角减小,无功会自动增加。 3.发电机运行时为什么会发热? 任何机器运转都会产生损耗,发电机也不例外,运行时他的内部损耗也很多。大致分四类: 铜损是指定子绕组的导线流过电流后在电阻上产生的损耗,即I2R而且定子槽内的导线产生的集肤效应额外引起损耗。 铁损是指铁芯齿部和轭部所产生的损耗,他有两种形式,一种是涡流损耗,另一种是磁滞损耗。涡流损耗是由于交变磁场产生感应电动势,在铁芯中引起涡流导致发热;磁滞损耗是由于交变磁场而使铁磁性材料克服交变阻力导致发热。 励磁损耗是转子绕组的电阻损耗。 另外,机械损耗就容易理解了。 这四种损耗都将使绕组、铁芯或其他部件发热,因此发电机在运行中会发热,这是不可避免的。 4.定子绕组单相接地时对发电机有危险吗? 发电机的中性点是绝缘的,如果一相接地,乍看构不成回路,但是由于带电体与处于地电位的铁芯间有电容存在,发生一相接地,接地点有会有电容电流流过。单相接地电流的大小,与接地线匝的份额a成正比。当机端发生金属性接地,接地电流最大,而接地点越靠近中性点,接地电流愈小,故障点有电流流过,就可能产生电弧,当接地电流大于5A时,就会有烧坏铁芯的危险。 5.大修后的发电机为什么要做空载和短路试验? 这两个试验都属于发电机的特性和参数试验,他与预防性试验的目的不同。这类试验是为了了解发电机的运行性能、基本量之间的关系的特性曲线以及被电机结构确定了的参数。做这些试验可以反映电机的某些问题。 空载试验是指电机以额定转速空载运行时,其定子电压与励磁电流之间的关系。他的用途很多,利用特性曲线,可以断定转子线圈有无匝间短路,也可判断定子铁芯有无局部短路如有短路,该处的涡流去磁作用也将使励磁电流因升至额定电

发电机异常及处理

发电机异常运行及事故处理 (一)、发电机的异常运行 1.发电机过负荷 现象: a.定子电流起过额定值,过负荷信号可能发出 b.转子电压,转子电流,可能超过正常值 c.发电机电压降低,周波可能下降 d.机组可能发生振动 处理: a.在事故情况下,允许发电机定子线圈按下表规定值过负荷,同时也允许转子线圈有相应的过负荷。 b.发电机在事故情况下过负荷,值班人员应首先检查功率因数和电压,注意过流时间,可以适当降低定子电压,但不允许过低。因功率因子不应超过0.95迟相,必要时可以按规定限制部分负荷。 2.发电机定子线圈和铁芯温度高于规定值处理。 a.检查发电机是否过负荷。 b.配合电工人员检查表记是否正常。 c.联系汽机检查空冷的冷却是否正常。

d.检查处理温度计升高时必须降低发电机出力,请示车间进行处理。 e.若发电机线圈,铁芯温度急剧上升,处理无效且漏风也不正常。 3.励磁系统接地 a.微机报警“发电机转子一点接地”,检查发电机后备接地保护确认接地为稳定性,并联系检修人员检查处理。 b.有刷励磁发电机转子接地范围包括转子,励磁电缆,灭磁开关,自动励磁屏内部分组件。 4.励磁回路两点接地 (1)现象: a.保护投入时,励磁电压降低,保护动作。 b.励磁电流剧增或降低。 c.定子电流表指示升高,发电机剧烈振动。 d.无功负荷降低。 处理: a.励磁保护投入时,机端开关及励磁开关应掉闸,未投入 或掉闸时应手动拉开。 b.向汽机发“注意”,“已掉闸”信号。 c.检查发电机励磁系统。 d.清除后发电机重新并列。 (2)、发电机正常运行时,必须检查发电机转子上接地电刷接触

汽轮发电机结构及原理

第四节汽轮发电机 汽轮发电机是同步发电机的一种,它是由汽轮机作原动机拖动转子旋转,利用电磁感应原理把机械能转换成电能的设备。 汽轮发电机包括发电机本体、励磁系统及其冷却系统等。 一、汽轮发电机的工作原理 按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。汽轮发电机转子与汽轮机转子高速旋转时,发电机转子随着转动。发电机转子绕组内通入直流电流后,便建立一个磁场,这个磁场称主磁极,它随着汽轮发电机转子旋转。其磁通自转子的一个极出来,经过空气隙、定子铁芯、空气隙、进入转子另一个极构成回路。 根据电磁感应定律,发电机磁极旋转一周,主磁极的磁力线北装在定子铁芯内的U、V、W三相绕组(导线)依次切割,在定子绕组内感应的电动势正好变化一次,亦即感应电动势每秒钟变化的次数,恰好等于磁极每秒钟的旋转次数。 汽轮发电机转子具有一对磁极(即1个N极、一个S极),转子旋转一周,定子绕组中的感应电动势正好交变一次(假如发电机转子为P对磁极时,转子旋转一周,定子绕组中感应电动势交变P次)。当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次,这样发电机转子以每秒钟50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。 这时若将发电机定子三相绕组引出线的末端(即中性点)连在一起。绕组的首端引出线与用电设备连接,就会有电流流过,这个过程即为汽轮机转子输入的机械能转换为电能的过程。 二、汽轮发电机的结构 火力发电厂的汽轮机发电机皆采用二极、转速为3000r/min的卧式结构。发电机与汽轮机、励磁机等配套组成同轴运转的汽轮发电机组。

电机学第14章同步发电机的异常运行和突然短路

第14章同步发电机的异常运行和突然短路 14.1同步发电机不对称运行对电机有哪些影响?主要是什么原因造成的? 答:(1)引起转子表面发热。这是由于负序电流所产生的反向旋转磁场以二倍同步转速截切转子, 在励磁绕组、阻尼绕组、转子铁心表面及转子的其它金属结构部件中均会感应出倍频电流,因此在励磁 绕组、阻尼绕组中将产生额外铜损耗,转子铁心中感应涡流引起附加损耗。 (2)引起发电机振动。由于负序旋转磁场以二倍同步转速与转子磁场相互作用,产生倍频的交变电 磁转矩,这种转矩作用在定子、转子铁心和机座上,使其产生100 Hz的振动。 可以看出,这些不良影响主要是负序磁场产生的,为了减小负序磁场的影响,常用的方法是在发电 机转子上装设阻尼绕组以削弱负序磁场的作用,从而提高发电机承受不对称负载的能力。 14.2为什么变压器中X(=X_?而同步电机中X.?X_? 答:由于变压器是静止电器,正序电流建立的正序磁场与负序电流建立的负序磁场所对应的磁路是 完全相同的,所以X:F X _。而在同步电机中,正序电流建立的正序磁场是正转旋转磁场,它与转子无 相对运动,因此正序电抗就是发电机的同步电抗,它相当于异步电机的励磁电抗;而负序磁场是反转旋 转磁场,它以二倍同步速切割转子上的所有绕组(励磁绕组、阻尼绕组等),在转子绕组中感应出二倍基 频的电动势和电流,这相当于一台异步电机运行于转差率s=2的制动状态。根据异步电动机的磁动势平 衡关系,转子主磁通对定子负序磁场起削弱作用,因此负序电抗就小于励磁电抗,所以在同步电机中 X X _。 14.3试分析发电机失磁运行时,转子励磁绕组中感应电流产生的磁场是什么性质的?它与定子旋转 磁场相互作用产生的转矩是交变的还是恒定的? 答:发电机失磁运行时,转子转速n略大于定子磁场转速n1,同步发电机转入异步发电运行状态, 其转差率S :::0 ,此时定子旋转磁场在励磁绕组中感应出频率为f2= sf1的交变电动势和交变电流,由于转子励磁绕组为单相绕组,因此励磁绕组将产生一个以f2频率交变的脉动磁场。该脉动磁场可以分解为 大小相等、转速相同、转向相反的两个旋转磁场,其中和转子转向相反的旋转磁场与定子磁场之间无相 对运动,二者作用对转子产生恒定的制动电磁转矩,而和转子转向相同的旋转磁场与定子磁场之间有相 对运动,二者作用对转子产生交变电磁转矩,总的合成电磁转矩是制动性质,方向不变,大小脉动。 14.4简述同步发电机的阻尼绕组对抑制振荡的作用。 答:同步发电机振荡时,转子转速不再是同步转速,转子与定子磁场之间存在相对运动,阻尼绕组

2.1同步发电机数学模型及运行特性

2.1同步发电机数学模型及运行特性 本节主要阐述同步发电机稳态数学模型及运行特性:包括向量图、等值电路与功率方程以及功角特性。 2.1.1 同步发电机稳态数学模型 理想电机假设: 1)电机铁心部分的导磁系数为常数; 2)电机定子三相绕组完全对称,在空间上互差120度,转子在结构上对本身的直轴和交轴完全对称; 3)定子电流在空气隙中产生正弦分布的磁势,转子绕组和定子绕组间的互感磁通也在空气隙中按正弦规率分布; 4)定子及转子的槽和通风沟不影响定子及转子的电感,即认为电机的定子及转子具有光滑的表面。 同步电动机是一种交流电机,主要做发电机用,也可做电动机用,一般用于功率较大,转速不要求调节的生产机械,例如大型水泵,空压机和矿井通风机等。近年由于永磁材料和电子技术的发展,微型同步电机得到越来越广泛的应用。同步电动机的特点之一是稳定运行时的转速n与定子电流的频率f1之间有严格不变的关系,即同步电动机的转速n与旋转磁场的转速n0相同。“同步”之名由此而来。 同步发电机是电力系统中的电源,它的稳态特性与暂态行为在电力系统中具有支配地位。虽然在电机学中已经学过同步电机,但那时侧重于基本电磁关系,而现在则从系统运行的角度审视发电机组。 1.同步发电机的相量图 设发电机以滞后功率因数运行,三相同步发电机正常运行时,定子某一相空载电势Eq,输出电压或端电压U和输出电流I间的相位关系如图2-1所示。δ是Eq领先U的角度,称为功角,是功率因数角,即U与I的相位差, Eq与q轴(横轴或交轴)重合,d为纵轴或直轴。U和I的d、q分量为: 图 2-1电势电压相量图 电机学课程中已经讨论过,端电压和电流的分量与Eq间的关系为: (2-3)

三相同步发电机的运行特性完整版

三相同步发电机的运行特性 、实验目的 1、用实验方法测量同步发电机在对称负载下的运行特性。 2、由实验数据计算同步发电机在对称运行时的稳态参数。 二、预习要点 1、同步发电机在对称负载下有哪些基本特性? 2、这些基本特性各在什么情况下测得? 3、怎样用实验数据计算对称运行时的稳态参数? 三、实验项目 1、测定电枢绕组实际冷态直流电阻。 2、空载实验:在n=n N、I=0 的条件下,测取空载特性曲线U0=f(I f) 。 3、三相短路实验:在n=n N、U=0 的条件下,测取三相短路特性曲线I K =f(I f)。 4、纯电感负载特性:在n=n N、I=I N、cosφ≈的0条件下,测取纯电感负载特性曲线。 5、外特性:在n=n N、I f=常数、cos φ =1和cos φ =0.8滞(后)的条件下,测取外特性曲线U=f(I) 。 6、调节特性:在n=n N、U=U N、cosφ=1的条件下,测取调节特性曲线I f=f(I) 。 四、实验方法 1 2、屏上挂件排列顺序 D34-2、D52、D51 3、测定电枢绕组实际冷态直流电阻被试电机为三相凸极式同步电机,选用DJ18。 测量与计算方法参见实验4-1。记录室温。测量数据记录于表5-1 中。

源 电 磁 励 2 5 +D +D 图 5-1 三相同步发电机实验接线 图 4、空载实验 (1) 按图 5-1 接线, 校正直流测功机MG按他励方式联接,用作电动机拖动三相同步发 电机G S旋转, GS的定子绕组为 Y 形接法 (U N =220V) 。R f2用 R4 组件上的 90Ω与 90Ω 串联加 R6 上 90Ω 与 90Ω并联共 225Ω 阻值, R st 用 R2 上的 180Ω 电阻值, R f1用 R1 上的 1800Ω电阻值。开关 S 1, S 2 选用 D51 挂箱。 (2) 调节 D52 上的 24V 励磁电源串接的 R f2 至最大位置。调节 MG 的电枢串联电阻 R st 至最大值, MG 的励磁调节电阻 R f1 至最小值。开关 S 1、S 2 均断开。将控制屏左侧调压器旋钮向逆时针方向旋 转退到零位,检查控制屏上的电源总开关、电枢电源开关及励磁电源开关都须在 “关 ”断的位置,作 好实验开机准备。 (3) 接通控制屏上的电源总开关, 按下 “启动 ”按钮,接通励磁电源开关, 看到电流表 A 2有励磁电 流指示后,再接通控制屏上的电枢电源开关 ,起动 MG 。MG 起动运行正常后 , 把 R st 调至最小,调节 R f1使 MG 转速达到同步发电机的额定转速 1500 r/min 并保持恒定。 (4) 接通 GS 励磁电源,调节 GS 励磁电流 (必须单方向调节 ),使 I f 单方向递增至 GS 输出电压 U 0≈ 1.3U N 为止。 (5) 单方向减小 GS 励磁电流,使 I f 单方向减至零值为止,读取励磁电流 I f 和相应的空载电压 U 0。 (6) 共取数据 7~9 组并记录于表 5-2 中。 表 5-2 n=n N =1500r/min I=0 序号 1 2 3 4 5 6 7 8 9 10 11 I(mA) 48.1 26.7 33.8 33.8 26.7 40.8 26.7 33.5 47.1 U(V) 0.76 0.42 0.53 0.53 0.42 0.64 0.42 0.53 0.74 R(Ω) 63.3 63.6 63.8 63.8 63.6 63.8 63.6 63.2 63.6 COSФ R L S 1 R L A R L I C R f2 + x A MG X + y B V 1 C 同步电机 励磁绕组 同步电机 电枢绕组 TG R t s 源 电 磁 励 GS 3~ 励磁绕组

水轮发电机组的异常运行

水轮发电机组的异常运行

————————————————————————————————作者:————————————————————————————————日期:

第十章水轮发电机组的异常运行 第一节水轮机的常见故障与事故处理 水轮机运行中难免会发生各种各样的异常情况,同一异常现 象可能有不同 的产生原因,因此,在分析故障现象时,要根据仪表指 示,机组运转声响,振动,温度 等现象,结合事故预兆,常规处理经验进行分析判断, 必要时采用拆卸部件解体检 查等方法和手段,从根本上消除设备故障. 一水轮机出率下降 水轮机导叶开度不变的情况下,机组出率下降 明显,造成水轮机出率下降 的常见原因有; (1)上游水位下降,渠道来水量急剧减少. (2)前池进水口栏污栅杂草严重阻塞. (3)电站尾水位抬高. (4)水轮机导叶剪断销断裂,个别导叶处于自由开度状态. (5)水轮机导水机构有杂物被卡住,冲击式机组的喷嘴堵塞. (6)冲击式机组折向器阻挡水流. 针对上述原因进行相应的检查处理 (1)若水库水位下降,有效水头减小,则水轮机效率降低,机组出力下降. 水库水位过低,应停止发电运行,积蓄水量,抬高水位 后再发电.渠道来水量急剧 减少,或上游电站已经停机,渠道发生事故断流,应停 机后检查处理. (2)要及时清理栏污栅杂草,防止杂草阻塞以致影响水轮机出力. (3)检查尾水渠道有否被堵塞,是否强降雨造成河道水位抬高. (4)详细检查水轮机导叶拐臂的转动角度是否一致,发现个别导叶角度 不一致时停机处理. (5)检查水轮机内部噪声情况,做全开,全关动作,排除杂物.必要时拆卸 水轮机尾水管或打开进人孔进入蜗壳,取出杂物. (6)检查冲击式机组折向器位置,如其阻挡水流,须调整折向器角度. 水轮机出力下降,往往会出现异常声响和振动,蜗壳压力表指 示下降或大 幅度波动等现象,要根据情况进行分析和判断处理. 二水轮机振动 水轮机运行过程中振动过大会影响机组正常 运行,轻则机组运行不稳定, 出力波动大,轴承温度高,机组运转噪声大,而其机组 并网困难;重则引起机组固定 部件(地角螺栓)损坏,尾水管金属焊接部件发生裂纹, 轴承温度过高而无法连续运 行.应针对不同情况,查清机组振动原因,采取对应措 施,恢复机组正常运转.水轮机

第16 同步发电机的不对称运行

第16章 同步发电机的不对称运行和突然短路 在前面两章,研究了同步发电机在三相对称负载下的稳态性能,这是同步发电机最基本的运行方式,因而也是同步发电机中最基本的内容。 在本章中,将研究同步发电机的另外两种运行方式,即三相不对称运行和瞬态短路。这是两种非正常的运行方式,如果处理不当会产生严重后果。 16.1 同步发电机不对称运行的分析方法 严格地讲,三相同步发电机经常在三相不对称负载下运行,不过,由于不对称的程度往往很小,所以可当作对称状态来处理。对有功率较大的单相负载,例如采用单相电炉或向电气铁道供电等,不对称的程度就比较大。严重的不对称会使转子发热,甚至烧环。因而对不对称运行方式的研究,有着现实意义。 研究电机不对称运行最有效的方法是对称分量法。即把不对称的三相电压、电流分解成正序、负序和零序,分别研究它们的效果,然后迭加起来而得到最后结果。 如同变压器一样,要利用对称分量法来分析同步电机的不对称运行状态,首先必须了解同步电机在正序、负序及零序时的参数。 16.1.1 正序电抗+X 转子直流励磁的磁通在定子绕组所产生的感应电势0E 的相序,定为正序。当定子绕组中三相电流的相序与. E 一致时,就是正序电流。正序电流流过定子绕组时所对应的电抗,就是正序电抗。由于正序电流通过三相绕组后,产生了和转子同方向旋转的磁场,亦即在空间和转子相对静止,不会在转子绕组中产生感应电势,因此正序电流所对应的抗,就是三相同步的,电枢反应磁势作用在直轴,所以对应于短路情况下的正序电抗,为不饱和的直轴同 步电抗,即+X =d X 。 16.1.2 负序电抗-X 负序电流流过定子绕组所对应的电抗就是负序电抗。由于负序电流所产生的旋转磁场与转子转向相反(图16-1),负序磁场以两倍同步速切割转子上的所有绕组(包括励磁绕组、阻尼绕组等),在这些绕组中感应出两倍频率的电势。在正常运行时,这些绕组都是自成闭路的,因而产生两倍频率的电流,这就相当于感应电机运行于转差率 2) (1 11=--= n n n s 时的制动状态, 所以同步电机负序状态下的等效电路与感应电机 图16-1负序电流产生的旋转磁场与转子转向相反 的等效电路极为类似。 如果略去定、转子电阻,同步电机负序时的等效电路便如图16-2所示。其中图16-2a 是直轴负序电抗的等效电路,它的激磁电抗是直轴电枢反应电抗ad X ,由于在转子上同时存在有励磁绕组及阻尼绕组,所以二次侧有两条并联支路,其中σF X 是励磁绕组的漏电抗, σZ X 是阻尼绕组的漏电抗,图b )是交轴负序电抗的等效电路,它的激磁电抗是交轴电枢反应电抗aq X ,由于在转子交轴上,只有阻尼绕组,没有励磁绕组,所以二次侧只有一条支路。

发电机的异常运行及处理

发电机的异常运行及处理 发电机的异常运行及处 理 李伟清 教授级高级工程师

2013-5 、发电机的正常运行方式 1-1 发电机的铭牌出力和运行范围图 1-2 发电机运行监视和维护 二、发电机的异常运行分析和事故处理 2-1 发电机进相运行 1. 进相运行对吸收电网无功功率和调压的作用 2. 进相运行机理、能力(深度)及限制条件 2-2 发电机失磁异步运行 1. 发电机运行中失磁的原因及特点 2. 失磁机组运行对电网的影响及处理的有关规定 2-3 发电机失步振荡和处理 发电机发生振荡失步的原因及现象发生振荡时的处理规则及措施 起发电机振荡失步处理实例 2-4 防止汽轮发电机组超速运行事故

1 .关于机组超速运行事故的事例及界定 2 防止机组超速运行事故的措施 、发电机的的正常运行方式 1-1 发电机的铭牌出力和运行范围图 发电机的正常运行方式是指按照制造厂规定的技术条件和铭牌数据运行的方式,发电机可在这种方式下,在出力图范围内长期连续运行。 发电机铭牌上标明了以下额定数据:额定功率、额定电压、额定电流、额定功率因数、额定频率、额定励磁电压及电流、额定转速等。 还标明了冷却介质的温度及压力等。 额定功率是指额定功率因数时发电机端输出的视在功率(以MVA 或KVA表示),也可以是发电机端的有功功率(以MW或KW表之)。 发电机按以上条件,在各相电压及电流都对称的稳态状态下运行时,具有损耗少、效率高、转矩均匀等较好效能,故运行部门应力图保持发电机在正常状态下(按铭牌规定的技术数据)稳定运行。

发电机正常运行时各主要参量(电压、电流、频率、功率因数)的允许变化范围:发电机运行电压的变化范围在额定电压的正负5% 以内而功率因数为额定值时,其额定容量保持不变;发电机连续运行的最高允许电压不得大于额定值的110%;最低运行电压不得低于额定值的90%,此时定子电流不得超过额定值的105%,以保持定子绕 组温升不超过规定值;发电机应能在额定功率因数,频率变化不超过正负0.5Hz 时,按额定容量运行;发电机应在迟相功率因数不大于0.95,进相功率因数不小于0.95 范围内,按额定容量运行。图1-1、系发电机的出力图,即运行范围图。

三相同步发电机的运行特性完整版

三相同步发电机的运行特性 一、实验目的 1、用实验方法测量同步发电机在对称负载下的运行特性。 2、由实验数据计算同步发电机在对称运行时的稳态参数。 二、预习要点 1、同步发电机在对称负载下有哪些基本特性? 2、这些基本特性各在什么情况下测得? 3、怎样用实验数据计算对称运行时的稳态参数? 三、实验项目 1、测定电枢绕组实际冷态直流电阻。 2、空载实验:在n=n N、I=0的条件下,测取空载特性曲线U0=f(I f)。 3、三相短路实验:在n=n N、U=0的条件下,测取三相短路特性曲线I K=f(I f)。 4、纯电感负载特性:在n=n N、I=I N、cosφ≈0的条件下,测取纯电感负载特性曲线。 5、外特性:在n=n N、I f=常数、cosφ=1和cosφ=0.8(滞后)的条件下,测取外特性曲线U=f(I)。 6、调节特性:在n=n N、U=U N、cosφ=1的条件下,测取调节特性曲线I f=f(I)。 四、实验方法 2、屏上挂件排列顺序 D34-2、D52、D51 3、测定电枢绕组实际冷态直流电阻 被试电机为三相凸极式同步电机,选用DJ18。 测量与计算方法参见实验4-1。记录室温。测量数据记录于表5-1中。

图5-1 三相同步发电机实验接线图 4、空载实验 (1) 按图5-1接线,校正直流测功机MG按他励方式联接,用作电动机拖动三相同步发电机GS旋转,GS的定子绕组为Y 形接法(U N =220V)。R f2用R4组件上的90Ω与90Ω串联加R6上90Ω与90Ω并联共225Ω阻值,R st 用R2上的180Ω电阻值,R f1用R1上的1800Ω电阻值。开关S 1,S 2选用D51挂箱。 (2) 调节D52上的24V 励磁电源串接的R f2至最大位置。调节MG 的电枢串联电阻R st 至最大值,MG 的励磁调节电阻R f1至最小值。开关S 1、S 2均断开。将控制屏左侧调压器旋钮向逆时针方向旋转退到零位,检查控制屏上的电源总开关、电枢电源开关及励磁电源开关都须在“关”断的位置,作好实验开机准备。 (3) 接通控制屏上的电源总开关,按下“启动”按钮,接通励磁电源开关,看到电流表A 2有励磁电流指示后,再接通控制屏上的电枢电源开关,起动MG 。MG 起动运行正常后, 把R st 调至最小,调节R f1使MG 转速达到同步发电机的额定转速1500 r/min 并保持恒定。 (4) 接通GS 励磁电源,调节GS 励磁电流(必须单方向调节),使I f 单方向递增至GS 输出电压U 0≈1.3U N 为止。 (5) 单方向减小GS 励磁电流,使I f 单方向减至零值为止,读取励磁电流I f 和相应的空载电压U 0。 (6) 共取数据7~9组并记录于表5-2中。 z

发电机型号含义及工作原理

发电机型号含义及工作原理 1. 概述 电能是现代社会最主要的能源之一。发电机是将其他形式的能源转换成电 能的机械设备,最早产生于第二次工业革命时期,由德国工程师西门子于1866 年制成,它由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流, 燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换 为电能。发电机在工农业生产,国防,科技及日常生活中有广泛的用途。 发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的 磁路和电路,以产生电磁功率,达到能量转换的目的。 发电机的分类可归纳如下: 发电机:直流发电机、交流发电机、同步发电机、异步发电机(很少采用) 交流发电机还可分为单相发电机与三相发电机。 2. 结构及工作原理 发电机通常由定子、转子、端盖.机座及轴承等部件构成。 定子由机座.定子铁芯、线包绕组、以及固定这些部分的其他结构件组成。 转子由转子铁芯(有磁扼.磁极绕组)滑环、(又称铜环.集电环).风扇及转轴等部件组成。 由轴承及端盖将发电机的定子,转子连接组装起来,使转子能在定[1]子中旋转,做切割磁力线的运动,从而产生感应电势,通过接线端子引出,接在回 路中,便产生了电流。 汽轮发电机与汽轮机配套的发电机。为了得到较高的效率,汽轮机一般 做成高速的,通常为3000转/分(频率为50赫)或3600转/分(频率为60赫)。核电站中汽轮机转速较低,但也在1500转/分以上。高速汽轮发电机为了减少因离心力而产生的机械应力以及降低风摩耗,转子直径一般做得比较小, 长度比较大,即采用细长的转子。特别是在3000转/分以上的大容量高速机组,

同步电机常见故障的原因分析与维修

高级技师专业论文 论文题目:同步电动机常见故障的原因分析与维修 姓名:张军 单位:山东晋煤明水化工有限公司 职业名称:维修电工

同步电动机常见故障的原因分析与维修 张军 (山东晋煤明水化工集团有限公司明泉化肥厂,济南,250200) 内容摘要:本文阐述同步电动机在运行过程中频繁损坏的原因不仅在电动机本身及设备原因,励磁控制柜技术性能太差也是造成同步机频繁损坏的主要原因之一。 关键词:同步电动机;故障;维修 引言:同步电动机,由于其具有一系列优点,特别是能向电网发送无功功率,支持电网电压,已在各行各业得到广泛应用。但是,长期以来在运行过程中,发生同步电动机及其励磁装置损坏的事故屡见不鲜。特别是一些连续性生产的企业,由于同步电动机的频繁损坏,直接影响生产的安全、连续及稳定进行,严重影响企业的经济效益,成为一个十分棘手的问题。本文综合多年来我厂同步机出现的各类故障及与同行业相关部门沟通、交流,将同步机常见的故障原因及维修方法总结如下: 一、同步电动机运行中出现的主要故障现象 同步电动机的损坏现象主要表现在:(1)定子绕组端部绑扎线崩断,绝缘蹭坏,连接处开焊;(2) 定子线圈在槽口处及线圈跨接部位断裂,进而引起接地、短路;(3) 转子励磁绕组线圈串联接头处产生裂纹,开焊,局部过热烤焦绝缘;(4)转子磁级的燕尾楔松动,退出;(5)转子线圈绝缘损伤;(6)起动绕组笼条短路环焊接处开焊,甚至笼条断裂;(7)电刷滑环松动;(8)风叶裂断;(9)定子铁芯松动,运行中噪声增大等故障。 按照设计理论计算同步机定、转子线圈的使用寿命应在20年左右,而在我们生产运行过程中由于电机所带的负载及线圈温升等主要技术指标均在额定指标以下,并且现在电机定子线圈的绝缘等级均采用F极绝缘,因此,电机的正常使用寿命还应更长些。但据相关维修企业统计,部分损坏的同步电动机,运

同步发电机的运行特性习题(精)

第3节 同步发电机的运行特性 一、填空题 1、同步发电机单机运行时,输入转矩和磁力电流保持不变,当有功负载( 0>?)增加时,端电压U ,频率 ;当无功负载( 0>?)增加时,端电压 U ,频率f 。 2、同步发电机的短路比可借助于 和 两条特性曲线来求取。 3、同步发电机稳态短路时,空载电动势是用来平衡 ,而气隙电动势来平衡 。 4、一台同步发电机带8.0cos =?的阻感性负载运行,若定子电流减小,发电机端电压 ,为保持电压额定值不变,励磁电流要 。 5、同步发电机带纯电阻负载时,从外特性曲线可知,若电枢电流增加,端电压会 , 其主要原因有内功率因数角ψ ,仍有一部分 作用的结果。 6、影响同步电动机电压变化率的因素,有 和 。 二、选择题 1、同步发电机稳定短路电流不很大的原因是( )。 (A )漏阻抗较大; (B )短路电流产生去磁作用较强; (C )电枢反应产生增磁作用; (D )同步电抗较大。 2、测定同步发电机短路特性时,如果转速降低N n 8.0时,测得的短路特性 。 (A )不变 (B )提高0.8倍 (C )降低0.8倍 三、问答题 1、简析同步发电机在短路特性曲线为什么是一条直线? 2、保持励磁电流不变,电枢电流N I I =,发电机转速恒定,试分析:①空载;②纯阻负载;③纯感负载;④纯容负载(设容抗大于发电机的同步电抗)时发电机端电压的大小?欲保持端电压为额定值,应如何调节? 3、同步发电机带上(>0°)的对称负载后,端电压为什么会下降,试从电路和磁路两方面加以分析? 4、什么叫短路比?它和同步电抗有何关系?它的大小对电机的运行性能和制造成本有何关系?

发动机及发电机原理

培训主题 一、发动机及发电机原理 二、发电机组操作与保养 三、EPIC并机柜原理与操作 1 / 58

发动机及发电机原理 2 / 58

3400系列 3300系列 Mak系列3600系列3500系列 3 / 58

代表机型 3300系列3304、3306机械式调速器 3400系列3406、3408、3412机械式调速器3406、3408、3412 PEEC 3406(EUI)、3408(HEUI)、3412(HEUI) 3500系列3508(MUI)、3512(MUI)、3516(MUI) 3508B、3512B、3516B(EUI) 3600系列C系列3606、3608、3612、3616、3618 C7、C9、C15、C18、C32、C175 4 / 58

5 / 58 发动机型号 缸径 3516B 170 mm 190 mm 行程 排量 69.0升 压缩比 14.0: 1 吸气方式 涡轮增压后冷却 电子单体喷射 16缸V 型(60度) 1-2-5-6-3- 4-9-10-15-16-11-12-13-14-7-8 0.50 mm 喷油系统 气缸数及排列方式 发火顺序(喷射顺序) 气门间隙 进气门 (停机冷态下) 排气门 1.00 mm 曲轴旋向(从飞轮端看) 逆时针方向

6 / 58 发动机型号 缸径 3512B 170 mm 行程 190 mm 排量 51.80升 压缩比 14.0 : 1 吸气方式 涡轮增压后冷却 电子单体喷射 12缸V 型(60度) 1-12-9-4-5-8-11-2-3-10-7-6 0.50 mm 喷油系统 气缸数及排列方式 发火顺序(喷射顺序) 气门间隙 进气门 (停机冷态下) 排气门 1.00 mm 曲轴旋向(从飞轮端看) 逆时针方向

同步发电机常见故障及对策

同步发电机常见故障及对策 发电机在运行中会不断受到振动、发热、电晕等各种机械力和电磁力的作用,加之由于设计、制造、运行管理以及系统故障等原因,常常引起发电机温度升高、转子绕组接地、定子绕组绝缘损坏、励磁机碳刷打火、发电机过负载等故障,同步发电机运行中常见的一些故障分析如下。 发电机常见故障及措施 2.1 发电机非同期并列 发电机用准同期法并列时,应满足电压、周波、相位相同这3个条件,如果由于操作不当或其它原因,并列时没有满足这3个条件,发电机就会非同期并列,它可能使发电机损坏,并对系统造成强烈的冲击,因此应注意防止此类故障的发生。当待并发电机与系统的电压不相同,其间存有电压差,在并列时就会产生一定的冲击电流。一般当电压相差在±10%以内时,冲击电流不太大,对发电机也没有什么危险。如果并列时电压相差较多,特别是大容量电机并列时,如果其电压远低于系统电压,那么在并列时除了产生很大的电流冲击外,还会使系统电压下降,可能使事故扩大。一般在并列时,应使待并发电机的电压稍高于系统电压。如果待并发电机电压与系统电压的相位不同,并列时引起的冲击电流将产生同期力矩,使待并发电机立刻牵入同步。如果相位差在土300以内时,产生的冲击电流和同期力矩不会造成严重影响。如果相位差很大时,冲击电流和同期力矩将很大,可能达到三相短路电流的2倍,它将使定子线棒和转轴受到一个很大的冲击应力,可能造成定子端部绕组严重变形,联轴器螺栓被剪断等严重后果。为防止非同期并列,有些厂在手动准同期装置中加装了电压差检查装置和相角闭锁装置,以保证在并列时电差、相角差不超过允许值。 2.2 发电机温度升高 (1)定子线圈温度和进风温度正常,而转子温度异常升高,这时可能是转子温度表失灵,应作检查。发电机三相负荷不平衡超过允许值时,也会使转子温度升高,此时应立即降低负荷,并设法调整系统已减少三相负荷的不平衡度,使转子温度降到允许范围之内。 (2)转子温度和进风温度正常,而定子温度异常升高,可能是定子温度表失灵。测量定子温度用的电阻式测温元件的电阻值有时会在运行中逐步增大,甚至开路,这时就会出现某一点温度突然上升的现象。 (3)当进风温度和定子、转子温度都升高,就可以判定是冷却水系统发生了故障,这时应立即检查空气冷却器是否断水或水压太低。 (4)当进风温度正常而出风温度异常升高,这就表明通风系统失灵,这时必须停机进行检查。有些发电机组通风道内装有导流挡板,如因操作不当就会使风路受阻,这时应检查挡板的位置并纠正之。 2.3 发电机定子绕组损坏

直流发电机的工作原理与结构

直流发电机的工作原理及结构 电机的可逆运行原理 两个定理与两个定则 1、电磁感应定理 在磁场中运动的导体将会感应电势,若磁场、导体和导体的运动方向三者互相垂直,则作用导体中感应的电势大小为: e = B·l·v 符号物理量单位 B 磁场的磁感应强度Wb/m2 v 导体运动速度米/秒 l 导体有效长度m e 感应电势V 电势的方向用右手定则

2.电磁力定律载流导体在磁场中将会受到力的作用,若磁场与载流导体互相垂直(见下图),作用在导体上的电磁力大小为:f = B·l·i 符号物理量单位 i 导体中的电流A l 导体有效长度m f 电磁力N 力的方向用左手定则 (一)直流发电机的工作原理 1.直流发电机的原理模型

2.发电机工作原理

a、直流电势产生 用电动机拖动电枢使之逆时针方向恒速转动,线圈边a b 和c d 分别切割不同极性磁极下的磁力线,感应产生电动势直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势因为电刷A 通过换向片所引出的电动势始终是切割N 极磁力线的线圈边中的电动势。所以电刷A 始终有正极性,同样道理,电刷 B 始终有负极性。所以电刷端能引出方向不变但大小变化的脉动电动势 b、结论 线圈的感应电动势是一种交变电动势,而在电刷A B 端的电动势却是直流电动势。 直流发电机[浏览次数:约145次] ?直流发电机是一种把机械能转换为直流电输出的电机,流电动机具有良好的起动性能和调速性能,因此广泛应用于要求调速平滑,调速围广等对调速要求较高的电气传动系统中,如电力机车、无轨电车、轧钢机起重设备等。 目录 ?直流发电机的结构 ?直流发电机的部件功能 ?直流发电机的工作原理 ?直流发电机的额定值

三相同步发电机的运行特性实验报告

三相同步发电机的运行特性实验报告

一、实验目的 1. 掌握三相同步发电机的空载、短路及零功率因数负载特性的实验求取法。 2.学会用实验方法求取三相同步发电机对称运行时的稳太参数。 二、实验内容: 1.空载实验:在n=nN,I=0的条件下,测取同步发电机的空载特性曲线Uo=f(If)。 2.三相短路实验:在n=n N,U=0的条件下,测取同步发电机的三相短路特性曲线I k=f(I f). 3..求取零功率因数负载特性曲线上的一点,在n=nN;U=UN;cos?≈0的条件下,测取当I=IN 时的If值。 三、实验仪器及其接线 1.实验仪器如下图所示:

2.实验室实际接线图如下图所示: 图1 实验室实际接线图 四、实验线路及操作步骤: 1. 空载实验 实验接线图如图2所示 图2 实验接线图 实验时启动原动机(直流电动机),将发电机拖到额定转速,电枢绕组开路,调节励磁电流使电枢空载电压达到120%U N值左右,读取三相线电压和励磁电流,作为空载特性的第一点。然后单方向逐渐减小励磁电流,较均匀地测取8到9组数据,最后读取励磁电流为零时的剩磁电压,将测量数据记录于表1中。

表1 空载实验数据记录 n=no=1500转/分 I=0 (1)表1中 U 0=3 AC BC AB U U U ++ U 0*=N U U 0 I f =I ′f +ΔI f0 I I fo f I f = * I f0为U 0= U N 时的I f 值,在本实验室中取U N =400V,I N =3.6A 。 (2)若空载特性剩磁较高,则空载特性应予以修正,即将特曲线的的直线部分延长与横轴相交,交点的横坐标绝对植ΔI f0即为修正量,在所有试验测得的励磁电流数据上加上ΔI f0,即得通过坐标原点之空载校正曲线。如图3所示。 图3 空载特性曲线校正 2.短路实验 实验线路图如图2所示。在直流电动机不停机状态下,并且,发电机励磁电流等于零的情况下,这时合上短路开关K 2,将电枢三相绕组短路,将机组转速调到额定值并保持不变,逐步增加发电机的励磁电流I f ,使电枢电流达到(1.1-1.2)倍额定值,同时量取电枢电流和励磁电流,然后逐步减小励磁电流直到降为0为止。其间共同读取5-6组数据,记于表2中。

电机学 第14章_同步发电机的异常运行和瞬态短路

第14章 思考题与习题参考答案 14.1 同步发电机不对称运行对电机有哪些影响?主要是什么原因造成的? 答:(1)引起转子表面发热。这是由于负序电流所产生的反向旋转磁场以二倍同步转速截切转子,在励磁绕组、阻尼绕组、转子铁心表面及转子的其它金属结构部件中均会感应出倍频电流,因此在励磁绕组、阻尼绕组中将产生额外铜损耗,转子铁心中感应涡流引起附加损耗。 (2)引起发电机振动。由于负序旋转磁场以二倍同步转速与转子磁场相互作用,产生倍频的交变电磁转矩,这种转矩作用在定子、转子铁心和机座上,使其产生Hz 100的振动。 可以看出,这些不良影响主要是负序磁场产生的,为了减小负序磁场的影响,常用的方法是在发电机转子上装设阻尼绕组以削弱负序磁场的作用,从而提高发电机承受不对称负载的能力。 14.2 为什么变压器中?+=X X ? 而同步电机中?+>X X ? 答:由于变压器是静止电器,正序电流建立的正序磁场与负序电流建立的负序磁场所对应的磁路是完全相同的,所以?+=X X 。而在同步电机中,正序电流建立的正序磁场是正转旋转磁场,它与转子无相对运动,因此正序电抗就是发电机的同步电抗,它相当于异步电机的励磁电抗;而负序磁场是反转旋转磁场,它以二倍同步速切割转子上的所有绕组(励磁绕组、阻尼绕组等),在转子绕组中感应出二倍基频的电动势和电流,这相当于一台异步电机运行于转差率2=s 的制动状态。根据异步电动机的磁动势平衡关系,转子主磁通对定子负序磁场起削弱作用,因此负序电抗就小于励磁电抗,所以在同步电机中?+>X X 。 14.3 试分析发电机失磁运行时,转子励磁绕组中感应电流产生的磁场是什么性质的?它与定子旋转磁场相互作用产生的转矩是交变的还是恒定的? 答:发电机失磁运行时,转子转速n 略大于定子磁场转速n 1 ,同步发电机转入异步发电运行状态,其转差率0

相关主题
文本预览
相关文档 最新文档